Merge remote-tracking branch 'origin/dev' into sla_base_pool
|
|
@ -25,11 +25,11 @@
|
|||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <boost/detail/endian.hpp>
|
||||
|
||||
#include "stl.h"
|
||||
|
||||
|
||||
static void stl_match_neighbors_exact(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b);
|
||||
static void stl_match_neighbors_nearby(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b);
|
||||
static void stl_record_neighbors(stl_file *stl,
|
||||
|
|
@ -43,7 +43,6 @@ static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge,
|
|||
static void insert_hash_edge(stl_file *stl, stl_hash_edge edge,
|
||||
void (*match_neighbors)(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b));
|
||||
static int stl_get_hash_for_edge(int M, stl_hash_edge *edge);
|
||||
static int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b);
|
||||
static void stl_free_edges(stl_file *stl);
|
||||
static void stl_remove_facet(stl_file *stl, int facet_number);
|
||||
|
|
@ -82,37 +81,20 @@ stl_check_facets_exact(stl_file *stl) {
|
|||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
facet = stl->facet_start[i];
|
||||
// Positive and negative zeros are possible in the floats, which are considered equal by the FP unit.
|
||||
// When using a memcmp on raw floats, those numbers report to be different.
|
||||
// Unify all +0 and -0 to +0 to make the floats equal under memcmp.
|
||||
{
|
||||
uint32_t *f = (uint32_t*)&facet;
|
||||
for (int j = 0; j < 12; ++ j, ++ f) // 3x vertex + normal: 4x3 = 12 floats
|
||||
if (*f == 0x80000000)
|
||||
// Negative zero, switch to positive zero.
|
||||
*f = 0;
|
||||
}
|
||||
|
||||
/* If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet. */
|
||||
if( !memcmp(&facet.vertex[0], &facet.vertex[1],
|
||||
sizeof(stl_vertex))
|
||||
|| !memcmp(&facet.vertex[1], &facet.vertex[2],
|
||||
sizeof(stl_vertex))
|
||||
|| !memcmp(&facet.vertex[0], &facet.vertex[2],
|
||||
sizeof(stl_vertex))) {
|
||||
// If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet.
|
||||
if (facet.vertex[0] == facet.vertex[1] ||
|
||||
facet.vertex[1] == facet.vertex[2] ||
|
||||
facet.vertex[0] == facet.vertex[2]) {
|
||||
stl->stats.degenerate_facets += 1;
|
||||
stl_remove_facet(stl, i);
|
||||
i--;
|
||||
-- i;
|
||||
continue;
|
||||
|
||||
}
|
||||
for(j = 0; j < 3; j++) {
|
||||
edge.facet_number = i;
|
||||
edge.which_edge = j;
|
||||
stl_load_edge_exact(stl, &edge, &facet.vertex[j],
|
||||
&facet.vertex[(j + 1) % 3]);
|
||||
|
||||
insert_hash_edge(stl, edge, stl_match_neighbors_exact);
|
||||
stl_load_edge_exact(stl, &edge, &facet.vertex[j], &facet.vertex[(j + 1) % 3]);
|
||||
insert_hash_edge(stl, edge, stl_record_neighbors);
|
||||
}
|
||||
}
|
||||
stl_free_edges(stl);
|
||||
|
|
@ -131,28 +113,33 @@ stl_load_edge_exact(stl_file *stl, stl_hash_edge *edge,
|
|||
if (stl->error) return;
|
||||
|
||||
{
|
||||
float diff_x = ABS(a->x - b->x);
|
||||
float diff_y = ABS(a->y - b->y);
|
||||
float diff_z = ABS(a->z - b->z);
|
||||
float max_diff = STL_MAX(diff_x, diff_y);
|
||||
max_diff = STL_MAX(diff_z, max_diff);
|
||||
stl->stats.shortest_edge = STL_MIN(max_diff, stl->stats.shortest_edge);
|
||||
stl_vertex diff = (*a - *b).cwiseAbs();
|
||||
float max_diff = std::max(diff(0), std::max(diff(1), diff(2)));
|
||||
stl->stats.shortest_edge = std::min(max_diff, stl->stats.shortest_edge);
|
||||
}
|
||||
|
||||
// Ensure identical vertex ordering of equal edges.
|
||||
// This method is numerically robust.
|
||||
if ((a->x != b->x) ?
|
||||
(a->x < b->x) :
|
||||
((a->y != b->y) ?
|
||||
(a->y < b->y) :
|
||||
(a->z < b->z))) {
|
||||
memcpy(&edge->key[0], a, sizeof(stl_vertex));
|
||||
memcpy(&edge->key[3], b, sizeof(stl_vertex));
|
||||
if (stl_vertex_lower(*a, *b)) {
|
||||
} else {
|
||||
memcpy(&edge->key[0], b, sizeof(stl_vertex));
|
||||
memcpy(&edge->key[3], a, sizeof(stl_vertex));
|
||||
std::swap(a, b);
|
||||
edge->which_edge += 3; /* this edge is loaded backwards */
|
||||
}
|
||||
memcpy(&edge->key[0], a->data(), sizeof(stl_vertex));
|
||||
memcpy(&edge->key[sizeof(stl_vertex)], b->data(), sizeof(stl_vertex));
|
||||
// Switch negative zeros to positive zeros, so memcmp will consider them to be equal.
|
||||
for (size_t i = 0; i < 6; ++ i) {
|
||||
unsigned char *p = edge->key + i * 4;
|
||||
#ifdef BOOST_LITTLE_ENDIAN
|
||||
if (p[0] == 0 && p[1] == 0 && p[2] == 0 && p[3] == 0x80)
|
||||
// Negative zero, switch to positive zero.
|
||||
p[3] = 0;
|
||||
#else /* BOOST_LITTLE_ENDIAN */
|
||||
if (p[0] == 0x80 && p[1] == 0 && p[2] == 0 && p[3] == 0)
|
||||
// Negative zero, switch to positive zero.
|
||||
p[0] = 0;
|
||||
#endif /* BOOST_LITTLE_ENDIAN */
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
|
|
@ -188,21 +175,17 @@ stl_initialize_facet_check_exact(stl_file *stl) {
|
|||
}
|
||||
}
|
||||
|
||||
static void
|
||||
insert_hash_edge(stl_file *stl, stl_hash_edge edge,
|
||||
static void insert_hash_edge(stl_file *stl, stl_hash_edge edge,
|
||||
void (*match_neighbors)(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b)) {
|
||||
stl_hash_edge *link;
|
||||
stl_hash_edge *new_edge;
|
||||
stl_hash_edge *temp;
|
||||
int chain_number;
|
||||
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b))
|
||||
{
|
||||
if (stl->error) return;
|
||||
|
||||
chain_number = stl_get_hash_for_edge(stl->M, &edge);
|
||||
|
||||
link = stl->heads[chain_number];
|
||||
int chain_number = edge.hash(stl->M);
|
||||
stl_hash_edge *link = stl->heads[chain_number];
|
||||
|
||||
stl_hash_edge *new_edge;
|
||||
stl_hash_edge *temp;
|
||||
if(link == stl->tail) {
|
||||
/* This list doesn't have any edges currently in it. Add this one. */
|
||||
new_edge = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
|
||||
|
|
@ -252,30 +235,17 @@ insert_hash_edge(stl_file *stl, stl_hash_edge edge,
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
stl_get_hash_for_edge(int M, stl_hash_edge *edge) {
|
||||
return ((edge->key[0] / 23 + edge->key[1] / 19 + edge->key[2] / 17
|
||||
+ edge->key[3] /13 + edge->key[4] / 11 + edge->key[5] / 7 ) % M);
|
||||
// Return 1 if the edges are not matched.
|
||||
static inline int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b)
|
||||
{
|
||||
// Don't match edges of the same facet
|
||||
return (edge_a->facet_number == edge_b->facet_number) || (*edge_a != *edge_b);
|
||||
}
|
||||
|
||||
static int
|
||||
stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b) {
|
||||
if(edge_a->facet_number == edge_b->facet_number) {
|
||||
return 1; /* Don't match edges of the same facet */
|
||||
} else {
|
||||
return memcmp(edge_a, edge_b, SIZEOF_EDGE_SORT);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_check_facets_nearby(stl_file *stl, float tolerance) {
|
||||
stl_hash_edge edge[3];
|
||||
stl_facet facet;
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
void stl_check_facets_nearby(stl_file *stl, float tolerance)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if( (stl->stats.connected_facets_1_edge == stl->stats.number_of_facets)
|
||||
&& (stl->stats.connected_facets_2_edge == stl->stats.number_of_facets)
|
||||
|
|
@ -286,27 +256,19 @@ stl_check_facets_nearby(stl_file *stl, float tolerance) {
|
|||
|
||||
stl_initialize_facet_check_nearby(stl);
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
facet = stl->facet_start[i];
|
||||
// Positive and negative zeros are possible in the floats, which are considered equal by the FP unit.
|
||||
// When using a memcmp on raw floats, those numbers report to be different.
|
||||
// Unify all +0 and -0 to +0 to make the floats equal under memcmp.
|
||||
{
|
||||
uint32_t *f = (uint32_t*)&facet;
|
||||
for (int j = 0; j < 12; ++ j, ++ f) // 3x vertex + normal: 4x3 = 12 floats
|
||||
if (*f == 0x80000000)
|
||||
// Negative zero, switch to positive zero.
|
||||
*f = 0;
|
||||
}
|
||||
for(j = 0; j < 3; j++) {
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
//FIXME is the copy necessary?
|
||||
stl_facet facet = stl->facet_start[i];
|
||||
for (int j = 0; j < 3; j++) {
|
||||
if(stl->neighbors_start[i].neighbor[j] == -1) {
|
||||
edge[j].facet_number = i;
|
||||
edge[j].which_edge = j;
|
||||
if(stl_load_edge_nearby(stl, &edge[j], &facet.vertex[j],
|
||||
stl_hash_edge edge;
|
||||
edge.facet_number = i;
|
||||
edge.which_edge = j;
|
||||
if(stl_load_edge_nearby(stl, &edge, &facet.vertex[j],
|
||||
&facet.vertex[(j + 1) % 3],
|
||||
tolerance)) {
|
||||
/* only insert edges that have different keys */
|
||||
insert_hash_edge(stl, edge[j], stl_match_neighbors_nearby);
|
||||
insert_hash_edge(stl, edge, stl_match_neighbors_nearby);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -315,27 +277,17 @@ stl_check_facets_nearby(stl_file *stl, float tolerance) {
|
|||
stl_free_edges(stl);
|
||||
}
|
||||
|
||||
static int
|
||||
stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge,
|
||||
stl_vertex *a, stl_vertex *b, float tolerance) {
|
||||
static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge, stl_vertex *a, stl_vertex *b, float tolerance)
|
||||
{
|
||||
// Index of a grid cell spaced by tolerance.
|
||||
uint32_t vertex1[3] = {
|
||||
(uint32_t)((a->x - stl->stats.min.x) / tolerance),
|
||||
(uint32_t)((a->y - stl->stats.min.y) / tolerance),
|
||||
(uint32_t)((a->z - stl->stats.min.z) / tolerance)
|
||||
};
|
||||
uint32_t vertex2[3] = {
|
||||
(uint32_t)((b->x - stl->stats.min.x) / tolerance),
|
||||
(uint32_t)((b->y - stl->stats.min.y) / tolerance),
|
||||
(uint32_t)((b->z - stl->stats.min.z) / tolerance)
|
||||
};
|
||||
typedef Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign> Vec3i;
|
||||
Vec3i vertex1 = (*a / tolerance).cast<int32_t>();
|
||||
Vec3i vertex2 = (*b / tolerance).cast<int32_t>();
|
||||
static_assert(sizeof(Vec3i) == 12, "size of Vec3i incorrect");
|
||||
|
||||
if( (vertex1[0] == vertex2[0])
|
||||
&& (vertex1[1] == vertex2[1])
|
||||
&& (vertex1[2] == vertex2[2])) {
|
||||
/* Both vertices hash to the same value */
|
||||
if (vertex1 == vertex2)
|
||||
// Both vertices hash to the same value
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Ensure identical vertex ordering of edges, which vertices land into equal grid cells.
|
||||
// This method is numerically robust.
|
||||
|
|
@ -344,30 +296,27 @@ stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge,
|
|||
((vertex1[1] != vertex2[1]) ?
|
||||
(vertex1[1] < vertex2[1]) :
|
||||
(vertex1[2] < vertex2[2]))) {
|
||||
memcpy(&edge->key[0], vertex1, sizeof(stl_vertex));
|
||||
memcpy(&edge->key[3], vertex2, sizeof(stl_vertex));
|
||||
memcpy(&edge->key[0], vertex1.data(), sizeof(stl_vertex));
|
||||
memcpy(&edge->key[sizeof(stl_vertex)], vertex2.data(), sizeof(stl_vertex));
|
||||
} else {
|
||||
memcpy(&edge->key[0], vertex2, sizeof(stl_vertex));
|
||||
memcpy(&edge->key[3], vertex1, sizeof(stl_vertex));
|
||||
memcpy(&edge->key[0], vertex2.data(), sizeof(stl_vertex));
|
||||
memcpy(&edge->key[sizeof(stl_vertex)], vertex1.data(), sizeof(stl_vertex));
|
||||
edge->which_edge += 3; /* this edge is loaded backwards */
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void
|
||||
stl_free_edges(stl_file *stl) {
|
||||
int i;
|
||||
stl_hash_edge *temp;
|
||||
|
||||
if (stl->error) return;
|
||||
static void stl_free_edges(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if(stl->stats.malloced != stl->stats.freed) {
|
||||
for(i = 0; i < stl->M; i++) {
|
||||
for(temp = stl->heads[i]; stl->heads[i] != stl->tail;
|
||||
temp = stl->heads[i]) {
|
||||
for (int i = 0; i < stl->M; i++) {
|
||||
for (stl_hash_edge *temp = stl->heads[i]; stl->heads[i] != stl->tail; temp = stl->heads[i]) {
|
||||
stl->heads[i] = stl->heads[i]->next;
|
||||
free(temp);
|
||||
stl->stats.freed++;
|
||||
++ stl->stats.freed;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -375,8 +324,8 @@ stl_free_edges(stl_file *stl) {
|
|||
free(stl->tail);
|
||||
}
|
||||
|
||||
static void
|
||||
stl_initialize_facet_check_nearby(stl_file *stl) {
|
||||
static void stl_initialize_facet_check_nearby(stl_file *stl)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (stl->error) return;
|
||||
|
|
@ -467,16 +416,8 @@ stl_record_neighbors(stl_file *stl,
|
|||
}
|
||||
}
|
||||
|
||||
static void
|
||||
stl_match_neighbors_exact(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b) {
|
||||
if (stl->error) return;
|
||||
stl_record_neighbors(stl, edge_a, edge_b);
|
||||
}
|
||||
|
||||
static void
|
||||
stl_match_neighbors_nearby(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b) {
|
||||
static void stl_match_neighbors_nearby(stl_file *stl, stl_hash_edge *edge_a, stl_hash_edge *edge_b)
|
||||
{
|
||||
int facet1;
|
||||
int facet2;
|
||||
int vertex1;
|
||||
|
|
@ -517,9 +458,7 @@ stl_match_neighbors_nearby(stl_file *stl,
|
|||
}
|
||||
|
||||
|
||||
static void
|
||||
stl_change_vertices(stl_file *stl, int facet_num, int vnot,
|
||||
stl_vertex new_vertex) {
|
||||
static void stl_change_vertices(stl_file *stl, int facet_num, int vnot, stl_vertex new_vertex) {
|
||||
int first_facet;
|
||||
int direction;
|
||||
int next_edge;
|
||||
|
|
@ -551,30 +490,30 @@ stl_change_vertices(stl_file *stl, int facet_num, int vnot,
|
|||
}
|
||||
}
|
||||
#if 0
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex].x == new_vertex.x &&
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex].y == new_vertex.y &&
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex].z == new_vertex.z)
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) == new_vertex(0) &&
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](1) == new_vertex(1) &&
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](2) == new_vertex(2))
|
||||
printf("Changing vertex %f,%f,%f: Same !!!\r\n",
|
||||
new_vertex.x, new_vertex.y, new_vertex.z);
|
||||
new_vertex(0), new_vertex(1), new_vertex(2));
|
||||
else {
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex].x != new_vertex.x)
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) != new_vertex(0))
|
||||
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex].x,
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex].x),
|
||||
new_vertex.x,
|
||||
*reinterpret_cast<const int*>(&new_vertex.x));
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex].y != new_vertex.y)
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](0),
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](0)),
|
||||
new_vertex(0),
|
||||
*reinterpret_cast<const int*>(&new_vertex(0)));
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](1) != new_vertex(1))
|
||||
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex].y,
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex].y),
|
||||
new_vertex.y,
|
||||
*reinterpret_cast<const int*>(&new_vertex.y));
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex].z != new_vertex.z)
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](1),
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](1)),
|
||||
new_vertex(1),
|
||||
*reinterpret_cast<const int*>(&new_vertex(1)));
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](2) != new_vertex(2))
|
||||
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex].z,
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex].z),
|
||||
new_vertex.z,
|
||||
*reinterpret_cast<const int*>(&new_vertex.z));
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](2),
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](2)),
|
||||
new_vertex(2),
|
||||
*reinterpret_cast<const int*>(&new_vertex(2)));
|
||||
}
|
||||
#endif
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex] = new_vertex;
|
||||
|
|
@ -595,7 +534,6 @@ Try using a smaller tolerance or don't do a nearby check\n");
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a,
|
||||
stl_hash_edge *edge_b, int *facet1, int *vertex1,
|
||||
|
|
@ -622,11 +560,10 @@ stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a,
|
|||
v1b = (edge_b->which_edge + 1) % 3;
|
||||
}
|
||||
|
||||
/* Of the first pair, which vertex, if any, should be changed */
|
||||
if(!memcmp(&stl->facet_start[edge_a->facet_number].vertex[v1a],
|
||||
&stl->facet_start[edge_b->facet_number].vertex[v1b],
|
||||
sizeof(stl_vertex))) {
|
||||
/* These facets are already equal. No need to change. */
|
||||
// Of the first pair, which vertex, if any, should be changed
|
||||
if(stl->facet_start[edge_a->facet_number].vertex[v1a] ==
|
||||
stl->facet_start[edge_b->facet_number].vertex[v1b]) {
|
||||
// These facets are already equal. No need to change.
|
||||
*facet1 = -1;
|
||||
} else {
|
||||
if( (stl->neighbors_start[edge_a->facet_number].neighbor[v1a] == -1)
|
||||
|
|
@ -644,10 +581,9 @@ stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a,
|
|||
}
|
||||
|
||||
/* Of the second pair, which vertex, if any, should be changed */
|
||||
if(!memcmp(&stl->facet_start[edge_a->facet_number].vertex[v2a],
|
||||
&stl->facet_start[edge_b->facet_number].vertex[v2b],
|
||||
sizeof(stl_vertex))) {
|
||||
/* These facets are already equal. No need to change. */
|
||||
if(stl->facet_start[edge_a->facet_number].vertex[v2a] ==
|
||||
stl->facet_start[edge_b->facet_number].vertex[v2b]) {
|
||||
// These facets are already equal. No need to change.
