mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-23 00:31:11 -06:00
Merge remote-tracking branch 'origin/dev' into sla_base_pool
This commit is contained in:
commit
d749080261
388 changed files with 115166 additions and 3275 deletions
|
@ -7,9 +7,9 @@
|
|||
namespace Slic3r {
|
||||
|
||||
template BoundingBoxBase<Point>::BoundingBoxBase(const std::vector<Point> &points);
|
||||
template BoundingBoxBase<Pointf>::BoundingBoxBase(const std::vector<Pointf> &points);
|
||||
template BoundingBoxBase<Vec2d>::BoundingBoxBase(const std::vector<Vec2d> &points);
|
||||
|
||||
template BoundingBox3Base<Pointf3>::BoundingBox3Base(const std::vector<Pointf3> &points);
|
||||
template BoundingBox3Base<Vec3d>::BoundingBox3Base(const std::vector<Vec3d> &points);
|
||||
|
||||
BoundingBox::BoundingBox(const Lines &lines)
|
||||
{
|
||||
|
@ -22,8 +22,7 @@ BoundingBox::BoundingBox(const Lines &lines)
|
|||
*this = BoundingBox(points);
|
||||
}
|
||||
|
||||
void
|
||||
BoundingBox::polygon(Polygon* polygon) const
|
||||
void BoundingBox::polygon(Polygon* polygon) const
|
||||
{
|
||||
polygon->points.clear();
|
||||
polygon->points.resize(4);
|
||||
|
@ -37,8 +36,7 @@ BoundingBox::polygon(Polygon* polygon) const
|
|||
polygon->points[3](1) = this->max(1);
|
||||
}
|
||||
|
||||
Polygon
|
||||
BoundingBox::polygon() const
|
||||
Polygon BoundingBox::polygon() const
|
||||
{
|
||||
Polygon p;
|
||||
this->polygon(&p);
|
||||
|
@ -72,24 +70,23 @@ BoundingBoxBase<PointClass>::scale(double factor)
|
|||
this->max *= factor;
|
||||
}
|
||||
template void BoundingBoxBase<Point>::scale(double factor);
|
||||
template void BoundingBoxBase<Pointf>::scale(double factor);
|
||||
template void BoundingBoxBase<Pointf3>::scale(double factor);
|
||||
template void BoundingBoxBase<Vec2d>::scale(double factor);
|
||||
template void BoundingBoxBase<Vec3d>::scale(double factor);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min(0) = std::min(point(0), this->min(0));
|
||||
this->min(1) = std::min(point(1), this->min(1));
|
||||
this->max(0) = std::max(point(0), this->max(0));
|
||||
this->max(1) = std::max(point(1), this->max(1));
|
||||
this->min = this->min.cwiseMin(point);
|
||||
this->max = this->max.cwiseMax(point);
|
||||
} else {
|
||||
this->min = this->max = point;
|
||||
this->min = point;
|
||||
this->max = point;
|
||||
this->defined = true;
|
||||
}
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const Point &point);
|
||||
template void BoundingBoxBase<Pointf>::merge(const Pointf &point);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const Vec2d &point);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const std::vector<PointClass> &points)
|
||||
|
@ -97,7 +94,7 @@ BoundingBoxBase<PointClass>::merge(const std::vector<PointClass> &points)
|
|||
this->merge(BoundingBoxBase(points));
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const Points &points);
|
||||
template void BoundingBoxBase<Pointf>::merge(const Pointfs &points);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const Pointfs &points);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
||||
|
@ -105,10 +102,8 @@ BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
|||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min(0) = std::min(bb.min(0), this->min(0));
|
||||
this->min(1) = std::min(bb.min(1), this->min(1));
|
||||
this->max(0) = std::max(bb.max(0), this->max(0));
|
||||
this->max(1) = std::max(bb.max(1), this->max(1));
|
||||
this->min = this->min.cwiseMin(bb.min);
|
||||
this->max = this->max.cwiseMax(bb.max);
|
||||
} else {
|
||||
this->min = bb.min;
|
||||
this->max = bb.max;
|
||||
|
@ -117,25 +112,28 @@ BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
|||
}
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const BoundingBoxBase<Point> &bb);
|
||||
template void BoundingBoxBase<Pointf>::merge(const BoundingBoxBase<Pointf> &bb);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const BoundingBoxBase<Vec2d> &bb);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min(2) = std::min(point(2), this->min(2));
|
||||
this->max(2) = std::max(point(2), this->max(2));
|
||||
this->min = this->min.cwiseMin(point);
|
||||
this->max = this->max.cwiseMax(point);
|
||||
} else {
|
||||
this->min = point;
|
||||
this->max = point;
|
||||
this->defined = true;
|
||||
}
|
||||
BoundingBoxBase<PointClass>::merge(point);
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::merge(const Pointf3 &point);
|
||||
template void BoundingBox3Base<Vec3d>::merge(const Vec3d &point);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const std::vector<PointClass> &points)
|
||||
{
|
||||
this->merge(BoundingBox3Base(points));
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::merge(const Pointf3s &points);
|
||||
template void BoundingBox3Base<Vec3d>::merge(const Pointf3s &points);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
|
||||
|
@ -143,13 +141,16 @@ BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
|
|||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1) || bb.min(2) >= bb.max(2));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min(2) = std::min(bb.min(2), this->min(2));
|
||||
this->max(2) = std::max(bb.max(2), this->max(2));
|
||||
this->min = this->min.cwiseMin(bb.min);
|
||||
this->max = this->max.cwiseMax(bb.max);
|
||||
} else {
|
||||
this->min = bb.min;
|
||||
this->max = bb.max;
|
||||
this->defined = true;
|
||||
}
|
||||
BoundingBoxBase<PointClass>::merge(bb);
|
||||
}
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::merge(const BoundingBox3Base<Pointf3> &bb);
|
||||
template void BoundingBox3Base<Vec3d>::merge(const BoundingBox3Base<Vec3d> &bb);
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::size() const
|
||||
|
@ -157,14 +158,14 @@ BoundingBoxBase<PointClass>::size() const
|
|||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1));
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::size() const;
|
||||
template Pointf BoundingBoxBase<Pointf>::size() const;
|
||||
template Vec2d BoundingBoxBase<Vec2d>::size() const;
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::size() const
|
||||
{
|
||||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1), this->max(2) - this->min(2));
|
||||
}
|
||||
template Pointf3 BoundingBox3Base<Pointf3>::size() const;
|
||||
template Vec3d BoundingBox3Base<Vec3d>::size() const;
|
||||
|
||||
template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
|
||||
{
|
||||
|
@ -174,7 +175,7 @@ template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
|
|||
return 0.5 * sqrt(x*x+y*y);
|
||||
}
|
||||
template double BoundingBoxBase<Point>::radius() const;
|
||||
template double BoundingBoxBase<Pointf>::radius() const;
|
||||
template double BoundingBoxBase<Vec2d>::radius() const;
|
||||
|
||||
template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
|
||||
{
|
||||
|
@ -183,7 +184,7 @@ template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
|
|||
double z = this->max(2) - this->min(2);
|
||||
return 0.5 * sqrt(x*x+y*y+z*z);
|
||||
}
|
||||
template double BoundingBox3Base<Pointf3>::radius() const;
|
||||
template double BoundingBox3Base<Vec3d>::radius() const;
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::offset(coordf_t delta)
|
||||
|
@ -193,7 +194,7 @@ BoundingBoxBase<PointClass>::offset(coordf_t delta)
|
|||
this->max += v;
|
||||
}
|
||||
template void BoundingBoxBase<Point>::offset(coordf_t delta);
|
||||
template void BoundingBoxBase<Pointf>::offset(coordf_t delta);
|
||||
template void BoundingBoxBase<Vec2d>::offset(coordf_t delta);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::offset(coordf_t delta)
|
||||
|
@ -202,29 +203,22 @@ BoundingBox3Base<PointClass>::offset(coordf_t delta)
|
|||
this->min -= v;
|
||||
this->max += v;
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::offset(coordf_t delta);
|
||||
template void BoundingBox3Base<Vec3d>::offset(coordf_t delta);
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::center() const
|
||||
{
|
||||
return PointClass(
|
||||
(this->max(0) + this->min(0))/2,
|
||||
(this->max(1) + this->min(1))/2
|
||||
);
|
||||
return (this->min + this->max) / 2;
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::center() const;
|
||||
template Pointf BoundingBoxBase<Pointf>::center() const;
|
||||
template Vec2d BoundingBoxBase<Vec2d>::center() const;
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::center() const
|
||||
{
|
||||
return PointClass(
|
||||
(this->max(0) + this->min(0))/2,
|
||||
(this->max(1) + this->min(1))/2,
|
||||
(this->max(2) + this->min(2))/2
|
||||
);
|
||||
return (this->min + this->max) / 2;
|
||||
}
|
||||
template Pointf3 BoundingBox3Base<Pointf3>::center() const;
|
||||
template Vec3d BoundingBox3Base<Vec3d>::center() const;
|
||||
|
||||
template <class PointClass> coordf_t
|
||||
BoundingBox3Base<PointClass>::max_size() const
|
||||
|
@ -232,7 +226,7 @@ BoundingBox3Base<PointClass>::max_size() const
|
|||
PointClass s = size();
|
||||
return std::max(s(0), std::max(s(1), s(2)));
|
||||
}
|
||||
template coordf_t BoundingBox3Base<Pointf3>::max_size() const;
|
||||
template coordf_t BoundingBox3Base<Vec3d>::max_size() const;
|
||||
|
||||
// Align a coordinate to a grid. The coordinate may be negative,
|
||||
// the aligned value will never be bigger than the original one.
|
||||
|
@ -255,39 +249,35 @@ void BoundingBox::align_to_grid(const coord_t cell_size)
|
|||
}
|
||||
}
|
||||
|
||||
BoundingBoxf3 BoundingBoxf3::transformed(const Transform3f& matrix) const
|
||||
BoundingBoxf3 BoundingBoxf3::transformed(const Transform3d& matrix) const
|
||||
{
|
||||
Eigen::Matrix<float, 3, 8, Eigen::DontAlign> vertices;
|
||||
typedef Eigen::Matrix<double, 3, 8, Eigen::DontAlign> Vertices;
|
||||
|
||||
vertices(0, 0) = (float)min(0); vertices(1, 0) = (float)min(1); vertices(2, 0) = (float)min(2);
|
||||
vertices(0, 1) = (float)max(0); vertices(1, 1) = (float)min(1); vertices(2, 1) = (float)min(2);
|
||||
vertices(0, 2) = (float)max(0); vertices(1, 2) = (float)max(1); vertices(2, 2) = (float)min(2);
|
||||
vertices(0, 3) = (float)min(0); vertices(1, 3) = (float)max(1); vertices(2, 3) = (float)min(2);
|
||||
vertices(0, 4) = (float)min(0); vertices(1, 4) = (float)min(1); vertices(2, 4) = (float)max(2);
|
||||
vertices(0, 5) = (float)max(0); vertices(1, 5) = (float)min(1); vertices(2, 5) = (float)max(2);
|
||||
vertices(0, 6) = (float)max(0); vertices(1, 6) = (float)max(1); vertices(2, 6) = (float)max(2);
|
||||
vertices(0, 7) = (float)min(0); vertices(1, 7) = (float)max(1); vertices(2, 7) = (float)max(2);
|
||||
Vertices src_vertices;
|
||||
src_vertices(0, 0) = min(0); src_vertices(1, 0) = min(1); src_vertices(2, 0) = min(2);
|
||||
src_vertices(0, 1) = max(0); src_vertices(1, 1) = min(1); src_vertices(2, 1) = min(2);
|
||||
src_vertices(0, 2) = max(0); src_vertices(1, 2) = max(1); src_vertices(2, 2) = min(2);
|
||||
src_vertices(0, 3) = min(0); src_vertices(1, 3) = max(1); src_vertices(2, 3) = min(2);
|
||||
src_vertices(0, 4) = min(0); src_vertices(1, 4) = min(1); src_vertices(2, 4) = max(2);
|
||||
src_vertices(0, 5) = max(0); src_vertices(1, 5) = min(1); src_vertices(2, 5) = max(2);
|
||||
src_vertices(0, 6) = max(0); src_vertices(1, 6) = max(1); src_vertices(2, 6) = max(2);
|
||||
src_vertices(0, 7) = min(0); src_vertices(1, 7) = max(1); src_vertices(2, 7) = max(2);
|
||||
|
||||
Eigen::Matrix<float, 3, 8, Eigen::DontAlign> transf_vertices = matrix * vertices.colwise().homogeneous();
|
||||
Vertices dst_vertices = matrix * src_vertices.colwise().homogeneous();
|
||||
|
||||
float min_x = transf_vertices(0, 0);
|
||||
float max_x = transf_vertices(0, 0);
|
||||
float min_y = transf_vertices(1, 0);
|
||||
float max_y = transf_vertices(1, 0);
|
||||
float min_z = transf_vertices(2, 0);
|
||||
float max_z = transf_vertices(2, 0);
|
||||
Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
|
||||
Vec3d v_max = v_min;
|
||||
|
||||
for (int i = 1; i < 8; ++i)
|
||||
{
|
||||
min_x = std::min(min_x, transf_vertices(0, i));
|
||||
max_x = std::max(max_x, transf_vertices(0, i));
|
||||
min_y = std::min(min_y, transf_vertices(1, i));
|
||||
max_y = std::max(max_y, transf_vertices(1, i));
|
||||
min_z = std::min(min_z, transf_vertices(2, i));
|
||||
max_z = std::max(max_z, transf_vertices(2, i));
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
v_min(j) = std::min(v_min(j), dst_vertices(j, i));
|
||||
v_max(j) = std::max(v_max(j), dst_vertices(j, i));
|
||||
}
|
||||
}
|
||||
|
||||
return BoundingBoxf3(Pointf3((coordf_t)min_x, (coordf_t)min_y, (coordf_t)min_z), Pointf3((coordf_t)max_x, (coordf_t)max_y, (coordf_t)max_z));
|
||||
return BoundingBoxf3(v_min, v_max);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -7,11 +7,6 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
typedef Point Size;
|
||||
typedef Point3 Size3;
|
||||
typedef Pointf Sizef;
|
||||
typedef Pointf3 Sizef3;
|
||||
|
||||
template <class PointClass>
|
||||
class BoundingBoxBase
|
||||
{
|
||||
|
@ -20,23 +15,20 @@ public:
|
|||
PointClass max;
|
||||
bool defined;
|
||||
|
||||
BoundingBoxBase() : defined(false) {};
|
||||
BoundingBoxBase() : defined(false), min(PointClass::Zero()), max(PointClass::Zero()) {}
|
||||
BoundingBoxBase(const PointClass &pmin, const PointClass &pmax) :
|
||||
min(pmin), max(pmax), defined(pmin(0) < pmax(0) && pmin(1) < pmax(1)) {}
|
||||
BoundingBoxBase(const std::vector<PointClass>& points)
|
||||
BoundingBoxBase(const std::vector<PointClass>& points) : min(PointClass::Zero()), max(PointClass::Zero())
|
||||
{
|
||||
if (points.empty())
|
||||
CONFESS("Empty point set supplied to BoundingBoxBase constructor");
|
||||
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min(0) = this->max(0) = (*it)(0);
|
||||
this->min(1) = this->max(1) = (*it)(1);
|
||||
for (++it; it != points.end(); ++it)
|
||||
{
|
||||
this->min(0) = std::min((*it)(0), this->min(0));
|
||||
this->min(1) = std::min((*it)(1), this->min(1));
|
||||
this->max(0) = std::max((*it)(0), this->max(0));
|
||||
this->max(1) = std::max((*it)(1), this->max(1));
|
||||
this->min = *it;
|
||||
this->max = *it;
|
||||
for (++ it; it != points.end(); ++ it) {
|
||||
this->min = this->min.cwiseMin(*it);
|
||||
this->max = this->max.cwiseMax(*it);
|
||||
}
|
||||
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1));
|
||||
}
|
||||
|
@ -47,7 +39,7 @@ public:
|
|||
PointClass size() const;
|
||||
double radius() const;
|
||||
void translate(coordf_t x, coordf_t y) { assert(this->defined); PointClass v(x, y); this->min += v; this->max += v; }
|
||||
void translate(const Pointf &v) { this->min += v; this->max += v; }
|
||||
void translate(const Vec2d &v) { this->min += v; this->max += v; }
|
||||
void offset(coordf_t delta);
|
||||
PointClass center() const;
|
||||
bool contains(const PointClass &point) const {
|
||||
|
@ -71,19 +63,17 @@ public:
|
|||
BoundingBoxBase<PointClass>(pmin, pmax)
|
||||
{ if (pmin(2) >= pmax(2)) BoundingBoxBase<PointClass>::defined = false; }
|
||||
BoundingBox3Base(const std::vector<PointClass>& points)
|
||||
: BoundingBoxBase<PointClass>(points)
|
||||
{
|
||||
if (points.empty())
|
||||
CONFESS("Empty point set supplied to BoundingBox3Base constructor");
|
||||
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min(2) = this->max(2) = (*it)(2);
|
||||
for (++it; it != points.end(); ++it)
|
||||
{
|
||||
this->min(2) = std::min((*it)(2), this->min(2));
|
||||
this->max(2) = std::max((*it)(2), this->max(2));
|
||||
this->min = *it;
|
||||
this->max = *it;
|
||||
for (++ it; it != points.end(); ++ it) {
|
||||
this->min = this->min.cwiseMin(*it);
|
||||
this->max = this->max.cwiseMax(*it);
|
||||
}
|
||||
this->defined &= (this->min(2) < this->max(2));
|
||||
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1)) && (this->min(2) < this->max(2));
|
||||
}
|
||||
void merge(const PointClass &point);
|
||||
void merge(const std::vector<PointClass> &points);
|
||||
|
@ -91,7 +81,7 @@ public:
|
|||
PointClass size() const;
|
||||
double radius() const;
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z) { assert(this->defined); PointClass v(x, y, z); this->min += v; this->max += v; }
|
||||
void translate(const Pointf3 &v) { this->min += v; this->max += v; }
|
||||
void translate(const Vec3d &v) { this->min += v; this->max += v; }
|
||||
void offset(coordf_t delta);
|
||||
PointClass center() const;
|
||||
coordf_t max_size() const;
|
||||
|
@ -130,30 +120,30 @@ public:
|
|||
friend BoundingBox get_extents_rotated(const Points &points, double angle);
|
||||
};
|
||||
|
||||
class BoundingBox3 : public BoundingBox3Base<Point3>
|
||||
class BoundingBox3 : public BoundingBox3Base<Vec3crd>
|
||||
{
|
||||
public:
|
||||
BoundingBox3() : BoundingBox3Base<Point3>() {};
|
||||
BoundingBox3(const Point3 &pmin, const Point3 &pmax) : BoundingBox3Base<Point3>(pmin, pmax) {};
|
||||
BoundingBox3(const Points3& points) : BoundingBox3Base<Point3>(points) {};
|
||||
BoundingBox3() : BoundingBox3Base<Vec3crd>() {};
|
||||
BoundingBox3(const Vec3crd &pmin, const Vec3crd &pmax) : BoundingBox3Base<Vec3crd>(pmin, pmax) {};
|
||||
BoundingBox3(const Points3& points) : BoundingBox3Base<Vec3crd>(points) {};
|
||||
};
|
||||
|
||||
class BoundingBoxf : public BoundingBoxBase<Pointf>
|
||||
class BoundingBoxf : public BoundingBoxBase<Vec2d>
|
||||
{
|
||||
public:
|
||||
BoundingBoxf() : BoundingBoxBase<Pointf>() {};
|
||||
BoundingBoxf(const Pointf &pmin, const Pointf &pmax) : BoundingBoxBase<Pointf>(pmin, pmax) {};
|
||||
BoundingBoxf(const std::vector<Pointf> &points) : BoundingBoxBase<Pointf>(points) {};
|
||||
BoundingBoxf() : BoundingBoxBase<Vec2d>() {};
|
||||
BoundingBoxf(const Vec2d &pmin, const Vec2d &pmax) : BoundingBoxBase<Vec2d>(pmin, pmax) {};
|
||||
BoundingBoxf(const std::vector<Vec2d> &points) : BoundingBoxBase<Vec2d>(points) {};
|
||||
};
|
||||
|
||||
class BoundingBoxf3 : public BoundingBox3Base<Pointf3>
|
||||
class BoundingBoxf3 : public BoundingBox3Base<Vec3d>
|
||||
{
|
||||
public:
|
||||
BoundingBoxf3() : BoundingBox3Base<Pointf3>() {};
|
||||
BoundingBoxf3(const Pointf3 &pmin, const Pointf3 &pmax) : BoundingBox3Base<Pointf3>(pmin, pmax) {};
|
||||
BoundingBoxf3(const std::vector<Pointf3> &points) : BoundingBox3Base<Pointf3>(points) {};
|
||||
BoundingBoxf3() : BoundingBox3Base<Vec3d>() {};
|
||||
BoundingBoxf3(const Vec3d &pmin, const Vec3d &pmax) : BoundingBox3Base<Vec3d>(pmin, pmax) {};
|
||||
BoundingBoxf3(const std::vector<Vec3d> &points) : BoundingBox3Base<Vec3d>(points) {};
|
||||
|
||||
BoundingBoxf3 transformed(const Transform3f& matrix) const;
|
||||
BoundingBoxf3 transformed(const Transform3d& matrix) const;
|
||||
};
|
||||
|
||||
template<typename VT>
|
||||
|
|
|
@ -49,9 +49,9 @@ enum ConfigOptionType {
|
|||
coPercents = coPercent + coVectorType,
|
||||
// a fraction or an absolute value
|
||||
coFloatOrPercent = 5,
|
||||
// single 2d point. Currently not used.
|
||||
// single 2d point (Point2f). Currently not used.
|
||||
coPoint = 6,
|
||||
// vector of 2d points. Currently used for the definition of the print bed and for the extruder offsets.
|
||||
// vector of 2d points (Point2f). Currently used for the definition of the print bed and for the extruder offsets.
|
||||
coPoints = coPoint + coVectorType,
|
||||
// single boolean value
|
||||
coBool = 7,
|
||||
|
@ -622,11 +622,11 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
class ConfigOptionPoint : public ConfigOptionSingle<Pointf>
|
||||
class ConfigOptionPoint : public ConfigOptionSingle<Vec2d>
|
||||
{
|
||||
public:
|
||||
ConfigOptionPoint() : ConfigOptionSingle<Pointf>(Pointf(0,0)) {}
|
||||
explicit ConfigOptionPoint(const Pointf &value) : ConfigOptionSingle<Pointf>(value) {}
|
||||
ConfigOptionPoint() : ConfigOptionSingle<Vec2d>(Vec2d(0,0)) {}
|
||||
explicit ConfigOptionPoint(const Vec2d &value) : ConfigOptionSingle<Vec2d>(value) {}
|
||||
|
||||
static ConfigOptionType static_type() { return coPoint; }
|
||||
ConfigOptionType type() const override { return static_type(); }
|
||||
|
@ -652,13 +652,13 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
class ConfigOptionPoints : public ConfigOptionVector<Pointf>
|
||||
class ConfigOptionPoints : public ConfigOptionVector<Vec2d>
|
||||
{
|
||||
public:
|
||||
ConfigOptionPoints() : ConfigOptionVector<Pointf>() {}
|
||||
explicit ConfigOptionPoints(size_t n, const Pointf &value) : ConfigOptionVector<Pointf>(n, value) {}
|
||||
explicit ConfigOptionPoints(std::initializer_list<Pointf> il) : ConfigOptionVector<Pointf>(std::move(il)) {}
|
||||
explicit ConfigOptionPoints(const std::vector<Pointf> &values) : ConfigOptionVector<Pointf>(values) {}
|
||||
ConfigOptionPoints() : ConfigOptionVector<Vec2d>() {}
|
||||
explicit ConfigOptionPoints(size_t n, const Vec2d &value) : ConfigOptionVector<Vec2d>(n, value) {}
|
||||
explicit ConfigOptionPoints(std::initializer_list<Vec2d> il) : ConfigOptionVector<Vec2d>(std::move(il)) {}
|
||||
explicit ConfigOptionPoints(const std::vector<Vec2d> &values) : ConfigOptionVector<Vec2d>(values) {}
|
||||
|
||||
static ConfigOptionType static_type() { return coPoints; }
|
||||
ConfigOptionType type() const override { return static_type(); }
|
||||
|
@ -696,7 +696,7 @@ public:
|
|||
std::istringstream is(str);
|
||||
std::string point_str;
|
||||
while (std::getline(is, point_str, ',')) {
|
||||
Pointf point;
|
||||
Vec2d point(Vec2d::Zero());
|
||||
std::istringstream iss(point_str);
|
||||
std::string coord_str;
|
||||
if (std::getline(iss, coord_str, 'x')) {
|
||||
|
@ -821,12 +821,7 @@ public:
|
|||
bool deserialize(const std::string &str, bool append = false) override
|
||||
{
|
||||
UNUSED(append);
|
||||
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
|
||||
auto it = enum_keys_map.find(str);
|
||||
if (it == enum_keys_map.end())
|
||||
return false;
|
||||
this->value = static_cast<T>(it->second);
|
||||
return true;
|
||||
return from_string(str, this->value);
|
||||
}
|
||||
|
||||
static bool has(T value)
|
||||
|
@ -838,7 +833,7 @@ public:
|
|||
}
|
||||
|
||||
// Map from an enum name to an enum integer value.