|
||||
*facet2 = -1;
|
||||
} else {
|
||||
if( (stl->neighbors_start[edge_a->facet_number].neighbor[v2a] == -1)
|
||||
|
|
@ -718,40 +654,35 @@ in stl_remove_facet: neighbor = %d numfacets = %d this is wrong\n",
|
|||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_remove_unconnected_facets(stl_file *stl) {
|
||||
void stl_remove_unconnected_facets(stl_file *stl)
|
||||
{
|
||||
/* A couple of things need to be done here. One is to remove any */
|
||||
/* completely unconnected facets (0 edges connected) since these are */
|
||||
/* useless and could be completely wrong. The second thing that needs to */
|
||||
/* be done is to remove any degenerate facets that were created during */
|
||||
/* stl_check_facets_nearby(). */
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
int i;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* remove degenerate facets */
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
if( !memcmp(&stl->facet_start[i].vertex[0],
|
||||
&stl->facet_start[i].vertex[1], sizeof(stl_vertex))
|
||||
|| !memcmp(&stl->facet_start[i].vertex[1],
|
||||
&stl->facet_start[i].vertex[2], sizeof(stl_vertex))
|
||||
|| !memcmp(&stl->facet_start[i].vertex[0],
|
||||
&stl->facet_start[i].vertex[2], sizeof(stl_vertex))) {
|
||||
// remove degenerate facets
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
if(stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[1] ||
|
||||
stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[2] ||
|
||||
stl->facet_start[i].vertex[1] == stl->facet_start[i].vertex[2]) {
|
||||
stl_remove_degenerate(stl, i);
|
||||
i--;
|
||||
}
|
||||
}
|
||||
|
||||
if(stl->stats.connected_facets_1_edge < stl->stats.number_of_facets) {
|
||||
/* remove completely unconnected facets */
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
if( (stl->neighbors_start[i].neighbor[0] == -1)
|
||||
&& (stl->neighbors_start[i].neighbor[1] == -1)
|
||||
&& (stl->neighbors_start[i].neighbor[2] == -1)) {
|
||||
/* This facet is completely unconnected. Remove it. */
|
||||
// remove completely unconnected facets
|
||||
for (int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
if (stl->neighbors_start[i].neighbor[0] == -1 &&
|
||||
stl->neighbors_start[i].neighbor[1] == -1 &&
|
||||
stl->neighbors_start[i].neighbor[2] == -1) {
|
||||
// This facet is completely unconnected. Remove it.
|
||||
stl_remove_facet(stl, i);
|
||||
i--;
|
||||
-- i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -771,30 +702,24 @@ stl_remove_degenerate(stl_file *stl, int facet) {
|
|||
|
||||
if (stl->error) return;
|
||||
|
||||
if( !memcmp(&stl->facet_start[facet].vertex[0],
|
||||
&stl->facet_start[facet].vertex[1], sizeof(stl_vertex))
|
||||
&& !memcmp(&stl->facet_start[facet].vertex[1],
|
||||
&stl->facet_start[facet].vertex[2], sizeof(stl_vertex))) {
|
||||
if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1] &&
|
||||
stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
|
||||
/* all 3 vertices are equal. Just remove the facet. I don't think*/
|
||||
/* this is really possible, but just in case... */
|
||||
printf("removing a facet in stl_remove_degenerate\n");
|
||||
|
||||
stl_remove_facet(stl, facet);
|
||||
return;
|
||||
}
|
||||
|
||||
if(!memcmp(&stl->facet_start[facet].vertex[0],
|
||||
&stl->facet_start[facet].vertex[1], sizeof(stl_vertex))) {
|
||||
if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1]) {
|
||||
edge1 = 1;
|
||||
edge2 = 2;
|
||||
edge3 = 0;
|
||||
} else if(!memcmp(&stl->facet_start[facet].vertex[1],
|
||||
&stl->facet_start[facet].vertex[2], sizeof(stl_vertex))) {
|
||||
} else if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
|
||||
edge1 = 0;
|
||||
edge2 = 2;
|
||||
edge3 = 1;
|
||||
} else if(!memcmp(&stl->facet_start[facet].vertex[2],
|
||||
&stl->facet_start[facet].vertex[0], sizeof(stl_vertex))) {
|
||||
} else if (stl->facet_start[facet].vertex[2] == stl->facet_start[facet].vertex[0]) {
|
||||
edge1 = 0;
|
||||
edge2 = 1;
|
||||
edge3 = 2;
|
||||
|
|
@ -883,7 +808,7 @@ stl_fill_holes(stl_file *stl) {
|
|||
stl_load_edge_exact(stl, &edge, &facet.vertex[j],
|
||||
&facet.vertex[(j + 1) % 3]);
|
||||
|
||||
insert_hash_edge(stl, edge, stl_match_neighbors_exact);
|
||||
insert_hash_edge(stl, edge, stl_record_neighbors);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -939,7 +864,7 @@ stl_fill_holes(stl_file *stl) {
|
|||
stl_load_edge_exact(stl, &edge, &new_facet.vertex[k],
|
||||
&new_facet.vertex[(k + 1) % 3]);
|
||||
|
||||
insert_hash_edge(stl, edge, stl_match_neighbors_exact);
|
||||
insert_hash_edge(stl, edge, stl_record_neighbors);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
|
|
@ -977,9 +902,7 @@ stl_add_facet(stl_file *stl, stl_facet *new_facet) {
|
|||
stl->facet_start[stl->stats.number_of_facets] = *new_facet;
|
||||
|
||||
/* note that the normal vector is not set here, just initialized to 0 */
|
||||
stl->facet_start[stl->stats.number_of_facets].normal.x = 0.0;
|
||||
stl->facet_start[stl->stats.number_of_facets].normal.y = 0.0;
|
||||
stl->facet_start[stl->stats.number_of_facets].normal.z = 0.0;
|
||||
stl->facet_start[stl->stats.number_of_facets].normal = stl_normal::Zero();
|
||||
|
||||
stl->neighbors_start[stl->stats.number_of_facets].neighbor[0] = -1;
|
||||
stl->neighbors_start[stl->stats.number_of_facets].neighbor[1] = -1;
|
||||
|
|
|
|||
|
|
@ -27,12 +27,6 @@
|
|||
|
||||
#include "stl.h"
|
||||
|
||||
static void stl_reverse_vector(float v[]) {
|
||||
v[0] *= -1;
|
||||
v[1] *= -1;
|
||||
v[2] *= -1;
|
||||
}
|
||||
|
||||
static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag);
|
||||
|
||||
static void
|
||||
|
|
@ -228,102 +222,52 @@ static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_
|
|||
/* Returns 2 if the normal is not within tolerance and backwards */
|
||||
/* Returns 4 if the status is unknown. */
|
||||
|
||||
float normal[3];
|
||||
float test_norm[3];
|
||||
stl_facet *facet;
|
||||
|
||||
facet = &stl->facet_start[facet_num];
|
||||
|
||||
stl_normal normal;
|
||||
stl_calculate_normal(normal, facet);
|
||||
stl_normalize_vector(normal);
|
||||
stl_normal normal_dif = (normal - facet->normal).cwiseAbs();
|
||||
|
||||
if( (ABS(normal[0] - facet->normal.x) < 0.001)
|
||||
&& (ABS(normal[1] - facet->normal.y) < 0.001)
|
||||
&& (ABS(normal[2] - facet->normal.z) < 0.001)) {
|
||||
const float eps = 0.001f;
|
||||
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
||||
/* It is not really necessary to change the values here */
|
||||
/* but just for consistency, I will. */
|
||||
facet->normal.x = normal[0];
|
||||
facet->normal.y = normal[1];
|
||||
facet->normal.z = normal[2];
|
||||
facet->normal = normal;
|
||||
return 0;
|
||||
}
|
||||
|
||||
test_norm[0] = facet->normal.x;
|
||||
test_norm[1] = facet->normal.y;
|
||||
test_norm[2] = facet->normal.z;
|
||||
|
||||
stl_normal test_norm = facet->normal;
|
||||
stl_normalize_vector(test_norm);
|
||||
if( (ABS(normal[0] - test_norm[0]) < 0.001)
|
||||
&& (ABS(normal[1] - test_norm[1]) < 0.001)
|
||||
&& (ABS(normal[2] - test_norm[2]) < 0.001)) {
|
||||
normal_dif = (normal - test_norm).cwiseAbs();
|
||||
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
||||
if(normal_fix_flag) {
|
||||
facet->normal.x = normal[0];
|
||||
facet->normal.y = normal[1];
|
||||
facet->normal.z = normal[2];
|
||||
facet->normal = normal;
|
||||
stl->stats.normals_fixed += 1;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
stl_reverse_vector(test_norm);
|
||||
if( (ABS(normal[0] - test_norm[0]) < 0.001)
|
||||
&& (ABS(normal[1] - test_norm[1]) < 0.001)
|
||||
&& (ABS(normal[2] - test_norm[2]) < 0.001)) {
|
||||
/* Facet is backwards. */
|
||||
test_norm *= -1.f;
|
||||
normal_dif = (normal - test_norm).cwiseAbs();
|
||||
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
||||
// Facet is backwards.
|
||||
if(normal_fix_flag) {
|
||||
facet->normal.x = normal[0];
|
||||
facet->normal.y = normal[1];
|
||||
facet->normal.z = normal[2];
|
||||
facet->normal = normal;
|
||||
stl->stats.normals_fixed += 1;
|
||||
}
|
||||
return 2;
|
||||
}
|
||||
if(normal_fix_flag) {
|
||||
facet->normal.x = normal[0];
|
||||
facet->normal.y = normal[1];
|
||||
facet->normal.z = normal[2];
|
||||
facet->normal = normal;
|
||||
stl->stats.normals_fixed += 1;
|
||||
}
|
||||
return 4;
|
||||
}
|
||||
|
||||
void stl_calculate_normal(float normal[], stl_facet *facet) {
|
||||
float v1[3] = {
|
||||
facet->vertex[1].x - facet->vertex[0].x,
|
||||
facet->vertex[1].y - facet->vertex[0].y,
|
||||
facet->vertex[1].z - facet->vertex[0].z
|
||||
};
|
||||
float v2[3] = {
|
||||
facet->vertex[2].x - facet->vertex[0].x,
|
||||
facet->vertex[2].y - facet->vertex[0].y,
|
||||
facet->vertex[2].z - facet->vertex[0].z
|
||||
};
|
||||
normal[0] = (float)((double)v1[1] * (double)v2[2]) - ((double)v1[2] * (double)v2[1]);
|
||||
normal[1] = (float)((double)v1[2] * (double)v2[0]) - ((double)v1[0] * (double)v2[2]);
|
||||
normal[2] = (float)((double)v1[0] * (double)v2[1]) - ((double)v1[1] * (double)v2[0]);
|
||||
}
|
||||
|
||||
void stl_normalize_vector(float v[]) {
|
||||
double length;
|
||||
double factor;
|
||||
float min_normal_length;
|
||||
|
||||
length = sqrt((double)v[0] * (double)v[0] + (double)v[1] * (double)v[1] + (double)v[2] * (double)v[2]);
|
||||
min_normal_length = 0.000000000001;
|
||||
if(length < min_normal_length) {
|
||||
v[0] = 0.0;
|
||||
v[1] = 0.0;
|
||||
v[2] = 0.0;
|
||||
return;
|
||||
}
|
||||
factor = 1.0 / length;
|
||||
v[0] *= factor;
|
||||
v[1] *= factor;
|
||||
v[2] *= factor;
|
||||
}
|
||||
|
||||
void
|
||||
stl_fix_normal_values(stl_file *stl) {
|
||||
void stl_fix_normal_values(stl_file *stl) {
|
||||
int i;
|
||||
|
||||
if (stl->error) return;
|
||||
|
|
@ -333,20 +277,16 @@ stl_fix_normal_values(stl_file *stl) {
|
|||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_reverse_all_facets(stl_file *stl) {
|
||||
int i;
|
||||
float normal[3];
|
||||
void stl_reverse_all_facets(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
stl_normal normal;
|
||||
for(int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
stl_reverse_facet(stl, i);
|
||||
stl_calculate_normal(normal, &stl->facet_start[i]);
|
||||
stl_normalize_vector(normal);
|
||||
stl->facet_start[i].normal.x = normal[0];
|
||||
stl->facet_start[i].normal.y = normal[1];
|
||||
stl->facet_start[i].normal.z = normal[2];
|
||||
stl->facet_start[i].normal = normal;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -169,7 +169,7 @@ stl_write_off(stl_file *stl, char *file) {
|
|||
|
||||
for(i = 0; i < stl->stats.shared_vertices; i++) {
|
||||
fprintf(fp, "\t%f %f %f\n",
|
||||
stl->v_shared[i].x, stl->v_shared[i].y, stl->v_shared[i].z);
|
||||
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
}
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, "\t3 %d %d %d\n", stl->v_indices[i].vertex[0],
|
||||
|
|
@ -216,10 +216,10 @@ stl_write_vrml(stl_file *stl, char *file) {
|
|||
|
||||
for(i = 0; i < (stl->stats.shared_vertices - 1); i++) {
|
||||
fprintf(fp, "\t\t\t\t%f %f %f,\n",
|
||||
stl->v_shared[i].x, stl->v_shared[i].y, stl->v_shared[i].z);
|
||||
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
}
|
||||
fprintf(fp, "\t\t\t\t%f %f %f]\n",
|
||||
stl->v_shared[i].x, stl->v_shared[i].y, stl->v_shared[i].z);
|
||||
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
fprintf(fp, "\t\t}\n");
|
||||
fprintf(fp, "\t\tDEF STLTriangles IndexedFaceSet {\n");
|
||||
fprintf(fp, "\t\t\tcoordIndex [\n");
|
||||
|
|
@ -254,7 +254,7 @@ void stl_write_obj (stl_file *stl, char *file) {
|
|||
}
|
||||
|
||||
for (i = 0; i < stl->stats.shared_vertices; i++) {
|
||||
fprintf(fp, "v %f %f %f\n", stl->v_shared[i].x, stl->v_shared[i].y, stl->v_shared[i].z);
|
||||
fprintf(fp, "v %f %f %f\n", stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
}
|
||||
for (i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, "f %d %d %d\n", stl->v_indices[i].vertex[0]+1, stl->v_indices[i].vertex[1]+1, stl->v_indices[i].vertex[2]+1);
|
||||
|
|
|
|||
|
|
@ -27,9 +27,7 @@
|
|||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#define STL_MAX(A,B) ((A)>(B)? (A):(B))
|
||||
#define STL_MIN(A,B) ((A)<(B)? (A):(B))
|
||||
#define ABS(X) ((X) < 0 ? -(X) : (X))
|
||||
#include <Eigen/Geometry>
|
||||
|
||||
// Size of the binary STL header, free form.
|
||||
#define LABEL_SIZE 80
|
||||
|
|
@ -39,31 +37,16 @@
|
|||
#define HEADER_SIZE 84
|
||||
#define STL_MIN_FILE_SIZE 284
|
||||
#define ASCII_LINES_PER_FACET 7
|
||||
// Comparing an edge by memcmp, 2x3x4 bytes = 24
|
||||
#define SIZEOF_EDGE_SORT 24
|
||||
|
||||
typedef struct {
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
} stl_vertex;
|
||||
|
||||
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_vertex;
|
||||
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_normal;
|
||||
static_assert(sizeof(stl_vertex) == 12, "size of stl_vertex incorrect");
|
||||
|
||||
typedef struct {
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
} stl_normal;
|
||||
|
||||
static_assert(sizeof(stl_normal) == 12, "size of stl_normal incorrect");
|
||||
|
||||
typedef char stl_extra[2];
|
||||
|
||||
typedef struct {
|
||||
stl_normal normal;
|
||||
stl_vertex vertex[3];
|
||||
stl_extra extra;
|
||||
char extra[2];
|
||||
} stl_facet;
|
||||
#define SIZEOF_STL_FACET 50
|
||||
|
||||
|
|
@ -81,8 +64,12 @@ typedef struct {
|
|||
} stl_edge;
|
||||
|
||||
typedef struct stl_hash_edge {
|
||||
// Key of a hash edge: 2x binary copy of a floating point vertex.
|
||||
uint32_t key[6];
|
||||
// Key of a hash edge: sorted vertices of the edge.
|
||||
unsigned char key[2 * sizeof(stl_vertex)];
|
||||
// Compare two keys.
|
||||
bool operator==(const stl_hash_edge &rhs) { return memcmp(key, rhs.key, sizeof(key)) == 0; }
|
||||
bool operator!=(const stl_hash_edge &rhs) { return ! (*this == rhs); }
|
||||
int hash(int M) const { return ((key[0] / 23 + key[1] / 19 + key[2] / 17 + key[3] /13 + key[4] / 11 + key[5] / 7 ) % M); }
|
||||
// Index of a facet owning this edge.
|
||||
int facet_number;
|
||||
// Index of this edge inside the facet with an index of facet_number.
|
||||
|
|
@ -91,8 +78,6 @@ typedef struct stl_hash_edge {
|
|||
struct stl_hash_edge *next;
|
||||
} stl_hash_edge;
|
||||
|
||||
static_assert(offsetof(stl_hash_edge, facet_number) == SIZEOF_EDGE_SORT, "size of stl_hash_edge.key incorrect");
|
||||
|
||||
typedef struct {
|
||||
// Index of a neighbor facet.