|
||||
static t_config_enum_names& get_enum_names()
|
||||
static const t_config_enum_names& get_enum_names()
|
||||
{
|
||||
static t_config_enum_names names;
|
||||
if (names.empty()) {
|
||||
|
@ -855,7 +850,17 @@ public:
|
|||
return names;
|
||||
}
|
||||
// Map from an enum name to an enum integer value.
|
||||
static t_config_enum_values& get_enum_values();
|
||||
static const t_config_enum_values& get_enum_values();
|
||||
|
||||
static bool from_string(const std::string &str, T &value)
|
||||
{
|
||||
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
|
||||
auto it = enum_keys_map.find(str);
|
||||
if (it == enum_keys_map.end())
|
||||
return false;
|
||||
value = static_cast<T>(it->second);
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
// Generic enum configuration value.
|
||||
|
@ -900,7 +905,7 @@ public:
|
|||
// What type? bool, int, string etc.
|
||||
ConfigOptionType type = coNone;
|
||||
// Default value of this option. The default value object is owned by ConfigDef, it is released in its destructor.
|
||||
ConfigOption *default_value = nullptr;
|
||||
const ConfigOption *default_value = nullptr;
|
||||
|
||||
// Usually empty.
|
||||
// Special values - "i_enum_open", "f_enum_open" to provide combo box for int or float selection,
|
||||
|
@ -958,7 +963,7 @@ public:
|
|||
std::vector<std::string> enum_labels;
|
||||
// For enums (when type == coEnum). Maps enum_values to enums.
|
||||
// Initialized by ConfigOptionEnum<xxx>::get_enum_values()
|
||||
t_config_enum_values *enum_keys_map = nullptr;
|
||||
const t_config_enum_values *enum_keys_map = nullptr;
|
||||
|
||||
bool has_enum_value(const std::string &value) const {
|
||||
for (const std::string &v : enum_values)
|
||||
|
|
|
@ -149,7 +149,7 @@ public:
|
|||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const { return this->mm3_per_mm; }
|
||||
Polyline as_polyline() const { return this->polyline; }
|
||||
virtual double total_volume() const { return mm3_per_mm * unscale(length()); }
|
||||
virtual double total_volume() const { return mm3_per_mm * unscale<double>(length()); }
|
||||
|
||||
private:
|
||||
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
|
||||
|
|
|
@ -54,7 +54,7 @@ static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t b
|
|||
// components that are outside these limits are set to the limits.
|
||||
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
|
||||
{
|
||||
for (Pointf &pt : pts) {
|
||||
for (Vec2d &pt : pts) {
|
||||
pt(0) = clamp(minX, maxX, pt(0));
|
||||
pt(1) = clamp(minY, maxY, pt(1));
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coor
|
|||
Pointfs out;
|
||||
out.reserve(x.size());
|
||||
for (size_t i = 0; i < x.size(); ++ i)
|
||||
out.push_back(Pointf(x[i], y[i]));
|
||||
out.push_back(Vec2d(x[i], y[i]));
|
||||
return out;
|
||||
}
|
||||
|
||||
|
|
|
@ -21,7 +21,7 @@ void FillConcentric::_fill_surface_single(
|
|||
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
distance = this->_adjust_solid_spacing(bounding_box.size()(0), distance);
|
||||
this->spacing = unscale(distance);
|
||||
this->spacing = unscale<double>(distance);
|
||||
}
|
||||
|
||||
Polygons loops = (Polygons)expolygon;
|
||||
|
|
|
@ -30,15 +30,15 @@ static inline double f(double x, double z_sin, double z_cos, bool vertical, bool
|
|||
}
|
||||
|
||||
static inline Polyline make_wave(
|
||||
const std::vector<Pointf>& one_period, double width, double height, double offset, double scaleFactor,
|
||||
const std::vector<Vec2d>& one_period, double width, double height, double offset, double scaleFactor,
|
||||
double z_cos, double z_sin, bool vertical)
|
||||
{
|
||||
std::vector<Pointf> points = one_period;
|
||||
std::vector<Vec2d> points = one_period;
|
||||
double period = points.back()(0);
|
||||
points.pop_back();
|
||||
int n = points.size();
|
||||
do {
|
||||
points.emplace_back(Pointf(points[points.size()-n](0) + period, points[points.size()-n](1)));
|
||||
points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
|
||||
} while (points.back()(0) < width);
|
||||
points.back()(0) = width;
|
||||
|
||||
|
@ -55,14 +55,14 @@ static inline Polyline make_wave(
|
|||
return polyline;
|
||||
}
|
||||
|
||||
static std::vector<Pointf> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
|
||||
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
|
||||
{
|
||||
std::vector<Pointf> points;
|
||||
std::vector<Vec2d> points;
|
||||
double dx = M_PI_4; // very coarse spacing to begin with
|
||||
double limit = std::min(2*M_PI, width);
|
||||
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
|
||||
x = std::min(x, limit);
|
||||
points.emplace_back(Pointf(x,f(x, z_sin,z_cos, vertical, flip)));
|
||||
points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
|
||||
}
|
||||
|
||||
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
|
||||
|
@ -71,17 +71,19 @@ static std::vector<Pointf> make_one_period(double width, double scaleFactor, dou
|
|||
for (unsigned int i=1;i<points.size()-1;++i) {
|
||||
auto& lp = points[i-1]; // left point
|
||||
auto& tp = points[i]; // this point
|
||||
Vec2d lrv = tp - lp;
|
||||
auto& rp = points[i+1]; // right point
|
||||
// calculate distance of the point to the line:
|
||||
double dist_mm = unscale(scaleFactor * std::abs( (rp(1) - lp(1))*tp(0) + (lp(0) - rp(0))*tp(1) + (rp(0)*lp(1) - rp(1)*lp(0)) ) / std::hypot((rp(1) - lp(1)),(lp(0) - rp(0))));
|
||||
|
||||
double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
|
||||
if (dist_mm > tolerance) { // if the difference from straight line is more than this
|
||||
double x = 0.5f * (points[i-1](0) + points[i](0));
|
||||
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
x = 0.5f * (points[i+1](0) + points[i](0));
|
||||
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
std::sort(points.begin(), points.end()); // we added the points to the end, but need them all in order
|
||||
--i; // decrement i so we also check the first newly added point
|
||||
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
// we added the points to the end, but need them all in order
|
||||
std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
|
||||
// decrement i so we also check the first newly added point
|
||||
--i;
|
||||
}
|
||||
}
|
||||
return points;
|
||||
|
@ -107,7 +109,7 @@ static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double
|
|||
std::swap(width,height);
|
||||
}
|
||||
|
||||
std::vector<Pointf> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||
std::vector<Vec2d> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||
Polylines result;
|
||||
|
||||
for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates odd polylines
|
||||
|
|
|
@ -86,12 +86,12 @@ Pointfs FillArchimedeanChords::_generate(coord_t min_x, coord_t min_y, coord_t m
|
|||
coordf_t r = 1;
|
||||
Pointfs out;
|
||||
//FIXME Vojtech: If used as a solid infill, there is a gap left at the center.
|
||||
out.push_back(Pointf(0, 0));
|
||||
out.push_back(Pointf(1, 0));
|
||||
out.push_back(Vec2d(0, 0));
|
||||
out.push_back(Vec2d(1, 0));
|
||||
while (r < rmax) {
|
||||
theta += 1. / r;
|
||||
r = a + b * theta;
|
||||
out.push_back(Pointf(r * cos(theta), r * sin(theta)));
|
||||
out.push_back(Vec2d(r * cos(theta), r * sin(theta)));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
@ -162,7 +162,7 @@ Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x,
|
|||
line.reserve(sz2);
|
||||
for (size_t i = 0; i < sz2; ++ i) {
|
||||
Point p = hilbert_n_to_xy(i);
|
||||
line.push_back(Pointf(p(0) + min_x, p(1) + min_y));
|
||||
line.push_back(Vec2d(p(0) + min_x, p(1) + min_y));
|
||||
}
|
||||
return line;
|
||||
}
|
||||
|
@ -175,27 +175,27 @@ Pointfs FillOctagramSpiral::_generate(coord_t min_x, coord_t min_y, coord_t max_
|
|||
coordf_t r = 0;
|
||||
coordf_t r_inc = sqrt(2.);
|
||||
Pointfs out;
|
||||
out.push_back(Pointf(0, 0));
|
||||
out.push_back(Vec2d(0, 0));
|
||||
while (r < rmax) {
|
||||
r += r_inc;
|
||||
coordf_t rx = r / sqrt(2.);
|
||||
coordf_t r2 = r + rx;
|
||||
out.push_back(Pointf( r, 0.));
|
||||
out.push_back(Pointf( r2, rx));
|
||||
out.push_back(Pointf( rx, rx));
|
||||
out.push_back(Pointf( rx, r2));
|
||||
out.push_back(Pointf(0., r));
|
||||
out.push_back(Pointf(-rx, r2));
|
||||
out.push_back(Pointf(-rx, rx));
|
||||
out.push_back(Pointf(-r2, rx));
|
||||
out.push_back(Pointf(-r, 0.));
|
||||
out.push_back(Pointf(-r2, -rx));
|
||||
out.push_back(Pointf(-rx, -rx));
|
||||
out.push_back(Pointf(-rx, -r2));
|
||||
out.push_back(Pointf(0., -r));
|
||||
out.push_back(Pointf( rx, -r2));
|
||||
out.push_back(Pointf( rx, -rx));
|
||||
out.push_back(Pointf( r2+r_inc, -rx));
|
||||
out.push_back(Vec2d( r, 0.));
|
||||
out.push_back(Vec2d( r2, rx));
|
||||
out.push_back(Vec2d( rx, rx));
|
||||
out.push_back(Vec2d( rx, r2));
|
||||
out.push_back(Vec2d(0., r));
|
||||
out.push_back(Vec2d(-rx, r2));
|
||||
out.push_back(Vec2d(-rx, rx));
|
||||
out.push_back(Vec2d(-r2, rx));
|
||||
out.push_back(Vec2d(-r, 0.));
|
||||
out.push_back(Vec2d(-r2, -rx));
|
||||
out.push_back(Vec2d(-rx, -rx));
|
||||
out.push_back(Vec2d(-rx, -r2));
|
||||
out.push_back(Vec2d(0., -r));
|
||||
out.push_back(Vec2d( rx, -r2));
|
||||
out.push_back(Vec2d( rx, -rx));
|
||||
out.push_back(Vec2d( r2+r_inc, -rx));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
|
|
@ -27,7 +27,7 @@ void FillRectilinear::_fill_surface_single(
|
|||
// define flow spacing according to requested density
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), this->_line_spacing);
|
||||
this->spacing = unscale(this->_line_spacing);
|
||||
this->spacing = unscale<double>(this->_line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
|
|
|
@ -792,7 +792,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
// define flow spacing according to requested density
|
||||
if (params.full_infill() && !params.dont_adjust) {
|
||||
line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
|
||||
this->spacing = unscale(line_spacing);
|
||||
this->spacing = unscale<double>(line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
|
|
|
@ -217,11 +217,11 @@ Point SegmentIntersection::pos() const
|
|||
const Point &seg_start = poly.points[(this->iSegment == 0) ? poly.points.size() - 1 : this->iSegment - 1];
|
||||
const Point &seg_end = poly.points[this->iSegment];
|
||||
// Point, vector of the segment.
|
||||
const Pointf p1(seg_start.cast<coordf_t>());
|
||||
const Pointf v1((seg_end - seg_start).cast<coordf_t>());
|
||||
const Vec2d p1(seg_start.cast<coordf_t>());
|
||||
const Vec2d v1((seg_end - seg_start).cast<coordf_t>());
|
||||
// Point, vector of this hatching line.
|
||||
const Pointf p2(line->pos.cast<coordf_t>());
|
||||
const Pointf v2(line->dir.cast<coordf_t>());
|
||||
const Vec2d p2(line->pos.cast<coordf_t>());
|
||||
const Vec2d v2(line->dir.cast<coordf_t>());
|
||||
// Intersect the two rays.
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
Point out;
|
||||
|
@ -391,7 +391,7 @@ static bool prepare_infill_hatching_segments(
|
|||
// Full infill, adjust the line spacing to fit an integer number of lines.
|
||||
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
|
||||
// Report back the adjusted line spacing.
|
||||
fill_dir_params.spacing = float(unscale(line_spacing));
|
||||
fill_dir_params.spacing = unscale<double>(line_spacing);
|
||||
} else {
|
||||
// Extend bounding box so that our pattern will be aligned with the other layers.
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
|
|
|
@ -1485,12 +1485,13 @@ namespace Slic3r {
|
|||
stl_facet& facet = stl.facet_start[i];
|
||||
for (unsigned int v = 0; v < 3; ++v)
|
||||
{
|
||||
::memcpy((void*)&facet.vertex[v].x, (const void*)&geometry.vertices[geometry.triangles[src_start_id + ii + v] * 3], 3 * sizeof(float));
|
||||
::memcpy(facet.vertex[v].data(), (const void*)&geometry.vertices[geometry.triangles[src_start_id + ii + v] * 3], 3 * sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
stl_get_size(&stl);
|
||||
volume->mesh.repair();
|
||||
volume->calculate_convex_hull();
|
||||
|
||||
// apply volume's name and config data
|
||||
for (const Metadata& metadata : volume_data.metadata)
|
||||
|
@ -1844,9 +1845,9 @@ namespace Slic3r {
|
|||
for (int i = 0; i < stl.stats.shared_vertices; ++i)
|
||||
{
|
||||
stream << " <" << VERTEX_TAG << " ";
|
||||
stream << "x=\"" << stl.v_shared[i].x << "\" ";
|
||||
stream << "y=\"" << stl.v_shared[i].y << "\" ";
|
||||
stream << "z=\"" << stl.v_shared[i].z << "\" />\n";
|
||||
stream << "x=\"" << stl.v_shared[i](0) << "\" ";
|
||||
stream << "y=\"" << stl.v_shared[i](1) << "\" ";
|
||||
stream << "z=\"" << stl.v_shared[i](2) << "\" />\n";
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -402,10 +402,11 @@ void AMFParserContext::endElement(const char * /* name */)
|
|||
for (size_t i = 0; i < m_volume_facets.size();) {
|
||||
stl_facet &facet = stl.facet_start[i/3];
|
||||
for (unsigned int v = 0; v < 3; ++ v)
|
||||
memcpy(&facet.vertex[v].x, &m_object_vertices[m_volume_facets[i ++] * 3], 3 * sizeof(float));
|
||||
memcpy(facet.vertex[v].data(), &m_object_vertices[m_volume_facets[i ++] * 3], 3 * sizeof(float));
|
||||
}
|
||||
stl_get_size(&stl);
|
||||
m_volume->mesh.repair();
|
||||
m_volume->calculate_convex_hull();
|
||||
m_volume_facets.clear();
|
||||
m_volume = nullptr;
|
||||
break;
|
||||
|
@ -760,9 +761,9 @@ bool store_amf(const char *path, Model *model, Print* print, bool export_print_c
|
|||
for (size_t i = 0; i < stl.stats.shared_vertices; ++ i) {
|
||||
stream << " <vertex>\n";
|
||||
stream << " <coordinates>\n";
|
||||
stream << " <x>" << stl.v_shared[i].x << "</x>\n";
|
||||
stream << " <y>" << stl.v_shared[i].y << "</y>\n";
|
||||
stream << " <z>" << stl.v_shared[i].z << "</z>\n";
|
||||
stream << " <x>" << stl.v_shared[i](0) << "</x>\n";
|
||||
stream << " <y>" << stl.v_shared[i](1) << "</y>\n";
|
||||
stream << " <z>" << stl.v_shared[i](2) << "</z>\n";
|
||||
stream << " </coordinates>\n";
|
||||
stream << " </vertex>\n";
|
||||
}
|
||||
|
|
|
@ -57,14 +57,14 @@ bool load_obj(const char *path, Model *model, const char *object_name_in)
|
|||
continue;
|
||||
stl_facet &facet = stl.facet_start[i_face ++];
|
||||
size_t num_normals = 0;
|
||||
stl_normal normal = { 0.f };
|
||||
stl_normal normal(stl_normal::Zero());
|
||||
for (unsigned int v = 0; v < 3; ++ v) {
|
||||
const ObjParser::ObjVertex &vertex = data.vertices[i++];
|
||||
memcpy(&facet.vertex[v].x, &data.coordinates[vertex.coordIdx*4], 3 * sizeof(float));
|
||||
memcpy(facet.vertex[v].data(), &data.coordinates[vertex.coordIdx*4], 3 * sizeof(float));
|
||||
if (vertex.normalIdx != -1) {
|
||||
normal.x += data.normals[vertex.normalIdx*3];
|
||||
normal.y += data.normals[vertex.normalIdx*3+1];
|
||||
normal.z += data.normals[vertex.normalIdx*3+2];
|
||||
normal(0) += data.normals[vertex.normalIdx*3];
|
||||
normal(1) += data.normals[vertex.normalIdx*3+1];
|
||||
normal(2) += data.normals[vertex.normalIdx*3+2];
|
||||
++ num_normals;
|
||||
}
|
||||
}
|
||||
|
@ -74,33 +74,27 @@ bool load_obj(const char *path, Model *model, const char *object_name_in)
|
|||
facet2.vertex[0] = facet.vertex[0];
|
||||
facet2.vertex[1] = facet.vertex[2];
|
||||
const ObjParser::ObjVertex &vertex = data.vertices[i++];
|
||||
memcpy(&facet2.vertex[2].x, &data.coordinates[vertex.coordIdx * 4], 3 * sizeof(float));
|
||||
memcpy(facet2.vertex[2].data(), &data.coordinates[vertex.coordIdx * 4], 3 * sizeof(float));
|
||||
if (vertex.normalIdx != -1) {
|
||||
normal.x += data.normals[vertex.normalIdx*3];
|
||||
normal.y += data.normals[vertex.normalIdx*3+1];
|
||||
normal.z += data.normals[vertex.normalIdx*3+2];
|
||||
normal(0) += data.normals[vertex.normalIdx*3];
|
||||
normal(1) += data.normals[vertex.normalIdx*3+1];
|
||||
normal(2) += data.normals[vertex.normalIdx*3+2];
|
||||
++ num_normals;
|
||||
}
|
||||
if (num_normals == 4) {
|
||||
// Normalize an average normal of a quad.
|
||||
float len = sqrt(facet.normal.x*facet.normal.x + facet.normal.y*facet.normal.y + facet.normal.z*facet.normal.z);
|
||||
float len = facet.normal.norm();
|
||||
if (len > EPSILON) {
|
||||
normal.x /= len;
|
||||
normal.y /= len;
|
||||
normal.z /= len;
|
||||
normal /= len;
|
||||
facet.normal = normal;
|
||||
facet2.normal = normal;
|
||||
}
|
||||
}
|
||||
} else if (num_normals == 3) {
|
||||
// Normalize an average normal of a triangle.
|
||||
float len = sqrt(facet.normal.x*facet.normal.x + facet.normal.y*facet.normal.y + facet.normal.z*facet.normal.z);
|
||||
if (len > EPSILON) {
|
||||
normal.x /= len;
|
||||
normal.y /= len;
|
||||
normal.z /= len;
|
||||
facet.normal = normal;
|
||||
}
|
||||
float len = facet.normal.norm();
|
||||
if (len > EPSILON)
|
||||
facet.normal = normal / len;
|
||||
}
|
||||
}
|
||||
stl_get_size(&stl);
|
||||
|
|
|
@ -166,7 +166,7 @@ bool load_prus(const char *path, Model *model)
|
|||
float trafo[3][4] = { 0 };
|
||||
double instance_rotation = 0.;
|
||||
double instance_scaling_factor = 1.f;
|
||||
Pointf instance_offset(0., 0.);
|
||||
Vec2d instance_offset(0., 0.);
|
||||
bool trafo_set = false;
|
||||
unsigned int group_id = (unsigned int)-1;
|
||||
unsigned int extruder_id = (unsigned int)-1;
|
||||
|
@ -260,8 +260,8 @@ bool load_prus(const char *path, Model *model)
|
|||
mesh.repair();
|
||||
// Transform the model.
|
||||
stl_transform(&stl, &trafo[0][0]);
|
||||
if (std::abs(stl.stats.min.z) < EPSILON)
|
||||
stl.stats.min.z = 0.;
|
||||
if (std::abs(stl.stats.min(2)) < EPSILON)
|
||||
stl.stats.min(2) = 0.;
|
||||
// Add a mesh to a model.
|
||||
if (mesh.facets_count() > 0)
|
||||
mesh_valid = true;
|
||||
|
@ -309,11 +309,11 @@ bool load_prus(const char *path, Model *model)
|
|||
assert(res_normal == 3);
|
||||
int res_outer_loop = line_reader.next_line_scanf(" outer loop");
|
||||
assert(res_outer_loop == 0);
|
||||
int res_vertex1 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[0].x, &facet.vertex[0].y, &facet.vertex[0].z);
|
||||
int res_vertex1 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
|
||||
assert(res_vertex1 == 3);
|
||||
int res_vertex2 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[1].x, &facet.vertex[1].y, &facet.vertex[1].z);
|
||||
int res_vertex2 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
|
||||
assert(res_vertex2 == 3);
|
||||
int res_vertex3 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[2].x, &facet.vertex[2].y, &facet.vertex[2].z);
|
||||
int res_vertex3 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
|
||||
assert(res_vertex3 == 3);
|
||||
int res_endloop = line_reader.next_line_scanf(" endloop");
|
||||
assert(res_endloop == 0);
|
||||
|
@ -324,9 +324,9 @@ bool load_prus(const char *path, Model *model)
|
|||
break;
|
||||
}
|
||||
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal.x) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal.y) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal.z) != 1) {
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
|
||||
// Normal was mangled. Maybe denormals or "not a number" were stored?
|
||||
// Just reset the normal and silently ignore it.