|
||||
int neighbor[3];
|
||||
|
|
@ -179,8 +164,8 @@ extern void stl_fix_normal_values(stl_file *stl);
|
|||
extern void stl_reverse_all_facets(stl_file *stl);
|
||||
extern void stl_translate(stl_file *stl, float x, float y, float z);
|
||||
extern void stl_translate_relative(stl_file *stl, float x, float y, float z);
|
||||
extern void stl_scale_versor(stl_file *stl, float versor[3]);
|
||||
extern void stl_scale(stl_file *stl, float factor);
|
||||
extern void stl_scale_versor(stl_file *stl, const stl_vertex &versor);
|
||||
inline void stl_scale(stl_file *stl, float factor) { stl_scale_versor(stl, stl_vertex(factor, factor, factor)); }
|
||||
extern void stl_rotate_x(stl_file *stl, float angle);
|
||||
extern void stl_rotate_y(stl_file *stl, float angle);
|
||||
extern void stl_rotate_z(stl_file *stl, float angle);
|
||||
|
|
@ -195,8 +180,20 @@ extern void stl_write_obj(stl_file *stl, char *file);
|
|||
extern void stl_write_off(stl_file *stl, char *file);
|
||||
extern void stl_write_dxf(stl_file *stl, char *file, char *label);
|
||||
extern void stl_write_vrml(stl_file *stl, char *file);
|
||||
extern void stl_calculate_normal(float normal[], stl_facet *facet);
|
||||
extern void stl_normalize_vector(float v[]);
|
||||
inline void stl_calculate_normal(stl_normal &normal, stl_facet *facet) {
|
||||
normal = (facet->vertex[1] - facet->vertex[0]).cross(facet->vertex[2] - facet->vertex[0]);
|
||||
}
|
||||
inline void stl_normalize_vector(stl_normal &normal) {
|
||||
double length = normal.cast<double>().norm();
|
||||
if (length < 0.000000000001)
|
||||
normal = stl_normal::Zero();
|
||||
else
|
||||
normal *= (1.0 / length);
|
||||
}
|
||||
inline bool stl_vertex_lower(const stl_vertex &a, const stl_vertex &b) {
|
||||
return (a(0) != b(0)) ? (a(0) < b(0)) :
|
||||
((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2)));
|
||||
}
|
||||
extern void stl_calculate_volume(stl_file *stl);
|
||||
|
||||
extern void stl_repair(stl_file *stl, int fixall_flag, int exact_flag, int tolerance_flag, float tolerance, int increment_flag, float increment, int nearby_flag, int iterations, int remove_unconnected_flag, int fill_holes_flag, int normal_directions_flag, int normal_values_flag, int reverse_all_flag, int verbose_flag);
|
||||
|
|
@ -204,8 +201,8 @@ extern void stl_repair(stl_file *stl, int fixall_flag, int exact_flag, int toler
|
|||
extern void stl_initialize(stl_file *stl);
|
||||
extern void stl_count_facets(stl_file *stl, const char *file);
|
||||
extern void stl_allocate(stl_file *stl);
|
||||
extern void stl_read(stl_file *stl, int first_facet, int first);
|
||||
extern void stl_facet_stats(stl_file *stl, stl_facet facet, int first);
|
||||
extern void stl_read(stl_file *stl, int first_facet, bool first);
|
||||
extern void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first);
|
||||
extern void stl_reallocate(stl_file *stl);
|
||||
extern void stl_add_facet(stl_file *stl, stl_facet *new_facet);
|
||||
extern void stl_get_size(stl_file *stl);
|
||||
|
|
|
|||
|
|
@ -44,9 +44,9 @@ stl_print_edges(stl_file *stl, FILE *file) {
|
|||
for(i = 0; i < edges_allocated; i++) {
|
||||
fprintf(file, "%d, %f, %f, %f, %f, %f, %f\n",
|
||||
stl->edge_start[i].facet_number,
|
||||
stl->edge_start[i].p1.x, stl->edge_start[i].p1.y,
|
||||
stl->edge_start[i].p1.z, stl->edge_start[i].p2.x,
|
||||
stl->edge_start[i].p2.y, stl->edge_start[i].p2.z);
|
||||
stl->edge_start[i].p1(0), stl->edge_start[i].p1(1),
|
||||
stl->edge_start[i].p1(2), stl->edge_start[i].p2(0),
|
||||
stl->edge_start[i].p2(1), stl->edge_start[i].p2(2));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -75,11 +75,11 @@ File type : ASCII STL file\n");
|
|||
Header : %s\n", stl->stats.header);
|
||||
fprintf(file, "============== Size ==============\n");
|
||||
fprintf(file, "Min X = % f, Max X = % f\n",
|
||||
stl->stats.min.x, stl->stats.max.x);
|
||||
stl->stats.min(0), stl->stats.max(0));
|
||||
fprintf(file, "Min Y = % f, Max Y = % f\n",
|
||||
stl->stats.min.y, stl->stats.max.y);
|
||||
stl->stats.min(1), stl->stats.max(1));
|
||||
fprintf(file, "Min Z = % f, Max Z = % f\n",
|
||||
stl->stats.min.z, stl->stats.max.z);
|
||||
stl->stats.min(2), stl->stats.max(2));
|
||||
|
||||
fprintf(file, "\
|
||||
========= Facet Status ========== Original ============ Final ====\n");
|
||||
|
|
@ -149,18 +149,18 @@ stl_write_ascii(stl_file *stl, const char *file, const char *label) {
|
|||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, " facet normal % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].normal.x, stl->facet_start[i].normal.y,
|
||||
stl->facet_start[i].normal.z);
|
||||
stl->facet_start[i].normal(0), stl->facet_start[i].normal(1),
|
||||
stl->facet_start[i].normal(2));
|
||||
fprintf(fp, " outer loop\n");
|
||||
fprintf(fp, " vertex % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].vertex[0].x, stl->facet_start[i].vertex[0].y,
|
||||
stl->facet_start[i].vertex[0].z);
|
||||
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
|
||||
stl->facet_start[i].vertex[0](2));
|
||||
fprintf(fp, " vertex % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].vertex[1].x, stl->facet_start[i].vertex[1].y,
|
||||
stl->facet_start[i].vertex[1].z);
|
||||
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
|
||||
stl->facet_start[i].vertex[1](2));
|
||||
fprintf(fp, " vertex % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].vertex[2].x, stl->facet_start[i].vertex[2].y,
|
||||
stl->facet_start[i].vertex[2].z);
|
||||
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2));
|
||||
fprintf(fp, " endloop\n");
|
||||
fprintf(fp, " endfacet\n");
|
||||
}
|
||||
|
|
@ -264,9 +264,9 @@ void
|
|||
stl_write_vertex(stl_file *stl, int facet, int vertex) {
|
||||
if (stl->error) return;
|
||||
printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet,
|
||||
stl->facet_start[facet].vertex[vertex].x,
|
||||
stl->facet_start[facet].vertex[vertex].y,
|
||||
stl->facet_start[facet].vertex[vertex].z);
|
||||
stl->facet_start[facet].vertex[vertex](0),
|
||||
stl->facet_start[facet].vertex[vertex](1),
|
||||
stl->facet_start[facet].vertex[vertex](2));
|
||||
}
|
||||
|
||||
void
|
||||
|
|
@ -309,10 +309,10 @@ stl_write_quad_object(stl_file *stl, char *file) {
|
|||
int i;
|
||||
int j;
|
||||
char *error_msg;
|
||||
stl_vertex connect_color;
|
||||
stl_vertex uncon_1_color;
|
||||
stl_vertex uncon_2_color;
|
||||
stl_vertex uncon_3_color;
|
||||
stl_vertex connect_color = stl_vertex::Zero();
|
||||
stl_vertex uncon_1_color = stl_vertex::Zero();
|
||||
stl_vertex uncon_2_color = stl_vertex::Zero();
|
||||
stl_vertex uncon_3_color = stl_vertex::Zero();
|
||||
stl_vertex color;
|
||||
|
||||
if (stl->error) return;
|
||||
|
|
@ -330,19 +330,6 @@ stl_write_quad_object(stl_file *stl, char *file) {
|
|||
return;
|
||||
}
|
||||
|
||||
connect_color.x = 0.0;
|
||||
connect_color.y = 0.0;
|
||||
connect_color.z = 1.0;
|
||||
uncon_1_color.x = 0.0;
|
||||
uncon_1_color.y = 1.0;
|
||||
uncon_1_color.z = 0.0;
|
||||
uncon_2_color.x = 1.0;
|
||||
uncon_2_color.y = 1.0;
|
||||
uncon_2_color.z = 1.0;
|
||||
uncon_3_color.x = 1.0;
|
||||
uncon_3_color.y = 0.0;
|
||||
uncon_3_color.z = 0.0;
|
||||
|
||||
fprintf(fp, "CQUAD\n");
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
j = ((stl->neighbors_start[i].neighbor[0] == -1) +
|
||||
|
|
@ -358,21 +345,21 @@ stl_write_quad_object(stl_file *stl, char *file) {
|
|||
color = uncon_3_color;
|
||||
}
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[0].x,
|
||||
stl->facet_start[i].vertex[0].y,
|
||||
stl->facet_start[i].vertex[0].z, color.x, color.y, color.z);
|
||||
stl->facet_start[i].vertex[0](0),
|
||||
stl->facet_start[i].vertex[0](1),
|
||||
stl->facet_start[i].vertex[0](2), color(0), color(1), color(2));
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[1].x,
|
||||
stl->facet_start[i].vertex[1].y,
|
||||
stl->facet_start[i].vertex[1].z, color.x, color.y, color.z);
|
||||
stl->facet_start[i].vertex[1](0),
|
||||
stl->facet_start[i].vertex[1](1),
|
||||
stl->facet_start[i].vertex[1](2), color(0), color(1), color(2));
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[2].x,
|
||||
stl->facet_start[i].vertex[2].y,
|
||||
stl->facet_start[i].vertex[2].z, color.x, color.y, color.z);
|
||||
stl->facet_start[i].vertex[2](0),
|
||||
stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[2].x,
|
||||
stl->facet_start[i].vertex[2].y,
|
||||
stl->facet_start[i].vertex[2].z, color.x, color.y, color.z);
|
||||
stl->facet_start[i].vertex[2](0),
|
||||
stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
|
@ -409,17 +396,17 @@ stl_write_dxf(stl_file *stl, char *file, char *label) {
|
|||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, "0\n3DFACE\n8\n0\n");
|
||||
fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n",
|
||||
stl->facet_start[i].vertex[0].x, stl->facet_start[i].vertex[0].y,
|
||||
stl->facet_start[i].vertex[0].z);
|
||||
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
|
||||
stl->facet_start[i].vertex[0](2));
|
||||
fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n",
|
||||
stl->facet_start[i].vertex[1].x, stl->facet_start[i].vertex[1].y,
|
||||
stl->facet_start[i].vertex[1].z);
|
||||
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
|
||||
stl->facet_start[i].vertex[1](2));
|
||||
fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n",
|
||||
stl->facet_start[i].vertex[2].x, stl->facet_start[i].vertex[2].y,
|
||||
stl->facet_start[i].vertex[2].z);
|
||||
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2));
|
||||
fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n",
|
||||
stl->facet_start[i].vertex[2].x, stl->facet_start[i].vertex[2].y,
|
||||
stl->facet_start[i].vertex[2].z);
|
||||
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2));
|
||||
}
|
||||
|
||||
fprintf(fp, "0\nENDSEC\n0\nEOF\n");
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@ stl_open(stl_file *stl, const char *file) {
|
|||
stl_initialize(stl);
|
||||
stl_count_facets(stl, file);
|
||||
stl_allocate(stl);
|
||||
stl_read(stl, 0, 1);
|
||||
stl_read(stl, 0, true);
|
||||
if (!stl->error) fclose(stl->fp);
|
||||
}
|
||||
|
||||
|
|
@ -227,7 +227,7 @@ stl_open_merge(stl_file *stl, char *file_to_merge) {
|
|||
Start at num_facets_so_far, the index to the first unused facet. Also say
|
||||
that this isn't our first time so we should augment stats like min and max
|
||||
instead of erasing them. */
|
||||
stl_read(stl, num_facets_so_far, 0);
|
||||
stl_read(stl, num_facets_so_far, false);
|
||||
|
||||
/* Restore the stl information we overwrote (for stl_read) so that it still accurately
|
||||
reflects the subject part: */
|
||||
|
|
@ -255,8 +255,7 @@ stl_reallocate(stl_file *stl) {
|
|||
/* Reads the contents of the file pointed to by stl->fp into the stl structure,
|
||||
starting at facet first_facet. The second argument says if it's our first
|
||||
time running this for the stl and therefore we should reset our max and min stats. */
|
||||
void
|
||||
stl_read(stl_file *stl, int first_facet, int first) {
|
||||
void stl_read(stl_file *stl, int first_facet, bool first) {
|
||||
stl_facet facet;
|
||||
int i;
|
||||
|
||||
|
|
@ -294,11 +293,11 @@ stl_read(stl_file *stl, int first_facet, int first) {
|
|||
assert(res_normal == 3);
|
||||
int res_outer_loop = fscanf(stl->fp, " outer loop");
|
||||
assert(res_outer_loop == 0);
|
||||
int res_vertex1 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[0].x, &facet.vertex[0].y, &facet.vertex[0].z);
|
||||
int res_vertex1 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
|
||||
assert(res_vertex1 == 3);
|
||||
int res_vertex2 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[1].x, &facet.vertex[1].y, &facet.vertex[1].z);
|
||||
int res_vertex2 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
|
||||
assert(res_vertex2 == 3);
|
||||
int res_vertex3 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[2].x, &facet.vertex[2].y, &facet.vertex[2].z);
|
||||
int res_vertex3 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
|
||||
assert(res_vertex3 == 3);
|
||||
int res_endloop = fscanf(stl->fp, " endloop");
|
||||
assert(res_endloop == 0);
|
||||
|
|
@ -311,9 +310,9 @@ stl_read(stl_file *stl, int first_facet, int first) {
|
|||
}
|
||||
|
||||
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal.x) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal.y) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal.z) != 1) {
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
|
||||
// Normal was mangled. Maybe denormals or "not a number" were stored?
|
||||
// Just reset the normal and silently ignore it.
|
||||
memset(&facet.normal, 0, sizeof(facet.normal));
|
||||
|
|
@ -326,104 +325,45 @@ stl_read(stl_file *stl, int first_facet, int first) {
|
|||
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
|
||||
// during the STL import.
|
||||
for (size_t j = 0; j < 3; ++ j) {
|
||||
if (facet.vertex[j].x > -1e-12f && facet.vertex[j].x < 1e-12f)
|
||||
printf("stl_read: facet %d.x = %e\r\n", j, facet.vertex[j].x);
|
||||
if (facet.vertex[j].y > -1e-12f && facet.vertex[j].y < 1e-12f)
|
||||
printf("stl_read: facet %d.y = %e\r\n", j, facet.vertex[j].y);
|
||||
if (facet.vertex[j].z > -1e-12f && facet.vertex[j].z < 1e-12f)
|
||||
printf("stl_read: facet %d.z = %e\r\n", j, facet.vertex[j].z);
|
||||
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
|
||||
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
|
||||
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
|
||||
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
|
||||
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
|
||||
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
{
|
||||
// Positive and negative zeros are possible in the floats, which are considered equal by the FP unit.
|
||||
// When using a memcmp on raw floats, those numbers report to be different.
|
||||
// Unify all +0 and -0 to +0 to make the floats equal under memcmp.
|
||||
uint32_t *f = (uint32_t*)&facet;
|
||||
for (int j = 0; j < 12; ++ j, ++ f) // 3x vertex + normal: 4x3 = 12 floats
|
||||
if (*f == 0x80000000)
|
||||
// Negative zero, switch to positive zero.
|
||||
*f = 0;
|
||||
}
|
||||
#else
|
||||
{
|
||||
// Due to the nature of the floating point numbers, close to zero values may be represented with singificantly higher precision
|
||||
// than the rest of the vertices. Round them to zero.
|
||||
float *f = (float*)&facet;
|
||||
for (int j = 0; j < 12; ++ j, ++ f) // 3x vertex + normal: 4x3 = 12 floats
|
||||
if (*f > -1e-12f && *f < 1e-12f)
|
||||
// Negative zero, switch to positive zero.
|
||||
*f = 0;
|
||||
}
|
||||
#endif
|
||||
/* Write the facet into memory. */
|
||||
memcpy(stl->facet_start+i, &facet, SIZEOF_STL_FACET);
|
||||
stl->facet_start[i] = facet;
|
||||
stl_facet_stats(stl, facet, first);
|
||||
first = 0;
|
||||
}
|
||||
stl->stats.size.x = stl->stats.max.x - stl->stats.min.x;
|
||||
stl->stats.size.y = stl->stats.max.y - stl->stats.min.y;
|
||||
stl->stats.size.z = stl->stats.max.z - stl->stats.min.z;
|
||||
stl->stats.bounding_diameter = sqrt(
|
||||
stl->stats.size.x * stl->stats.size.x +
|
||||
stl->stats.size.y * stl->stats.size.y +
|
||||
stl->stats.size.z * stl->stats.size.z
|
||||
);
|
||||
stl->stats.size = stl->stats.max - stl->stats.min;
|
||||
stl->stats.bounding_diameter = stl->stats.size.norm();
|
||||
}
|
||||
|
||||
void
|
||||
stl_facet_stats(stl_file *stl, stl_facet facet, int first) {
|
||||
float diff_x;
|
||||
float diff_y;
|
||||
float diff_z;
|
||||
float max_diff;
|
||||
void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if (stl->error) return;
|
||||
// While we are going through all of the facets, let's find the
|
||||
// maximum and minimum values for x, y, and z
|
||||
|
||||
/* while we are going through all of the facets, let's find the */
|
||||
/* maximum and minimum values for x, y, and z */
|
||||
|
||||
/* Initialize the max and min values the first time through*/
|
||||
if (first) {
|
||||
stl->stats.max.x = facet.vertex[0].x;
|
||||
stl->stats.min.x = facet.vertex[0].x;
|
||||
stl->stats.max.y = facet.vertex[0].y;
|
||||
stl->stats.min.y = facet.vertex[0].y;
|
||||
stl->stats.max.z = facet.vertex[0].z;
|
||||
stl->stats.min.z = facet.vertex[0].z;
|
||||
|
||||
diff_x = ABS(facet.vertex[0].x - facet.vertex[1].x);
|
||||
diff_y = ABS(facet.vertex[0].y - facet.vertex[1].y);
|
||||
diff_z = ABS(facet.vertex[0].z - facet.vertex[1].z);
|
||||
max_diff = STL_MAX(diff_x, diff_y);
|
||||
max_diff = STL_MAX(diff_z, max_diff);
|
||||
stl->stats.shortest_edge = max_diff;
|
||||
|
||||
first = 0;
|
||||
// Initialize the max and min values the first time through
|
||||
stl->stats.min = facet.vertex[0];
|
||||
stl->stats.max = facet.vertex[0];
|
||||
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
|
||||
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
|
||||
first = false;
|
||||
}
|
||||
|
||||
/* now find the max and min values */
|
||||
stl->stats.max.x = STL_MAX(stl->stats.max.x, facet.vertex[0].x);
|
||||
stl->stats.min.x = STL_MIN(stl->stats.min.x, facet.vertex[0].x);
|
||||
stl->stats.max.y = STL_MAX(stl->stats.max.y, facet.vertex[0].y);
|
||||
stl->stats.min.y = STL_MIN(stl->stats.min.y, facet.vertex[0].y);
|
||||
stl->stats.max.z = STL_MAX(stl->stats.max.z, facet.vertex[0].z);
|
||||
stl->stats.min.z = STL_MIN(stl->stats.min.z, facet.vertex[0].z);
|
||||
|
||||
stl->stats.max.x = STL_MAX(stl->stats.max.x, facet.vertex[1].x);
|
||||
stl->stats.min.x = STL_MIN(stl->stats.min.x, facet.vertex[1].x);
|
||||
stl->stats.max.y = STL_MAX(stl->stats.max.y, facet.vertex[1].y);
|
||||
stl->stats.min.y = STL_MIN(stl->stats.min.y, facet.vertex[1].y);
|
||||
stl->stats.max.z = STL_MAX(stl->stats.max.z, facet.vertex[1].z);
|
||||
stl->stats.min.z = STL_MIN(stl->stats.min.z, facet.vertex[1].z);
|
||||
|
||||
stl->stats.max.x = STL_MAX(stl->stats.max.x, facet.vertex[2].x);
|
||||
stl->stats.min.x = STL_MIN(stl->stats.min.x, facet.vertex[2].x);
|
||||
stl->stats.max.y = STL_MAX(stl->stats.max.y, facet.vertex[2].y);
|
||||
stl->stats.min.y = STL_MIN(stl->stats.min.y, facet.vertex[2].y);
|
||||
stl->stats.max.z = STL_MAX(stl->stats.max.z, facet.vertex[2].z);
|
||||
stl->stats.min.z = STL_MIN(stl->stats.min.z, facet.vertex[2].z);
|
||||
// Now find the max and min values.
|
||||
for (size_t i = 0; i < 3; ++ i) {
|
||||
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
|
||||
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
|
|
|
|||
|
|
@ -62,7 +62,7 @@ stl_verify_neighbors(stl_file *stl) {
|
|||
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
|
||||
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
|
||||
}
|
||||
if(memcmp(&edge_a, &edge_b, SIZEOF_EDGE_SORT) != 0) {
|
||||
if (edge_a.p1 != edge_b.p1 || edge_a.p2 != edge_b.p2) {
|
||||
/* These edges should match but they don't. Print results. */
|
||||
printf("edge %d of facet %d doesn't match edge %d of facet %d\n",
|
||||
j, i, vnot + 1, neighbor);
|
||||
|
|
@ -73,114 +73,67 @@ stl_verify_neighbors(stl_file *stl) {
|
|||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_translate(stl_file *stl, float x, float y, float z) {
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j].x -= (stl->stats.min.x - x);
|
||||
stl->facet_start[i].vertex[j].y -= (stl->stats.min.y - y);
|
||||
stl->facet_start[i].vertex[j].z -= (stl->stats.min.z - z);
|
||||
}
|
||||
}
|
||||
stl->stats.max.x -= (stl->stats.min.x - x);
|
||||
stl->stats.max.y -= (stl->stats.min.y - y);
|
||||
stl->stats.max.z -= (stl->stats.min.z - z);
|
||||
stl->stats.min.x = x;
|
||||
stl->stats.min.y = y;
|
||||
stl->stats.min.z = z;
|
||||
void stl_translate(stl_file *stl, float x, float y, float z)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
stl_vertex new_min(x, y, z);
|
||||
stl_vertex shift = new_min - stl->stats.min;
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
stl->facet_start[i].vertex[j] += shift;
|
||||
stl->stats.min = new_min;
|
||||
stl->stats.max += shift;
|
||||
stl_invalidate_shared_vertices(stl);
|
||||
}
|
||||
|
||||
/* Translates the stl by x,y,z, relatively from wherever it is currently */
|
||||
void
|
||||
stl_translate_relative(stl_file *stl, float x, float y, float z) {
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j].x += x;
|
||||
stl->facet_start[i].vertex[j].y += y;
|
||||
stl->facet_start[i].vertex[j].z += z;
|
||||
}
|
||||
}
|
||||
stl->stats.min.x += x;
|
||||
stl->stats.min.y += y;
|
||||
stl->stats.min.z += z;
|
||||
stl->stats.max.x += x;
|
||||
stl->stats.max.y += y;
|
||||
stl->stats.max.z += z;
|
||||
void stl_translate_relative(stl_file *stl, float x, float y, float z)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
stl_vertex shift(x, y, z);
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
stl->facet_start[i].vertex[j] += shift;
|
||||
stl->stats.min += shift;
|
||||
stl->stats.max += shift;
|
||||
stl_invalidate_shared_vertices(stl);
|
||||
}
|
||||
|
||||
void
|
||||
stl_scale_versor(stl_file *stl, float versor[3]) {
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* scale extents */
|
||||
stl->stats.min.x *= versor[0];
|
||||
stl->stats.min.y *= versor[1];
|
||||
stl->stats.min.z *= versor[2];
|
||||
stl->stats.max.x *= versor[0];
|
||||
stl->stats.max.y *= versor[1];
|
||||
stl->stats.max.z *= versor[2];
|
||||
|
||||
/* scale size */
|
||||
stl->stats.size.x *= versor[0];
|
||||
stl->stats.size.y *= versor[1];
|
||||
stl->stats.size.z *= versor[2];
|
||||
|
||||
/* scale volume */
|
||||
if (stl->stats.volume > 0.0) {
|
||||
stl->stats.volume *= (versor[0] * versor[1] * versor[2]);
|
||||
}
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j].x *= versor[0];
|
||||
stl->facet_start[i].vertex[j].y *= versor[1];
|
||||
stl->facet_start[i].vertex[j].z *= versor[2];
|
||||
}
|
||||
}
|
||||
void stl_scale_versor(stl_file *stl, const stl_vertex &versor)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
// Scale extents.
|
||||
auto s = versor.array();
|
||||
stl->stats.min.array() *= s;
|
||||
stl->stats.max.array() *= s;
|
||||
// Scale size.
|
||||
stl->stats.size.array() *= s;
|
||||
// Scale volume.
|
||||
if (stl->stats.volume > 0.0)
|
||||
stl->stats.volume *= versor(0) * versor(1) * versor(2);
|
||||
// Scale the mesh.