|
||||
memset(&facet.normal, 0, sizeof(facet.normal));
|
||||
|
|
|
@ -64,7 +64,7 @@ std::string OozePrevention::pre_toolchange(GCode &gcodegen)
|
|||
// move to the nearest standby point
|
||||
if (!this->standby_points.empty()) {
|
||||
// get current position in print coordinates
|
||||
Pointf3 writer_pos = gcodegen.writer().get_position();
|
||||
Vec3d writer_pos = gcodegen.writer().get_position();
|
||||
Point pos = Point::new_scale(writer_pos(0), writer_pos(1));
|
||||
|
||||
// find standby point
|
||||
|
@ -74,7 +74,7 @@ std::string OozePrevention::pre_toolchange(GCode &gcodegen)
|
|||
/* We don't call gcodegen.travel_to() because we don't need retraction (it was already
|
||||
triggered by the caller) nor avoid_crossing_perimeters and also because the coordinates
|
||||
of the destination point must not be transformed by origin nor current extruder offset. */
|
||||
gcode += gcodegen.writer().travel_to_xy(Pointf::new_unscale(standby_point),
|
||||
gcode += gcodegen.writer().travel_to_xy(unscale(standby_point),
|
||||
"move to standby position");
|
||||
}
|
||||
|
||||
|
@ -207,7 +207,7 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
|
|||
check_add_eol(gcode);
|
||||
}
|
||||
// A phony move to the end position at the wipe tower.
|
||||
gcodegen.writer().travel_to_xy(Pointf(end_pos.x, end_pos.y));
|
||||
gcodegen.writer().travel_to_xy(Vec2d(end_pos.x, end_pos.y));
|
||||
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, end_pos));
|
||||
|
||||
// Prepare a future wipe.
|
||||
|
@ -293,7 +293,7 @@ std::string WipeTowerIntegration::prime(GCode &gcodegen)
|
|||
gcodegen.writer().toolchange(current_extruder_id);
|
||||
gcodegen.placeholder_parser().set("current_extruder", current_extruder_id);
|
||||
// A phony move to the end position at the wipe tower.
|
||||
gcodegen.writer().travel_to_xy(Pointf(m_priming.end_pos.x, m_priming.end_pos.y));
|
||||
gcodegen.writer().travel_to_xy(Vec2d(m_priming.end_pos.x, m_priming.end_pos.y));
|
||||
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, m_priming.end_pos));
|
||||
// Prepare a future wipe.
|
||||
gcodegen.m_wipe.path.points.clear();
|
||||
|
@ -783,7 +783,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
Polygon outer_skirt = Slic3r::Geometry::convex_hull(skirt_points);
|
||||
Polygons skirts;
|
||||
for (unsigned int extruder_id : print.extruders()) {
|
||||
const Pointf &extruder_offset = print.config.extruder_offset.get_at(extruder_id);
|
||||
const Vec2d &extruder_offset = print.config.extruder_offset.get_at(extruder_id);
|
||||
Polygon s(outer_skirt);
|
||||
s.translate(Point::new_scale(- extruder_offset(0), - extruder_offset(1)));
|
||||
skirts.emplace_back(std::move(s));
|
||||
|
@ -831,7 +831,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
final_extruder_id = tool_ordering.last_extruder();
|
||||
assert(final_extruder_id != (unsigned int)-1);
|
||||
}
|
||||
this->set_origin(unscale(copy(0)), unscale(copy(1)));
|
||||
this->set_origin(unscale(copy));
|
||||
if (finished_objects > 0) {
|
||||
// Move to the origin position for the copy we're going to print.
|
||||
// This happens before Z goes down to layer 0 again, so that no collision happens hopefully.
|
||||
|
@ -1547,7 +1547,7 @@ void GCode::process_layer(
|
|||
if (m_last_obj_copy != this_object_copy)
|
||||
m_avoid_crossing_perimeters.use_external_mp_once = true;
|
||||
m_last_obj_copy = this_object_copy;
|
||||
this->set_origin(unscale(copy(0)), unscale(copy(1)));
|
||||
this->set_origin(unscale(copy));
|
||||
if (object_by_extruder.support != nullptr && !print_wipe_extrusions) {
|
||||
m_layer = layers[layer_id].support_layer;
|
||||
gcode += this->extrude_support(
|
||||
|
@ -1632,7 +1632,7 @@ void GCode::set_extruders(const std::vector<unsigned int> &extruder_ids)
|
|||
}
|
||||
}
|
||||
|
||||
void GCode::set_origin(const Pointf &pointf)
|
||||
void GCode::set_origin(const Vec2d &pointf)
|
||||
{
|
||||
// if origin increases (goes towards right), last_pos decreases because it goes towards left
|
||||
const Point translate(
|
||||
|
@ -2618,24 +2618,21 @@ std::string GCode::set_extruder(unsigned int extruder_id)
|
|||
}
|
||||
|
||||
// convert a model-space scaled point into G-code coordinates
|
||||
Pointf GCode::point_to_gcode(const Point &point) const
|
||||
Vec2d GCode::point_to_gcode(const Point &point) const
|
||||
{
|
||||
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return Pointf(
|
||||
unscale(point(0)) + m_origin(0) - extruder_offset(0),
|
||||
unscale(point(1)) + m_origin(1) - extruder_offset(1));
|
||||
Vec2d extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return unscale(point) + m_origin - extruder_offset;
|
||||
}
|
||||
|
||||
// convert a model-space scaled point into G-code coordinates
|
||||
Point GCode::gcode_to_point(const Pointf &point) const
|
||||
Point GCode::gcode_to_point(const Vec2d &point) const
|
||||
{
|
||||
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
Vec2d extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return Point(
|
||||
scale_(point(0) - m_origin(0) + extruder_offset(0)),
|
||||
scale_(point(1) - m_origin(1) + extruder_offset(1)));
|
||||
}
|
||||
|
||||
|
||||
// Goes through by_region std::vector and returns reference to a subvector of entities, that are to be printed
|
||||
// during infill/perimeter wiping, or normally (depends on wiping_entities parameter)
|
||||
// Returns a reference to member to avoid copying.
|
||||
|
|
|
@ -125,6 +125,7 @@ private:
|
|||
class GCode {
|
||||
public:
|
||||
GCode() :
|
||||
m_origin(Vec2d::Zero()),
|
||||
m_enable_loop_clipping(true),
|
||||
m_enable_cooling_markers(false),
|
||||
m_enable_extrusion_role_markers(false),
|
||||
|
@ -152,12 +153,12 @@ public:
|
|||
void do_export(Print *print, const char *path, GCodePreviewData *preview_data = nullptr);
|
||||
|
||||
// Exported for the helper classes (OozePrevention, Wipe) and for the Perl binding for unit tests.
|
||||
const Pointf& origin() const { return m_origin; }
|
||||
void set_origin(const Pointf &pointf);
|
||||
void set_origin(const coordf_t x, const coordf_t y) { this->set_origin(Pointf(x, y)); }
|
||||
const Vec2d& origin() const { return m_origin; }
|
||||
void set_origin(const Vec2d &pointf);
|
||||
void set_origin(const coordf_t x, const coordf_t y) { this->set_origin(Vec2d(x, y)); }
|
||||
const Point& last_pos() const { return m_last_pos; }
|
||||
Pointf point_to_gcode(const Point &point) const;
|
||||
Point gcode_to_point(const Pointf &point) const;
|
||||
Vec2d point_to_gcode(const Point &point) const;
|
||||
Point gcode_to_point(const Vec2d &point) const;
|
||||
const FullPrintConfig &config() const { return m_config; }
|
||||
const Layer* layer() const { return m_layer; }
|
||||
GCodeWriter& writer() { return m_writer; }
|
||||
|
@ -258,7 +259,7 @@ protected:
|
|||
/* Origin of print coordinates expressed in unscaled G-code coordinates.
|
||||
This affects the input arguments supplied to the extrude*() and travel_to()
|
||||
methods. */
|
||||
Pointf m_origin;
|
||||
Vec2d m_origin;
|
||||
FullPrintConfig m_config;
|
||||
GCodeWriter m_writer;
|
||||
PlaceholderParser m_placeholder_parser;
|
||||
|
|
|
@ -14,7 +14,7 @@ static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
|
|||
static const float INCHES_TO_MM = 25.4f;
|
||||
static const float DEFAULT_FEEDRATE = 0.0f;
|
||||
static const unsigned int DEFAULT_EXTRUDER_ID = 0;
|
||||
static const Slic3r::Pointf3 DEFAULT_START_POSITION = Slic3r::Pointf3(0.0f, 0.0f, 0.0f);
|
||||
static const Slic3r::Vec3d DEFAULT_START_POSITION = Slic3r::Vec3d(0.0f, 0.0f, 0.0f);
|
||||
static const float DEFAULT_START_EXTRUSION = 0.0f;
|
||||
|
||||
namespace Slic3r {
|
||||
|
@ -71,7 +71,7 @@ bool GCodeAnalyzer::Metadata::operator != (const GCodeAnalyzer::Metadata& other)
|
|||
return false;
|
||||
}
|
||||
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder)
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder)
|
||||
: type(type)
|
||||
, data(extrusion_role, extruder_id, mm3_per_mm, width, height, feedrate)
|
||||
, start_position(start_position)
|
||||
|
@ -80,7 +80,7 @@ GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, ExtrusionRole extrusi
|
|||
{
|
||||
}
|
||||
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, const GCodeAnalyzer::Metadata& data, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder)
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, const GCodeAnalyzer::Metadata& data, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder)
|
||||
: type(type)
|
||||
, data(data)
|
||||
, start_position(start_position)
|
||||
|
@ -587,12 +587,12 @@ void GCodeAnalyzer::_reset_axes_position()
|
|||
::memset((void*)m_state.position, 0, Num_Axis * sizeof(float));
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_start_position(const Pointf3& position)
|
||||
void GCodeAnalyzer::_set_start_position(const Vec3d& position)
|
||||
{
|
||||
m_state.start_position = position;
|
||||
}
|
||||
|
||||
const Pointf3& GCodeAnalyzer::_get_start_position() const
|
||||
const Vec3d& GCodeAnalyzer::_get_start_position() const
|
||||
{
|
||||
return m_state.start_position;
|
||||
}
|
||||
|
@ -612,9 +612,9 @@ float GCodeAnalyzer::_get_delta_extrusion() const
|
|||
return _get_axis_position(E) - m_state.start_extrusion;
|
||||
}
|
||||
|
||||
Pointf3 GCodeAnalyzer::_get_end_position() const
|
||||
Vec3d GCodeAnalyzer::_get_end_position() const
|
||||
{
|
||||
return Pointf3(m_state.position[X], m_state.position[Y], m_state.position[Z]);
|
||||
return Vec3d(m_state.position[X], m_state.position[Y], m_state.position[Z]);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_store_move(GCodeAnalyzer::GCodeMove::EType type)
|
||||
|
@ -673,7 +673,7 @@ void GCodeAnalyzer::_calc_gcode_preview_extrusion_layers(GCodePreviewData& previ
|
|||
Metadata data;
|
||||
float z = FLT_MAX;
|
||||
Polyline polyline;
|
||||
Pointf3 position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
Vec3d position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
float volumetric_rate = FLT_MAX;
|
||||
GCodePreviewData::Range height_range;
|
||||
GCodePreviewData::Range width_range;
|
||||
|
@ -742,7 +742,7 @@ void GCodeAnalyzer::_calc_gcode_preview_travel(GCodePreviewData& preview_data)
|
|||
return;
|
||||
|
||||
Polyline3 polyline;
|
||||
Pointf3 position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
Vec3d position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
GCodePreviewData::Travel::EType type = GCodePreviewData::Travel::Num_Types;
|
||||
GCodePreviewData::Travel::Polyline::EDirection direction = GCodePreviewData::Travel::Polyline::Num_Directions;
|
||||
float feedrate = FLT_MAX;
|
||||
|
@ -768,12 +768,12 @@ void GCodeAnalyzer::_calc_gcode_preview_travel(GCodePreviewData& preview_data)
|
|||
polyline = Polyline3();
|
||||
|
||||
// add both vertices of the move
|
||||
polyline.append(Point3(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z())));
|
||||
polyline.append(Point3(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
polyline.append(Vec3crd(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z())));
|
||||
polyline.append(Vec3crd(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
}
|
||||
else
|
||||
// append end vertex of the move to current polyline
|
||||
polyline.append(Point3(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
polyline.append(Vec3crd(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
|
||||
// update current values
|
||||
position = move.end_position;
|
||||
|
@ -804,7 +804,7 @@ void GCodeAnalyzer::_calc_gcode_preview_retractions(GCodePreviewData& preview_da
|
|||
for (const GCodeMove& move : retraction_moves->second)
|
||||
{
|
||||
// store position
|
||||
Point3 position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
Vec3crd position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
preview_data.retraction.positions.emplace_back(position, move.data.width, move.data.height);
|
||||
}
|
||||
}
|
||||
|
@ -818,7 +818,7 @@ void GCodeAnalyzer::_calc_gcode_preview_unretractions(GCodePreviewData& preview_
|
|||
for (const GCodeMove& move : unretraction_moves->second)
|
||||
{
|
||||
// store position
|
||||
Point3 position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
Vec3crd position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
preview_data.unretraction.positions.emplace_back(position, move.data.width, move.data.height);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -75,12 +75,12 @@ public:
|
|||
|
||||
EType type;
|
||||
Metadata data;
|
||||
Pointf3 start_position;
|
||||
Pointf3 end_position;
|
||||
Vec3d start_position;
|
||||
Vec3d end_position;
|
||||
float delta_extruder;
|
||||
|
||||
GCodeMove(EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder);
|
||||
GCodeMove(EType type, const Metadata& data, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder);
|
||||
GCodeMove(EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder);
|
||||
GCodeMove(EType type, const Metadata& data, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder);
|
||||
};
|
||||
|
||||
typedef std::vector<GCodeMove> GCodeMovesList;
|
||||
|
@ -93,7 +93,7 @@ private:
|
|||
EPositioningType global_positioning_type;
|
||||
EPositioningType e_local_positioning_type;
|
||||
Metadata data;
|
||||
Pointf3 start_position;
|
||||
Vec3d start_position = Vec3d::Zero();
|
||||
float start_extrusion;
|
||||
float position[Num_Axis];
|
||||
};
|
||||
|
@ -206,15 +206,15 @@ private:
|
|||
// Sets axes position to zero
|
||||
void _reset_axes_position();
|
||||
|
||||
void _set_start_position(const Pointf3& position);
|
||||
const Pointf3& _get_start_position() const;
|
||||
void _set_start_position(const Vec3d& position);
|
||||
const Vec3d& _get_start_position() const;
|
||||
|
||||
void _set_start_extrusion(float extrusion);
|
||||
float _get_start_extrusion() const;
|
||||
float _get_delta_extrusion() const;
|
||||
|
||||
// Returns current xyz position (from m_state.position[])
|
||||
Pointf3 _get_end_position() const;
|
||||
Vec3d _get_end_position() const;
|
||||
|
||||
// Adds a new move with the given data
|
||||
void _store_move(GCodeMove::EType type);
|
||||
|
|
|
@ -23,7 +23,7 @@ CoolingBuffer::CoolingBuffer(GCode &gcodegen) : m_gcodegen(gcodegen), m_current_
|
|||
void CoolingBuffer::reset()
|
||||
{
|
||||
m_current_pos.assign(5, 0.f);
|
||||
Pointf3 pos = m_gcodegen.writer().get_position();
|
||||
Vec3d pos = m_gcodegen.writer().get_position();
|
||||
m_current_pos[0] = float(pos(0));
|
||||
m_current_pos[1] = float(pos(1));
|
||||
m_current_pos[2] = float(pos(2));
|
||||
|
|
|
@ -226,7 +226,7 @@ void GCodePreviewData::Travel::set_default()
|
|||
|
||||
const GCodePreviewData::Color GCodePreviewData::Retraction::Default_Color = GCodePreviewData::Color(1.0f, 1.0f, 1.0f, 1.0f);
|
||||
|
||||
GCodePreviewData::Retraction::Position::Position(const Point3& position, float width, float height)
|
||||
GCodePreviewData::Retraction::Position::Position(const Vec3crd& position, float width, float height)
|
||||
: position(position)
|
||||
, width(width)
|
||||
, height(height)
|
||||
|
|
|
@ -151,11 +151,11 @@ public:
|
|||
|
||||
struct Position
|
||||
{
|
||||
Point3 position;
|
||||
Vec3crd position;
|
||||
float width;
|
||||
float height;
|
||||
|
||||
Position(const Point3& position, float width, float height);
|
||||
Position(const Vec3crd& position, float width, float height);
|
||||
};
|
||||
|
||||
typedef std::vector<Position> PositionsList;
|
||||
|
|
|
@ -32,8 +32,8 @@ static inline BoundingBoxf extrusionentity_extents(const ExtrusionPath &extrusio
|
|||
BoundingBox bbox = extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = Pointf::new_unscale(bbox.min);
|
||||
bboxf.max = Pointf::new_unscale(bbox.max);
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
|
@ -46,8 +46,8 @@ static inline BoundingBoxf extrusionentity_extents(const ExtrusionLoop &extrusio
|
|||
bbox.merge(extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width)));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = Pointf::new_unscale(bbox.min);
|
||||
bboxf.max = Pointf::new_unscale(bbox.max);
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
|
@ -60,8 +60,8 @@ static inline BoundingBoxf extrusionentity_extents(const ExtrusionMultiPath &ext
|
|||
bbox.merge(extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width)));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = Pointf::new_unscale(bbox.min);
|
||||
bboxf.max = Pointf::new_unscale(bbox.max);
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
|
@ -123,7 +123,7 @@ BoundingBoxf get_print_object_extrusions_extents(const PrintObject &print_object
|
|||
bbox_this.merge(extrusionentity_extents(extrusion_entity));
|
||||
for (const Point &offset : print_object._shifted_copies) {
|
||||
BoundingBoxf bbox_translated(bbox_this);
|
||||
bbox_translated.translate(Pointf::new_unscale(offset));
|
||||
bbox_translated.translate(unscale(offset));
|
||||
bbox.merge(bbox_translated);
|
||||
}
|
||||
}
|
||||
|
@ -136,8 +136,9 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
|
|||
{
|
||||
// Wipe tower extrusions are saved as if the tower was at the origin with no rotation
|
||||
// We need to get position and angle of the wipe tower to transform them to actual position.
|
||||
Pointf wipe_tower_pos(print.config.wipe_tower_x.value, print.config.wipe_tower_y.value);
|
||||
float wipe_tower_angle = print.config.wipe_tower_rotation_angle.value;
|
||||
Transform2d trafo =
|
||||
Eigen::Translation2d(print.config.wipe_tower_x.value, print.config.wipe_tower_y.value) *
|
||||
Eigen::Rotation2Dd(print.config.wipe_tower_rotation_angle.value);
|
||||
|
||||
BoundingBoxf bbox;
|
||||
for (const std::vector<WipeTower::ToolChangeResult> &tool_changes : print.m_wipe_tower_tool_changes) {
|
||||
|
@ -147,19 +148,11 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
|
|||
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
|
||||
const WipeTower::Extrusion &e = tcr.extrusions[i];
|
||||
if (e.width > 0) {
|
||||
Pointf p1((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Pointf p2(e.pos.x, e.pos.y);
|
||||
p1.rotate(wipe_tower_angle);
|
||||
p1 += wipe_tower_pos;
|
||||
p2.rotate(wipe_tower_angle);
|
||||
p2 += wipe_tower_pos;
|
||||
|
||||
bbox.merge(p1);
|
||||
coordf_t radius = 0.5 * e.width;
|
||||
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
|
||||
bbox.min(1) = std::min(bbox.min(1), std::min(p1(1), p2(1)) - radius);
|
||||
bbox.max(0) = std::max(bbox.max(0), std::max(p1(0), p2(0)) + radius);
|
||||
bbox.max(1) = std::max(bbox.max(1), std::max(p1(1), p2(1)) + radius);
|
||||
Vec2d delta = 0.5 * Vec2d(e.width, e.width);
|
||||
Vec2d p1 = trafo * Vec2d((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Vec2d p2 = trafo * Vec2d(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1.cwiseMin(p2) - delta);
|
||||
bbox.merge(p1.cwiseMax(p2) + delta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -176,8 +169,8 @@ BoundingBoxf get_wipe_tower_priming_extrusions_extents(const Print &print)
|
|||
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
|
||||
const WipeTower::Extrusion &e = tcr.extrusions[i];
|
||||
if (e.width > 0) {
|
||||
Pointf p1((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Pointf p2(e.pos.x, e.pos.y);
|
||||
Vec2d p1((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Vec2d p2(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1);
|
||||
coordf_t radius = 0.5 * e.width;
|
||||
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
|
||||
|
|
|
@ -276,7 +276,7 @@ std::string GCodeWriter::set_speed(double F, const std::string &comment, const s
|
|||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::travel_to_xy(const Pointf &point, const std::string &comment)
|
||||
std::string GCodeWriter::travel_to_xy(const Vec2d &point, const std::string &comment)
|
||||
{
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
|
@ -290,7 +290,7 @@ std::string GCodeWriter::travel_to_xy(const Pointf &point, const std::string &co
|
|||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &comment)
|
||||
std::string GCodeWriter::travel_to_xyz(const Vec3d &point, const std::string &comment)
|
||||
{
|
||||
/* If target Z is lower than current Z but higher than nominal Z we
|
||||
don't perform the Z move but we only move in the XY plane and
|
||||
|
@ -299,7 +299,7 @@ std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &
|
|||
if (!this->will_move_z(point(2))) {
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
m_lifted = m_lifted - (point(2) - nominal_z);
|
||||
return this->travel_to_xy(point.xy());
|
||||
return this->travel_to_xy(to_2d(point));
|
||||
}
|
||||
|
||||
/* In all the other cases, we perform an actual XYZ move and cancel
|
||||
|
@ -358,7 +358,7 @@ bool GCodeWriter::will_move_z(double z) const
|
|||
return true;
|
||||
}
|
||||
|
||||
std::string GCodeWriter::extrude_to_xy(const Pointf &point, double dE, const std::string &comment)
|
||||
std::string GCodeWriter::extrude_to_xy(const Vec2d &point, double dE, const std::string &comment)
|
||||
{
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
|
@ -373,7 +373,7 @@ std::string GCodeWriter::extrude_to_xy(const Pointf &point, double dE, const std
|
|||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::extrude_to_xyz(const Pointf3 &point, double dE, const std::string &comment)
|
||||
std::string GCodeWriter::extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment)
|
||||
{
|
||||
m_pos = point;
|
||||
m_lifted = 0;
|
||||
|
|
|
@ -55,18 +55,18 @@ public:
|
|||
std::string toolchange_prefix() const;
|
||||
std::string toolchange(unsigned int extruder_id);
|
||||
std::string set_speed(double F, const std::string &comment = std::string(), const std::string &cooling_marker = std::string()) const;
|
||||
std::string travel_to_xy(const Pointf &point, const std::string &comment = std::string());
|
||||
std::string travel_to_xyz(const Pointf3 &point, const std::string &comment = std::string());
|
||||
std::string travel_to_xy(const Vec2d &point, const std::string &comment = std::string());
|
||||
std::string travel_to_xyz(const Vec3d &point, const std::string &comment = std::string());
|
||||
std::string travel_to_z(double z, const std::string &comment = std::string());
|
||||
bool will_move_z(double z) const;
|
||||
std::string extrude_to_xy(const Pointf &point, double dE, const std::string &comment = std::string());
|
||||
std::string extrude_to_xyz(const Pointf3 &point, double dE, const std::string &comment = std::string());
|
||||
std::string extrude_to_xy(const Vec2d &point, double dE, const std::string &comment = std::string());
|
||||
std::string extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment = std::string());
|
||||
std::string retract(bool before_wipe = false);
|
||||
std::string retract_for_toolchange(bool before_wipe = false);
|
||||
std::string unretract();
|
||||
std::string lift();
|
||||
std::string unlift();
|
||||
Pointf3 get_position() const { return m_pos; }
|
||||
Vec3d get_position() const { return m_pos; }
|
||||
|
||||
private:
|
||||
std::vector<Extruder> m_extruders;
|
||||
|
@ -81,7 +81,7 @@ private:
|
|||
unsigned int m_last_bed_temperature;
|
||||
bool m_last_bed_temperature_reached;
|
||||
double m_lifted;
|
||||
Pointf3 m_pos;
|
||||
Vec3d m_pos = Vec3d::Zero();
|
||||
|
||||
std::string _travel_to_z(double z, const std::string &comment);
|
||||
std::string _retract(double length, double restart_extra, const std::string &comment);
|
||||
|
|
|
@ -345,7 +345,7 @@ linint(double value, double oldmin, double oldmax, double newmin, double newmax)
|
|||
// If the points have the same weight, sort them lexicographically by their positions.