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
stl->facet_start[i].vertex[j].array() *= s;
|
||||
stl_invalidate_shared_vertices(stl);
|
||||
}
|
||||
|
||||
void
|
||||
stl_scale(stl_file *stl, float factor) {
|
||||
float versor[3];
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
versor[0] = factor;
|
||||
versor[1] = factor;
|
||||
versor[2] = factor;
|
||||
stl_scale_versor(stl, versor);
|
||||
}
|
||||
|
||||
static void calculate_normals(stl_file *stl) {
|
||||
float normal[3];
|
||||
|
||||
if (stl->error) return;
|
||||
static void calculate_normals(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
stl_normal normal;
|
||||
for(uint32_t i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
stl_calculate_normal(normal, &stl->facet_start[i]);
|
||||
stl_normalize_vector(normal);
|
||||
stl->facet_start[i].normal.x = normal[0];
|
||||
stl->facet_start[i].normal.y = normal[1];
|
||||
stl->facet_start[i].normal.z = normal[2];
|
||||
stl->facet_start[i].normal = normal;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -193,9 +146,9 @@ void stl_transform(stl_file *stl, float *trafo3x4) {
|
|||
for (i_vertex = 0; i_vertex < 3; ++ i_vertex) {
|
||||
stl_vertex &v_dst = vertices[i_vertex];
|
||||
stl_vertex v_src = v_dst;
|
||||
v_dst.x = trafo3x4[0] * v_src.x + trafo3x4[1] * v_src.y + trafo3x4[2] * v_src.z + trafo3x4[3];
|
||||
v_dst.y = trafo3x4[4] * v_src.x + trafo3x4[5] * v_src.y + trafo3x4[6] * v_src.z + trafo3x4[7];
|
||||
v_dst.z = trafo3x4[8] * v_src.x + trafo3x4[9] * v_src.y + trafo3x4[10] * v_src.z + trafo3x4[11];
|
||||
v_dst(0) = trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3];
|
||||
v_dst(1) = trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7];
|
||||
v_dst(2) = trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11];
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
|
|
@ -214,8 +167,8 @@ stl_rotate_x(stl_file *stl, float angle) {
|
|||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl_rotate(&stl->facet_start[i].vertex[j].y,
|
||||
&stl->facet_start[i].vertex[j].z, c, s);
|
||||
stl_rotate(&stl->facet_start[i].vertex[j](1),
|
||||
&stl->facet_start[i].vertex[j](2), c, s);
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
|
|
@ -234,8 +187,8 @@ stl_rotate_y(stl_file *stl, float angle) {
|
|||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl_rotate(&stl->facet_start[i].vertex[j].z,
|
||||
&stl->facet_start[i].vertex[j].x, c, s);
|
||||
stl_rotate(&stl->facet_start[i].vertex[j](2),
|
||||
&stl->facet_start[i].vertex[j](0), c, s);
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
|
|
@ -254,8 +207,8 @@ stl_rotate_z(stl_file *stl, float angle) {
|
|||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl_rotate(&stl->facet_start[i].vertex[j].x,
|
||||
&stl->facet_start[i].vertex[j].y, c, s);
|
||||
stl_rotate(&stl->facet_start[i].vertex[j](0),
|
||||
&stl->facet_start[i].vertex[j](1), c, s);
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
|
|
@ -272,142 +225,98 @@ stl_rotate(float *x, float *y, const double c, const double s) {
|
|||
*y = float(s * xold + c * yold);
|
||||
}
|
||||
|
||||
extern void
|
||||
stl_get_size(stl_file *stl) {
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
if (stl->stats.number_of_facets == 0) return;
|
||||
|
||||
stl->stats.min.x = stl->facet_start[0].vertex[0].x;
|
||||
stl->stats.min.y = stl->facet_start[0].vertex[0].y;
|
||||
stl->stats.min.z = stl->facet_start[0].vertex[0].z;
|
||||
stl->stats.max.x = stl->facet_start[0].vertex[0].x;
|
||||
stl->stats.max.y = stl->facet_start[0].vertex[0].y;
|
||||
stl->stats.max.z = stl->facet_start[0].vertex[0].z;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl->stats.min.x = STL_MIN(stl->stats.min.x,
|
||||
stl->facet_start[i].vertex[j].x);
|
||||
stl->stats.min.y = STL_MIN(stl->stats.min.y,
|
||||
stl->facet_start[i].vertex[j].y);
|
||||
stl->stats.min.z = STL_MIN(stl->stats.min.z,
|
||||
stl->facet_start[i].vertex[j].z);
|
||||
stl->stats.max.x = STL_MAX(stl->stats.max.x,
|
||||
stl->facet_start[i].vertex[j].x);
|
||||
stl->stats.max.y = STL_MAX(stl->stats.max.y,
|
||||
stl->facet_start[i].vertex[j].y);
|
||||
stl->stats.max.z = STL_MAX(stl->stats.max.z,
|
||||
stl->facet_start[i].vertex[j].z);
|
||||
void stl_get_size(stl_file *stl)
|
||||
{
|
||||
if (stl->error || stl->stats.number_of_facets == 0)
|
||||
return;
|
||||
stl->stats.min = stl->facet_start[0].vertex[0];
|
||||
stl->stats.max = stl->stats.min;
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
const stl_facet &face = stl->facet_start[i];
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
stl->stats.min = stl->stats.min.cwiseMin(face.vertex[j]);
|
||||
stl->stats.max = stl->stats.max.cwiseMax(face.vertex[j]);
|
||||
}
|
||||
}
|
||||
stl->stats.size.x = stl->stats.max.x - stl->stats.min.x;
|
||||
stl->stats.size.y = stl->stats.max.y - stl->stats.min.y;
|
||||
stl->stats.size.z = stl->stats.max.z - stl->stats.min.z;
|
||||
stl->stats.bounding_diameter = sqrt(
|
||||
stl->stats.size.x * stl->stats.size.x +
|
||||
stl->stats.size.y * stl->stats.size.y +
|
||||
stl->stats.size.z * stl->stats.size.z
|
||||
);
|
||||
stl->stats.size = stl->stats.max - stl->stats.min;
|
||||
stl->stats.bounding_diameter = stl->stats.size.norm();
|
||||
}
|
||||
|
||||
void
|
||||
stl_mirror_xy(stl_file *stl) {
|
||||
int i;
|
||||
int j;
|
||||
float temp_size;
|
||||
void stl_mirror_xy(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j].z *= -1.0;
|
||||
for(int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(int j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j](2) *= -1.0;
|
||||
}
|
||||
}
|
||||
temp_size = stl->stats.min.z;
|
||||
stl->stats.min.z = stl->stats.max.z;
|
||||
stl->stats.max.z = temp_size;
|
||||
stl->stats.min.z *= -1.0;
|
||||
stl->stats.max.z *= -1.0;
|
||||
float temp_size = stl->stats.min(2);
|
||||
stl->stats.min(2) = stl->stats.max(2);
|
||||
stl->stats.max(2) = temp_size;
|
||||
stl->stats.min(2) *= -1.0;
|
||||
stl->stats.max(2) *= -1.0;
|
||||
stl_reverse_all_facets(stl);
|
||||
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
|
||||
}
|
||||
|
||||
void
|
||||
stl_mirror_yz(stl_file *stl) {
|
||||
int i;
|
||||
int j;
|
||||
float temp_size;
|
||||
|
||||
void stl_mirror_yz(stl_file *stl)
|
||||
{
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j].x *= -1.0;
|
||||
for (int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j](0) *= -1.0;
|
||||
}
|
||||
}
|
||||
temp_size = stl->stats.min.x;
|
||||
stl->stats.min.x = stl->stats.max.x;
|
||||
stl->stats.max.x = temp_size;
|
||||
stl->stats.min.x *= -1.0;
|
||||
stl->stats.max.x *= -1.0;
|
||||
float temp_size = stl->stats.min(0);
|
||||
stl->stats.min(0) = stl->stats.max(0);
|
||||
stl->stats.max(0) = temp_size;
|
||||
stl->stats.min(0) *= -1.0;
|
||||
stl->stats.max(0) *= -1.0;
|
||||
stl_reverse_all_facets(stl);
|
||||
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
|
||||
}
|
||||
|
||||
void
|
||||
stl_mirror_xz(stl_file *stl) {
|
||||
int i;
|
||||
int j;
|
||||
float temp_size;
|
||||
void stl_mirror_xz(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j].y *= -1.0;
|
||||
for (int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j](1) *= -1.0;
|
||||
}
|
||||
}
|
||||
temp_size = stl->stats.min.y;
|
||||
stl->stats.min.y = stl->stats.max.y;
|
||||
stl->stats.max.y = temp_size;
|
||||
stl->stats.min.y *= -1.0;
|
||||
stl->stats.max.y *= -1.0;
|
||||
float temp_size = stl->stats.min(1);
|
||||
stl->stats.min(1) = stl->stats.max(1);
|
||||
stl->stats.max(1) = temp_size;
|
||||
stl->stats.min(1) *= -1.0;
|
||||
stl->stats.max(1) *= -1.0;
|
||||
stl_reverse_all_facets(stl);
|
||||
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
|
||||
}
|
||||
|
||||
static float get_volume(stl_file *stl) {
|
||||
stl_vertex p0;
|
||||
stl_vertex p;
|
||||
stl_normal n;
|
||||
float height;
|
||||
float area;
|
||||
float volume = 0.0;
|
||||
static float get_volume(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return 0;
|
||||
|
||||
if (stl->error) return 0;
|
||||
|
||||
/* Choose a point, any point as the reference */
|
||||
p0.x = stl->facet_start[0].vertex[0].x;
|
||||
p0.y = stl->facet_start[0].vertex[0].y;
|
||||
p0.z = stl->facet_start[0].vertex[0].z;
|
||||
|
||||
for(uint32_t i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
p.x = stl->facet_start[i].vertex[0].x - p0.x;
|
||||
p.y = stl->facet_start[i].vertex[0].y - p0.y;
|
||||
p.z = stl->facet_start[i].vertex[0].z - p0.z;
|
||||
/* Do dot product to get distance from point to plane */
|
||||
n = stl->facet_start[i].normal;
|
||||
height = (n.x * p.x) + (n.y * p.y) + (n.z * p.z);
|
||||
area = get_area(&stl->facet_start[i]);
|
||||
// Choose a point, any point as the reference.
|
||||
stl_vertex p0 = stl->facet_start[0].vertex[0];
|
||||
float volume = 0.f;
|
||||
for(uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
// Do dot product to get distance from point to plane.
|
||||
float height = stl->facet_start[i].normal.dot(stl->facet_start[i].vertex[0] - p0);
|
||||
float area = get_area(&stl->facet_start[i]);
|
||||
volume += (area * height) / 3.0f;
|
||||
}
|
||||
return volume;
|
||||
}
|
||||
|
||||
void stl_calculate_volume(stl_file *stl) {
|
||||
void stl_calculate_volume(stl_file *stl)
|
||||
{
|
||||
if (stl->error) return;
|
||||
stl->stats.volume = get_volume(stl);
|
||||
if(stl->stats.volume < 0.0) {
|
||||
|
|
@ -416,35 +325,32 @@ void stl_calculate_volume(stl_file *stl) {
|
|||
}
|
||||
}
|
||||
|
||||
static float get_area(stl_facet *facet) {
|
||||
double cross[3][3];
|
||||
float sum[3];
|
||||
float n[3];
|
||||
float area;
|
||||
int i;
|
||||
|
||||
static float get_area(stl_facet *facet)
|
||||
{
|
||||
/* cast to double before calculating cross product because large coordinates
|
||||
can result in overflowing product
|
||||
(bad area is responsible for bad volume and bad facets reversal) */
|
||||
for(i = 0; i < 3; i++) {
|
||||
cross[i][0]=(((double)facet->vertex[i].y * (double)facet->vertex[(i + 1) % 3].z) -
|
||||
((double)facet->vertex[i].z * (double)facet->vertex[(i + 1) % 3].y));
|
||||
cross[i][1]=(((double)facet->vertex[i].z * (double)facet->vertex[(i + 1) % 3].x) -
|
||||
((double)facet->vertex[i].x * (double)facet->vertex[(i + 1) % 3].z));
|
||||
cross[i][2]=(((double)facet->vertex[i].x * (double)facet->vertex[(i + 1) % 3].y) -
|
||||
((double)facet->vertex[i].y * (double)facet->vertex[(i + 1) % 3].x));
|
||||
double cross[3][3];
|
||||
for (int i = 0; i < 3; i++) {
|
||||
cross[i][0]=(((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](2)) -
|
||||
((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](1)));
|
||||
cross[i][1]=(((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](0)) -
|
||||
((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](2)));
|
||||
cross[i][2]=(((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](1)) -
|
||||
((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](0)));
|
||||
}
|
||||
|
||||
sum[0] = cross[0][0] + cross[1][0] + cross[2][0];
|
||||
sum[1] = cross[0][1] + cross[1][1] + cross[2][1];
|
||||
sum[2] = cross[0][2] + cross[1][2] + cross[2][2];
|
||||
stl_normal sum;
|
||||
sum(0) = cross[0][0] + cross[1][0] + cross[2][0];
|
||||
sum(1) = cross[0][1] + cross[1][1] + cross[2][1];
|
||||
sum(2) = cross[0][2] + cross[1][2] + cross[2][2];
|
||||
|
||||
/* This should already be done. But just in case, let's do it again */
|
||||
// This should already be done. But just in case, let's do it again.
|
||||
//FIXME this is questionable. the "sum" normal should be accurate, while the normal "n" may be calculated with a low accuracy.