|
||||
struct ArrangeItem {
|
||||
ArrangeItem() {}
|
||||
Pointf pos;
|
||||
Vec2d pos;
|
||||
coordf_t weight;
|
||||
bool operator<(const ArrangeItem &other) const {
|
||||
return weight < other.weight ||
|
||||
|
@ -353,17 +353,17 @@ struct ArrangeItem {
|
|||
}
|
||||
};
|
||||
|
||||
Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
|
||||
Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
|
||||
{
|
||||
// Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
|
||||
const Pointf cell_size(part_size(0) + gap, part_size(1) + gap);
|
||||
const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap);
|
||||
|
||||
const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
|
||||
*bed_bounding_box :
|
||||
// Bogus bed size, large enough not to trigger the unsufficient bed size error.
|
||||
BoundingBoxf(
|
||||
Pointf(0, 0),
|
||||
Pointf(cell_size(0) * num_parts, cell_size(1) * num_parts));
|
||||
Vec2d(0, 0),
|
||||
Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
|
||||
|
||||
// This is how many cells we have available into which to put parts.
|
||||
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
|
||||
|
@ -372,8 +372,8 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
|
|||
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
|
||||
|
||||
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
|
||||
Pointf cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
||||
Pointf cells_offset(bed_bbox.center() - 0.5 * cells_size);
|
||||
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
||||
Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size);
|
||||
BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
|
||||
|
||||
// List of cells, sorted by distance from center.
|
||||
|
@ -405,35 +405,35 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
|
|||
Pointfs positions;
|
||||
positions.reserve(num_parts);
|
||||
for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
|
||||
positions.push_back(Pointf(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
|
||||
positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
|
||||
return positions;
|
||||
}
|
||||
#else
|
||||
class ArrangeItem {
|
||||
public:
|
||||
Pointf pos;
|
||||
public:
|
||||
Vec2d pos = Vec2d::Zero();
|
||||
size_t index_x, index_y;
|
||||
coordf_t dist;
|
||||
};
|
||||
class ArrangeItemIndex {
|
||||
public:
|
||||
public:
|
||||
coordf_t index;
|
||||
ArrangeItem item;
|
||||
ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
|
||||
};
|
||||
|
||||
bool
|
||||
arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
|
||||
arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
|
||||
{
|
||||
positions.clear();
|
||||
|
||||
Pointf part = part_size;
|
||||
Vec2d part = part_size;
|
||||
|
||||
// use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
|
||||
part(0) += dist;
|
||||
part(1) += dist;
|
||||
|
||||
Pointf area;
|
||||
Vec2d area(Vec2d::Zero());
|
||||
if (bb != NULL && bb->defined) {
|
||||
area = bb->size();
|
||||
} else {
|
||||
|
@ -449,11 +449,11 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
|||
return false;
|
||||
|
||||
// total space used by cells
|
||||
Pointf cells(cellw * part(0), cellh * part(1));
|
||||
Vec2d cells(cellw * part(0), cellh * part(1));
|
||||
|
||||
// bounding box of total space used by cells
|
||||
BoundingBoxf cells_bb;
|
||||
cells_bb.merge(Pointf(0,0)); // min
|
||||
cells_bb.merge(Vec2d(0,0)); // min
|
||||
cells_bb.merge(cells); // max
|
||||
|
||||
// center bounding box to area
|
||||
|
@ -533,7 +533,7 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
|||
coordf_t cx = c.item.index_x - lx;
|
||||
coordf_t cy = c.item.index_y - ty;
|
||||
|
||||
positions.push_back(Pointf(cx * part(0), cy * part(1)));
|
||||
positions.push_back(Vec2d(cx * part(0), cy * part(1)));
|
||||
}
|
||||
|
||||
if (bb != NULL && bb->defined) {
|
||||
|
|
|
@ -66,7 +66,7 @@ static inline bool is_ccw(const Polygon &poly)
|
|||
return o == ORIENTATION_CCW;
|
||||
}
|
||||
|
||||
inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
|
||||
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
||||
{
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
|
@ -77,7 +77,7 @@ inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Poin
|
|||
return true;
|
||||
}
|
||||
|
||||
inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
|
||||
inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
||||
{
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
|
@ -123,7 +123,7 @@ void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* ret
|
|||
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
|
||||
bool arrange(
|
||||
// input
|
||||
size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
|
||||
size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
|
||||
// output
|
||||
Pointfs &positions);
|
||||
|
||||
|
|
|
@ -97,11 +97,11 @@ bool Line::intersection(const Line &l2, Point *intersection) const
|
|||
return false; // not intersecting
|
||||
}
|
||||
|
||||
Pointf3 Linef3::intersect_plane(double z) const
|
||||
Vec3d Linef3::intersect_plane(double z) const
|
||||
{
|
||||
auto v = (this->b - this->a).cast<double>();
|
||||
double t = (z - this->a(2)) / v(2);
|
||||
return Pointf3(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
|
||||
return Vec3d(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -19,7 +19,7 @@ class Line
|
|||
{
|
||||
public:
|
||||
Line() {}
|
||||
explicit Line(Point _a, Point _b): a(_a), b(_b) {}
|
||||
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
|
||||
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
void translate(double x, double y) { Vector v(x, y); this->a += v; this->b += v; }
|
||||
|
@ -49,45 +49,49 @@ class ThickLine : public Line
|
|||
{
|
||||
public:
|
||||
ThickLine() : a_width(0), b_width(0) {}
|
||||
ThickLine(Point a, Point b) : Line(a, b), a_width(0), b_width(0) {}
|
||||
ThickLine(Point a, Point b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
|
||||
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
|
||||
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
|
||||
|
||||
coordf_t a_width, b_width;
|
||||
double a_width, b_width;
|
||||
};
|
||||
|
||||
class Line3
|
||||
{
|
||||
public:
|
||||
Line3() {}
|
||||
Line3(const Point3& _a, const Point3& _b) : a(_a), b(_b) {}
|
||||
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
|
||||
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
|
||||
|
||||
double length() const { return (this->a - this->b).cast<double>().norm(); }
|
||||
Vector3 vector() const { return this->b - this->a; }
|
||||
Vec3crd vector() const { return this->b - this->a; }
|
||||
|
||||
Point3 a;
|
||||
Point3 b;
|
||||
Vec3crd a;
|
||||
Vec3crd b;
|
||||
};
|
||||
|
||||
class Linef
|
||||
{
|
||||
public:
|
||||
Linef() {}
|
||||
explicit Linef(Pointf _a, Pointf _b): a(_a), b(_b) {}
|
||||
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
|
||||
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
|
||||
|
||||
Pointf a;
|
||||
Pointf b;
|
||||
Vec2d a;
|
||||
Vec2d b;
|
||||
};
|
||||
|
||||
class Linef3
|
||||
{
|
||||
public:
|
||||
Linef3() {}
|
||||
explicit Linef3(Pointf3 _a, Pointf3 _b): a(_a), b(_b) {}
|
||||
Pointf3 intersect_plane(double z) const;
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
|
||||
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
|
||||
|
||||
Pointf3 a;
|
||||
Pointf3 b;
|
||||
Vec3d intersect_plane(double z) const;
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
Vec3d vector() const { return this->b - this->a; }
|
||||
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
|
||||
double length() const { return vector().norm(); }
|
||||
|
||||
Vec3d a;
|
||||
Vec3d b;
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
|
|
@ -235,15 +235,7 @@ BoundingBoxf3 Model::bounding_box() const
|
|||
return bb;
|
||||
}
|
||||
|
||||
BoundingBoxf3 Model::transformed_bounding_box() const
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
for (const ModelObject* obj : this->objects)
|
||||
bb.merge(obj->tight_bounding_box(false));
|
||||
return bb;
|
||||
}
|
||||
|
||||
void Model::center_instances_around_point(const Pointf &point)
|
||||
void Model::center_instances_around_point(const Vec2d &point)
|
||||
{
|
||||
// BoundingBoxf3 bb = this->bounding_box();
|
||||
BoundingBoxf3 bb;
|
||||
|
@ -251,7 +243,7 @@ void Model::center_instances_around_point(const Pointf &point)
|
|||
for (size_t i = 0; i < o->instances.size(); ++ i)
|
||||
bb.merge(o->instance_bounding_box(i, false));
|
||||
|
||||
Pointf shift = point - 0.5 * bb.size().xy() - bb.min.xy();
|
||||
Vec2d shift = point - 0.5 * to_2d(bb.size()) - to_2d(bb.min);
|
||||
for (ModelObject *o : this->objects) {
|
||||
for (ModelInstance *i : o->instances)
|
||||
i->offset += shift;
|
||||
|
@ -309,8 +301,8 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
|||
for (size_t i = 0; i < o->instances.size(); ++ i) {
|
||||
// an accurate snug bounding box around the transformed mesh.
|
||||
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
|
||||
instance_sizes.push_back(bbox.size().xy());
|
||||
instance_centers.push_back(bbox.center().xy());
|
||||
instance_sizes.emplace_back(to_2d(bbox.size()));
|
||||
instance_centers.emplace_back(to_2d(bbox.center()));
|
||||
}
|
||||
|
||||
Pointfs positions;
|
||||
|
@ -332,7 +324,7 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
|||
// Duplicate the entire model preserving instance relative positions.
|
||||
void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
|
||||
{
|
||||
Pointfs model_sizes(copies_num-1, this->bounding_box().size().xy());
|
||||
Pointfs model_sizes(copies_num-1, to_2d(this->bounding_box().size()));
|
||||
Pointfs positions;
|
||||
if (! _arrange(model_sizes, dist, bb, positions))
|
||||
CONFESS("Cannot duplicate part as the resulting objects would not fit on the print bed.\n");
|
||||
|
@ -343,7 +335,7 @@ void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
|
|||
// make a copy of the pointers in order to avoid recursion when appending their copies
|
||||
ModelInstancePtrs instances = o->instances;
|
||||
for (const ModelInstance *i : instances) {
|
||||
for (const Pointf &pos : positions) {
|
||||
for (const Vec2d &pos : positions) {
|
||||
ModelInstance *instance = o->add_instance(*i);
|
||||
instance->offset += pos;
|
||||
}
|
||||
|
@ -375,7 +367,7 @@ void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
|
|||
ModelObject* object = this->objects.front();
|
||||
object->clear_instances();
|
||||
|
||||
Sizef3 size = object->bounding_box().size();
|
||||
Vec3d size = object->bounding_box().size();
|
||||
|
||||
for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
|
||||
for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
|
||||
|
@ -621,54 +613,6 @@ const BoundingBoxf3& ModelObject::bounding_box() const
|
|||
return m_bounding_box;
|
||||
}
|
||||
|
||||
BoundingBoxf3 ModelObject::tight_bounding_box(bool include_modifiers) const
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
|
||||
for (const ModelVolume* vol : this->volumes)
|
||||
{
|
||||
if (include_modifiers || !vol->modifier)
|
||||
{
|
||||
for (const ModelInstance* inst : this->instances)
|
||||
{
|
||||
double c = cos(inst->rotation);
|
||||
double s = sin(inst->rotation);
|
||||
|
||||
for (int f = 0; f < vol->mesh.stl.stats.number_of_facets; ++f)
|
||||
{
|
||||
const stl_facet& facet = vol->mesh.stl.facet_start[f];
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
// original point
|
||||
const stl_vertex& v = facet.vertex[i];
|
||||
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
||||
|
||||
// scale
|
||||
p(0) *= inst->scaling_factor;
|
||||
p(1) *= inst->scaling_factor;
|
||||
p(2) *= inst->scaling_factor;
|
||||
|
||||
// rotate Z
|
||||
double x = p(0);
|
||||
double y = p(1);
|
||||
p(0) = c * x - s * y;
|
||||
p(1) = s * x + c * y;
|
||||
|
||||
// translate
|
||||
p(0) += inst->offset(0);
|
||||
p(1) += inst->offset(1);
|
||||
|
||||
bb.merge(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return bb;
|
||||
}
|
||||
|
||||
// A mesh containing all transformed instances of this object.
|
||||
TriangleMesh ModelObject::mesh() const
|
||||
{
|
||||
|
@ -726,24 +670,22 @@ void ModelObject::center_around_origin()
|
|||
if (! v->modifier)
|
||||
bb.merge(v->mesh.bounding_box());
|
||||
|
||||
// first align to origin on XYZ
|
||||
Vectorf3 vector(-bb.min(0), -bb.min(1), -bb.min(2));
|
||||
// First align to origin on XYZ, then center it on XY.
|
||||
Vec3d size = bb.size();
|
||||
size(2) = 0.;
|
||||
Vec3d shift3 = - bb.min - 0.5 * size;
|
||||
// Unaligned vector, for the Rotation2D to work on Visual Studio 2013.
|
||||
Eigen::Vector2d shift2 = to_2d(shift3);
|
||||
|
||||
// then center it on XY
|
||||
Sizef3 size = bb.size();
|
||||
vector(0) -= size(0)/2;
|
||||
vector(1) -= size(1)/2;
|
||||
|
||||
this->translate(vector);
|
||||
this->origin_translation += vector;
|
||||
this->translate(shift3);
|
||||
this->origin_translation += shift3;
|
||||
|
||||
if (!this->instances.empty()) {
|
||||
for (ModelInstance *i : this->instances) {
|
||||
// apply rotation and scaling to vector as well before translating instance,
|
||||
// in order to leave final position unaltered
|
||||
Vectorf v = - vector.xy();
|
||||
v.rotate(i->rotation);
|
||||
i->offset += v * i->scaling_factor;
|
||||
Eigen::Rotation2Dd rot(i->rotation);
|
||||
i->offset -= rot * shift2 * i->scaling_factor;
|
||||
}
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
@ -752,39 +694,38 @@ void ModelObject::center_around_origin()
|
|||
void ModelObject::translate(coordf_t x, coordf_t y, coordf_t z)
|
||||
{
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.translate(float(x), float(y), float(z));
|
||||
if (m_bounding_box_valid)
|
||||
v->m_convex_hull.translate(float(x), float(y), float(z));
|
||||
}
|
||||
|
||||
if (m_bounding_box_valid)
|
||||
m_bounding_box.translate(x, y, z);
|
||||
}
|
||||
|
||||
void ModelObject::scale(const Pointf3 &versor)
|
||||
void ModelObject::scale(const Vec3d &versor)
|
||||
{
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.scale(versor);
|
||||
v->m_convex_hull.scale(versor);
|
||||
}
|
||||
// reset origin translation since it doesn't make sense anymore
|
||||
this->origin_translation = Pointf3(0,0,0);
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
void ModelObject::rotate(float angle, const Axis &axis)
|
||||
{
|
||||
float min_z = FLT_MAX;
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.rotate(angle, axis);
|
||||
min_z = std::min(min_z, v->mesh.stl.stats.min.z);
|
||||
v->m_convex_hull.rotate(angle, axis);
|
||||
}
|
||||
|
||||
if (min_z != 0.0f)
|
||||
{
|
||||
// translate the object so that its minimum z lays on the bed
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.translate(0.0f, 0.0f, -min_z);
|
||||
}
|
||||
}
|
||||
center_around_origin();
|
||||
|
||||
this->origin_translation = Pointf3(0, 0, 0);
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
|
@ -796,17 +737,22 @@ void ModelObject::transform(const float* matrix3x4)
|
|||
for (ModelVolume* v : volumes)
|
||||
{
|
||||
v->mesh.transform(matrix3x4);
|
||||
v->m_convex_hull.transform(matrix3x4);
|
||||
}
|
||||
|
||||
origin_translation = Pointf3(0.0, 0.0, 0.0);
|
||||
invalidate_bounding_box();
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
void ModelObject::mirror(const Axis &axis)
|
||||
{
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.mirror(axis);
|
||||
this->origin_translation = Pointf3(0,0,0);
|
||||
v->m_convex_hull.mirror(axis);
|
||||
}
|
||||
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
|
@ -910,45 +856,18 @@ void ModelObject::split(ModelObjectPtrs* new_objects)
|
|||
|
||||
void ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_volume)
|
||||
{
|
||||
for (ModelVolume* vol : this->volumes)
|
||||
for (const ModelVolume* vol : this->volumes)
|
||||
{
|
||||
if (!vol->modifier)
|
||||
{
|
||||
for (ModelInstance* inst : this->instances)
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
Transform3d m = Transform3d::Identity();
|
||||
m.translate(Vec3d(inst->offset(0), inst->offset(1), 0.0));
|
||||
m.rotate(Eigen::AngleAxisd(inst->rotation, Vec3d::UnitZ()));
|
||||
m.scale(inst->scaling_factor);
|
||||
|
||||
double c = cos(inst->rotation);
|
||||
double s = sin(inst->rotation);
|
||||
|
||||
for (int f = 0; f < vol->mesh.stl.stats.number_of_facets; ++f)
|
||||
{
|
||||
const stl_facet& facet = vol->mesh.stl.facet_start[f];
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
// original point
|
||||
const stl_vertex& v = facet.vertex[i];
|
||||
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
||||
|
||||
// scale
|
||||
p(0) *= inst->scaling_factor;
|
||||
p(1) *= inst->scaling_factor;
|
||||
p(2) *= inst->scaling_factor;
|
||||
|
||||
// rotate Z
|
||||
double x = p(0);
|
||||
double y = p(1);
|
||||
p(0) = c * x - s * y;
|
||||
p(1) = s * x + c * y;
|
||||
|
||||
// translate
|
||||
p(0) += inst->offset(0);
|
||||
p(1) += inst->offset(1);
|
||||
|
||||
bb.merge(p);
|
||||
}
|
||||
}
|
||||
BoundingBoxf3 bb = vol->get_convex_hull().transformed_bounding_box(m);
|
||||
|
||||
if (print_volume.contains(bb))
|
||||
inst->print_volume_state = ModelInstance::PVS_Inside;
|
||||
|
@ -970,7 +889,7 @@ void ModelObject::print_info() const
|
|||
TriangleMesh mesh = this->raw_mesh();
|
||||
mesh.check_topology();
|
||||
BoundingBoxf3 bb = mesh.bounding_box();
|
||||
Sizef3 size = bb.size();
|
||||
Vec3d size = bb.size();
|
||||
cout << "size_x = " << size(0) << endl;
|
||||
cout << "size_y = " << size(1) << endl;
|
||||
cout << "size_z = " << size(2) << endl;
|
||||
|
@ -1031,6 +950,16 @@ ModelMaterial* ModelVolume::assign_unique_material()
|
|||
return model->add_material(this->_material_id);
|
||||
}
|
||||
|
||||
void ModelVolume::calculate_convex_hull()
|
||||
{
|
||||
m_convex_hull = mesh.convex_hull_3d();
|
||||
}
|
||||
|
||||
const TriangleMesh& ModelVolume::get_convex_hull() const
|
||||
{
|
||||
return m_convex_hull;
|
||||
}
|
||||
|
||||
// Split this volume, append the result to the object owning this volume.
|
||||
// Return the number of volumes created from this one.
|
||||
// This is useful to assign different materials to different volumes of an object.
|
||||
|
@ -1082,30 +1011,20 @@ BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mes
|
|||
for (int i = 0; i < mesh->stl.stats.number_of_facets; ++ i) {
|
||||
const stl_facet &facet = mesh->stl.facet_start[i];
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
stl_vertex v = facet.vertex[j];
|
||||
double xold = v.x;
|
||||
double yold = v.y;
|
||||
v.x = float(c * xold - s * yold);
|
||||
v.y = float(s * xold + c * yold);
|
||||
bbox.merge(Pointf3(v.x, v.y, v.z));
|
||||
const stl_vertex &v = facet.vertex[j];
|
||||
bbox.merge(Vec3d(c * v(0) - s * v(1), s * v(0) + c * v(1), v(2)));
|
||||
}
|
||||
}
|
||||
if (! empty(bbox)) {
|
||||
// Scale the bounding box uniformly.
|
||||
if (std::abs(this->scaling_factor - 1.) > EPSILON) {
|
||||
bbox.min(0) *= float(this->scaling_factor);
|
||||
bbox.min(1) *= float(this->scaling_factor);
|
||||
bbox.min(2) *= float(this->scaling_factor);
|
||||
bbox.max(0) *= float(this->scaling_factor);
|
||||
bbox.max(1) *= float(this->scaling_factor);
|
||||
bbox.max(2) *= float(this->scaling_factor);
|
||||
bbox.min *= this->scaling_factor;
|
||||
bbox.max *= this->scaling_factor;
|
||||
}
|
||||
// Translate the bounding box.
|
||||
if (! dont_translate) {
|
||||
bbox.min(0) += float(this->offset(0));
|
||||
bbox.min(1) += float(this->offset(1));
|
||||
bbox.max(0) += float(this->offset(0));
|
||||
bbox.max(1) += float(this->offset(1));
|
||||
Eigen::Map<Vec2d>(bbox.min.data()) += this->offset;
|
||||
Eigen::Map<Vec2d>(bbox.max.data()) += this->offset;
|
||||
}
|
||||
}
|
||||
return bbox;
|
||||
|
@ -1113,10 +1032,11 @@ BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mes
|
|||
|
||||
BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const
|
||||
{
|
||||
auto matrix = Transform3f::Identity();
|
||||
Transform3d matrix = Transform3d::Identity();
|
||||
if (!dont_translate)
|
||||
matrix.translate(Vec3f((float)offset(0), (float)offset(1), 0.0f));
|
||||
matrix.rotate(Eigen::AngleAxisf(rotation, Vec3f::UnitZ()));
|
||||
matrix.translate(Vec3d(offset(0), offset(1), 0.0));
|
||||
|
||||
matrix.rotate(Eigen::AngleAxisd(rotation, Vec3d::UnitZ()));
|
||||
matrix.scale(scaling_factor);
|
||||
return bbox.transformed(matrix);
|
||||
}
|
||||
|
|
|
@ -84,7 +84,7 @@ public:
|
|||
center_around_origin() method. Callers might want to apply the same translation
|
||||
to new volumes before adding them to this object in order to preserve alignment
|
||||
when user expects that. */
|
||||
Pointf3 origin_translation;
|
||||
Vec3d origin_translation;
|
||||
|
||||
Model* get_model() const { return m_model; };
|
||||
|
||||
|
@ -105,9 +105,6 @@ public:
|
|||
// This bounding box is being cached.
|
||||
const BoundingBoxf3& bounding_box() const;
|
||||
void invalidate_bounding_box() { m_bounding_box_valid = false; }
|
||||
// Returns a snug bounding box of the transformed instances.
|
||||
// This bounding box is not being cached.
|
||||
BoundingBoxf3 tight_bounding_box(bool include_modifiers) const;
|
||||
|
||||
// A mesh containing all transformed instances of this object.
|
||||
TriangleMesh mesh() const;
|
||||
|
@ -120,9 +117,9 @@ public:
|
|||
// A snug bounding box around the transformed non-modifier object volumes.
|
||||
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
|
||||
void center_around_origin();
|
||||
void translate(const Vectorf3 &vector) { this->translate(vector(0), vector(1), vector(2)); }
|
||||
void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z);
|
||||
void scale(const Pointf3 &versor);
|
||||
void scale(const Vec3d &versor);
|
||||
void rotate(float angle, const Axis &axis);
|
||||
void transform(const float* matrix3x4);
|
||||
void mirror(const Axis &axis);
|
||||
|
@ -138,7 +135,7 @@ public:
|
|||
void print_info() const;
|
||||
|
||||
private:
|
||||
ModelObject(Model *model) : layer_height_profile_valid(false), m_model(model), m_bounding_box_valid(false) {}
|
||||
ModelObject(Model *model) : layer_height_profile_valid(false), m_model(model), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false) {}
|
||||
ModelObject(Model *model, const ModelObject &other, bool copy_volumes = true);
|
||||
ModelObject& operator= (ModelObject other);
|
||||
void swap(ModelObject &other);
|
||||
|
@ -157,6 +154,10 @@ private:
|
|||
class ModelVolume
|
||||
{
|
||||
friend class ModelObject;
|
||||
|
||||
// The convex hull of this model's mesh.
|
||||
TriangleMesh m_convex_hull;
|
||||
|
||||
public:
|
||||
std::string name;
|
||||
// The triangular model.
|
||||
|
@ -180,19 +181,32 @@ public:
|
|||
|
||||
ModelMaterial* assign_unique_material();
|
||||
|
||||
void calculate_convex_hull();
|
||||
const TriangleMesh& get_convex_hull() const;
|
||||
|
||||
private:
|
||||
// Parent object owning this ModelVolume.
|
||||
ModelObject* object;
|
||||
t_model_material_id _material_id;
|
||||
|
||||
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), modifier(false), object(object) {}
|
||||
ModelVolume(ModelObject *object, TriangleMesh &&mesh) : mesh(std::move(mesh)), modifier(false), object(object) {}
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other) :
|
||||
name(other.name), mesh(other.mesh), config(other.config), modifier(other.modifier), object(object)
|
||||
{ this->material_id(other.material_id()); }
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
|
||||
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), modifier(false), object(object)
|
||||
{
|
||||
if (mesh.stl.stats.number_of_facets > 1)
|
||||
calculate_convex_hull();
|
||||
}
|
||||
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull) : mesh(std::move(mesh)), m_convex_hull(std::move(convex_hull)), modifier(false), object(object) {}
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other) :
|
||||
name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), modifier(other.modifier), object(object)
|
||||
{
|
||||
this->material_id(other.material_id());
|
||||
}
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
|
||||
name(other.name), mesh(std::move(mesh)), config(other.config), modifier(other.modifier), object(object)
|
||||
{ this->material_id(other.material_id()); }
|
||||
{
|
||||
this->material_id(other.material_id());
|
||||
if (mesh.stl.stats.number_of_facets > 1)
|
||||
calculate_convex_hull();
|
||||
}
|
||||
};
|
||||
|
||||
// A single instance of a ModelObject.
|
||||
|
@ -213,7 +227,7 @@ public:
|
|||
// Transform3d transform;
|
||||
double rotation; // Rotation around the Z axis, in radians around mesh center point
|
||||
double scaling_factor;
|
||||
Pointf offset; // in unscaled coordinates
|
||||
Vec2d offset; // in unscaled coordinates
|
||||
|
||||
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
|
||||
EPrintVolumeState print_volume_state;
|
||||
|
@ -235,7 +249,7 @@ private:
|
|||
// Parent object, owning this instance.
|
||||
ModelObject* object;
|
||||
|
||||
ModelInstance(ModelObject *object) : rotation(0), scaling_factor(1), object(object), print_volume_state(PVS_Inside) {}
|
||||
ModelInstance(ModelObject *object) : rotation(0), scaling_factor(1), offset(Vec2d::Zero()), object(object), print_volume_state(PVS_Inside) {}
|
||||
ModelInstance(ModelObject *object, const ModelInstance &other) :
|
||||
rotation(other.rotation), scaling_factor(other.scaling_factor), offset(other.offset), object(object), print_volume_state(PVS_Inside) {}
|
||||
};
|
||||
|
@ -286,9 +300,7 @@ public:
|
|||
bool add_default_instances();
|
||||
// Returns approximate axis aligned bounding box of this model
|
||||
BoundingBoxf3 bounding_box() const;
|
||||
// Returns tight axis aligned bounding box of this model
|
||||
BoundingBoxf3 transformed_bounding_box() const;
|
||||
void center_instances_around_point(const Pointf &point);
|
||||
void center_instances_around_point(const Vec2d &point);
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
||||
TriangleMesh mesh() const;
|
||||
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
|
|
|
@ -468,7 +468,7 @@ void applyResult(
|
|||
// appropriately
|
||||
auto off = item.translation();
|
||||
Radians rot = item.rotation();
|
||||
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
||||
Vec2d foff(off.X*SCALING_FACTOR + batch_offset,
|
||||
off.Y*SCALING_FACTOR);
|
||||
|
||||
// write the tranformation data into the model instance
|
||||
|
|
|
@ -196,7 +196,7 @@ MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
|
|||
|
||||
void MultiPoint3::translate(double x, double y)
|
||||
{
|
||||
for (Point3 &p : points) {
|
||||
for (Vec3crd &p : points) {
|
||||
p(0) += x;
|
||||
p(1) += y;
|
||||
}
|
||||
|
|
|
@ -85,7 +85,7 @@ class MultiPoint3
|
|||
public:
|
||||
Points3 points;
|
||||
|
||||
void append(const Point3& point) { this->points.push_back(point); }
|
||||
void append(const Vec3crd& point) { this->points.push_back(point); }
|
||||
|
||||
void translate(double x, double y);
|
||||
void translate(const Point& vector);
|
||||
|
|
|
@ -243,7 +243,7 @@ void PerimeterGenerator::process()
|
|||
perimeter_spacing / 2;
|
||||
// only apply infill overlap if we actually have one perimeter
|
||||
if (inset > 0)
|
||||
inset -= scale_(this->config->get_abs_value("infill_overlap", unscale(inset + solid_infill_spacing / 2)));
|
||||
inset -= scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2)));
|
||||
// simplify infill contours according to resolution
|
||||
Polygons pp;
|
||||
for (ExPolygon &ex : last)
|
||||
|
@ -420,7 +420,7 @@ static inline ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyli
|
|||
path.polyline.append(line.b);
|
||||
// Convert from spacing to extrusion width based on the extrusion model
|
||||
// of a square extrusion ended with semi circles.
|
||||
flow.width = unscale(w) + flow.height * (1. - 0.25 * PI);
|
||||
flow.width = unscale<float>(w) + flow.height * (1. - 0.25 * PI);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf(" filling %f gap\n", flow.width);
|
||||
#endif
|
||||
|
|
|
@ -148,33 +148,11 @@ Point Point::projection_onto(const Line &line) const
|
|||
return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf)
|
||||
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
|
||||
{
|
||||
return stm << pointf(0) << "," << pointf(1);
|
||||
}
|
||||
|
||||
void Pointf::rotate(double angle)
|
||||
{
|
||||
double cur_x = (*this)(0);
|
||||
double cur_y = (*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
(*this)(0) = c * cur_x - s * cur_y;
|
||||
(*this)(1) = c * cur_y + s * cur_x;
|
||||
}
|
||||
|
||||
void Pointf::rotate(double angle, const Pointf ¢er)
|
||||
{
|
||||
double cur_x = (*this)(0);
|
||||
double cur_y = (*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
double dx = cur_x - center(0);
|
||||
double dy = cur_y - center(1);
|
||||
(*this)(0) = center(0) + c * dx - s * dy;
|
||||
(*this)(1) = center(1) + c * dy + s * dx;
|
||||
}
|
||||
|
||||
namespace int128 {
|
||||
|
||||
int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
|
||||
|
|
|
@ -16,19 +16,7 @@ namespace Slic3r {
|
|||
class Line;
|
||||
class MultiPoint;
|
||||
class Point;
|
||||
class Point3;
|
||||
class Pointf;
|
||||
class Pointf3;
|
||||
typedef Point Vector;
|
||||
typedef Point3 Vector3;
|
||||
typedef Pointf Vectorf;
|
||||
typedef Pointf3 Vectorf3;
|
||||
typedef std::vector<Point> Points;
|
||||
typedef std::vector<Point*> PointPtrs;
|
||||
typedef std::vector<const Point*> PointConstPtrs;
|
||||
typedef std::vector<Point3> Points3;
|
||||
typedef std::vector<Pointf> Pointfs;
|
||||
typedef std::vector<Pointf3> Pointf3s;
|
||||
typedef Point Vector;
|
||||
|
||||
// Eigen types, to replace the Slic3r's own types in the future.
|
||||
// Vector types with a fixed point coordinate base type.
|
||||
|
@ -43,16 +31,37 @@ typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
|
|||
typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vec2d;
|
||||
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
|
||||
|
||||
typedef std::vector<Point> Points;
|
||||
typedef std::vector<Point*> PointPtrs;
|
||||
typedef std::vector<const Point*> PointConstPtrs;
|
||||
typedef std::vector<Vec3crd> Points3;
|
||||
typedef std::vector<Vec2d> Pointfs;
|
||||
typedef std::vector<Vec3d> Pointf3s;
|
||||
|
||||
typedef Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign> Transform2f;
|
||||
typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
|
||||
typedef Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign> Transform3f;
|
||||
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;
|
||||
|
||||
inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); }
|
||||
|
||||
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
|
||||
inline Vec2crd to_2d(const Vec3crd &pt3) { return Vec2crd(pt3(0), pt3(1)); }
|
||||
inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
|
||||
inline Vec2f to_2d(const Vec3f &pt3) { return Vec2f (pt3(0), pt3(1)); }
|
||||
inline Vec2d to_2d(const Vec3d &pt3) { return Vec2d (pt3(0), pt3(1)); }
|
||||
|
||||
inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
|
||||
inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
||||
inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
||||
inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
|
||||
inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
||||
inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
||||
|
||||
inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
||||
inline std::string to_string(const Vec2d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
||||
inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
|
||||
|
@ -210,81 +219,7 @@ private:
|
|||
coord_t m_grid_log2;
|
||||
};
|
||||
|
||||
class Point3 : public Vec3crd
|
||||
{
|
||||
public:
|
||||
typedef coord_t coord_type;
|
||||
|
||||
explicit Point3() { (*this)(0) = (*this)(1) = (*this)(2) = 0; }
|
||||
explicit Point3(coord_t x, coord_t y, coord_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
|
||||
// This constructor allows you to construct Point3 from Eigen expressions
|
||||
template<typename OtherDerived>
|
||||
Point3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3crd(other) {}
|
||||
static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
Point3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
this->Vec3crd::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Point xy() const { return Point((*this)(0), (*this)(1)); }
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);
|
||||
|
||||
class Pointf : public Vec2d
|
||||
{
|
||||
public:
|
||||
typedef coordf_t coord_type;
|
||||
|
||||
explicit Pointf() { (*this)(0) = (*this)(1) = 0.; }
|
||||
explicit Pointf(coordf_t x, coordf_t y) { (*this)(0) = x; (*this)(1) = y; }
|
||||
// This constructor allows you to construct Pointf from Eigen expressions
|
||||
template<typename OtherDerived>
|
||||
Pointf(const Eigen::MatrixBase<OtherDerived> &other) : Vec2d(other) {}
|
||||
static Pointf new_unscale(coord_t x, coord_t y) { return Pointf(unscale(x), unscale(y)); }
|
||||
static Pointf new_unscale(const Point &p) { return Pointf(unscale(p(0)), unscale(p(1))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
Pointf& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
this->Vec2d::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void rotate(double angle);
|
||||
void rotate(double angle, const Pointf ¢er);
|
||||
|
||||
bool operator< (const Pointf& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
|
||||
};
|
||||
|
||||
class Pointf3 : public Vec3d
|
||||
{
|
||||
public:
|
||||
typedef coordf_t coord_type;
|
||||
|
||||
explicit Pointf3() { (*this)(0) = (*this)(1) = (*this)(2) = 0.; }
|
||||
explicit Pointf3(coordf_t x, coordf_t y, coordf_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
|
||||
// This constructor allows you to construct Pointf from Eigen expressions
|
||||
template<typename OtherDerived>
|
||||
Pointf3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3d(other) {}
|
||||
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) { return Pointf3(unscale(x), unscale(y), unscale(z)); }
|
||||
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p(0)), unscale(p(1)), unscale(p(2))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
Pointf3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
this->Vec3d::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Pointf xy() const { return Pointf((*this)(0), (*this)(1)); }
|
||||
};
|
||||
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
|
|
|
@ -297,10 +297,10 @@ Point Polygon::point_projection(const Point &point) const
|
|||
dmin = d;
|
||||
proj = pt1;
|
||||
}
|
||||
Pointf v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1)));
|
||||
Vec2d v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1)));
|
||||
coordf_t div = v1.squaredNorm();
|
||||
if (div > 0.) {
|
||||
Pointf v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1)));
|
||||
Vec2d v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1)));
|
||||
coordf_t t = v1.dot(v2) / div;
|
||||
if (t > 0. && t < 1.) {
|
||||
Point foot(coord_t(floor(coordf_t(pt0(0)) + t * v1(0) + 0.5)), coord_t(floor(coordf_t(pt0(1)) + t * v1(1) + 0.5)));
|
||||
|
|
|
@ -24,11 +24,12 @@ public:
|
|||
explicit Polygon(const Points &points): MultiPoint(points) {}
|
||||
Polygon(const Polygon &other) : MultiPoint(other.points) {}
|
||||
Polygon(Polygon &&other) : MultiPoint(std::move(other.points)) {}
|
||||
static Polygon new_scale(std::vector<Pointf> points) {
|
||||
Points int_points;
|
||||
for (auto pt : points)
|
||||
int_points.push_back(Point::new_scale(pt(0), pt(1)));
|
||||
return Polygon(int_points);
|
||||
static Polygon new_scale(const std::vector<Vec2d> &points) {
|
||||
Polygon pgn;
|
||||
pgn.points.reserve(points.size());
|
||||
for (const Vec2d &pt : points)
|
||||
pgn.points.emplace_back(Point::new_scale(pt(0), pt(1)));
|
||||
return pgn;
|
||||
}
|
||||
Polygon& operator=(const Polygon &other) { points = other.points; return *this; }
|
||||
Polygon& operator=(Polygon &&other) { points = std::move(other.points); return *this; }
|
||||
|
|
|
@ -23,12 +23,11 @@ public:
|
|||
explicit Polyline(const Point &p1, const Point &p2) { points.reserve(2); points.emplace_back(p1); points.emplace_back(p2); }
|
||||
Polyline& operator=(const Polyline &other) { points = other.points; return *this; }
|
||||
Polyline& operator=(Polyline &&other) { points = std::move(other.points); return *this; }
|
||||
static Polyline new_scale(std::vector<Pointf> points) {
|
||||
static Polyline new_scale(const std::vector<Vec2d> &points) {
|
||||
Polyline pl;
|
||||
Points int_points;
|
||||
for (auto pt : points)
|
||||
int_points.push_back(Point::new_scale(pt(0), pt(1)));
|
||||
pl.append(int_points);
|
||||
pl.points.reserve(points.size());
|
||||
for (const Vec2d &pt : points)
|
||||
pl.points.emplace_back(Point::new_scale(pt(0), pt(1)));
|
||||
return pl;
|
||||
}
|
||||
|
||||
|
|
|
@ -540,7 +540,7 @@ bool Print::has_skirt() const
|
|||
std::string Print::validate() const
|
||||
{
|
||||
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(config.bed_shape.values));
|
||||
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min(0)), unscale(bed_box_2D.min(1)), 0.0), Pointf3(unscale(bed_box_2D.max(0)), unscale(bed_box_2D.max(1)), config.max_print_height));
|
||||
BoundingBoxf3 print_volume(unscale(bed_box_2D.min(0), bed_box_2D.min(1), 0.0), unscale(bed_box_2D.max(0), bed_box_2D.max(1), scale_(config.max_print_height)));
|
||||
// Allow the objects to protrude below the print bed, only the part of the object above the print bed will be sliced.
|
||||
print_volume.min(2) = -1e10;
|
||||
unsigned int printable_count = 0;
|
||||
|
@ -728,7 +728,7 @@ BoundingBox Print::bounding_box() const
|
|||
for (const PrintObject *object : this->objects)
|
||||
for (Point copy : object->_shifted_copies) {
|
||||
bb.merge(copy);
|
||||
copy += object->size.xy();
|
||||
copy += to_2d(object->size);
|
||||
bb.merge(copy);
|
||||
}
|
||||
return bb;
|
||||
|
@ -971,7 +971,7 @@ void Print::_make_skirt()
|
|||
this->skirt.append(eloop);
|
||||
if (this->config.min_skirt_length.value > 0) {
|
||||
// The skirt length is limited. Sum the total amount of filament length extruded, in mm.
|
||||
extruded_length[extruder_idx] += unscale(loop.length()) * extruders_e_per_mm[extruder_idx];
|
||||
extruded_length[extruder_idx] += unscale<double>(loop.length()) * extruders_e_per_mm[extruder_idx];
|
||||
if (extruded_length[extruder_idx] < this->config.min_skirt_length.value) {
|
||||
// Not extruded enough yet with the current extruder. Add another loop.
|
||||
if (i == 1)
|
||||
|
|
|
@ -118,7 +118,7 @@ public:
|
|||
// so that next call to make_perimeters() performs a union() before computing loops
|
||||
bool typed_slices;
|
||||
|
||||
Point3 size; // XYZ in scaled coordinates
|
||||
Vec3crd size; // XYZ in scaled coordinates
|
||||
|
||||
// scaled coordinates to add to copies (to compensate for the alignment
|
||||
// operated when creating the object but still preserving a coherent API
|
||||
|
@ -138,13 +138,13 @@ public:
|
|||
const ModelObject* model_object() const { return this->_model_object; }
|
||||
|
||||
const Points& copies() const { return this->_copies; }
|
||||
bool add_copy(const Pointf &point);
|
||||
bool add_copy(const Vec2d &point);
|
||||
bool delete_last_copy();
|
||||
bool delete_all_copies() { return this->set_copies(Points()); }
|
||||
bool set_copies(const Points &points);
|
||||
bool reload_model_instances();
|
||||
// since the object is aligned to origin, bounding box coincides with size
|
||||
BoundingBox bounding_box() const { return BoundingBox(Point(0,0), this->size.xy()); }
|
||||
BoundingBox bounding_box() const { return BoundingBox(Point(0,0), to_2d(this->size)); }
|
||||
|
||||
// adds region_id, too, if necessary
|
||||
void add_region_volume(unsigned int region_id, int volume_id) {
|
||||
|
|
|
@ -17,9 +17,51 @@ namespace Slic3r {
|
|||
#define L(s) Slic3r::I18N::translate(s)
|
||||
|
||||
PrintConfigDef::PrintConfigDef()
|
||||
{
|
||||
this->init_common_params();
|
||||
this->init_fff_params();
|
||||
this->init_sla_params();
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_common_params()
|
||||
{
|
||||
t_optiondef_map &Options = this->options;
|
||||
ConfigOptionDef* def;
|
||||
|
||||
def = this->add("printer_technology", coEnum);
|
||||
def->label = L("Printer technology");
|
||||
def->tooltip = L("Printer technology");
|
||||
def->cli = "printer-technology=s";
|
||||
def->enum_keys_map = &ConfigOptionEnum<PrinterTechnology>::get_enum_values();
|
||||
def->enum_values.push_back("FFF");
|
||||
def->enum_values.push_back("SLA");
|
||||
def->default_value = new ConfigOptionEnum<PrinterTechnology>(ptFFF);
|
||||
|
||||
def = this->add("bed_shape", coPoints);
|
||||
def->label = L("Bed shape");
|
||||
def->default_value = new ConfigOptionPoints{ Vec2d(0, 0), Vec2d(200, 0), Vec2d(200, 200), Vec2d(0, 200) };
|
||||
|
||||
def = this->add("layer_height", coFloat);
|
||||
def->label = L("Layer height");
|
||||
def->category = L("Layers and Perimeters");
|
||||
def->tooltip = L("This setting controls the height (and thus the total number) of the slices/layers. "
|
||||
"Thinner layers give better accuracy but take more time to print.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "layer-height=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(0.3);
|
||||
|
||||
def = this->add("max_print_height", coFloat);
|
||||
def->label = L("Max print height");
|
||||
def->tooltip = L("Set this to the maximum height that can be reached by your extruder while printing.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "max-print-height=f";
|
||||
def->default_value = new ConfigOptionFloat(200.0);
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_fff_params()
|
||||
{
|
||||
t_optiondef_map &Options = this->options;
|
||||
ConfigOptionDef* def;
|
||||
|
||||
// Maximum extruder temperature, bumped to 1500 to support printing of glass.