|
||||
stl_normal n;
|
||||
stl_calculate_normal(n, facet);
|
||||
stl_normalize_vector(n);
|
||||
|
||||
area = 0.5 * (n[0] * sum[0] + n[1] * sum[1] + n[2] * sum[2]);
|
||||
return area;
|
||||
return 0.5f * n.dot(sum);
|
||||
}
|
||||
|
||||
void stl_repair(stl_file *stl,
|
||||
|
|
|
|||
|
|
@ -7,9 +7,9 @@
|
|||
namespace Slic3r {
|
||||
|
||||
template BoundingBoxBase<Point>::BoundingBoxBase(const std::vector<Point> &points);
|
||||
template BoundingBoxBase<Pointf>::BoundingBoxBase(const std::vector<Pointf> &points);
|
||||
template BoundingBoxBase<Vec2d>::BoundingBoxBase(const std::vector<Vec2d> &points);
|
||||
|
||||
template BoundingBox3Base<Pointf3>::BoundingBox3Base(const std::vector<Pointf3> &points);
|
||||
template BoundingBox3Base<Vec3d>::BoundingBox3Base(const std::vector<Vec3d> &points);
|
||||
|
||||
BoundingBox::BoundingBox(const Lines &lines)
|
||||
{
|
||||
|
|
@ -22,8 +22,7 @@ BoundingBox::BoundingBox(const Lines &lines)
|
|||
*this = BoundingBox(points);
|
||||
}
|
||||
|
||||
void
|
||||
BoundingBox::polygon(Polygon* polygon) const
|
||||
void BoundingBox::polygon(Polygon* polygon) const
|
||||
{
|
||||
polygon->points.clear();
|
||||
polygon->points.resize(4);
|
||||
|
|
@ -37,8 +36,7 @@ BoundingBox::polygon(Polygon* polygon) const
|
|||
polygon->points[3](1) = this->max(1);
|
||||
}
|
||||
|
||||
Polygon
|
||||
BoundingBox::polygon() const
|
||||
Polygon BoundingBox::polygon() const
|
||||
{
|
||||
Polygon p;
|
||||
this->polygon(&p);
|
||||
|
|
@ -72,24 +70,23 @@ BoundingBoxBase<PointClass>::scale(double factor)
|
|||
this->max *= factor;
|
||||
}
|
||||
template void BoundingBoxBase<Point>::scale(double factor);
|
||||
template void BoundingBoxBase<Pointf>::scale(double factor);
|
||||
template void BoundingBoxBase<Pointf3>::scale(double factor);
|
||||
template void BoundingBoxBase<Vec2d>::scale(double factor);
|
||||
template void BoundingBoxBase<Vec3d>::scale(double factor);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min(0) = std::min(point(0), this->min(0));
|
||||
this->min(1) = std::min(point(1), this->min(1));
|
||||
this->max(0) = std::max(point(0), this->max(0));
|
||||
this->max(1) = std::max(point(1), this->max(1));
|
||||
this->min = this->min.cwiseMin(point);
|
||||
this->max = this->max.cwiseMax(point);
|
||||
} else {
|
||||
this->min = this->max = point;
|
||||
this->min = point;
|
||||
this->max = point;
|
||||
this->defined = true;
|
||||
}
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const Point &point);
|
||||
template void BoundingBoxBase<Pointf>::merge(const Pointf &point);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const Vec2d &point);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const std::vector<PointClass> &points)
|
||||
|
|
@ -97,7 +94,7 @@ BoundingBoxBase<PointClass>::merge(const std::vector<PointClass> &points)
|
|||
this->merge(BoundingBoxBase(points));
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const Points &points);
|
||||
template void BoundingBoxBase<Pointf>::merge(const Pointfs &points);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const Pointfs &points);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
||||
|
|
@ -105,10 +102,8 @@ BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
|||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min(0) = std::min(bb.min(0), this->min(0));
|
||||
this->min(1) = std::min(bb.min(1), this->min(1));
|
||||
this->max(0) = std::max(bb.max(0), this->max(0));
|
||||
this->max(1) = std::max(bb.max(1), this->max(1));
|
||||
this->min = this->min.cwiseMin(bb.min);
|
||||
this->max = this->max.cwiseMax(bb.max);
|
||||
} else {
|
||||
this->min = bb.min;
|
||||
this->max = bb.max;
|
||||
|
|
@ -117,25 +112,28 @@ BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
|
|||
}
|
||||
}
|
||||
template void BoundingBoxBase<Point>::merge(const BoundingBoxBase<Point> &bb);
|
||||
template void BoundingBoxBase<Pointf>::merge(const BoundingBoxBase<Pointf> &bb);
|
||||
template void BoundingBoxBase<Vec2d>::merge(const BoundingBoxBase<Vec2d> &bb);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const PointClass &point)
|
||||
{
|
||||
if (this->defined) {
|
||||
this->min(2) = std::min(point(2), this->min(2));
|
||||
this->max(2) = std::max(point(2), this->max(2));
|
||||
this->min = this->min.cwiseMin(point);
|
||||
this->max = this->max.cwiseMax(point);
|
||||
} else {
|
||||
this->min = point;
|
||||
this->max = point;
|
||||
this->defined = true;
|
||||
}
|
||||
BoundingBoxBase<PointClass>::merge(point);
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::merge(const Pointf3 &point);
|
||||
template void BoundingBox3Base<Vec3d>::merge(const Vec3d &point);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const std::vector<PointClass> &points)
|
||||
{
|
||||
this->merge(BoundingBox3Base(points));
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::merge(const Pointf3s &points);
|
||||
template void BoundingBox3Base<Vec3d>::merge(const Pointf3s &points);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
|
||||
|
|
@ -143,13 +141,16 @@ BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
|
|||
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1) || bb.min(2) >= bb.max(2));
|
||||
if (bb.defined) {
|
||||
if (this->defined) {
|
||||
this->min(2) = std::min(bb.min(2), this->min(2));
|
||||
this->max(2) = std::max(bb.max(2), this->max(2));
|
||||
this->min = this->min.cwiseMin(bb.min);
|
||||
this->max = this->max.cwiseMax(bb.max);
|
||||
} else {
|
||||
this->min = bb.min;
|
||||
this->max = bb.max;
|
||||
this->defined = true;
|
||||
}
|
||||
BoundingBoxBase<PointClass>::merge(bb);
|
||||
}
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::merge(const BoundingBox3Base<Pointf3> &bb);
|
||||
template void BoundingBox3Base<Vec3d>::merge(const BoundingBox3Base<Vec3d> &bb);
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::size() const
|
||||
|
|
@ -157,14 +158,14 @@ BoundingBoxBase<PointClass>::size() const
|
|||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1));
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::size() const;
|
||||
template Pointf BoundingBoxBase<Pointf>::size() const;
|
||||
template Vec2d BoundingBoxBase<Vec2d>::size() const;
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::size() const
|
||||
{
|
||||
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1), this->max(2) - this->min(2));
|
||||
}
|
||||
template Pointf3 BoundingBox3Base<Pointf3>::size() const;
|
||||
template Vec3d BoundingBox3Base<Vec3d>::size() const;
|
||||
|
||||
template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
|
||||
{
|
||||
|
|
@ -174,7 +175,7 @@ template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
|
|||
return 0.5 * sqrt(x*x+y*y);
|
||||
}
|
||||
template double BoundingBoxBase<Point>::radius() const;
|
||||
template double BoundingBoxBase<Pointf>::radius() const;
|
||||
template double BoundingBoxBase<Vec2d>::radius() const;
|
||||
|
||||
template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
|
||||
{
|
||||
|
|
@ -183,7 +184,7 @@ template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
|
|||
double z = this->max(2) - this->min(2);
|
||||
return 0.5 * sqrt(x*x+y*y+z*z);
|
||||
}
|
||||
template double BoundingBox3Base<Pointf3>::radius() const;
|
||||
template double BoundingBox3Base<Vec3d>::radius() const;
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBoxBase<PointClass>::offset(coordf_t delta)
|
||||
|
|
@ -193,7 +194,7 @@ BoundingBoxBase<PointClass>::offset(coordf_t delta)
|
|||
this->max += v;
|
||||
}
|
||||
template void BoundingBoxBase<Point>::offset(coordf_t delta);
|
||||
template void BoundingBoxBase<Pointf>::offset(coordf_t delta);
|
||||
template void BoundingBoxBase<Vec2d>::offset(coordf_t delta);
|
||||
|
||||
template <class PointClass> void
|
||||
BoundingBox3Base<PointClass>::offset(coordf_t delta)
|
||||
|
|
@ -202,29 +203,22 @@ BoundingBox3Base<PointClass>::offset(coordf_t delta)
|
|||
this->min -= v;
|
||||
this->max += v;
|
||||
}
|
||||
template void BoundingBox3Base<Pointf3>::offset(coordf_t delta);
|
||||
template void BoundingBox3Base<Vec3d>::offset(coordf_t delta);
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBoxBase<PointClass>::center() const
|
||||
{
|
||||
return PointClass(
|
||||
(this->max(0) + this->min(0))/2,
|
||||
(this->max(1) + this->min(1))/2
|
||||
);
|
||||
return (this->min + this->max) / 2;
|
||||
}
|
||||
template Point BoundingBoxBase<Point>::center() const;
|
||||
template Pointf BoundingBoxBase<Pointf>::center() const;
|
||||
template Vec2d BoundingBoxBase<Vec2d>::center() const;
|
||||
|
||||
template <class PointClass> PointClass
|
||||
BoundingBox3Base<PointClass>::center() const
|
||||
{
|
||||
return PointClass(
|
||||
(this->max(0) + this->min(0))/2,
|
||||
(this->max(1) + this->min(1))/2,
|
||||
(this->max(2) + this->min(2))/2
|
||||
);
|
||||
return (this->min + this->max) / 2;
|
||||
}
|
||||
template Pointf3 BoundingBox3Base<Pointf3>::center() const;
|
||||
template Vec3d BoundingBox3Base<Vec3d>::center() const;
|
||||
|
||||
template <class PointClass> coordf_t
|
||||
BoundingBox3Base<PointClass>::max_size() const
|
||||
|
|
@ -232,7 +226,7 @@ BoundingBox3Base<PointClass>::max_size() const
|
|||
PointClass s = size();
|
||||
return std::max(s(0), std::max(s(1), s(2)));
|
||||
}
|
||||
template coordf_t BoundingBox3Base<Pointf3>::max_size() const;
|
||||
template coordf_t BoundingBox3Base<Vec3d>::max_size() const;
|
||||
|
||||
// Align a coordinate to a grid. The coordinate may be negative,
|
||||
// the aligned value will never be bigger than the original one.
|
||||
|
|
@ -255,39 +249,35 @@ void BoundingBox::align_to_grid(const coord_t cell_size)
|
|||
}
|
||||
}
|
||||
|
||||
BoundingBoxf3 BoundingBoxf3::transformed(const Transform3f& matrix) const
|
||||
BoundingBoxf3 BoundingBoxf3::transformed(const Transform3d& matrix) const
|
||||
{
|
||||
Eigen::Matrix<float, 3, 8, Eigen::DontAlign> vertices;
|
||||
typedef Eigen::Matrix<double, 3, 8, Eigen::DontAlign> Vertices;
|
||||
|
||||
vertices(0, 0) = (float)min(0); vertices(1, 0) = (float)min(1); vertices(2, 0) = (float)min(2);
|
||||
vertices(0, 1) = (float)max(0); vertices(1, 1) = (float)min(1); vertices(2, 1) = (float)min(2);
|
||||
vertices(0, 2) = (float)max(0); vertices(1, 2) = (float)max(1); vertices(2, 2) = (float)min(2);
|
||||
vertices(0, 3) = (float)min(0); vertices(1, 3) = (float)max(1); vertices(2, 3) = (float)min(2);
|
||||
vertices(0, 4) = (float)min(0); vertices(1, 4) = (float)min(1); vertices(2, 4) = (float)max(2);
|
||||
vertices(0, 5) = (float)max(0); vertices(1, 5) = (float)min(1); vertices(2, 5) = (float)max(2);
|
||||
vertices(0, 6) = (float)max(0); vertices(1, 6) = (float)max(1); vertices(2, 6) = (float)max(2);
|
||||
vertices(0, 7) = (float)min(0); vertices(1, 7) = (float)max(1); vertices(2, 7) = (float)max(2);
|
||||
Vertices src_vertices;
|
||||
src_vertices(0, 0) = min(0); src_vertices(1, 0) = min(1); src_vertices(2, 0) = min(2);
|
||||
src_vertices(0, 1) = max(0); src_vertices(1, 1) = min(1); src_vertices(2, 1) = min(2);
|
||||
src_vertices(0, 2) = max(0); src_vertices(1, 2) = max(1); src_vertices(2, 2) = min(2);
|
||||
src_vertices(0, 3) = min(0); src_vertices(1, 3) = max(1); src_vertices(2, 3) = min(2);
|
||||
src_vertices(0, 4) = min(0); src_vertices(1, 4) = min(1); src_vertices(2, 4) = max(2);
|
||||
src_vertices(0, 5) = max(0); src_vertices(1, 5) = min(1); src_vertices(2, 5) = max(2);
|
||||
src_vertices(0, 6) = max(0); src_vertices(1, 6) = max(1); src_vertices(2, 6) = max(2);
|
||||
src_vertices(0, 7) = min(0); src_vertices(1, 7) = max(1); src_vertices(2, 7) = max(2);
|
||||
|
||||
Eigen::Matrix<float, 3, 8, Eigen::DontAlign> transf_vertices = matrix * vertices.colwise().homogeneous();
|
||||
Vertices dst_vertices = matrix * src_vertices.colwise().homogeneous();
|
||||
|
||||
float min_x = transf_vertices(0, 0);
|
||||
float max_x = transf_vertices(0, 0);
|
||||
float min_y = transf_vertices(1, 0);
|
||||
float max_y = transf_vertices(1, 0);
|
||||
float min_z = transf_vertices(2, 0);
|
||||
float max_z = transf_vertices(2, 0);
|
||||
Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
|
||||
Vec3d v_max = v_min;
|
||||
|
||||
for (int i = 1; i < 8; ++i)
|
||||
{
|
||||
min_x = std::min(min_x, transf_vertices(0, i));
|
||||
max_x = std::max(max_x, transf_vertices(0, i));
|
||||
min_y = std::min(min_y, transf_vertices(1, i));
|
||||
max_y = std::max(max_y, transf_vertices(1, i));
|
||||
min_z = std::min(min_z, transf_vertices(2, i));
|
||||
max_z = std::max(max_z, transf_vertices(2, i));
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
v_min(j) = std::min(v_min(j), dst_vertices(j, i));
|
||||
v_max(j) = std::max(v_max(j), dst_vertices(j, i));
|
||||
}
|
||||
}
|
||||
|
||||
return BoundingBoxf3(Pointf3((coordf_t)min_x, (coordf_t)min_y, (coordf_t)min_z), Pointf3((coordf_t)max_x, (coordf_t)max_y, (coordf_t)max_z));
|
||||
return BoundingBoxf3(v_min, v_max);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -7,11 +7,6 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
typedef Point Size;
|
||||
typedef Point3 Size3;
|
||||
typedef Pointf Sizef;
|
||||
typedef Pointf3 Sizef3;
|
||||
|
||||
template <class PointClass>
|
||||
class BoundingBoxBase
|
||||
{
|
||||
|
|
@ -20,23 +15,20 @@ public:
|
|||
PointClass max;
|
||||
bool defined;
|
||||
|
||||
BoundingBoxBase() : defined(false) {};
|
||||
BoundingBoxBase() : defined(false), min(PointClass::Zero()), max(PointClass::Zero()) {}
|
||||
BoundingBoxBase(const PointClass &pmin, const PointClass &pmax) :
|
||||
min(pmin), max(pmax), defined(pmin(0) < pmax(0) && pmin(1) < pmax(1)) {}
|
||||
BoundingBoxBase(const std::vector<PointClass>& points)
|
||||
BoundingBoxBase(const std::vector<PointClass>& points) : min(PointClass::Zero()), max(PointClass::Zero())
|
||||
{
|
||||
if (points.empty())
|
||||
CONFESS("Empty point set supplied to BoundingBoxBase constructor");
|
||||
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min(0) = this->max(0) = (*it)(0);
|
||||
this->min(1) = this->max(1) = (*it)(1);
|
||||
for (++it; it != points.end(); ++it)
|
||||
{
|
||||
this->min(0) = std::min((*it)(0), this->min(0));
|
||||
this->min(1) = std::min((*it)(1), this->min(1));
|
||||
this->max(0) = std::max((*it)(0), this->max(0));
|
||||
this->max(1) = std::max((*it)(1), this->max(1));
|
||||
this->min = *it;
|
||||
this->max = *it;
|
||||
for (++ it; it != points.end(); ++ it) {
|
||||
this->min = this->min.cwiseMin(*it);
|
||||
this->max = this->max.cwiseMax(*it);
|
||||
}
|
||||
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1));
|
||||
}
|
||||
|
|
@ -47,7 +39,7 @@ public:
|
|||
PointClass size() const;
|
||||
double radius() const;
|
||||
void translate(coordf_t x, coordf_t y) { assert(this->defined); PointClass v(x, y); this->min += v; this->max += v; }
|
||||
void translate(const Pointf &v) { this->min += v; this->max += v; }
|
||||
void translate(const Vec2d &v) { this->min += v; this->max += v; }
|
||||
void offset(coordf_t delta);
|
||||
PointClass center() const;
|
||||
bool contains(const PointClass &point) const {
|
||||
|
|
@ -71,19 +63,17 @@ public:
|
|||
BoundingBoxBase<PointClass>(pmin, pmax)
|
||||
{ if (pmin(2) >= pmax(2)) BoundingBoxBase<PointClass>::defined = false; }
|
||||
BoundingBox3Base(const std::vector<PointClass>& points)
|
||||
: BoundingBoxBase<PointClass>(points)
|
||||
{
|
||||
if (points.empty())
|
||||
CONFESS("Empty point set supplied to BoundingBox3Base constructor");
|
||||
|
||||
typename std::vector<PointClass>::const_iterator it = points.begin();
|
||||
this->min(2) = this->max(2) = (*it)(2);
|
||||
for (++it; it != points.end(); ++it)
|
||||
{
|
||||
this->min(2) = std::min((*it)(2), this->min(2));
|
||||
this->max(2) = std::max((*it)(2), this->max(2));
|
||||
this->min = *it;
|
||||
this->max = *it;
|
||||
for (++ it; it != points.end(); ++ it) {
|
||||
this->min = this->min.cwiseMin(*it);
|
||||
this->max = this->max.cwiseMax(*it);
|
||||
}
|
||||
this->defined &= (this->min(2) < this->max(2));
|
||||
this->defined = (this->min(0) < this->max(0)) && (this->min(1) < this->max(1)) && (this->min(2) < this->max(2));
|
||||
}
|
||||
void merge(const PointClass &point);
|
||||
void merge(const std::vector<PointClass> &points);
|
||||
|
|
@ -91,7 +81,7 @@ public:
|
|||
PointClass size() const;
|
||||
double radius() const;
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z) { assert(this->defined); PointClass v(x, y, z); this->min += v; this->max += v; }
|
||||
void translate(const Pointf3 &v) { this->min += v; this->max += v; }
|
||||
void translate(const Vec3d &v) { this->min += v; this->max += v; }
|
||||
void offset(coordf_t delta);
|
||||
PointClass center() const;
|
||||
coordf_t max_size() const;
|
||||
|
|
@ -130,30 +120,30 @@ public:
|
|||
friend BoundingBox get_extents_rotated(const Points &points, double angle);
|
||||
};
|
||||
|
||||
class BoundingBox3 : public BoundingBox3Base<Point3>
|
||||
class BoundingBox3 : public BoundingBox3Base<Vec3crd>
|
||||
{
|
||||
public:
|
||||
BoundingBox3() : BoundingBox3Base<Point3>() {};
|
||||
BoundingBox3(const Point3 &pmin, const Point3 &pmax) : BoundingBox3Base<Point3>(pmin, pmax) {};
|
||||
BoundingBox3(const Points3& points) : BoundingBox3Base<Point3>(points) {};
|
||||
BoundingBox3() : BoundingBox3Base<Vec3crd>() {};
|
||||
BoundingBox3(const Vec3crd &pmin, const Vec3crd &pmax) : BoundingBox3Base<Vec3crd>(pmin, pmax) {};
|
||||
BoundingBox3(const Points3& points) : BoundingBox3Base<Vec3crd>(points) {};
|
||||
};
|
||||
|
||||
class BoundingBoxf : public BoundingBoxBase<Pointf>
|
||||
class BoundingBoxf : public BoundingBoxBase<Vec2d>
|
||||
{
|
||||
public:
|
||||
BoundingBoxf() : BoundingBoxBase<Pointf>() {};
|
||||
BoundingBoxf(const Pointf &pmin, const Pointf &pmax) : BoundingBoxBase<Pointf>(pmin, pmax) {};
|
||||
BoundingBoxf(const std::vector<Pointf> &points) : BoundingBoxBase<Pointf>(points) {};
|
||||
BoundingBoxf() : BoundingBoxBase<Vec2d>() {};
|
||||
BoundingBoxf(const Vec2d &pmin, const Vec2d &pmax) : BoundingBoxBase<Vec2d>(pmin, pmax) {};
|
||||
BoundingBoxf(const std::vector<Vec2d> &points) : BoundingBoxBase<Vec2d>(points) {};
|
||||
};
|
||||
|
||||
class BoundingBoxf3 : public BoundingBox3Base<Pointf3>
|
||||
class BoundingBoxf3 : public BoundingBox3Base<Vec3d>
|
||||
{
|
||||
public:
|
||||
BoundingBoxf3() : BoundingBox3Base<Pointf3>() {};
|
||||
BoundingBoxf3(const Pointf3 &pmin, const Pointf3 &pmax) : BoundingBox3Base<Pointf3>(pmin, pmax) {};
|
||||
BoundingBoxf3(const std::vector<Pointf3> &points) : BoundingBox3Base<Pointf3>(points) {};
|
||||
BoundingBoxf3() : BoundingBox3Base<Vec3d>() {};
|
||||
BoundingBoxf3(const Vec3d &pmin, const Vec3d &pmax) : BoundingBox3Base<Vec3d>(pmin, pmax) {};
|
||||
BoundingBoxf3(const std::vector<Vec3d> &points) : BoundingBox3Base<Vec3d>(points) {};
|
||||
|
||||
BoundingBoxf3 transformed(const Transform3f& matrix) const;
|
||||
BoundingBoxf3 transformed(const Transform3d& matrix) const;
|
||||
};
|
||||
|
||||
template<typename VT>
|
||||
|
|
|
|||
|
|
@ -49,9 +49,9 @@ enum ConfigOptionType {
|
|||
coPercents = coPercent + coVectorType,
|
||||
// a fraction or an absolute value
|
||||
coFloatOrPercent = 5,
|
||||
// single 2d point. Currently not used.
|
||||
// single 2d point (Point2f). Currently not used.
|
||||
coPoint = 6,
|
||||
// vector of 2d points. Currently used for the definition of the print bed and for the extruder offsets.
|
||||
// vector of 2d points (Point2f). Currently used for the definition of the print bed and for the extruder offsets.