|
||||
|
@ -33,10 +75,6 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->cli = "avoid-crossing-perimeters!";
|
||||
def->default_value = new ConfigOptionBool(false);
|
||||
|
||||
def = this->add("bed_shape", coPoints);
|
||||
def->label = L("Bed shape");
|
||||
def->default_value = new ConfigOptionPoints { Pointf(0,0), Pointf(200,0), Pointf(200,200), Pointf(0,200) };
|
||||
|
||||
def = this->add("bed_temperature", coInts);
|
||||
def->label = L("Other layers");
|
||||
def->tooltip = L("Bed temperature for layers after the first one. "
|
||||
|
@ -392,7 +430,7 @@ PrintConfigDef::PrintConfigDef()
|
|||
"from the XY coordinate).");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "extruder-offset=s@";
|
||||
def->default_value = new ConfigOptionPoints { Pointf(0,0) };
|
||||
def->default_value = new ConfigOptionPoints { Vec2d(0,0) };
|
||||
|
||||
def = this->add("extrusion_axis", coString);
|
||||
def->label = L("Extrusion axis");
|
||||
|
@ -906,16 +944,6 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->height = 50;
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("layer_height", coFloat);
|
||||
def->label = L("Layer height");
|
||||
def->category = L("Layers and Perimeters");
|
||||
def->tooltip = L("This setting controls the height (and thus the total number) of the slices/layers. "
|
||||
"Thinner layers give better accuracy but take more time to print.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "layer-height=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(0.3);
|
||||
|
||||
def = this->add("remaining_times", coBool);
|
||||
def->label = L("Supports remaining times");
|
||||
def->tooltip = L("Emit M73 P[percent printed] R[remaining time in minutes] at 1 minute"
|
||||
|
@ -1036,13 +1064,6 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats { 0. };
|
||||
|
||||
def = this->add("max_print_height", coFloat);
|
||||
def->label = L("Max print height");
|
||||
def->tooltip = L("Set this to the maximum height that can be reached by your extruder while printing.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "max-print-height=f";
|
||||
def->default_value = new ConfigOptionFloat(200.0);
|
||||
|
||||
def = this->add("max_print_speed", coFloat);
|
||||
def->label = L("Max print speed");
|
||||
def->tooltip = L("When setting other speed settings to 0 Slic3r will autocalculate the optimal speed "
|
||||
|
@ -1137,25 +1158,37 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->cli = "nozzle-diameter=f@";
|
||||
def->default_value = new ConfigOptionFloats { 0.5 };
|
||||
|
||||
def = this->add("octoprint_apikey", coString);
|
||||
def->label = L("API Key");
|
||||
def->tooltip = L("Slic3r can upload G-code files to OctoPrint. This field should contain "
|
||||
"the API Key required for authentication.");
|
||||
def->cli = "octoprint-apikey=s";
|
||||
def = this->add("host_type", coEnum);
|
||||
def->label = L("Host Type");
|
||||
def->tooltip = L("Slic3r can upload G-code files to a printer host. This field must contain "
|
||||
"the kind of the host.");
|
||||
def->cli = "host-type=s";
|
||||
def->enum_keys_map = &ConfigOptionEnum<PrintHostType>::get_enum_values();
|
||||
def->enum_values.push_back("octoprint");
|
||||
def->enum_values.push_back("duet");
|
||||
def->enum_labels.push_back("OctoPrint");
|
||||
def->enum_labels.push_back("Duet");
|
||||
def->default_value = new ConfigOptionEnum<PrintHostType>(htOctoPrint);
|
||||
|
||||
def = this->add("printhost_apikey", coString);
|
||||
def->label = L("API Key / Password");
|
||||
def->tooltip = L("Slic3r can upload G-code files to a printer host. This field should contain "
|
||||
"the API Key or the password required for authentication.");
|
||||
def->cli = "printhost-apikey=s";
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("octoprint_cafile", coString);
|
||||
def = this->add("printhost_cafile", coString);
|
||||
def->label = "HTTPS CA file";
|
||||
def->tooltip = "Custom CA certificate file can be specified for HTTPS OctoPrint connections, in crt/pem format. "
|
||||
"If left blank, the default OS CA certificate repository is used.";
|
||||
def->cli = "octoprint-cafile=s";
|
||||
def->cli = "printhost-cafile=s";
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("octoprint_host", coString);
|
||||
def = this->add("print_host", coString);
|
||||
def->label = L("Hostname, IP or URL");
|
||||
def->tooltip = L("Slic3r can upload G-code files to OctoPrint. This field should contain "
|
||||
"the hostname, IP address or URL of the OctoPrint instance.");
|
||||
def->cli = "octoprint-host=s";
|
||||
def->tooltip = L("Slic3r can upload G-code files to a printer host. This field should contain "
|
||||
"the hostname, IP address or URL of the printer host instance.");
|
||||
def->cli = "print-host=s";
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("only_retract_when_crossing_perimeters", coBool);
|
||||
|
@ -2121,6 +2154,103 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->default_value = new ConfigOptionFloat(35.);
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_sla_params()
|
||||
{
|
||||
t_optiondef_map &Options = this->options;
|
||||
ConfigOptionDef* def;
|
||||
|
||||
// SLA Printer settings
|
||||
def = this->add("display_width", coFloat);
|
||||
def->label = L("Display width");
|
||||
def->tooltip = L("Width of the display");
|
||||
def->cli = "display-width=f";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionFloat(150.);
|
||||
|
||||
def = this->add("display_height", coFloat);
|
||||
def->label = L("Display height");
|
||||
def->tooltip = L("Height of the display");
|
||||
def->cli = "display-height=f";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionFloat(100.);
|
||||
|
||||
def = this->add("display_pixels_x", coInt);
|
||||
def->full_label = L("Number of pixels in");
|
||||
def->label = ("X");
|
||||
def->tooltip = L("Number of pixels in X");
|
||||
def->cli = "display-pixels-x=i";
|
||||
def->min = 100;
|
||||
def->default_value = new ConfigOptionInt(2000);
|
||||
|
||||
def = this->add("display_pixels_y", coInt);
|
||||
def->label = ("Y");
|
||||
def->tooltip = L("Number of pixels in Y");
|
||||
def->cli = "display-pixels-y=i";
|
||||
def->min = 100;
|
||||
def->default_value = new ConfigOptionInt(1000);
|
||||
|
||||
def = this->add("printer_correction", coFloats);
|
||||
def->full_label = L("Printer scaling correction");
|
||||
def->tooltip = L("Printer scaling correction");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats( { 1., 1., 1. } );
|
||||
|
||||
// SLA Material settings.
|
||||
def = this->add("initial_layer_height", coFloat);
|
||||
def->label = L("Initial layer height");
|
||||
def->tooltip = L("Initial layer height");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "initial-layer-height=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(0.3);
|
||||
|
||||
def = this->add("exposure_time", coFloat);
|
||||
def->label = L("Exposure time");
|
||||
def->tooltip = L("Exposure time");
|
||||
def->sidetext = L("s");
|
||||
def->cli = "exposure-time=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(10);
|
||||
|
||||
def = this->add("initial_exposure_time", coFloat);
|
||||
def->label = L("Initial exposure time");
|
||||
def->tooltip = L("Initial exposure time");
|
||||
def->sidetext = L("s");
|
||||
def->cli = "initial-exposure-time=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(15);
|
||||
|
||||
def = this->add("material_correction_printing", coFloats);
|
||||
def->full_label = L("Correction for expansion when printing");
|
||||
def->tooltip = L("Correction for expansion when printing");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats( { 1. , 1., 1. } );
|
||||
|
||||
def = this->add("material_correction_curing", coFloats);
|
||||
def->full_label = L("Correction for expansion after curing");
|
||||
def->tooltip = L("Correction for expansion after curing");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats( { 1. , 1., 1. } );
|
||||
|
||||
def = this->add("material_notes", coString);
|
||||
def->label = L("SLA print material notes");
|
||||
def->tooltip = L("You can put your notes regarding the SLA print material here.");
|
||||
def->cli = "material-notes=s";
|
||||
def->multiline = true;
|
||||
def->full_width = true;
|
||||
def->height = 130;
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("default_sla_material_profile", coString);
|
||||
def->label = L("Default SLA material profile");
|
||||
def->tooltip = L("Default print profile associated with the current printer profile. "
|
||||
"On selection of the current printer profile, this print profile will be activated.");
|
||||
def->default_value = new ConfigOptionString();
|
||||
|
||||
def = this->add("sla_material_settings_id", coString);
|
||||
def->default_value = new ConfigOptionString("");
|
||||
}
|
||||
|
||||
void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &value)
|
||||
{
|
||||
// handle legacy options
|
||||
|
@ -2153,10 +2283,6 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
std::ostringstream oss;
|
||||
oss << "0x0," << p.value(0) << "x0," << p.value(0) << "x" << p.value(1) << ",0x" << p.value(1);
|
||||
value = oss.str();
|
||||
// Maybe one day we will rename octoprint_host to print_host as it has been done in the upstream Slic3r.
|
||||
// Commenting this out fixes github issue #869 for now.
|
||||
// } else if (opt_key == "octoprint_host" && !value.empty()) {
|
||||
// opt_key = "print_host";
|
||||
} else if ((opt_key == "perimeter_acceleration" && value == "25")
|
||||
|| (opt_key == "infill_acceleration" && value == "50")) {
|
||||
/* For historical reasons, the world's full of configs having these very low values;
|
||||
|
@ -2167,6 +2293,12 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
} else if (opt_key == "support_material_pattern" && value == "pillars") {
|
||||
// Slic3r PE does not support the pillars. They never worked well.
|
||||
value = "rectilinear";
|
||||
} else if (opt_key == "octoprint_host") {
|
||||
opt_key = "print_host";
|
||||
} else if (opt_key == "octoprint_cafile") {
|
||||
opt_key = "printhost_cafile";
|
||||
} else if (opt_key == "octoprint_apikey") {
|
||||
opt_key = "printhost_apikey";
|
||||
}
|
||||
|
||||
// Ignore the following obsolete configuration keys:
|
||||
|
@ -2176,9 +2308,6 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
"standby_temperature", "scale", "rotate", "duplicate", "duplicate_grid",
|
||||
"start_perimeters_at_concave_points", "start_perimeters_at_non_overhang", "randomize_start",
|
||||
"seal_position", "vibration_limit", "bed_size",
|
||||
// Maybe one day we will rename octoprint_host to print_host as it has been done in the upstream Slic3r.
|
||||
// Commenting this out fixes github issue #869 for now.
|
||||
// "octoprint_host",
|
||||
"print_center", "g0", "threads", "pressure_advance", "wipe_tower_per_color_wipe"
|
||||
};
|
||||
|
||||
|
@ -2188,7 +2317,6 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
}
|
||||
|
||||
if (! print_config_def.has(opt_key)) {
|
||||
//printf("Unknown option %s\n", opt_key.c_str());
|
||||
opt_key = "";
|
||||
return;
|
||||
}
|
||||
|
@ -2446,4 +2574,8 @@ StaticPrintConfig::StaticCache<class Slic3r::PrintConfig> PrintConfig::s_c
|
|||
StaticPrintConfig::StaticCache<class Slic3r::HostConfig> HostConfig::s_cache_HostConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::FullPrintConfig> FullPrintConfig::s_cache_FullPrintConfig;
|
||||
|
||||
StaticPrintConfig::StaticCache<class Slic3r::SLAMaterialConfig> SLAMaterialConfig::s_cache_SLAMaterialConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::SLAPrinterConfig> SLAPrinterConfig::s_cache_SLAPrinterConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::SLAFullPrintConfig> SLAFullPrintConfig::s_cache_SLAFullPrintConfig;
|
||||
|
||||
}
|
||||
|
|
|
@ -22,11 +22,23 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
enum PrinterTechnology
|
||||
{
|
||||
// Fused Filament Fabrication
|
||||
ptFFF,
|
||||
// Stereolitography
|
||||
ptSLA,
|
||||
};
|
||||
|
||||
enum GCodeFlavor {
|
||||
gcfRepRap, gcfRepetier, gcfTeacup, gcfMakerWare, gcfMarlin, gcfSailfish, gcfMach3, gcfMachinekit,
|
||||
gcfSmoothie, gcfNoExtrusion,
|
||||
};
|
||||
|
||||
enum PrintHostType {
|
||||
htOctoPrint, htDuet,
|
||||
};
|
||||
|
||||
enum InfillPattern {
|
||||
ipRectilinear, ipGrid, ipTriangles, ipStars, ipCubic, ipLine, ipConcentric, ipHoneycomb, ip3DHoneycomb,
|
||||
ipGyroid, ipHilbertCurve, ipArchimedeanChords, ipOctagramSpiral,
|
||||
|
@ -44,7 +56,16 @@ enum FilamentType {
|
|||
ftPLA, ftABS, ftPET, ftHIPS, ftFLEX, ftSCAFF, ftEDGE, ftNGEN, ftPVA
|
||||
};
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<GCodeFlavor>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<PrinterTechnology>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["FFF"] = ptFFF;
|
||||
keys_map["SLA"] = ptSLA;
|
||||
}
|
||||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<GCodeFlavor>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["reprap"] = gcfRepRap;
|
||||
|
@ -61,7 +82,16 @@ template<> inline t_config_enum_values& ConfigOptionEnum<GCodeFlavor>::get_enum_
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<InfillPattern>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<PrintHostType>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["octoprint"] = htOctoPrint;
|
||||
keys_map["duet"] = htDuet;
|
||||
}
|
||||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<InfillPattern>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["rectilinear"] = ipRectilinear;
|
||||
|
@ -81,7 +111,7 @@ template<> inline t_config_enum_values& ConfigOptionEnum<InfillPattern>::get_enu
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<SupportMaterialPattern>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<SupportMaterialPattern>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["rectilinear"] = smpRectilinear;
|
||||
|
@ -91,7 +121,7 @@ template<> inline t_config_enum_values& ConfigOptionEnum<SupportMaterialPattern>
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<SeamPosition>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<SeamPosition>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["random"] = spRandom;
|
||||
|
@ -102,7 +132,7 @@ template<> inline t_config_enum_values& ConfigOptionEnum<SeamPosition>::get_enum
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<FilamentType>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<FilamentType>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["PLA"] = ftPLA;
|
||||
|
@ -126,6 +156,11 @@ public:
|
|||
PrintConfigDef();
|
||||
|
||||
static void handle_legacy(t_config_option_key &opt_key, std::string &value);
|
||||
|
||||
private:
|
||||
void init_common_params();
|
||||
void init_fff_params();
|
||||
void init_sla_params();
|
||||
};
|
||||
|
||||
// The one and only global definition of SLic3r configuration options.
|
||||
|
@ -801,18 +836,20 @@ class HostConfig : public StaticPrintConfig
|
|||
{
|
||||
STATIC_PRINT_CONFIG_CACHE(HostConfig)
|
||||
public:
|
||||
ConfigOptionString octoprint_host;
|
||||
ConfigOptionString octoprint_apikey;
|
||||
ConfigOptionString octoprint_cafile;
|
||||
ConfigOptionEnum<PrintHostType> host_type;
|
||||
ConfigOptionString print_host;
|
||||
ConfigOptionString printhost_apikey;
|
||||
ConfigOptionString printhost_cafile;
|
||||
ConfigOptionString serial_port;
|
||||
ConfigOptionInt serial_speed;
|
||||
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
OPT_PTR(octoprint_host);
|
||||
OPT_PTR(octoprint_apikey);
|
||||
OPT_PTR(octoprint_cafile);
|
||||
OPT_PTR(host_type);
|
||||
OPT_PTR(print_host);
|
||||
OPT_PTR(printhost_apikey);
|
||||
OPT_PTR(printhost_cafile);
|
||||
OPT_PTR(serial_port);
|
||||
OPT_PTR(serial_speed);
|
||||
}
|
||||
|
@ -844,6 +881,73 @@ protected:
|
|||
}
|
||||
};
|
||||
|
||||
class SLAMaterialConfig : public StaticPrintConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE(SLAMaterialConfig)
|
||||
public:
|
||||
ConfigOptionFloat layer_height;
|
||||
ConfigOptionFloat initial_layer_height;
|
||||
ConfigOptionFloat exposure_time;
|
||||
ConfigOptionFloat initial_exposure_time;
|
||||
ConfigOptionFloats material_correction_printing;
|
||||
ConfigOptionFloats material_correction_curing;
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
OPT_PTR(layer_height);
|
||||
OPT_PTR(initial_layer_height);
|
||||
OPT_PTR(exposure_time);
|
||||
OPT_PTR(initial_exposure_time);
|
||||
OPT_PTR(material_correction_printing);
|
||||
OPT_PTR(material_correction_curing);
|
||||
}
|
||||
};
|
||||
|
||||
class SLAPrinterConfig : public StaticPrintConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE(SLAPrinterConfig)
|
||||
public:
|
||||
ConfigOptionEnum<PrinterTechnology> printer_technology;
|
||||
ConfigOptionPoints bed_shape;
|
||||
ConfigOptionFloat max_print_height;
|
||||
ConfigOptionFloat display_width;
|
||||
ConfigOptionFloat display_height;
|
||||
ConfigOptionInt display_pixels_x;
|
||||
ConfigOptionInt display_pixels_y;
|
||||
ConfigOptionFloats printer_correction;
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
OPT_PTR(printer_technology);
|
||||
OPT_PTR(bed_shape);
|
||||
OPT_PTR(max_print_height);
|
||||
OPT_PTR(display_width);
|
||||
OPT_PTR(display_height);
|
||||
OPT_PTR(display_pixels_x);
|
||||
OPT_PTR(display_pixels_y);
|
||||
OPT_PTR(printer_correction);
|
||||
}
|
||||
};
|
||||
|
||||
class SLAFullPrintConfig : public SLAPrinterConfig, public SLAMaterialConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE_DERIVED(SLAFullPrintConfig)
|
||||
SLAFullPrintConfig() : SLAPrinterConfig(0), SLAMaterialConfig(0) { initialize_cache(); *this = s_cache_SLAFullPrintConfig.defaults(); }
|
||||
|
||||
public:
|
||||
// Validate the SLAFullPrintConfig. Returns an empty string on success, otherwise an error message is returned.
|
||||
// std::string validate();
|
||||
|
||||
protected:
|
||||
// Protected constructor to be called to initialize ConfigCache::m_default.
|
||||
SLAFullPrintConfig(int) : SLAPrinterConfig(0), SLAMaterialConfig(0) {}
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
this->SLAPrinterConfig ::initialize(cache, base_ptr);
|
||||
this->SLAMaterialConfig::initialize(cache, base_ptr);
|
||||
}
|
||||
};
|
||||
|
||||
#undef STATIC_PRINT_CONFIG_CACHE
|
||||
#undef STATIC_PRINT_CONFIG_CACHE_BASE
|
||||
#undef STATIC_PRINT_CONFIG_CACHE_DERIVED
|
||||
|
|
|
@ -38,6 +38,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
|||
typed_slices(false),
|
||||
_print(print),
|
||||
_model_object(model_object),
|
||||
size(Vec3crd::Zero()),
|
||||
layer_height_profile_valid(false)
|
||||
{
|
||||
// Compute the translation to be applied to our meshes so that we work with smaller coordinates
|
||||
|
@ -50,8 +51,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
|||
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
|
||||
this->_copies_shift = Point::new_scale(modobj_bbox.min(0), modobj_bbox.min(1));
|
||||
// Scale the object size and store it
|
||||
Pointf3 size = modobj_bbox.size();
|
||||
this->size = Point3::new_scale(size(0), size(1), size(2));
|
||||
this->size = (modobj_bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
|
||||
}
|
||||
|
||||
this->reload_model_instances();
|
||||
|
@ -59,7 +59,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
|||
this->layer_height_profile = model_object->layer_height_profile;
|
||||
}
|
||||
|
||||
bool PrintObject::add_copy(const Pointf &point)
|
||||
bool PrintObject::add_copy(const Vec2d &point)
|
||||
{
|
||||
Points points = this->_copies;
|
||||
points.push_back(Point::new_scale(point(0), point(1)));
|
||||
|
@ -1121,7 +1121,7 @@ SlicingParameters PrintObject::slicing_parameters() const
|
|||
{
|
||||
return SlicingParameters::create_from_config(
|
||||
this->print()->config, this->config,
|
||||
unscale(this->size(2)), this->print()->object_extruders());
|
||||
unscale<double>(this->size(2)), this->print()->object_extruders());
|
||||
}
|
||||
|
||||
bool PrintObject::update_layer_height_profile(std::vector<coordf_t> &layer_height_profile) const
|
||||
|
@ -1335,7 +1335,7 @@ std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::
|
|||
// consider the first one
|
||||
this->model_object()->instances.front()->transform_mesh(&mesh, true);
|
||||
// align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
|
||||
mesh.translate(- float(unscale(this->_copies_shift(0))), - float(unscale(this->_copies_shift(1))), -float(this->model_object()->bounding_box().min(2)));
|
||||
mesh.translate(- unscale<float>(this->_copies_shift(0)), - unscale<float>(this->_copies_shift(1)), - float(this->model_object()->bounding_box().min(2)));
|
||||
// perform actual slicing
|
||||
TriangleMeshSlicer mslicer(&mesh);
|
||||
mslicer.slice(z, &layers);
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
#include <boost/nowide/cstdio.hpp>
|
||||
|
||||
#define COORD(x) ((float)unscale((x))*10)
|
||||
#define COORD(x) (unscale<float>((x))*10)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
|
@ -58,8 +58,8 @@ SVG::draw(const Line &line, std::string stroke, coordf_t stroke_width)
|
|||
|
||||
void SVG::draw(const ThickLine &line, const std::string &fill, const std::string &stroke, coordf_t stroke_width)
|
||||
{
|
||||
Pointf dir(line.b(0)-line.a(0), line.b(1)-line.a(1));
|
||||
Pointf perp(-dir(1), dir(0));
|
||||
Vec2d dir(line.b(0)-line.a(0), line.b(1)-line.a(1));
|
||||
Vec2d perp(-dir(1), dir(0));
|
||||
coordf_t len = sqrt(perp(0)*perp(0) + perp(1)*perp(1));
|
||||
coordf_t da = coordf_t(0.5)*line.a_width/len;
|
||||
coordf_t db = coordf_t(0.5)*line.b_width/len;
|
||||
|
|
|
@ -561,15 +561,15 @@ int generate_layer_height_texture(
|
|||
void *data, int rows, int cols, bool level_of_detail_2nd_level)
|
||||
{
|
||||
// https://github.com/aschn/gnuplot-colorbrewer
|
||||
std::vector<Point3> palette_raw;
|
||||
palette_raw.push_back(Point3(0x01A, 0x098, 0x050));
|
||||
palette_raw.push_back(Point3(0x066, 0x0BD, 0x063));
|
||||
palette_raw.push_back(Point3(0x0A6, 0x0D9, 0x06A));
|
||||
palette_raw.push_back(Point3(0x0D9, 0x0F1, 0x0EB));
|
||||
palette_raw.push_back(Point3(0x0FE, 0x0E6, 0x0EB));
|
||||
palette_raw.push_back(Point3(0x0FD, 0x0AE, 0x061));
|
||||
palette_raw.push_back(Point3(0x0F4, 0x06D, 0x043));
|
||||
palette_raw.push_back(Point3(0x0D7, 0x030, 0x027));
|
||||
std::vector<Vec3crd> palette_raw;
|
||||
palette_raw.push_back(Vec3crd(0x01A, 0x098, 0x050));
|
||||
palette_raw.push_back(Vec3crd(0x066, 0x0BD, 0x063));
|
||||
palette_raw.push_back(Vec3crd(0x0A6, 0x0D9, 0x06A));
|
||||
palette_raw.push_back(Vec3crd(0x0D9, 0x0F1, 0x0EB));
|
||||
palette_raw.push_back(Vec3crd(0x0FE, 0x0E6, 0x0EB));
|
||||
palette_raw.push_back(Vec3crd(0x0FD, 0x0AE, 0x061));
|
||||
palette_raw.push_back(Vec3crd(0x0F4, 0x06D, 0x043));
|
||||
palette_raw.push_back(Vec3crd(0x0D7, 0x030, 0x027));
|
||||
|
||||
// Clear the main texture and the 2nd LOD level.
|
||||
// memset(data, 0, rows * cols * (level_of_detail_2nd_level ? 5 : 4));
|
||||
|
@ -600,14 +600,14 @@ int generate_layer_height_texture(
|
|||
int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
|
||||
int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
|
||||
coordf_t t = idxf - coordf_t(idx1);
|
||||
const Point3 &color1 = palette_raw[idx1];
|
||||
const Point3 &color2 = palette_raw[idx2];
|
||||
const Vec3crd &color1 = palette_raw[idx1];
|
||||
const Vec3crd &color2 = palette_raw[idx2];
|
||||
coordf_t z = cell_to_z * coordf_t(cell);
|
||||
assert(z >= lo && z <= hi);
|
||||
// Intensity profile to visualize the layers.
|
||||
coordf_t intensity = cos(M_PI * 0.7 * (mid - z) / h);
|
||||
// Color mapping from layer height to RGB.
|
||||
Pointf3 color(
|
||||
Vec3d color(
|
||||
intensity * lerp(coordf_t(color1(0)), coordf_t(color2(0)), t),
|
||||
intensity * lerp(coordf_t(color1(1)), coordf_t(color2(1)), t),
|
||||
intensity * lerp(coordf_t(color1(2)), coordf_t(color2(2)), t));
|
||||
|
@ -636,10 +636,10 @@ int generate_layer_height_texture(
|
|||
int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
|
||||
int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
|
||||
coordf_t t = idxf - coordf_t(idx1);
|
||||
const Point3 &color1 = palette_raw[idx1];
|
||||
const Point3 &color2 = palette_raw[idx2];
|
||||
const Vec3crd &color1 = palette_raw[idx1];
|
||||
const Vec3crd &color2 = palette_raw[idx2];
|
||||
// Color mapping from layer height to RGB.
|
||||
Pointf3 color(
|
||||
Vec3d color(
|
||||
lerp(coordf_t(color1(0)), coordf_t(color2(0)), t),
|
||||
lerp(coordf_t(color1(1)), coordf_t(color2(1)), t),
|
||||
lerp(coordf_t(color1(2)), coordf_t(color2(2)), t));
|
||||
|
|
|
@ -15,8 +15,8 @@ void SlicingAdaptive::clear()
|
|||
std::pair<float, float> face_z_span(const stl_facet *f)
|
||||
{
|
||||
return std::pair<float, float>(
|
||||
std::min(std::min(f->vertex[0].z, f->vertex[1].z), f->vertex[2].z),
|
||||
std::max(std::max(f->vertex[0].z, f->vertex[1].z), f->vertex[2].z));
|
||||
std::min(std::min(f->vertex[0](2), f->vertex[1](2)), f->vertex[2](2)),
|
||||
std::max(std::max(f->vertex[0](2), f->vertex[1](2)), f->vertex[2](2)));
|
||||
}
|
||||
|
||||
void SlicingAdaptive::prepare()
|
||||
|
@ -40,7 +40,7 @@ void SlicingAdaptive::prepare()
|
|||
// 3) Generate Z components of the facet normals.