|
||||
coPoints = coPoint + coVectorType,
|
||||
// single boolean value
|
||||
coBool = 7,
|
||||
|
|
@ -622,11 +622,11 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
class ConfigOptionPoint : public ConfigOptionSingle<Pointf>
|
||||
class ConfigOptionPoint : public ConfigOptionSingle<Vec2d>
|
||||
{
|
||||
public:
|
||||
ConfigOptionPoint() : ConfigOptionSingle<Pointf>(Pointf(0,0)) {}
|
||||
explicit ConfigOptionPoint(const Pointf &value) : ConfigOptionSingle<Pointf>(value) {}
|
||||
ConfigOptionPoint() : ConfigOptionSingle<Vec2d>(Vec2d(0,0)) {}
|
||||
explicit ConfigOptionPoint(const Vec2d &value) : ConfigOptionSingle<Vec2d>(value) {}
|
||||
|
||||
static ConfigOptionType static_type() { return coPoint; }
|
||||
ConfigOptionType type() const override { return static_type(); }
|
||||
|
|
@ -652,13 +652,13 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
class ConfigOptionPoints : public ConfigOptionVector<Pointf>
|
||||
class ConfigOptionPoints : public ConfigOptionVector<Vec2d>
|
||||
{
|
||||
public:
|
||||
ConfigOptionPoints() : ConfigOptionVector<Pointf>() {}
|
||||
explicit ConfigOptionPoints(size_t n, const Pointf &value) : ConfigOptionVector<Pointf>(n, value) {}
|
||||
explicit ConfigOptionPoints(std::initializer_list<Pointf> il) : ConfigOptionVector<Pointf>(std::move(il)) {}
|
||||
explicit ConfigOptionPoints(const std::vector<Pointf> &values) : ConfigOptionVector<Pointf>(values) {}
|
||||
ConfigOptionPoints() : ConfigOptionVector<Vec2d>() {}
|
||||
explicit ConfigOptionPoints(size_t n, const Vec2d &value) : ConfigOptionVector<Vec2d>(n, value) {}
|
||||
explicit ConfigOptionPoints(std::initializer_list<Vec2d> il) : ConfigOptionVector<Vec2d>(std::move(il)) {}
|
||||
explicit ConfigOptionPoints(const std::vector<Vec2d> &values) : ConfigOptionVector<Vec2d>(values) {}
|
||||
|
||||
static ConfigOptionType static_type() { return coPoints; }
|
||||
ConfigOptionType type() const override { return static_type(); }
|
||||
|
|
@ -696,7 +696,7 @@ public:
|
|||
std::istringstream is(str);
|
||||
std::string point_str;
|
||||
while (std::getline(is, point_str, ',')) {
|
||||
Pointf point;
|
||||
Vec2d point(Vec2d::Zero());
|
||||
std::istringstream iss(point_str);
|
||||
std::string coord_str;
|
||||
if (std::getline(iss, coord_str, 'x')) {
|
||||
|
|
@ -821,12 +821,7 @@ public:
|
|||
bool deserialize(const std::string &str, bool append = false) override
|
||||
{
|
||||
UNUSED(append);
|
||||
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
|
||||
auto it = enum_keys_map.find(str);
|
||||
if (it == enum_keys_map.end())
|
||||
return false;
|
||||
this->value = static_cast<T>(it->second);
|
||||
return true;
|
||||
return from_string(str, this->value);
|
||||
}
|
||||
|
||||
static bool has(T value)
|
||||
|
|
@ -838,7 +833,7 @@ public:
|
|||
}
|
||||
|
||||
// Map from an enum name to an enum integer value.
|
||||
static t_config_enum_names& get_enum_names()
|
||||
static const t_config_enum_names& get_enum_names()
|
||||
{
|
||||
static t_config_enum_names names;
|
||||
if (names.empty()) {
|
||||
|
|
@ -855,7 +850,17 @@ public:
|
|||
return names;
|
||||
}
|
||||
// Map from an enum name to an enum integer value.
|
||||
static t_config_enum_values& get_enum_values();
|
||||
static const t_config_enum_values& get_enum_values();
|
||||
|
||||
static bool from_string(const std::string &str, T &value)
|
||||
{
|
||||
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
|
||||
auto it = enum_keys_map.find(str);
|
||||
if (it == enum_keys_map.end())
|
||||
return false;
|
||||
value = static_cast<T>(it->second);
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
// Generic enum configuration value.
|
||||
|
|
@ -900,7 +905,7 @@ public:
|
|||
// What type? bool, int, string etc.
|
||||
ConfigOptionType type = coNone;
|
||||
// Default value of this option. The default value object is owned by ConfigDef, it is released in its destructor.
|
||||
ConfigOption *default_value = nullptr;
|
||||
const ConfigOption *default_value = nullptr;
|
||||
|
||||
// Usually empty.
|
||||
// Special values - "i_enum_open", "f_enum_open" to provide combo box for int or float selection,
|
||||
|
|
@ -958,7 +963,7 @@ public:
|
|||
std::vector<std::string> enum_labels;
|
||||
// For enums (when type == coEnum). Maps enum_values to enums.
|
||||
// Initialized by ConfigOptionEnum<xxx>::get_enum_values()
|
||||
t_config_enum_values *enum_keys_map = nullptr;
|
||||
const t_config_enum_values *enum_keys_map = nullptr;
|
||||
|
||||
bool has_enum_value(const std::string &value) const {
|
||||
for (const std::string &v : enum_values)
|
||||
|
|
|
|||
|
|
@ -149,7 +149,7 @@ public:
|
|||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const { return this->mm3_per_mm; }
|
||||
Polyline as_polyline() const { return this->polyline; }
|
||||
virtual double total_volume() const { return mm3_per_mm * unscale(length()); }
|
||||
virtual double total_volume() const { return mm3_per_mm * unscale<double>(length()); }
|
||||
|
||||
private:
|
||||
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t b
|
|||
// components that are outside these limits are set to the limits.
|
||||
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
|
||||
{
|
||||
for (Pointf &pt : pts) {
|
||||
for (Vec2d &pt : pts) {
|
||||
pt(0) = clamp(minX, maxX, pt(0));
|
||||
pt(1) = clamp(minY, maxY, pt(1));
|
||||
}
|
||||
|
|
@ -66,7 +66,7 @@ static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coor
|
|||
Pointfs out;
|
||||
out.reserve(x.size());
|
||||
for (size_t i = 0; i < x.size(); ++ i)
|
||||
out.push_back(Pointf(x[i], y[i]));
|
||||
out.push_back(Vec2d(x[i], y[i]));
|
||||
return out;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ void FillConcentric::_fill_surface_single(
|
|||
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
distance = this->_adjust_solid_spacing(bounding_box.size()(0), distance);
|
||||
this->spacing = unscale(distance);
|
||||
this->spacing = unscale<double>(distance);
|
||||
}
|
||||
|
||||
Polygons loops = (Polygons)expolygon;
|
||||
|
|
|
|||
|
|
@ -30,15 +30,15 @@ static inline double f(double x, double z_sin, double z_cos, bool vertical, bool
|
|||
}
|
||||
|
||||
static inline Polyline make_wave(
|
||||
const std::vector<Pointf>& one_period, double width, double height, double offset, double scaleFactor,
|
||||
const std::vector<Vec2d>& one_period, double width, double height, double offset, double scaleFactor,
|
||||
double z_cos, double z_sin, bool vertical)
|
||||
{
|
||||
std::vector<Pointf> points = one_period;
|
||||
std::vector<Vec2d> points = one_period;
|
||||
double period = points.back()(0);
|
||||
points.pop_back();
|
||||
int n = points.size();
|
||||
do {
|
||||
points.emplace_back(Pointf(points[points.size()-n](0) + period, points[points.size()-n](1)));
|
||||
points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
|
||||
} while (points.back()(0) < width);
|
||||
points.back()(0) = width;
|
||||
|
||||
|
|
@ -55,14 +55,14 @@ static inline Polyline make_wave(
|
|||
return polyline;
|
||||
}
|
||||
|
||||
static std::vector<Pointf> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
|
||||
static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
|
||||
{
|
||||
std::vector<Pointf> points;
|
||||
std::vector<Vec2d> points;
|
||||
double dx = M_PI_4; // very coarse spacing to begin with
|
||||
double limit = std::min(2*M_PI, width);
|
||||
for (double x = 0.; x < limit + EPSILON; x += dx) { // so the last point is there too
|
||||
x = std::min(x, limit);
|
||||
points.emplace_back(Pointf(x,f(x, z_sin,z_cos, vertical, flip)));
|
||||
points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
|
||||
}
|
||||
|
||||
// now we will check all internal points and in case some are too far from the line connecting its neighbours,
|
||||
|
|
@ -71,17 +71,19 @@ static std::vector<Pointf> make_one_period(double width, double scaleFactor, dou
|
|||
for (unsigned int i=1;i<points.size()-1;++i) {
|
||||
auto& lp = points[i-1]; // left point
|
||||
auto& tp = points[i]; // this point
|
||||
Vec2d lrv = tp - lp;
|
||||
auto& rp = points[i+1]; // right point
|
||||
// calculate distance of the point to the line:
|
||||
double dist_mm = unscale(scaleFactor * std::abs( (rp(1) - lp(1))*tp(0) + (lp(0) - rp(0))*tp(1) + (rp(0)*lp(1) - rp(1)*lp(0)) ) / std::hypot((rp(1) - lp(1)),(lp(0) - rp(0))));
|
||||
|
||||
double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
|
||||
if (dist_mm > tolerance) { // if the difference from straight line is more than this
|
||||
double x = 0.5f * (points[i-1](0) + points[i](0));
|
||||
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
x = 0.5f * (points[i+1](0) + points[i](0));
|
||||
points.emplace_back(Pointf(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
std::sort(points.begin(), points.end()); // we added the points to the end, but need them all in order
|
||||
--i; // decrement i so we also check the first newly added point
|
||||
points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
|
||||
// we added the points to the end, but need them all in order
|
||||
std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
|
||||
// decrement i so we also check the first newly added point
|
||||
--i;
|
||||
}
|
||||
}
|
||||
return points;
|
||||
|
|
@ -107,7 +109,7 @@ static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double
|
|||
std::swap(width,height);
|
||||
}
|
||||
|
||||
std::vector<Pointf> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||
std::vector<Vec2d> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
|
||||
Polylines result;
|
||||
|
||||
for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI) // creates odd polylines
|
||||
|
|
|
|||
|
|
@ -86,12 +86,12 @@ Pointfs FillArchimedeanChords::_generate(coord_t min_x, coord_t min_y, coord_t m
|
|||
coordf_t r = 1;
|
||||
Pointfs out;
|
||||
//FIXME Vojtech: If used as a solid infill, there is a gap left at the center.
|
||||
out.push_back(Pointf(0, 0));
|
||||
out.push_back(Pointf(1, 0));
|
||||
out.push_back(Vec2d(0, 0));
|
||||
out.push_back(Vec2d(1, 0));
|
||||
while (r < rmax) {
|
||||
theta += 1. / r;
|
||||
r = a + b * theta;
|
||||
out.push_back(Pointf(r * cos(theta), r * sin(theta)));
|
||||
out.push_back(Vec2d(r * cos(theta), r * sin(theta)));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
|
@ -162,7 +162,7 @@ Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x,
|
|||
line.reserve(sz2);
|
||||
for (size_t i = 0; i < sz2; ++ i) {
|
||||
Point p = hilbert_n_to_xy(i);
|
||||
line.push_back(Pointf(p(0) + min_x, p(1) + min_y));
|
||||
line.push_back(Vec2d(p(0) + min_x, p(1) + min_y));
|
||||
}
|
||||
return line;
|
||||
}
|
||||
|
|
@ -175,27 +175,27 @@ Pointfs FillOctagramSpiral::_generate(coord_t min_x, coord_t min_y, coord_t max_
|
|||
coordf_t r = 0;
|
||||
coordf_t r_inc = sqrt(2.);
|
||||
Pointfs out;
|
||||
out.push_back(Pointf(0, 0));
|
||||
out.push_back(Vec2d(0, 0));
|
||||
while (r < rmax) {
|
||||
r += r_inc;
|
||||
coordf_t rx = r / sqrt(2.);
|
||||
coordf_t r2 = r + rx;
|
||||
out.push_back(Pointf( r, 0.));
|
||||
out.push_back(Pointf( r2, rx));
|
||||
out.push_back(Pointf( rx, rx));
|
||||
out.push_back(Pointf( rx, r2));
|
||||
out.push_back(Pointf(0., r));
|
||||
out.push_back(Pointf(-rx, r2));
|
||||
out.push_back(Pointf(-rx, rx));
|
||||
out.push_back(Pointf(-r2, rx));
|
||||
out.push_back(Pointf(-r, 0.));
|
||||
out.push_back(Pointf(-r2, -rx));
|
||||
out.push_back(Pointf(-rx, -rx));
|
||||
out.push_back(Pointf(-rx, -r2));
|
||||
out.push_back(Pointf(0., -r));
|
||||
out.push_back(Pointf( rx, -r2));
|
||||
out.push_back(Pointf( rx, -rx));
|
||||
out.push_back(Pointf( r2+r_inc, -rx));
|
||||
out.push_back(Vec2d( r, 0.));
|
||||
out.push_back(Vec2d( r2, rx));
|
||||
out.push_back(Vec2d( rx, rx));
|
||||
out.push_back(Vec2d( rx, r2));
|
||||
out.push_back(Vec2d(0., r));
|
||||
out.push_back(Vec2d(-rx, r2));
|
||||
out.push_back(Vec2d(-rx, rx));
|
||||
out.push_back(Vec2d(-r2, rx));
|
||||
out.push_back(Vec2d(-r, 0.));
|
||||
out.push_back(Vec2d(-r2, -rx));
|
||||
out.push_back(Vec2d(-rx, -rx));
|
||||
out.push_back(Vec2d(-rx, -r2));
|
||||
out.push_back(Vec2d(0., -r));
|
||||
out.push_back(Vec2d( rx, -r2));
|
||||
out.push_back(Vec2d( rx, -rx));
|
||||
out.push_back(Vec2d( r2+r_inc, -rx));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ void FillRectilinear::_fill_surface_single(
|
|||
// define flow spacing according to requested density
|
||||
if (params.density > 0.9999f && !params.dont_adjust) {
|
||||
this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), this->_line_spacing);
|
||||
this->spacing = unscale(this->_line_spacing);
|
||||
this->spacing = unscale<double>(this->_line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
|
|
|
|||
|
|
@ -792,7 +792,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
// define flow spacing according to requested density
|
||||
if (params.full_infill() && !params.dont_adjust) {
|
||||
line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
|
||||
this->spacing = unscale(line_spacing);
|
||||
this->spacing = unscale<double>(line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
|
|
|
|||
|
|
@ -217,11 +217,11 @@ Point SegmentIntersection::pos() const
|
|||
const Point &seg_start = poly.points[(this->iSegment == 0) ? poly.points.size() - 1 : this->iSegment - 1];
|
||||
const Point &seg_end = poly.points[this->iSegment];
|
||||
// Point, vector of the segment.
|
||||
const Pointf p1(seg_start.cast<coordf_t>());
|
||||
const Pointf v1((seg_end - seg_start).cast<coordf_t>());
|
||||
const Vec2d p1(seg_start.cast<coordf_t>());
|
||||
const Vec2d v1((seg_end - seg_start).cast<coordf_t>());
|
||||
// Point, vector of this hatching line.
|
||||
const Pointf p2(line->pos.cast<coordf_t>());
|
||||
const Pointf v2(line->dir.cast<coordf_t>());
|
||||
const Vec2d p2(line->pos.cast<coordf_t>());
|
||||
const Vec2d v2(line->dir.cast<coordf_t>());
|
||||
// Intersect the two rays.
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
Point out;
|
||||
|
|
@ -391,7 +391,7 @@ static bool prepare_infill_hatching_segments(
|
|||
// Full infill, adjust the line spacing to fit an integer number of lines.
|
||||
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
|
||||
// Report back the adjusted line spacing.
|
||||
fill_dir_params.spacing = float(unscale(line_spacing));
|
||||
fill_dir_params.spacing = unscale<double>(line_spacing);
|
||||
} else {
|
||||
// Extend bounding box so that our pattern will be aligned with the other layers.
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
|
|
|
|||
|
|
@ -1485,12 +1485,13 @@ namespace Slic3r {
|
|||
stl_facet& facet = stl.facet_start[i];
|
||||
for (unsigned int v = 0; v < 3; ++v)
|
||||
{
|
||||
::memcpy((void*)&facet.vertex[v].x, (const void*)&geometry.vertices[geometry.triangles[src_start_id + ii + v] * 3], 3 * sizeof(float));
|
||||
::memcpy(facet.vertex[v].data(), (const void*)&geometry.vertices[geometry.triangles[src_start_id + ii + v] * 3], 3 * sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
stl_get_size(&stl);
|
||||
volume->mesh.repair();
|
||||
volume->calculate_convex_hull();
|
||||
|
||||
// apply volume's name and config data
|
||||
for (const Metadata& metadata : volume_data.metadata)
|
||||
|
|
@ -1844,9 +1845,9 @@ namespace Slic3r {
|
|||
for (int i = 0; i < stl.stats.shared_vertices; ++i)
|
||||
{
|
||||
stream << " <" << VERTEX_TAG << " ";
|
||||
stream << "x=\"" << stl.v_shared[i].x << "\" ";
|
||||
stream << "y=\"" << stl.v_shared[i].y << "\" ";
|
||||
stream << "z=\"" << stl.v_shared[i].z << "\" />\n";
|
||||
stream << "x=\"" << stl.v_shared[i](0) << "\" ";
|
||||
stream << "y=\"" << stl.v_shared[i](1) << "\" ";
|
||||
stream << "z=\"" << stl.v_shared[i](2) << "\" />\n";
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -402,10 +402,11 @@ void AMFParserContext::endElement(const char * /* name */)
|
|||
for (size_t i = 0; i < m_volume_facets.size();) {
|
||||
stl_facet &facet = stl.facet_start[i/3];
|
||||
for (unsigned int v = 0; v < 3; ++ v)
|
||||
memcpy(&facet.vertex[v].x, &m_object_vertices[m_volume_facets[i ++] * 3], 3 * sizeof(float));
|
||||
memcpy(facet.vertex[v].data(), &m_object_vertices[m_volume_facets[i ++] * 3], 3 * sizeof(float));
|
||||
}
|
||||
stl_get_size(&stl);
|
||||
m_volume->mesh.repair();
|
||||
m_volume->calculate_convex_hull();
|
||||
m_volume_facets.clear();
|
||||
m_volume = nullptr;
|
||||
break;
|
||||
|
|
@ -760,9 +761,9 @@ bool store_amf(const char *path, Model *model, Print* print, bool export_print_c
|
|||
for (size_t i = 0; i < stl.stats.shared_vertices; ++ i) {
|
||||
stream << " <vertex>\n";
|
||||
stream << " <coordinates>\n";
|
||||
stream << " <x>" << stl.v_shared[i].x << "</x>\n";
|
||||
stream << " <y>" << stl.v_shared[i].y << "</y>\n";
|
||||
stream << " <z>" << stl.v_shared[i].z << "</z>\n";
|
||||
stream << " <x>" << stl.v_shared[i](0) << "</x>\n";
|
||||
stream << " <y>" << stl.v_shared[i](1) << "</y>\n";
|
||||
stream << " <z>" << stl.v_shared[i](2) << "</z>\n";
|
||||
stream << " </coordinates>\n";
|
||||
stream << " </vertex>\n";
|
||||
}
|
||||
|
|
|
|||
|
|
@ -57,14 +57,14 @@ bool load_obj(const char *path, Model *model, const char *object_name_in)
|
|||
continue;
|
||||
stl_facet &facet = stl.facet_start[i_face ++];
|
||||
size_t num_normals = 0;
|
||||
stl_normal normal = { 0.f };
|
||||
stl_normal normal(stl_normal::Zero());
|
||||
for (unsigned int v = 0; v < 3; ++ v) {
|
||||
const ObjParser::ObjVertex &vertex = data.vertices[i++];
|
||||
memcpy(&facet.vertex[v].x, &data.coordinates[vertex.coordIdx*4], 3 * sizeof(float));
|
||||
memcpy(facet.vertex[v].data(), &data.coordinates[vertex.coordIdx*4], 3 * sizeof(float));
|
||||
if (vertex.normalIdx != -1) {
|
||||
normal.x += data.normals[vertex.normalIdx*3];
|
||||
normal.y += data.normals[vertex.normalIdx*3+1];
|
||||
normal.z += data.normals[vertex.normalIdx*3+2];
|
||||
normal(0) += data.normals[vertex.normalIdx*3];
|
||||
normal(1) += data.normals[vertex.normalIdx*3+1];
|
||||
normal(2) += data.normals[vertex.normalIdx*3+2];
|
||||
++ num_normals;
|
||||
}
|
||||
}
|
||||
|
|
@ -74,33 +74,27 @@ bool load_obj(const char *path, Model *model, const char *object_name_in)
|
|||
facet2.vertex[0] = facet.vertex[0];
|
||||
facet2.vertex[1] = facet.vertex[2];
|
||||
const ObjParser::ObjVertex &vertex = data.vertices[i++];
|
||||
memcpy(&facet2.vertex[2].x, &data.coordinates[vertex.coordIdx * 4], 3 * sizeof(float));
|
||||
memcpy(facet2.vertex[2].data(), &data.coordinates[vertex.coordIdx * 4], 3 * sizeof(float));
|
||||
if (vertex.normalIdx != -1) {
|
||||
normal.x += data.normals[vertex.normalIdx*3];
|
||||
normal.y += data.normals[vertex.normalIdx*3+1];
|
||||
normal.z += data.normals[vertex.normalIdx*3+2];
|
||||
normal(0) += data.normals[vertex.normalIdx*3];
|
||||
normal(1) += data.normals[vertex.normalIdx*3+1];
|
||||
normal(2) += data.normals[vertex.normalIdx*3+2];
|
||||
++ num_normals;
|
||||
}
|
||||
if (num_normals == 4) {
|
||||
// Normalize an average normal of a quad.
|
||||
float len = sqrt(facet.normal.x*facet.normal.x + facet.normal.y*facet.normal.y + facet.normal.z*facet.normal.z);
|
||||
float len = facet.normal.norm();
|
||||
if (len > EPSILON) {
|
||||
normal.x /= len;
|
||||
normal.y /= len;
|
||||
normal.z /= len;
|
||||
normal /= len;
|
||||
facet.normal = normal;
|
||||
facet2.normal = normal;
|
||||
}
|
||||
}
|
||||
} else if (num_normals == 3) {
|
||||
// Normalize an average normal of a triangle.
|
||||
float len = sqrt(facet.normal.x*facet.normal.x + facet.normal.y*facet.normal.y + facet.normal.z*facet.normal.z);
|
||||
if (len > EPSILON) {
|
||||
normal.x /= len;
|
||||
normal.y /= len;
|
||||
normal.z /= len;
|
||||
facet.normal = normal;
|
||||
}
|
||||
float len = facet.normal.norm();
|
||||
if (len > EPSILON)
|
||||
facet.normal = normal / len;
|
||||
}
|
||||
}
|
||||
stl_get_size(&stl);
|
||||
|
|
|
|||
|
|
@ -166,7 +166,7 @@ bool load_prus(const char *path, Model *model)
|
|||
float trafo[3][4] = { 0 };
|
||||
double instance_rotation = 0.;
|
||||
double instance_scaling_factor = 1.f;
|
||||
Pointf instance_offset(0., 0.);
|
||||
Vec2d instance_offset(0., 0.);
|
||||
bool trafo_set = false;
|
||||
unsigned int group_id = (unsigned int)-1;
|
||||
unsigned int extruder_id = (unsigned int)-1;
|
||||
|
|
@ -260,8 +260,8 @@ bool load_prus(const char *path, Model *model)
|
|||
mesh.repair();
|
||||
// Transform the model.
|
||||
stl_transform(&stl, &trafo[0][0]);
|
||||
if (std::abs(stl.stats.min.z) < EPSILON)
|
||||
stl.stats.min.z = 0.;
|
||||
if (std::abs(stl.stats.min(2)) < EPSILON)
|
||||
stl.stats.min(2) = 0.;
|
||||
// Add a mesh to a model.
|
||||
if (mesh.facets_count() > 0)
|
||||
mesh_valid = true;
|
||||
|
|
@ -309,11 +309,11 @@ bool load_prus(const char *path, Model *model)
|
|||
assert(res_normal == 3);
|
||||
int res_outer_loop = line_reader.next_line_scanf(" outer loop");
|
||||
assert(res_outer_loop == 0);
|
||||
int res_vertex1 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[0].x, &facet.vertex[0].y, &facet.vertex[0].z);
|
||||
int res_vertex1 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
|
||||
assert(res_vertex1 == 3);
|
||||
int res_vertex2 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[1].x, &facet.vertex[1].y, &facet.vertex[1].z);
|
||||
int res_vertex2 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
|
||||
assert(res_vertex2 == 3);
|
||||
int res_vertex3 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[2].x, &facet.vertex[2].y, &facet.vertex[2].z);
|
||||
int res_vertex3 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
|
||||
assert(res_vertex3 == 3);
|
||||
int res_endloop = line_reader.next_line_scanf(" endloop");
|
||||
assert(res_endloop == 0);
|
||||
|
|
@ -324,9 +324,9 @@ bool load_prus(const char *path, Model *model)
|
|||
break;
|
||||
}
|
||||
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal.x) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal.y) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal.z) != 1) {
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
|
||||
// Normal was mangled. Maybe denormals or "not a number" were stored?
|
||||
// Just reset the normal and silently ignore it.
|
||||
memset(&facet.normal, 0, sizeof(facet.normal));
|
||||
|
|
|
|||
|
|
@ -64,7 +64,7 @@ std::string OozePrevention::pre_toolchange(GCode &gcodegen)
|
|||
// move to the nearest standby point
|
||||
if (!this->standby_points.empty()) {
|
||||
// get current position in print coordinates
|
||||
Pointf3 writer_pos = gcodegen.writer().get_position();
|
||||
Vec3d writer_pos = gcodegen.writer().get_position();
|
||||
Point pos = Point::new_scale(writer_pos(0), writer_pos(1));
|
||||
|
||||
// find standby point
|
||||
|
|
@ -74,7 +74,7 @@ std::string OozePrevention::pre_toolchange(GCode &gcodegen)
|
|||
/* We don't call gcodegen.travel_to() because we don't need retraction (it was already
|
||||
triggered by the caller) nor avoid_crossing_perimeters and also because the coordinates
|
||||
of the destination point must not be transformed by origin nor current extruder offset. */
|
||||
gcode += gcodegen.writer().travel_to_xy(Pointf::new_unscale(standby_point),
|
||||
gcode += gcodegen.writer().travel_to_xy(unscale(standby_point),
|
||||
"move to standby position");
|
||||
}
|
||||
|
||||
|
|
@ -207,7 +207,7 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
|
|||
check_add_eol(gcode);
|
||||
}
|
||||
// A phony move to the end position at the wipe tower.
|
||||
gcodegen.writer().travel_to_xy(Pointf(end_pos.x, end_pos.y));
|
||||
gcodegen.writer().travel_to_xy(Vec2d(end_pos.x, end_pos.y));
|
||||
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, end_pos));
|
||||
|
||||
// Prepare a future wipe.
|
||||
|
|
@ -293,7 +293,7 @@ std::string WipeTowerIntegration::prime(GCode &gcodegen)
|
|||
gcodegen.writer().toolchange(current_extruder_id);
|
||||
gcodegen.placeholder_parser().set("current_extruder", current_extruder_id);
|
||||
// A phony move to the end position at the wipe tower.
|
||||
gcodegen.writer().travel_to_xy(Pointf(m_priming.end_pos.x, m_priming.end_pos.y));
|
||||
gcodegen.writer().travel_to_xy(Vec2d(m_priming.end_pos.x, m_priming.end_pos.y));
|
||||
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, m_priming.end_pos));
|
||||
// Prepare a future wipe.
|
||||
gcodegen.m_wipe.path.points.clear();
|
||||
|
|
@ -783,7 +783,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
Polygon outer_skirt = Slic3r::Geometry::convex_hull(skirt_points);
|
||||
Polygons skirts;
|
||||
for (unsigned int extruder_id : print.extruders()) {
|
||||
const Pointf &extruder_offset = print.config.extruder_offset.get_at(extruder_id);
|
||||
const Vec2d &extruder_offset = print.config.extruder_offset.get_at(extruder_id);
|
||||
Polygon s(outer_skirt);
|
||||
s.translate(Point::new_scale(- extruder_offset(0), - extruder_offset(1)));
|
||||
skirts.emplace_back(std::move(s));
|
||||
|
|
@ -831,7 +831,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
final_extruder_id = tool_ordering.last_extruder();
|
||||
assert(final_extruder_id != (unsigned int)-1);
|
||||
}
|
||||
this->set_origin(unscale(copy(0)), unscale(copy(1)));
|
||||
this->set_origin(unscale(copy));
|
||||
if (finished_objects > 0) {
|
||||
// Move to the origin position for the copy we're going to print.
|
||||
// This happens before Z goes down to layer 0 again, so that no collision happens hopefully.
|
||||
|
|
@ -1547,7 +1547,7 @@ void GCode::process_layer(
|
|||
if (m_last_obj_copy != this_object_copy)
|
||||
m_avoid_crossing_perimeters.use_external_mp_once = true;
|
||||
m_last_obj_copy = this_object_copy;
|
||||
this->set_origin(unscale(copy(0)), unscale(copy(1)));
|
||||
this->set_origin(unscale(copy));
|
||||
if (object_by_extruder.support != nullptr && !print_wipe_extrusions) {
|
||||
m_layer = layers[layer_id].support_layer;
|
||||
gcode += this->extrude_support(
|
||||
|
|
@ -1632,7 +1632,7 @@ void GCode::set_extruders(const std::vector<unsigned int> &extruder_ids)
|
|||
}
|
||||
}
|
||||
|
||||
void GCode::set_origin(const Pointf &pointf)
|
||||
void GCode::set_origin(const Vec2d &pointf)
|
||||
{
|
||||
// if origin increases (goes towards right), last_pos decreases because it goes towards left
|
||||
const Point translate(
|
||||
|
|
@ -2618,24 +2618,21 @@ std::string GCode::set_extruder(unsigned int extruder_id)
|
|||
}
|
||||
|
||||
// convert a model-space scaled point into G-code coordinates
|
||||
Pointf GCode::point_to_gcode(const Point &point) const
|
||||
Vec2d GCode::point_to_gcode(const Point &point) const
|
||||
{
|
||||
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return Pointf(
|
||||
unscale(point(0)) + m_origin(0) - extruder_offset(0),
|
||||
unscale(point(1)) + m_origin(1) - extruder_offset(1));
|
||||
Vec2d extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return unscale(point) + m_origin - extruder_offset;
|
||||
}
|
||||
|
||||
// convert a model-space scaled point into G-code coordinates
|
||||
Point GCode::gcode_to_point(const Pointf &point) const
|
||||
Point GCode::gcode_to_point(const Vec2d &point) const
|
||||
{
|
||||
Pointf extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
Vec2d extruder_offset = EXTRUDER_CONFIG(extruder_offset);
|
||||
return Point(
|
||||
scale_(point(0) - m_origin(0) + extruder_offset(0)),
|
||||
scale_(point(1) - m_origin(1) + extruder_offset(1)));
|
||||
}
|
||||
|
||||
|
||||
// Goes through by_region std::vector and returns reference to a subvector of entities, that are to be printed
|
||||
// during infill/perimeter wiping, or normally (depends on wiping_entities parameter)
|
||||
// Returns a reference to member to avoid copying.
|
||||
|
|
|
|||
|
|
@ -125,6 +125,7 @@ private:
|
|||
class GCode {
|
||||
public:
|
||||
GCode() :
|
||||
m_origin(Vec2d::Zero()),
|
||||
m_enable_loop_clipping(true),
|
||||
m_enable_cooling_markers(false),
|
||||
m_enable_extrusion_role_markers(false),
|
||||
|
|
@ -152,12 +153,12 @@ public:
|
|||
void do_export(Print *print, const char *path, GCodePreviewData *preview_data = nullptr);
|
||||
|
||||
// Exported for the helper classes (OozePrevention, Wipe) and for the Perl binding for unit tests.
|
||||
const Pointf& origin() const { return m_origin; }
|
||||
void set_origin(const Pointf &pointf);
|
||||
void set_origin(const coordf_t x, const coordf_t y) { this->set_origin(Pointf(x, y)); }
|
||||
const Vec2d& origin() const { return m_origin; }
|
||||
void set_origin(const Vec2d &pointf);
|
||||
void set_origin(const coordf_t x, const coordf_t y) { this->set_origin(Vec2d(x, y)); }
|
||||
const Point& last_pos() const { return m_last_pos; }
|
||||
Pointf point_to_gcode(const Point &point) const;
|
||||
Point gcode_to_point(const Pointf &point) const;
|
||||
Vec2d point_to_gcode(const Point &point) const;
|
||||
Point gcode_to_point(const Vec2d &point) const;
|
||||
const FullPrintConfig &config() const { return m_config; }
|
||||
const Layer* layer() const { return m_layer; }
|
||||
GCodeWriter& writer() { return m_writer; }
|
||||
|
|
@ -258,7 +259,7 @@ protected:
|
|||
/* Origin of print coordinates expressed in unscaled G-code coordinates.
|
||||
This affects the input arguments supplied to the extrude*() and travel_to()
|
||||
methods. */
|
||||
Pointf m_origin;
|
||||
Vec2d m_origin;
|
||||
FullPrintConfig m_config;
|
||||
GCodeWriter m_writer;
|
||||
PlaceholderParser m_placeholder_parser;
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
|
|||
static const float INCHES_TO_MM = 25.4f;
|
||||
static const float DEFAULT_FEEDRATE = 0.0f;
|
||||
static const unsigned int DEFAULT_EXTRUDER_ID = 0;
|
||||
static const Slic3r::Pointf3 DEFAULT_START_POSITION = Slic3r::Pointf3(0.0f, 0.0f, 0.0f);
|
||||
static const Slic3r::Vec3d DEFAULT_START_POSITION = Slic3r::Vec3d(0.0f, 0.0f, 0.0f);
|
||||
static const float DEFAULT_START_EXTRUSION = 0.0f;
|
||||
|
||||
namespace Slic3r {
|
||||
|
|
@ -71,7 +71,7 @@ bool GCodeAnalyzer::Metadata::operator != (const GCodeAnalyzer::Metadata& other)
|
|||
return false;
|
||||
}
|
||||
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder)
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder)
|
||||
: type(type)
|
||||
, data(extrusion_role, extruder_id, mm3_per_mm, width, height, feedrate)
|
||||
, start_position(start_position)
|
||||
|
|
@ -80,7 +80,7 @@ GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, ExtrusionRole extrusi
|
|||
{
|
||||
}
|
||||
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, const GCodeAnalyzer::Metadata& data, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder)
|
||||
GCodeAnalyzer::GCodeMove::GCodeMove(GCodeMove::EType type, const GCodeAnalyzer::Metadata& data, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder)
|
||||
: type(type)
|
||||
, data(data)
|
||||
, start_position(start_position)
|
||||
|
|
@ -587,12 +587,12 @@ void GCodeAnalyzer::_reset_axes_position()
|
|||
::memset((void*)m_state.position, 0, Num_Axis * sizeof(float));
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_start_position(const Pointf3& position)
|
||||
void GCodeAnalyzer::_set_start_position(const Vec3d& position)
|
||||
{
|
||||
m_state.start_position = position;
|
||||
}
|
||||
|
||||
const Pointf3& GCodeAnalyzer::_get_start_position() const
|
||||
const Vec3d& GCodeAnalyzer::_get_start_position() const
|
||||
{
|
||||
return m_state.start_position;
|
||||
}
|
||||
|
|
@ -612,9 +612,9 @@ float GCodeAnalyzer::_get_delta_extrusion() const
|
|||
return _get_axis_position(E) - m_state.start_extrusion;
|
||||
}
|
||||
|
||||
Pointf3 GCodeAnalyzer::_get_end_position() const
|
||||
Vec3d GCodeAnalyzer::_get_end_position() const
|
||||
{
|
||||
return Pointf3(m_state.position[X], m_state.position[Y], m_state.position[Z]);
|
||||
return Vec3d(m_state.position[X], m_state.position[Y], m_state.position[Z]);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_store_move(GCodeAnalyzer::GCodeMove::EType type)
|
||||
|
|
@ -673,7 +673,7 @@ void GCodeAnalyzer::_calc_gcode_preview_extrusion_layers(GCodePreviewData& previ
|
|||
Metadata data;
|
||||
float z = FLT_MAX;
|
||||
Polyline polyline;
|
||||
Pointf3 position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
Vec3d position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
float volumetric_rate = FLT_MAX;
|
||||
GCodePreviewData::Range height_range;
|
||||
GCodePreviewData::Range width_range;
|
||||
|
|
@ -742,7 +742,7 @@ void GCodeAnalyzer::_calc_gcode_preview_travel(GCodePreviewData& preview_data)
|
|||
return;
|
||||
|
||||
Polyline3 polyline;
|
||||
Pointf3 position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
Vec3d position(FLT_MAX, FLT_MAX, FLT_MAX);
|
||||
GCodePreviewData::Travel::EType type = GCodePreviewData::Travel::Num_Types;
|
||||
GCodePreviewData::Travel::Polyline::EDirection direction = GCodePreviewData::Travel::Polyline::Num_Directions;
|
||||
float feedrate = FLT_MAX;
|
||||
|
|
@ -768,12 +768,12 @@ void GCodeAnalyzer::_calc_gcode_preview_travel(GCodePreviewData& preview_data)
|
|||
polyline = Polyline3();
|
||||
|
||||
// add both vertices of the move
|
||||
polyline.append(Point3(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z())));
|
||||
polyline.append(Point3(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
polyline.append(Vec3crd(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z())));
|
||||
polyline.append(Vec3crd(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
}
|
||||
else
|
||||
// append end vertex of the move to current polyline
|
||||
polyline.append(Point3(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
polyline.append(Vec3crd(scale_(move.end_position.x()), scale_(move.end_position.y()), scale_(move.end_position.z())));
|
||||
|
||||
// update current values
|
||||
position = move.end_position;
|
||||
|
|
@ -804,7 +804,7 @@ void GCodeAnalyzer::_calc_gcode_preview_retractions(GCodePreviewData& preview_da
|
|||
for (const GCodeMove& move : retraction_moves->second)
|
||||
{
|
||||
// store position
|
||||
Point3 position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
Vec3crd position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
preview_data.retraction.positions.emplace_back(position, move.data.width, move.data.height);
|
||||
}
|
||||
}
|
||||
|
|
@ -818,7 +818,7 @@ void GCodeAnalyzer::_calc_gcode_preview_unretractions(GCodePreviewData& preview_
|
|||
for (const GCodeMove& move : unretraction_moves->second)
|
||||
{
|
||||
// store position
|
||||
Point3 position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
Vec3crd position(scale_(move.start_position.x()), scale_(move.start_position.y()), scale_(move.start_position.z()));
|
||||
preview_data.unretraction.positions.emplace_back(position, move.data.width, move.data.height);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -75,12 +75,12 @@ public:
|
|||
|
||||
EType type;
|
||||
Metadata data;
|
||||
Pointf3 start_position;
|
||||
Pointf3 end_position;
|
||||
Vec3d start_position;
|
||||
Vec3d end_position;
|
||||
float delta_extruder;
|
||||
|
||||
GCodeMove(EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder);
|
||||
GCodeMove(EType type, const Metadata& data, const Pointf3& start_position, const Pointf3& end_position, float delta_extruder);
|
||||
GCodeMove(EType type, ExtrusionRole extrusion_role, unsigned int extruder_id, double mm3_per_mm, float width, float height, float feedrate, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder);
|
||||
GCodeMove(EType type, const Metadata& data, const Vec3d& start_position, const Vec3d& end_position, float delta_extruder);
|
||||
};
|
||||
|
||||
typedef std::vector<GCodeMove> GCodeMovesList;
|
||||
|
|
@ -93,7 +93,7 @@ private:
|
|||
EPositioningType global_positioning_type;
|
||||
EPositioningType e_local_positioning_type;
|
||||
Metadata data;
|
||||
Pointf3 start_position;
|
||||
Vec3d start_position = Vec3d::Zero();
|
||||
float start_extrusion;
|
||||
float position[Num_Axis];
|
||||
};
|
||||
|
|
@ -206,15 +206,15 @@ private:
|
|||
// Sets axes position to zero
|
||||
void _reset_axes_position();
|
||||
|
||||
void _set_start_position(const Pointf3& position);
|
||||
const Pointf3& _get_start_position() const;
|
||||
void _set_start_position(const Vec3d& position);
|
||||
const Vec3d& _get_start_position() const;
|
||||
|
||||
void _set_start_extrusion(float extrusion);
|
||||
float _get_start_extrusion() const;
|
||||
float _get_delta_extrusion() const;
|
||||
|
||||
// Returns current xyz position (from m_state.position[])
|
||||
Pointf3 _get_end_position() const;
|
||||
Vec3d _get_end_position() const;
|
||||
|
||||
// Adds a new move with the given data
|
||||
void _store_move(GCodeMove::EType type);
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@ CoolingBuffer::CoolingBuffer(GCode &gcodegen) : m_gcodegen(gcodegen), m_current_
|
|||
void CoolingBuffer::reset()
|
||||
{
|
||||
m_current_pos.assign(5, 0.f);
|
||||
Pointf3 pos = m_gcodegen.writer().get_position();
|
||||
Vec3d pos = m_gcodegen.writer().get_position();
|
||||
m_current_pos[0] = float(pos(0));
|
||||
m_current_pos[1] = float(pos(1));
|
||||
m_current_pos[2] = float(pos(2));
|
||||
|
|
|
|||
|
|
@ -226,7 +226,7 @@ void GCodePreviewData::Travel::set_default()
|
|||
|
||||
const GCodePreviewData::Color GCodePreviewData::Retraction::Default_Color = GCodePreviewData::Color(1.0f, 1.0f, 1.0f, 1.0f);
|
||||
|
||||
GCodePreviewData::Retraction::Position::Position(const Point3& position, float width, float height)
|
||||
GCodePreviewData::Retraction::Position::Position(const Vec3crd& position, float width, float height)
|
||||
: position(position)
|
||||
, width(width)
|
||||
, height(height)
|
||||
|
|
|
|||
|
|
@ -151,11 +151,11 @@ public:
|
|||
|
||||
struct Position
|
||||
{
|
||||
Point3 position;
|
||||
Vec3crd position;
|
||||
float width;
|
||||
float height;
|
||||
|
||||
Position(const Point3& position, float width, float height);
|
||||
Position(const Vec3crd& position, float width, float height);
|
||||
};
|
||||
|
||||
typedef std::vector<Position> PositionsList;
|
||||
|
|
|
|||
|
|
@ -32,8 +32,8 @@ static inline BoundingBoxf extrusionentity_extents(const ExtrusionPath &extrusio
|
|||
BoundingBox bbox = extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = Pointf::new_unscale(bbox.min);
|
||||
bboxf.max = Pointf::new_unscale(bbox.max);
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
|
|
@ -46,8 +46,8 @@ static inline BoundingBoxf extrusionentity_extents(const ExtrusionLoop &extrusio
|
|||
bbox.merge(extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width)));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = Pointf::new_unscale(bbox.min);
|
||||
bboxf.max = Pointf::new_unscale(bbox.max);
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
|
|
@ -60,8 +60,8 @@ static inline BoundingBoxf extrusionentity_extents(const ExtrusionMultiPath &ext
|
|||
bbox.merge(extrusion_polyline_extents(extrusion_path.polyline, scale_(0.5 * extrusion_path.width)));
|
||||
BoundingBoxf bboxf;
|
||||
if (! empty(bbox)) {
|
||||
bboxf.min = Pointf::new_unscale(bbox.min);
|
||||
bboxf.max = Pointf::new_unscale(bbox.max);
|
||||
bboxf.min = unscale(bbox.min);
|
||||
bboxf.max = unscale(bbox.max);
|
||||
bboxf.defined = true;
|
||||
}
|
||||
return bboxf;
|
||||
|
|
@ -123,7 +123,7 @@ BoundingBoxf get_print_object_extrusions_extents(const PrintObject &print_object
|
|||
bbox_this.merge(extrusionentity_extents(extrusion_entity));
|
||||
for (const Point &offset : print_object._shifted_copies) {
|
||||
BoundingBoxf bbox_translated(bbox_this);
|
||||
bbox_translated.translate(Pointf::new_unscale(offset));
|
||||
bbox_translated.translate(unscale(offset));
|
||||
bbox.merge(bbox_translated);
|
||||
}
|
||||
}
|
||||
|
|
@ -136,8 +136,9 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
|
|||
{
|
||||
// Wipe tower extrusions are saved as if the tower was at the origin with no rotation
|
||||
// We need to get position and angle of the wipe tower to transform them to actual position.
|
||||
Pointf wipe_tower_pos(print.config.wipe_tower_x.value, print.config.wipe_tower_y.value);
|
||||
float wipe_tower_angle = print.config.wipe_tower_rotation_angle.value;
|
||||
Transform2d trafo =
|
||||
Eigen::Translation2d(print.config.wipe_tower_x.value, print.config.wipe_tower_y.value) *
|
||||
Eigen::Rotation2Dd(print.config.wipe_tower_rotation_angle.value);
|
||||
|
||||
BoundingBoxf bbox;
|
||||
for (const std::vector<WipeTower::ToolChangeResult> &tool_changes : print.m_wipe_tower_tool_changes) {
|
||||
|
|
@ -147,19 +148,11 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
|
|||
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
|
||||
const WipeTower::Extrusion &e = tcr.extrusions[i];
|
||||
if (e.width > 0) {
|
||||
Pointf p1((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Pointf p2(e.pos.x, e.pos.y);
|
||||
p1.rotate(wipe_tower_angle);
|
||||
p1 += wipe_tower_pos;
|
||||
p2.rotate(wipe_tower_angle);
|
||||
p2 += wipe_tower_pos;
|
||||
|
||||
bbox.merge(p1);
|
||||
coordf_t radius = 0.5 * e.width;
|
||||
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
|
||||
bbox.min(1) = std::min(bbox.min(1), std::min(p1(1), p2(1)) - radius);
|
||||
bbox.max(0) = std::max(bbox.max(0), std::max(p1(0), p2(0)) + radius);
|
||||
bbox.max(1) = std::max(bbox.max(1), std::max(p1(1), p2(1)) + radius);
|
||||
Vec2d delta = 0.5 * Vec2d(e.width, e.width);
|
||||
Vec2d p1 = trafo * Vec2d((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Vec2d p2 = trafo * Vec2d(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1.cwiseMin(p2) - delta);
|
||||
bbox.merge(p1.cwiseMax(p2) + delta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -176,8 +169,8 @@ BoundingBoxf get_wipe_tower_priming_extrusions_extents(const Print &print)
|
|||
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
|
||||
const WipeTower::Extrusion &e = tcr.extrusions[i];
|
||||
if (e.width > 0) {
|
||||
Pointf p1((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Pointf p2(e.pos.x, e.pos.y);
|
||||
Vec2d p1((&e - 1)->pos.x, (&e - 1)->pos.y);
|
||||
Vec2d p2(e.pos.x, e.pos.y);
|
||||
bbox.merge(p1);
|
||||
coordf_t radius = 0.5 * e.width;
|
||||
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
|
||||
|
|
|
|||
|
|
@ -276,7 +276,7 @@ std::string GCodeWriter::set_speed(double F, const std::string &comment, const s
|
|||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::travel_to_xy(const Pointf &point, const std::string &comment)
|
||||
std::string GCodeWriter::travel_to_xy(const Vec2d &point, const std::string &comment)
|
||||
{
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
|
|
@ -290,7 +290,7 @@ std::string GCodeWriter::travel_to_xy(const Pointf &point, const std::string &co
|
|||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &comment)
|
||||
std::string GCodeWriter::travel_to_xyz(const Vec3d &point, const std::string &comment)
|
||||
{
|
||||
/* If target Z is lower than current Z but higher than nominal Z we
|
||||
don't perform the Z move but we only move in the XY plane and
|
||||
|
|
@ -299,7 +299,7 @@ std::string GCodeWriter::travel_to_xyz(const Pointf3 &point, const std::string &
|
|||
if (!this->will_move_z(point(2))) {
|
||||
double nominal_z = m_pos(2) - m_lifted;
|
||||
m_lifted = m_lifted - (point(2) - nominal_z);
|
||||
return this->travel_to_xy(point.xy());
|
||||
return this->travel_to_xy(to_2d(point));
|
||||
}
|
||||
|
||||
/* In all the other cases, we perform an actual XYZ move and cancel
|
||||
|
|
@ -358,7 +358,7 @@ bool GCodeWriter::will_move_z(double z) const
|
|||
return true;
|
||||
}
|
||||
|
||||
std::string GCodeWriter::extrude_to_xy(const Pointf &point, double dE, const std::string &comment)
|
||||
std::string GCodeWriter::extrude_to_xy(const Vec2d &point, double dE, const std::string &comment)
|
||||
{
|
||||
m_pos(0) = point(0);
|
||||
m_pos(1) = point(1);
|
||||
|
|
@ -373,7 +373,7 @@ std::string GCodeWriter::extrude_to_xy(const Pointf &point, double dE, const std
|
|||
return gcode.str();
|
||||
}
|
||||
|
||||
std::string GCodeWriter::extrude_to_xyz(const Pointf3 &point, double dE, const std::string &comment)
|
||||
std::string GCodeWriter::extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment)
|
||||
{
|
||||
m_pos = point;
|
||||
m_lifted = 0;
|
||||
|
|
|
|||
|
|
@ -55,18 +55,18 @@ public:
|
|||
std::string toolchange_prefix() const;
|
||||
std::string toolchange(unsigned int extruder_id);
|
||||
std::string set_speed(double F, const std::string &comment = std::string(), const std::string &cooling_marker = std::string()) const;
|
||||
std::string travel_to_xy(const Pointf &point, const std::string &comment = std::string());
|
||||
std::string travel_to_xyz(const Pointf3 &point, const std::string &comment = std::string());
|
||||
std::string travel_to_xy(const Vec2d &point, const std::string &comment = std::string());
|
||||
std::string travel_to_xyz(const Vec3d &point, const std::string &comment = std::string());
|
||||
std::string travel_to_z(double z, const std::string &comment = std::string());
|
||||
bool will_move_z(double z) const;
|
||||
std::string extrude_to_xy(const Pointf &point, double dE, const std::string &comment = std::string());
|
||||
std::string extrude_to_xyz(const Pointf3 &point, double dE, const std::string &comment = std::string());
|
||||
std::string extrude_to_xy(const Vec2d &point, double dE, const std::string &comment = std::string());
|
||||
std::string extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment = std::string());
|
||||
std::string retract(bool before_wipe = false);
|
||||
std::string retract_for_toolchange(bool before_wipe = false);
|
||||
std::string unretract();
|
||||
std::string lift();
|
||||
std::string unlift();
|
||||
Pointf3 get_position() const { return m_pos; }
|
||||
Vec3d get_position() const { return m_pos; }
|
||||
|
||||
private:
|
||||
std::vector<Extruder> m_extruders;
|
||||
|
|
@ -81,7 +81,7 @@ private:
|
|||
unsigned int m_last_bed_temperature;
|
||||
bool m_last_bed_temperature_reached;
|
||||
double m_lifted;
|
||||
Pointf3 m_pos;
|
||||
Vec3d m_pos = Vec3d::Zero();
|
||||
|
||||
std::string _travel_to_z(double z, const std::string &comment);
|
||||
std::string _retract(double length, double restart_extra, const std::string &comment);
|
||||
|
|
|
|||
|
|
@ -345,7 +345,7 @@ linint(double value, double oldmin, double oldmax, double newmin, double newmax)
|
|||
// If the points have the same weight, sort them lexicographically by their positions.
|
||||
struct ArrangeItem {
|
||||
ArrangeItem() {}
|
||||
Pointf pos;
|
||||
Vec2d pos;
|
||||
coordf_t weight;
|
||||
bool operator<(const ArrangeItem &other) const {
|
||||
return weight < other.weight ||
|
||||
|
|
@ -353,17 +353,17 @@ struct ArrangeItem {
|
|||
}
|
||||
};
|
||||
|
||||
Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
|
||||
Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
|
||||
{
|
||||
// Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
|
||||
const Pointf cell_size(part_size(0) + gap, part_size(1) + gap);
|
||||
const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap);
|
||||
|
||||
const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
|
||||
*bed_bounding_box :
|
||||
// Bogus bed size, large enough not to trigger the unsufficient bed size error.
|
||||
BoundingBoxf(
|
||||
Pointf(0, 0),
|
||||
Pointf(cell_size(0) * num_parts, cell_size(1) * num_parts));
|
||||
Vec2d(0, 0),
|
||||
Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
|
||||
|
||||
// This is how many cells we have available into which to put parts.
|
||||
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
|
||||
|
|
@ -372,8 +372,8 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
|
|||
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
|
||||
|
||||
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
|
||||
Pointf cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
||||
Pointf cells_offset(bed_bbox.center() - 0.5 * cells_size);
|
||||
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
||||
Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size);
|
||||
BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
|
||||
|
||||
// List of cells, sorted by distance from center.
|
||||
|
|
@ -405,35 +405,35 @@ Pointfs arrange(size_t num_parts, const Pointf &part_size, coordf_t gap, const B
|
|||
Pointfs positions;
|
||||
positions.reserve(num_parts);
|
||||
for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
|
||||
positions.push_back(Pointf(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
|
||||
positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
|
||||
return positions;
|
||||
}
|
||||
#else
|
||||
class ArrangeItem {
|
||||
public:
|
||||
Pointf pos;
|
||||
public:
|
||||
Vec2d pos = Vec2d::Zero();
|
||||
size_t index_x, index_y;
|
||||
coordf_t dist;
|
||||
};
|
||||
class ArrangeItemIndex {
|
||||
public:
|
||||
public:
|
||||
coordf_t index;
|
||||
ArrangeItem item;
|
||||
ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
|
||||
};
|
||||
|
||||
bool
|
||||
arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
|
||||
arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
|
||||
{
|
||||
positions.clear();
|
||||
|
||||
Pointf part = part_size;
|
||||
Vec2d part = part_size;
|
||||
|
||||
// use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
|
||||
part(0) += dist;
|
||||
part(1) += dist;
|
||||
|
||||
Pointf area;
|
||||
Vec2d area(Vec2d::Zero());
|
||||
if (bb != NULL && bb->defined) {
|
||||
area = bb->size();
|
||||
} else {
|
||||
|
|
@ -449,11 +449,11 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
|||
return false;
|
||||
|
||||
// total space used by cells
|
||||
Pointf cells(cellw * part(0), cellh * part(1));
|
||||
Vec2d cells(cellw * part(0), cellh * part(1));
|
||||
|
||||
// bounding box of total space used by cells
|
||||
BoundingBoxf cells_bb;
|
||||
cells_bb.merge(Pointf(0,0)); // min
|
||||
cells_bb.merge(Vec2d(0,0)); // min
|
||||
cells_bb.merge(cells); // max
|
||||
|
||||
// center bounding box to area
|
||||
|
|
@ -533,7 +533,7 @@ arrange(size_t total_parts, const Pointf &part_size, coordf_t dist, const Boundi
|
|||
coordf_t cx = c.item.index_x - lx;
|
||||
coordf_t cy = c.item.index_y - ty;
|
||||
|
||||
positions.push_back(Pointf(cx * part(0), cy * part(1)));
|
||||
positions.push_back(Vec2d(cx * part(0), cy * part(1)));
|
||||
}
|
||||
|
||||
if (bb != NULL && bb->defined) {
|
||||
|
|
|
|||
|
|
@ -66,7 +66,7 @@ static inline bool is_ccw(const Polygon &poly)
|
|||
return o == ORIENTATION_CCW;
|
||||
}
|
||||
|
||||
inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
|
||||
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
||||
{
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
|
|
@ -77,7 +77,7 @@ inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Poin
|
|||
return true;
|
||||
}
|
||||
|
||||
inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res)
|
||||
inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
||||
{
|
||||
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
||||
if (std::abs(denom) < EPSILON)
|
||||
|
|
@ -123,7 +123,7 @@ void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* ret
|
|||
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
|
||||
bool arrange(
|
||||
// input
|
||||
size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
|
||||
size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
|
||||
// output
|
||||
Pointfs &positions);
|
||||
|
||||
|
|
|
|||
|
|
@ -97,11 +97,11 @@ bool Line::intersection(const Line &l2, Point *intersection) const
|
|||
return false; // not intersecting
|
||||
}
|
||||
|
||||
Pointf3 Linef3::intersect_plane(double z) const
|
||||
Vec3d Linef3::intersect_plane(double z) const
|
||||
{
|
||||
auto v = (this->b - this->a).cast<double>();
|
||||
double t = (z - this->a(2)) / v(2);
|
||||
return Pointf3(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
|
||||
return Vec3d(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ class Line
|
|||
{
|
||||
public:
|
||||
Line() {}
|
||||
explicit Line(Point _a, Point _b): a(_a), b(_b) {}
|
||||
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
|
||||
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
void translate(double x, double y) { Vector v(x, y); this->a += v; this->b += v; }
|
||||
|
|
@ -49,45 +49,49 @@ class ThickLine : public Line
|
|||
{
|
||||
public:
|
||||
ThickLine() : a_width(0), b_width(0) {}
|
||||
ThickLine(Point a, Point b) : Line(a, b), a_width(0), b_width(0) {}
|
||||
ThickLine(Point a, Point b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
|
||||
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
|
||||
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
|
||||
|
||||
coordf_t a_width, b_width;
|
||||
double a_width, b_width;
|
||||
};
|
||||
|
||||
class Line3
|
||||
{
|
||||
public:
|
||||
Line3() {}
|
||||
Line3(const Point3& _a, const Point3& _b) : a(_a), b(_b) {}
|
||||
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
|
||||
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
|
||||
|
||||
double length() const { return (this->a - this->b).cast<double>().norm(); }
|
||||
Vector3 vector() const { return this->b - this->a; }
|
||||
Vec3crd vector() const { return this->b - this->a; }
|
||||
|
||||
Point3 a;
|
||||
Point3 b;
|
||||
Vec3crd a;
|
||||
Vec3crd b;
|
||||
};
|
||||
|
||||
class Linef
|
||||
{
|
||||
public:
|
||||
Linef() {}
|
||||
explicit Linef(Pointf _a, Pointf _b): a(_a), b(_b) {}
|
||||
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
|
||||
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
|
||||
|
||||
Pointf a;
|
||||
Pointf b;
|
||||
Vec2d a;
|
||||
Vec2d b;
|
||||
};
|
||||
|
||||
class Linef3
|
||||
{
|
||||
public:
|
||||
Linef3() {}
|
||||
explicit Linef3(Pointf3 _a, Pointf3 _b): a(_a), b(_b) {}
|
||||
Pointf3 intersect_plane(double z) const;
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
|
||||
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
|
||||
|
||||
Pointf3 a;
|
||||
Pointf3 b;
|
||||
Vec3d intersect_plane(double z) const;
|
||||
void scale(double factor) { this->a *= factor; this->b *= factor; }
|
||||
Vec3d vector() const { return this->b - this->a; }
|
||||
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
|
||||
double length() const { return vector().norm(); }
|
||||
|
||||
Vec3d a;
|
||||
Vec3d b;
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
|
|
|||
|
|
@ -235,15 +235,7 @@ BoundingBoxf3 Model::bounding_box() const
|
|||
return bb;
|
||||
}
|
||||
|
||||
BoundingBoxf3 Model::transformed_bounding_box() const
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