|
||||
m_face_normal_z.assign(m_faces.size(), 0.f);
|
||||
for (size_t iface = 0; iface < m_faces.size(); ++ iface)
|
||||
m_face_normal_z[iface] = m_faces[iface]->normal.z;
|
||||
m_face_normal_z[iface] = m_faces[iface]->normal(2);
|
||||
}
|
||||
|
||||
float SlicingAdaptive::cusp_height(float z, float cusp_value, int ¤t_facet)
|
||||
|
|
|
@ -2057,8 +2057,8 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const
|
|||
const Point &p1 = *(it-1);
|
||||
const Point &p2 = *it;
|
||||
// Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
|
||||
const Pointf v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
|
||||
const Pointf v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
|
||||
const Vec2d v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
|
||||
const Vec2d v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
|
||||
coordf_t a = v_seg.squaredNorm();
|
||||
coordf_t b = 2. * v_seg.dot(v_cntr);
|
||||
coordf_t c = v_cntr.squaredNorm() - circle_distance * circle_distance;
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
#include "TriangleMesh.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "qhull/src/libqhullcpp/Qhull.h"
|
||||
#include "qhull/src/libqhullcpp/QhullFacetList.h"
|
||||
#include "qhull/src/libqhullcpp/QhullVertexSet.h"
|
||||
#include <cmath>
|
||||
#include <deque>
|
||||
#include <queue>
|
||||
|
@ -15,6 +18,8 @@
|
|||
|
||||
#include <tbb/parallel_for.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
|
||||
#if 0
|
||||
#define DEBUG
|
||||
#define _DEBUG
|
||||
|
@ -30,13 +35,7 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
TriangleMesh::TriangleMesh()
|
||||
: repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
}
|
||||
|
||||
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Point3>& facets )
|
||||
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& facets )
|
||||
: repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
|
@ -51,51 +50,22 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Point3>& fa
|
|||
|
||||
for (int i = 0; i < stl.stats.number_of_facets; i++) {
|
||||
stl_facet facet;
|
||||
|
||||
const Pointf3& ref_f1 = points[facets[i](0)];
|
||||
facet.vertex[0].x = ref_f1(0);
|
||||
facet.vertex[0].y = ref_f1(1);
|
||||
facet.vertex[0].z = ref_f1(2);
|
||||
|
||||
const Pointf3& ref_f2 = points[facets[i](1)];
|
||||
facet.vertex[1].x = ref_f2(0);
|
||||
facet.vertex[1].y = ref_f2(1);
|
||||
facet.vertex[1].z = ref_f2(2);
|
||||
|
||||
const Pointf3& ref_f3 = points[facets[i](2)];
|
||||
facet.vertex[2].x = ref_f3(0);
|
||||
facet.vertex[2].y = ref_f3(1);
|
||||
facet.vertex[2].z = ref_f3(2);
|
||||
|
||||
facet.vertex[0] = points[facets[i](0)].cast<float>();
|
||||
facet.vertex[1] = points[facets[i](1)].cast<float>();
|
||||
facet.vertex[2] = points[facets[i](2)].cast<float>();
|
||||
facet.extra[0] = 0;
|
||||
facet.extra[1] = 0;
|
||||
|
||||
float normal[3];
|
||||
stl_normal normal;
|
||||
stl_calculate_normal(normal, &facet);
|
||||
stl_normalize_vector(normal);
|
||||
facet.normal.x = normal[0];
|
||||
facet.normal.y = normal[1];
|
||||
facet.normal.z = normal[2];
|
||||
facet.normal = normal;
|
||||
|
||||
stl.facet_start[i] = facet;
|
||||
}
|
||||
stl_get_size(&stl);
|
||||
}
|
||||
|
||||
TriangleMesh::TriangleMesh(const TriangleMesh &other) :
|
||||
repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
*this = other;
|
||||
}
|
||||
|
||||
TriangleMesh::TriangleMesh(TriangleMesh &&other) :
|
||||
repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
this->swap(other);
|
||||
}
|
||||
|
||||
TriangleMesh& TriangleMesh::operator=(const TriangleMesh &other)
|
||||
{
|
||||
stl_close(&this->stl);
|
||||
|
@ -123,42 +93,8 @@ TriangleMesh& TriangleMesh::operator=(const TriangleMesh &other)
|
|||
return *this;
|
||||
}
|
||||
|
||||
TriangleMesh& TriangleMesh::operator=(TriangleMesh &&other)
|
||||
void TriangleMesh::repair()
|
||||
{
|
||||
this->swap(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::swap(TriangleMesh &other)
|
||||
{
|
||||
std::swap(this->stl, other.stl);
|
||||
std::swap(this->repaired, other.repaired);
|
||||
}
|
||||
|
||||
TriangleMesh::~TriangleMesh() {
|
||||
stl_close(&this->stl);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::ReadSTLFile(const char* input_file) {
|
||||
stl_open(&stl, input_file);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::write_ascii(const char* output_file)
|
||||
{
|
||||
stl_write_ascii(&this->stl, output_file, "");
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::write_binary(const char* output_file)
|
||||
{
|
||||
stl_write_binary(&this->stl, output_file, "");
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::repair() {
|
||||
if (this->repaired) return;
|
||||
|
||||
// admesh fails when repairing empty meshes
|
||||
|
@ -255,13 +191,7 @@ void TriangleMesh::check_topology()
|
|||
}
|
||||
}
|
||||
|
||||
bool TriangleMesh::is_manifold() const
|
||||
{
|
||||
return this->stl.stats.connected_facets_3_edge == this->stl.stats.number_of_facets;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::reset_repair_stats() {
|
||||
void TriangleMesh::reset_repair_stats() {
|
||||
this->stl.stats.degenerate_facets = 0;
|
||||
this->stl.stats.edges_fixed = 0;
|
||||
this->stl.stats.facets_removed = 0;
|
||||
|
@ -271,8 +201,7 @@ TriangleMesh::reset_repair_stats() {
|
|||
this->stl.stats.normals_fixed = 0;
|
||||
}
|
||||
|
||||
bool
|
||||
TriangleMesh::needed_repair() const
|
||||
bool TriangleMesh::needed_repair() const
|
||||
{
|
||||
return this->stl.stats.degenerate_facets > 0
|
||||
|| this->stl.stats.edges_fixed > 0
|
||||
|
@ -282,14 +211,8 @@ TriangleMesh::needed_repair() const
|
|||
|| this->stl.stats.backwards_edges > 0;
|
||||
}
|
||||
|
||||
size_t
|
||||
TriangleMesh::facets_count() const
|
||||
void TriangleMesh::WriteOBJFile(char* output_file)
|
||||
{
|
||||
return this->stl.stats.number_of_facets;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::WriteOBJFile(char* output_file) {
|
||||
stl_generate_shared_vertices(&stl);
|
||||
stl_write_obj(&stl, output_file);
|
||||
}
|
||||
|
@ -300,13 +223,9 @@ void TriangleMesh::scale(float factor)
|
|||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
void TriangleMesh::scale(const Pointf3 &versor)
|
||||
void TriangleMesh::scale(const Vec3d &versor)
|
||||
{
|
||||
float fversor[3];
|
||||
fversor[0] = versor(0);
|
||||
fversor[1] = versor(1);
|
||||
fversor[2] = versor(2);
|
||||
stl_scale_versor(&this->stl, fversor);
|
||||
stl_scale_versor(&this->stl, versor.cast<float>());
|
||||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
|
@ -336,21 +255,6 @@ void TriangleMesh::rotate(float angle, const Axis &axis)
|
|||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate_x(float angle)
|
||||
{
|
||||
this->rotate(angle, X);
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate_y(float angle)
|
||||
{
|
||||
this->rotate(angle, Y);
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate_z(float angle)
|
||||
{
|
||||
this->rotate(angle, Z);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror(const Axis &axis)
|
||||
{
|
||||
if (axis == X) {
|
||||
|
@ -363,21 +267,6 @@ void TriangleMesh::mirror(const Axis &axis)
|
|||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror_x()
|
||||
{
|
||||
this->mirror(X);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror_y()
|
||||
{
|
||||
this->mirror(Y);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror_z()
|
||||
{
|
||||
this->mirror(Z);
|
||||
}
|
||||
|
||||
void TriangleMesh::transform(const float* matrix3x4)
|
||||
{
|
||||
if (matrix3x4 == nullptr)
|
||||
|
@ -390,10 +279,9 @@ void TriangleMesh::transform(const float* matrix3x4)
|
|||
void TriangleMesh::align_to_origin()
|
||||
{
|
||||
this->translate(
|
||||
-(this->stl.stats.min.x),
|
||||
-(this->stl.stats.min.y),
|
||||
-(this->stl.stats.min.z)
|
||||
);
|
||||
- this->stl.stats.min(0),
|
||||
- this->stl.stats.min(1),
|
||||
- this->stl.stats.min(2));
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate(double angle, Point* center)
|
||||
|
@ -476,14 +364,14 @@ size_t TriangleMesh::number_of_patches() const
|
|||
return num_bodies;
|
||||
}
|
||||
|
||||
TriangleMeshPtrs
|
||||
TriangleMesh::split() const
|
||||
TriangleMeshPtrs TriangleMesh::split() const
|
||||
{
|
||||
TriangleMeshPtrs meshes;
|
||||
std::set<int> seen_facets;
|
||||
TriangleMeshPtrs meshes;
|
||||
std::vector<unsigned char> facet_visited(this->stl.stats.number_of_facets, false);
|
||||
|
||||
// we need neighbors
|
||||
if (!this->repaired) CONFESS("split() requires repair()");
|
||||
if (!this->repaired)
|
||||
CONFESS("split() requires repair()");
|
||||
|
||||
// loop while we have remaining facets
|
||||
for (;;) {
|
||||
|
@ -491,25 +379,26 @@ TriangleMesh::split() const
|
|||
std::queue<int> facet_queue;
|
||||
std::deque<int> facets;
|
||||
for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) {
|
||||
if (seen_facets.find(facet_idx) == seen_facets.end()) {
|
||||
if (! facet_visited[facet_idx]) {
|
||||
// if facet was not seen put it into queue and start searching
|
||||
facet_queue.push(facet_idx);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (facet_queue.empty()) break;
|
||||
|
||||
while (!facet_queue.empty()) {
|
||||
if (facet_queue.empty())
|
||||
break;
|
||||
|
||||
while (! facet_queue.empty()) {
|
||||
int facet_idx = facet_queue.front();
|
||||
facet_queue.pop();
|
||||
if (seen_facets.find(facet_idx) != seen_facets.end()) continue;
|
||||
facets.emplace_back(facet_idx);
|
||||
for (int j = 0; j <= 2; j++) {
|
||||
facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]);
|
||||
if (! facet_visited[facet_idx]) {
|
||||
facets.emplace_back(facet_idx);
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]);
|
||||
facet_visited[facet_idx] = true;
|
||||
}
|
||||
seen_facets.insert(facet_idx);
|
||||
}
|
||||
|
||||
|
||||
TriangleMesh* mesh = new TriangleMesh;
|
||||
meshes.emplace_back(mesh);
|
||||
mesh->stl.stats.type = inmemory;
|
||||
|
@ -518,19 +407,17 @@ TriangleMesh::split() const
|
|||
stl_clear_error(&mesh->stl);
|
||||
stl_allocate(&mesh->stl);
|
||||
|
||||
int first = 1;
|
||||
for (std::deque<int>::const_iterator facet = facets.begin(); facet != facets.end(); ++facet) {
|
||||
bool first = true;
|
||||
for (std::deque<int>::const_iterator facet = facets.begin(); facet != facets.end(); ++ facet) {
|
||||
mesh->stl.facet_start[facet - facets.begin()] = this->stl.facet_start[*facet];
|
||||
stl_facet_stats(&mesh->stl, this->stl.facet_start[*facet], first);
|
||||
first = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return meshes;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::merge(const TriangleMesh &mesh)
|
||||
void TriangleMesh::merge(const TriangleMesh &mesh)
|
||||
{
|
||||
// reset stats and metadata
|
||||
int number_of_facets = this->stl.stats.number_of_facets;
|
||||
|
@ -561,9 +448,9 @@ ExPolygons TriangleMesh::horizontal_projection() const
|
|||
stl_facet* facet = &this->stl.facet_start[i];
|
||||
Polygon p;
|
||||
p.points.resize(3);
|
||||
p.points[0] = Point::new_scale(facet->vertex[0].x, facet->vertex[0].y);
|
||||
p.points[1] = Point::new_scale(facet->vertex[1].x, facet->vertex[1].y);
|
||||
p.points[2] = Point::new_scale(facet->vertex[2].x, facet->vertex[2].y);
|
||||
p.points[0] = Point::new_scale(facet->vertex[0](0), facet->vertex[0](1));
|
||||
p.points[1] = Point::new_scale(facet->vertex[1](0), facet->vertex[1](1));
|
||||
p.points[2] = Point::new_scale(facet->vertex[2](0), facet->vertex[2](1));
|
||||
p.make_counter_clockwise(); // do this after scaling, as winding order might change while doing that
|
||||
pp.emplace_back(p);
|
||||
}
|
||||
|
@ -578,28 +465,142 @@ Polygon TriangleMesh::convex_hull()
|
|||
Points pp;
|
||||
pp.reserve(this->stl.stats.shared_vertices);
|
||||
for (int i = 0; i < this->stl.stats.shared_vertices; ++ i) {
|
||||
stl_vertex* v = &this->stl.v_shared[i];
|
||||
pp.emplace_back(Point::new_scale(v->x, v->y));
|
||||
const stl_vertex &v = this->stl.v_shared[i];
|
||||
pp.emplace_back(Point::new_scale(v(0), v(1)));
|
||||
}
|
||||
return Slic3r::Geometry::convex_hull(pp);
|
||||
}
|
||||
|
||||
BoundingBoxf3
|
||||
TriangleMesh::bounding_box() const
|
||||
BoundingBoxf3 TriangleMesh::bounding_box() const
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
bb.defined = true;
|
||||
bb.min(0) = this->stl.stats.min.x;
|
||||
bb.min(1) = this->stl.stats.min.y;
|
||||
bb.min(2) = this->stl.stats.min.z;
|
||||
bb.max(0) = this->stl.stats.max.x;
|
||||
bb.max(1) = this->stl.stats.max.y;
|
||||
bb.max(2) = this->stl.stats.max.z;
|
||||
bb.min = this->stl.stats.min.cast<double>();
|
||||
bb.max = this->stl.stats.max.cast<double>();
|
||||
return bb;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::require_shared_vertices()
|
||||
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d& t) const
|
||||
{
|
||||
bool has_shared = (stl.v_shared != nullptr);
|
||||
if (!has_shared)
|
||||
stl_generate_shared_vertices(&stl);
|
||||
|
||||
unsigned int vertices_count = (stl.stats.shared_vertices > 0) ? (unsigned int)stl.stats.shared_vertices : 3 * (unsigned int)stl.stats.number_of_facets;
|
||||
|
||||
if (vertices_count == 0)
|
||||
return BoundingBoxf3();
|
||||
|
||||
Eigen::MatrixXd src_vertices(3, vertices_count);
|
||||
|
||||
if (stl.stats.shared_vertices > 0)
|
||||
{
|
||||
stl_vertex* vertex_ptr = stl.v_shared;
|
||||
for (int i = 0; i < stl.stats.shared_vertices; ++i)
|
||||
{
|
||||
src_vertices(0, i) = (double)(*vertex_ptr)(0);
|
||||
src_vertices(1, i) = (double)(*vertex_ptr)(1);
|
||||
src_vertices(2, i) = (double)(*vertex_ptr)(2);
|
||||
vertex_ptr += 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
stl_facet* facet_ptr = stl.facet_start;
|
||||
unsigned int v_id = 0;
|
||||
while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
src_vertices(0, v_id) = (double)facet_ptr->vertex[i](0);
|
||||
src_vertices(1, v_id) = (double)facet_ptr->vertex[i](1);
|
||||
src_vertices(2, v_id) = (double)facet_ptr->vertex[i](2);
|
||||
}
|
||||
facet_ptr += 1;
|
||||
++v_id;
|
||||
}
|
||||
}
|
||||
|
||||
if (!has_shared && (stl.stats.shared_vertices > 0))
|
||||
stl_invalidate_shared_vertices(&stl);
|
||||
|
||||
Eigen::MatrixXd dst_vertices(3, vertices_count);
|
||||
dst_vertices = t * src_vertices.colwise().homogeneous();
|
||||
|
||||
Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
|
||||
Vec3d v_max = v_min;
|
||||
|
||||
for (int i = 1; i < vertices_count; ++i)
|
||||
{
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
v_min(j) = std::min(v_min(j), dst_vertices(j, i));
|
||||
v_max(j) = std::max(v_max(j), dst_vertices(j, i));
|
||||
}
|
||||
}
|
||||
|
||||
return BoundingBoxf3(v_min, v_max);
|
||||
}
|
||||
|
||||
TriangleMesh TriangleMesh::convex_hull_3d() const
|
||||
{
|
||||
// Helper struct for qhull:
|
||||
struct PointForQHull{
|
||||
PointForQHull(float x_p, float y_p, float z_p) : x((realT)x_p), y((realT)y_p), z((realT)z_p) {}
|
||||
realT x, y, z;
|
||||
};
|
||||
std::vector<PointForQHull> src_vertices;
|
||||
|
||||
// We will now fill the vector with input points for computation:
|
||||
stl_facet* facet_ptr = stl.facet_start;
|
||||
while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
const stl_vertex& v = facet_ptr->vertex[i];
|
||||
src_vertices.emplace_back(v(0), v(1), v(2));
|
||||
}
|
||||
|
||||
facet_ptr += 1;
|
||||
}
|
||||
|
||||
// The qhull call:
|
||||
orgQhull::Qhull qhull;
|
||||
qhull.disableOutputStream(); // we want qhull to be quiet
|
||||
try
|
||||
{
|
||||
qhull.runQhull("", 3, (int)src_vertices.size(), (const realT*)(src_vertices.data()), "Qt");
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
std::cout << "Unable to create convex hull" << std::endl;
|
||||
return TriangleMesh();
|
||||
}
|
||||
|
||||
// Let's collect results:
|
||||
Pointf3s dst_vertices;
|
||||
std::vector<Vec3crd> facets;
|
||||
auto facet_list = qhull.facetList().toStdVector();
|
||||
for (const orgQhull::QhullFacet& facet : facet_list)
|
||||
{ // iterate through facets
|
||||
orgQhull::QhullVertexSet vertices = facet.vertices();
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{ // iterate through facet's vertices
|
||||
|
||||
orgQhull::QhullPoint p = vertices[i].point();
|
||||
const float* coords = p.coordinates();
|
||||
dst_vertices.emplace_back(coords[0], coords[1], coords[2]);
|
||||
}
|
||||
unsigned int size = (unsigned int)dst_vertices.size();
|
||||
facets.emplace_back(size - 3, size - 2, size - 1);
|
||||
}
|
||||
|
||||
TriangleMesh output_mesh(dst_vertices, facets);
|
||||
output_mesh.repair();
|
||||
return output_mesh;
|
||||
}
|
||||
|
||||
void TriangleMesh::require_shared_vertices()
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - start";
|
||||
if (!this->repaired)
|
||||
|
@ -619,11 +620,8 @@ TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) :
|
|||
facets_edges.assign(_mesh->stl.stats.number_of_facets * 3, -1);
|
||||
v_scaled_shared.assign(_mesh->stl.v_shared, _mesh->stl.v_shared + _mesh->stl.stats.shared_vertices);
|
||||
// Scale the copied vertices.
|
||||
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i) {
|
||||
this->v_scaled_shared[i].x /= float(SCALING_FACTOR);
|
||||
this->v_scaled_shared[i].y /= float(SCALING_FACTOR);
|
||||
this->v_scaled_shared[i].z /= float(SCALING_FACTOR);
|
||||
}
|
||||
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i)
|
||||
this->v_scaled_shared[i] *= float(1. / SCALING_FACTOR);
|
||||
|
||||
// Create a mapping from triangle edge into face.
|
||||
struct EdgeToFace {
|
||||
|
@ -697,8 +695,7 @@ TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) :
|
|||
}
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
|
||||
void TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice";
|
||||
|
||||
|
@ -779,14 +776,14 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
|
|||
const stl_facet &facet = this->mesh->stl.facet_start[facet_idx];
|
||||
|
||||
// find facet extents
|
||||
const float min_z = fminf(facet.vertex[0].z, fminf(facet.vertex[1].z, facet.vertex[2].z));
|
||||
const float max_z = fmaxf(facet.vertex[0].z, fmaxf(facet.vertex[1].z, facet.vertex[2].z));
|
||||
const float min_z = fminf(facet.vertex[0](2), fminf(facet.vertex[1](2), facet.vertex[2](2)));
|
||||
const float max_z = fmaxf(facet.vertex[0](2), fmaxf(facet.vertex[1](2), facet.vertex[2](2)));
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", facet_idx,
|
||||
facet.vertex[0].x, facet.vertex[0].y, facet.vertex[0].z,
|
||||
facet.vertex[1].x, facet.vertex[1].y, facet.vertex[1].z,
|
||||
facet.vertex[2].x, facet.vertex[2].y, facet.vertex[2].z);
|
||||
facet.vertex[0].x, facet.vertex[0].y, facet.vertex[0](2),
|
||||
facet.vertex[1].x, facet.vertex[1].y, facet.vertex[1](2),
|
||||
facet.vertex[2].x, facet.vertex[2].y, facet.vertex[2](2));
|
||||
printf("z: min = %.2f, max = %.2f\n", min_z, max_z);
|
||||
#endif
|
||||
|
||||
|
@ -806,18 +803,18 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
|
|||
if (il.edge_type == feHorizontal) {
|
||||
// Insert all three edges of the face.
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal.z < 0;
|
||||
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal(2) < 0;
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
if (reverse)
|
||||
std::swap(a_id, b_id);
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
il.a(0) = a->x;
|
||||
il.a(1) = a->y;
|
||||
il.b(0) = b->x;
|
||||
il.b(1) = b->y;
|
||||
const stl_vertex &a = this->v_scaled_shared[a_id];
|
||||
const stl_vertex &b = this->v_scaled_shared[b_id];
|
||||
il.a(0) = a(0);
|
||||
il.a(1) = a(1);
|
||||
il.b(0) = b(0);
|
||||
il.b(1) = b(1);
|
||||
il.a_id = a_id;
|
||||
il.b_id = b_id;
|
||||
(*lines)[layer_idx].emplace_back(il);
|
||||
|
@ -863,66 +860,63 @@ bool TriangleMeshSlicer::slice_facet(
|
|||
// Reorder vertices so that the first one is the one with lowest Z.
|
||||
// This is needed to get all intersection lines in a consistent order
|
||||
// (external on the right of the line)
|
||||
int i = (facet.vertex[1].z == min_z) ? 1 : ((facet.vertex[2].z == min_z) ? 2 : 0);
|
||||
int i = (facet.vertex[1](2) == min_z) ? 1 : ((facet.vertex[2](2) == min_z) ? 2 : 0);
|
||||
for (int j = i; j - i < 3; ++ j) { // loop through facet edges
|
||||
int edge_id = this->facets_edges[facet_idx * 3 + (j % 3)];
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
const stl_vertex &a = this->v_scaled_shared[a_id];
|
||||
const stl_vertex &b = this->v_scaled_shared[b_id];
|
||||
|
||||
// Is edge or face aligned with the cutting plane?
|
||||
if (a->z == slice_z && b->z == slice_z) {
|
||||
if (a(2) == slice_z && b(2) == slice_z) {
|
||||
// Edge is horizontal and belongs to the current layer.
|
||||
const stl_vertex &v0 = this->v_scaled_shared[vertices[0]];
|
||||
const stl_vertex &v1 = this->v_scaled_shared[vertices[1]];
|
||||
const stl_vertex &v2 = this->v_scaled_shared[vertices[2]];
|
||||
bool swap = false;
|
||||
if (min_z == max_z) {
|
||||
// All three vertices are aligned with slice_z.
|
||||
line_out->edge_type = feHorizontal;
|
||||
if (this->mesh->stl.facet_start[facet_idx].normal.z < 0) {
|
||||
if (this->mesh->stl.facet_start[facet_idx].normal(2) < 0) {
|
||||
// If normal points downwards this is a bottom horizontal facet so we reverse its point order.
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
swap = true;
|
||||
}
|
||||
} else if (v0.z < slice_z || v1.z < slice_z || v2.z < slice_z) {
|
||||
} else if (v0(2) < slice_z || v1(2) < slice_z || v2(2) < slice_z) {
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
|
||||
line_out->edge_type = feTop;
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
swap = true;
|
||||
} else {
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
||||
line_out->edge_type = feBottom;
|
||||
}
|
||||
line_out->a(0) = a->x;
|
||||
line_out->a(1) = a->y;
|
||||
line_out->b(0) = b->x;
|
||||
line_out->b(1) = b->y;
|
||||
line_out->a_id = a_id;
|
||||
line_out->b_id = b_id;
|
||||
line_out->a = to_2d(swap ? b : a).cast<coord_t>();
|
||||
line_out->b = to_2d(swap ? a : b).cast<coord_t>();
|
||||
line_out->a_id = swap ? b_id : a_id;
|
||||
line_out->b_id = swap ? a_id : b_id;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (a->z == slice_z) {
|
||||
if (a(2) == slice_z) {
|
||||
// Only point a alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point(0) = a->x;
|
||||
point(1) = a->y;
|
||||
point(0) = a(0);
|
||||
point(1) = a(1);
|
||||
point.point_id = a_id;
|
||||
} else if (b->z == slice_z) {
|
||||
} else if (b(2) == slice_z) {
|
||||
// Only point b alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point(0) = b->x;
|
||||
point(1) = b->y;
|
||||
point(0) = b(0);
|
||||
point(1) = b(1);
|
||||
point.point_id = b_id;
|
||||
} else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) {
|
||||
} else if ((a(2) < slice_z && b(2) > slice_z) || (b(2) < slice_z && a(2) > slice_z)) {
|
||||
// A general case. The face edge intersects the cutting plane. Calculate the intersection point.
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point(0) = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
|
||||
point(1) = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
|
||||
point(0) = b(0) + (a(0) - b(0)) * (slice_z - b(2)) / (a(2) - b(2));
|
||||
point(1) = b(1) + (a(1) - b(1)) * (slice_z - b(2)) / (a(2) - b(2));
|
||||
point.edge_id = edge_id;
|
||||
}
|
||||
}
|
||||
|
@ -1389,8 +1383,8 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
stl_facet* facet = &this->mesh->stl.facet_start[facet_idx];
|
||||
|
||||
// find facet extents
|
||||
float min_z = std::min(facet->vertex[0].z, std::min(facet->vertex[1].z, facet->vertex[2].z));
|
||||
float max_z = std::max(facet->vertex[0].z, std::max(facet->vertex[1].z, facet->vertex[2].z));
|
||||
float min_z = std::min(facet->vertex[0](2), std::min(facet->vertex[1](2), facet->vertex[2](2)));
|
||||
float max_z = std::max(facet->vertex[0](2), std::max(facet->vertex[1](2), facet->vertex[2](2)));
|
||||
|
||||
// intersect facet with cutting plane
|
||||
IntersectionLine line;
|
||||
|
@ -1417,47 +1411,47 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
|
||||
// look for the vertex on whose side of the slicing plane there are no other vertices
|
||||
int isolated_vertex;
|
||||
if ( (facet->vertex[0].z > z) == (facet->vertex[1].z > z) ) {
|
||||
if ( (facet->vertex[0](2) > z) == (facet->vertex[1](2) > z) ) {
|
||||
isolated_vertex = 2;
|
||||
} else if ( (facet->vertex[1].z > z) == (facet->vertex[2].z > z) ) {
|
||||
} else if ( (facet->vertex[1](2) > z) == (facet->vertex[2](2) > z) ) {
|
||||
isolated_vertex = 0;
|
||||
} else {
|
||||
isolated_vertex = 1;
|
||||
}
|
||||
|
||||
// get vertices starting from the isolated one
|
||||
stl_vertex* v0 = &facet->vertex[isolated_vertex];
|
||||
stl_vertex* v1 = &facet->vertex[(isolated_vertex+1) % 3];
|
||||
stl_vertex* v2 = &facet->vertex[(isolated_vertex+2) % 3];
|
||||
const stl_vertex &v0 = facet->vertex[isolated_vertex];
|
||||
const stl_vertex &v1 = facet->vertex[(isolated_vertex+1) % 3];
|
||||
const stl_vertex &v2 = facet->vertex[(isolated_vertex+2) % 3];
|
||||
|
||||
// intersect v0-v1 and v2-v0 with cutting plane and make new vertices
|
||||
stl_vertex v0v1, v2v0;
|
||||
v0v1.x = v1->x + (v0->x - v1->x) * (z - v1->z) / (v0->z - v1->z);
|
||||
v0v1.y = v1->y + (v0->y - v1->y) * (z - v1->z) / (v0->z - v1->z);
|
||||
v0v1.z = z;
|
||||
v2v0.x = v2->x + (v0->x - v2->x) * (z - v2->z) / (v0->z - v2->z);
|
||||
v2v0.y = v2->y + (v0->y - v2->y) * (z - v2->z) / (v0->z - v2->z);
|
||||
v2v0.z = z;
|
||||
v0v1(0) = v1(0) + (v0(0) - v1(0)) * (z - v1(2)) / (v0(2) - v1(2));
|
||||
v0v1(1) = v1(1) + (v0(1) - v1(1)) * (z - v1(2)) / (v0(2) - v1(2));
|
||||
v0v1(2) = z;
|
||||
v2v0(0) = v2(0) + (v0(0) - v2(0)) * (z - v2(2)) / (v0(2) - v2(2));
|
||||
v2v0(1) = v2(1) + (v0(1) - v2(1)) * (z - v2(2)) / (v0(2) - v2(2));
|
||||
v2v0(2) = z;
|
||||
|
||||
// build the triangular facet
|
||||
stl_facet triangle;
|
||||
triangle.normal = facet->normal;
|
||||
triangle.vertex[0] = *v0;
|
||||
triangle.vertex[0] = v0;
|
||||
triangle.vertex[1] = v0v1;
|
||||
triangle.vertex[2] = v2v0;
|
||||
|
||||
// build the facets forming a quadrilateral on the other side
|
||||
stl_facet quadrilateral[2];
|
||||
quadrilateral[0].normal = facet->normal;
|
||||
quadrilateral[0].vertex[0] = *v1;
|
||||
quadrilateral[0].vertex[1] = *v2;
|
||||
quadrilateral[0].vertex[0] = v1;
|
||||
quadrilateral[0].vertex[1] = v2;
|
||||
quadrilateral[0].vertex[2] = v0v1;
|
||||
quadrilateral[1].normal = facet->normal;
|
||||
quadrilateral[1].vertex[0] = *v2;
|
||||
quadrilateral[1].vertex[0] = v2;
|
||||
quadrilateral[1].vertex[1] = v2v0;
|
||||
quadrilateral[1].vertex[2] = v0v1;
|
||||
|
||||
if (v0->z > z) {
|
||||
if (v0(2) > z) {
|
||||
if (upper != NULL) stl_add_facet(&upper->stl, &triangle);
|
||||
if (lower != NULL) {
|
||||
stl_add_facet(&lower->stl, &quadrilateral[0]);
|
||||
|
@ -1489,13 +1483,11 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
Polygon p = *polygon;
|
||||
p.reverse();
|
||||
stl_facet facet;
|
||||
facet.normal.x = 0;
|
||||
facet.normal.y = 0;
|
||||
facet.normal.z = -1;
|
||||
facet.normal = stl_normal(0, 0, -1.f);
|
||||
for (size_t i = 0; i <= 2; ++i) {
|
||||
facet.vertex[i].x = unscale(p.points[i](0));
|
||||
facet.vertex[i].y = unscale(p.points[i](1));
|
||||
facet.vertex[i].z = z;
|
||||
facet.vertex[i](0) = unscale<float>(p.points[i](0));
|
||||
facet.vertex[i](1) = unscale<float>(p.points[i](1));
|
||||
facet.vertex[i](2) = z;
|
||||
}
|
||||
stl_add_facet(&upper->stl, &facet);
|
||||
}
|
||||
|
@ -1515,13 +1507,11 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
// convert triangles to facets and append them to mesh
|
||||
for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) {
|
||||
stl_facet facet;
|
||||
facet.normal.x = 0;
|
||||
facet.normal.y = 0;
|
||||
facet.normal.z = 1;
|
||||
facet.normal = stl_normal(0, 0, 1.f);
|
||||
for (size_t i = 0; i <= 2; ++i) {
|
||||
facet.vertex[i].x = unscale(polygon->points[i](0));
|
||||
facet.vertex[i].y = unscale(polygon->points[i](1));
|
||||
facet.vertex[i].z = z;
|
||||
facet.vertex[i](0) = unscale<float>(polygon->points[i](0));
|
||||
facet.vertex[i](1) = unscale<float>(polygon->points[i](1));
|
||||
facet.vertex[i](2) = z;
|
||||
}
|
||||
stl_add_facet(&lower->stl, &facet);
|
||||
}
|
||||
|
@ -1534,19 +1524,19 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
|
||||
// Generate the vertex list for a cube solid of arbitrary size in X/Y/Z.
|
||||
TriangleMesh make_cube(double x, double y, double z) {
|
||||
Pointf3 pv[8] = {
|
||||
Pointf3(x, y, 0), Pointf3(x, 0, 0), Pointf3(0, 0, 0),
|
||||
Pointf3(0, y, 0), Pointf3(x, y, z), Pointf3(0, y, z),
|
||||
Pointf3(0, 0, z), Pointf3(x, 0, z)
|
||||
Vec3d pv[8] = {
|
||||
Vec3d(x, y, 0), Vec3d(x, 0, 0), Vec3d(0, 0, 0),
|
||||
Vec3d(0, y, 0), Vec3d(x, y, z), Vec3d(0, y, z),
|
||||
Vec3d(0, 0, z), Vec3d(x, 0, z)
|
||||
};
|
||||
Point3 fv[12] = {
|
||||
Point3(0, 1, 2), Point3(0, 2, 3), Point3(4, 5, 6),
|
||||
Point3(4, 6, 7), Point3(0, 4, 7), Point3(0, 7, 1),
|
||||
Point3(1, 7, 6), Point3(1, 6, 2), Point3(2, 6, 5),
|
||||
Point3(2, 5, 3), Point3(4, 0, 3), Point3(4, 3, 5)
|
||||
Vec3crd fv[12] = {
|
||||
Vec3crd(0, 1, 2), Vec3crd(0, 2, 3), Vec3crd(4, 5, 6),
|
||||
Vec3crd(4, 6, 7), Vec3crd(0, 4, 7), Vec3crd(0, 7, 1),
|
||||
Vec3crd(1, 7, 6), Vec3crd(1, 6, 2), Vec3crd(2, 6, 5),
|
||||
Vec3crd(2, 5, 3), Vec3crd(4, 0, 3), Vec3crd(4, 3, 5)
|
||||
};
|
||||
|
||||
std::vector<Point3> facets(&fv[0], &fv[0]+12);
|
||||
std::vector<Vec3crd> facets(&fv[0], &fv[0]+12);
|
||||
Pointf3s vertices(&pv[0], &pv[0]+8);
|
||||
|
||||
TriangleMesh mesh(vertices ,facets);
|
||||
|
@ -1558,11 +1548,11 @@ TriangleMesh make_cube(double x, double y, double z) {
|
|||
// Default is 360 sides, angle fa is in radians.
|
||||
TriangleMesh make_cylinder(double r, double h, double fa) {
|
||||
Pointf3s vertices;
|
||||
std::vector<Point3> facets;
|
||||
std::vector<Vec3crd> facets;
|
||||
|
||||
// 2 special vertices, top and bottom center, rest are relative to this
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, 0.0));
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, h));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, 0.0));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, h));
|
||||
|
||||
// adjust via rounding to get an even multiple for any provided angle.
|
||||
double angle = (2*PI / floor(2*PI / fa));
|
||||
|
@ -1572,24 +1562,23 @@ TriangleMesh make_cylinder(double r, double h, double fa) {
|
|||
// top and bottom.
|
||||
// Special case: Last line shares 2 vertices with the first line.
|
||||
unsigned id = vertices.size() - 1;
|
||||
vertices.emplace_back(Pointf3(sin(0) * r , cos(0) * r, 0));
|
||||
vertices.emplace_back(Pointf3(sin(0) * r , cos(0) * r, h));
|
||||
vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, 0));
|
||||
vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, h));
|
||||
for (double i = 0; i < 2*PI; i+=angle) {
|
||||
Pointf p(0, r);
|
||||
p.rotate(i);
|
||||
vertices.emplace_back(Pointf3(p(0), p(1), 0.));
|
||||
vertices.emplace_back(Pointf3(p(0), p(1), h));
|
||||
Vec2d p = Eigen::Rotation2Dd(i) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), 0.));
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), h));
|
||||
id = vertices.size() - 1;
|
||||
facets.emplace_back(Point3( 0, id - 1, id - 3)); // top
|
||||
facets.emplace_back(Point3(id, 1, id - 2)); // bottom
|
||||
facets.emplace_back(Point3(id, id - 2, id - 3)); // upper-right of side
|
||||
facets.emplace_back(Point3(id, id - 3, id - 1)); // bottom-left of side
|
||||
facets.emplace_back(Vec3crd( 0, id - 1, id - 3)); // top
|
||||
facets.emplace_back(Vec3crd(id, 1, id - 2)); // bottom
|
||||
facets.emplace_back(Vec3crd(id, id - 2, id - 3)); // upper-right of side
|
||||
facets.emplace_back(Vec3crd(id, id - 3, id - 1)); // bottom-left of side
|
||||
}
|
||||
// Connect the last set of vertices with the first.
|
||||
facets.emplace_back(Point3( 2, 0, id - 1));
|
||||
facets.emplace_back(Point3( 1, 3, id));
|
||||
facets.emplace_back(Point3(id, 3, 2));
|
||||
facets.emplace_back(Point3(id, 2, id - 1));
|
||||
facets.emplace_back(Vec3crd( 2, 0, id - 1));
|
||||
facets.emplace_back(Vec3crd( 1, 3, id));
|
||||
facets.emplace_back(Vec3crd(id, 3, 2));
|
||||
facets.emplace_back(Vec3crd(id, 2, id - 1));
|
||||
|
||||
TriangleMesh mesh(vertices, facets);
|
||||
return mesh;
|
||||
|
@ -1600,7 +1589,7 @@ TriangleMesh make_cylinder(double r, double h, double fa) {
|
|||
// Default angle is 1 degree.
|
||||
TriangleMesh make_sphere(double rho, double fa) {
|
||||
Pointf3s vertices;
|
||||
std::vector<Point3> facets;
|
||||
std::vector<Vec3crd> facets;
|
||||
|
||||
// Algorithm:
|
||||
// Add points one-by-one to the sphere grid and form facets using relative coordinates.
|
||||
|
@ -1619,17 +1608,16 @@ TriangleMesh make_sphere(double rho, double fa) {
|
|||
|
||||
// special case: first ring connects to 0,0,0
|
||||
// insert and form facets.
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, -rho));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, -rho));
|
||||
size_t id = vertices.size();
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
// Fixed scaling
|
||||
const double z = -rho + increment*rho*2.0;
|
||||
// radius of the circle for this step.
|
||||
const double r = sqrt(abs(rho*rho - z*z));
|
||||
Pointf b(0, r);
|
||||
b.rotate(ring[i]);
|
||||
vertices.emplace_back(Pointf3(b(0), b(1), z));
|
||||
facets.emplace_back((i == 0) ? Point3(1, 0, ring.size()) : Point3(id, 0, id - 1));
|
||||
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
||||
facets.emplace_back((i == 0) ? Vec3crd(1, 0, ring.size()) : Vec3crd(id, 0, id - 1));
|
||||
++ id;
|
||||
}
|
||||
|
||||
|
@ -1639,16 +1627,15 @@ TriangleMesh make_sphere(double rho, double fa) {
|
|||
const double r = sqrt(abs(rho*rho - z*z));
|
||||
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
Pointf b(0, r);
|
||||
b.rotate(ring[i]);
|
||||
vertices.emplace_back(Pointf3(b(0), b(1), z));
|
||||
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
||||
if (i == 0) {
|
||||
// wrap around
|
||||
facets.emplace_back(Point3(id + ring.size() - 1 , id, id - 1));
|
||||
facets.emplace_back(Point3(id, id - ring.size(), id - 1));
|
||||
facets.emplace_back(Vec3crd(id + ring.size() - 1 , id, id - 1));
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size(), id - 1));
|
||||
} else {
|
||||
facets.emplace_back(Point3(id , id - ring.size(), (id - 1) - ring.size()));
|
||||
facets.emplace_back(Point3(id, id - 1 - ring.size() , id - 1));
|
||||
facets.emplace_back(Vec3crd(id , id - ring.size(), (id - 1) - ring.size()));
|
||||
facets.emplace_back(Vec3crd(id, id - 1 - ring.size() , id - 1));
|
||||
}
|
||||
id++;
|
||||
}
|
||||
|
@ -1657,13 +1644,13 @@ TriangleMesh make_sphere(double rho, double fa) {
|
|||
|
||||
// special case: last ring connects to 0,0,rho*2.0
|
||||
// only form facets.
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, rho));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, rho));
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
if (i == 0) {
|
||||
// third vertex is on the other side of the ring.
|
||||
facets.emplace_back(Point3(id, id - ring.size(), id - 1));
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size(), id - 1));
|
||||
} else {
|
||||
facets.emplace_back(Point3(id, id - ring.size() + i, id - ring.size() + (i - 1)));
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size() + i, id - ring.size() + (i - 1)));
|
||||
}
|
||||
}
|
||||
id++;
|
||||
|
|
|
@ -20,33 +20,33 @@ typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
|
|||
class TriangleMesh
|
||||
{
|
||||
public:
|
||||
TriangleMesh();
|
||||
TriangleMesh(const Pointf3s &points, const std::vector<Point3> &facets);
|
||||
TriangleMesh(const TriangleMesh &other);
|
||||
TriangleMesh(TriangleMesh &&other);
|
||||
TriangleMesh() : repaired(false) { stl_initialize(&this->stl); }
|
||||
TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd> &facets);
|
||||
TriangleMesh(const TriangleMesh &other) : repaired(false) { stl_initialize(&this->stl); *this = other; }
|
||||
TriangleMesh(TriangleMesh &&other) : repaired(false) { stl_initialize(&this->stl); this->swap(other); }
|
||||
~TriangleMesh() { stl_close(&this->stl); }
|
||||
TriangleMesh& operator=(const TriangleMesh &other);
|
||||
TriangleMesh& operator=(TriangleMesh &&other);
|
||||
void swap(TriangleMesh &other);
|
||||
~TriangleMesh();
|
||||
void ReadSTLFile(const char* input_file);
|
||||
void write_ascii(const char* output_file);
|
||||
void write_binary(const char* output_file);
|
||||
TriangleMesh& operator=(TriangleMesh &&other) { this->swap(other); return *this; }
|
||||
void swap(TriangleMesh &other) { std::swap(this->stl, other.stl); std::swap(this->repaired, other.repaired); }
|
||||
void ReadSTLFile(const char* input_file) { stl_open(&stl, input_file); }
|
||||
void write_ascii(const char* output_file) { stl_write_ascii(&this->stl, output_file, ""); }
|
||||
void write_binary(const char* output_file) { stl_write_binary(&this->stl, output_file, ""); }
|
||||
void repair();
|
||||
float volume();
|
||||
void check_topology();
|
||||
bool is_manifold() const;
|
||||
bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == this->stl.stats.number_of_facets; }
|
||||
void WriteOBJFile(char* output_file);
|
||||
void scale(float factor);
|
||||
void scale(const Pointf3 &versor);
|
||||
void scale(const Vec3d &versor);
|
||||
void translate(float x, float y, float z);
|
||||
void rotate(float angle, const Axis &axis);
|
||||
void rotate_x(float angle);
|
||||
void rotate_y(float angle);
|
||||
void rotate_z(float angle);
|
||||
void rotate_x(float angle) { this->rotate(angle, X); }
|
||||
void rotate_y(float angle) { this->rotate(angle, Y); }
|
||||
void rotate_z(float angle) { this->rotate(angle, Z); }
|
||||
void mirror(const Axis &axis);
|
||||
void mirror_x();
|
||||
void mirror_y();
|
||||
void mirror_z();
|
||||
void mirror_x() { this->mirror(X); }
|
||||
void mirror_y() { this->mirror(Y); }
|
||||
void mirror_z() { this->mirror(Z); }
|
||||
void transform(const float* matrix3x4);
|
||||
void align_to_origin();
|
||||
void rotate(double angle, Point* center);
|
||||
|
@ -55,9 +55,13 @@ public:
|
|||
ExPolygons horizontal_projection() const;
|
||||
Polygon convex_hull();
|
||||
BoundingBoxf3 bounding_box() const;
|
||||
// Returns the bbox of this TriangleMesh transformed by the given transformation
|
||||
BoundingBoxf3 transformed_bounding_box(const Transform3d& t) const;
|
||||
// Returns the convex hull of this TriangleMesh
|
||||
TriangleMesh convex_hull_3d() const;
|
||||
void reset_repair_stats();
|
||||
bool needed_repair() const;
|
||||
size_t facets_count() const;
|
||||
size_t facets_count() const { return this->stl.stats.number_of_facets; }
|
||||
|
||||
// Returns true, if there are two and more connected patches in the mesh.
|
||||
// Returns false, if one or zero connected patch is in the mesh.
|
||||
|
@ -66,7 +70,7 @@ public:
|
|||
// Count disconnected triangle patches.
|
||||
size_t number_of_patches() const;
|
||||
|
||||
stl_file stl;
|
||||
mutable stl_file stl;
|
||||
bool repaired;
|
||||
|
||||
private:
|
||||
|
|
|
@ -45,7 +45,6 @@ typedef double coordf_t;
|
|||
//FIXME Better to use an inline function with an explicit return type.
|
||||
//inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); }
|
||||
#define scale_(val) ((val) / SCALING_FACTOR)
|
||||
#define unscale(val) ((val) * SCALING_FACTOR)
|
||||
#define SCALED_EPSILON scale_(EPSILON)
|
||||
/* Implementation of CONFESS("foo"): */
|
||||
#ifdef _MSC_VER
|
||||
|
@ -102,6 +101,9 @@ inline std::string debug_out_path(const char *name, ...)
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
template<typename T, typename Q>
|
||||
inline T unscale(Q v) { return T(v) * T(SCALING_FACTOR); }
|
||||
|
||||
enum Axis { X=0, Y, Z, E, F, NUM_AXES };
|
||||
|
||||
template <class T>
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue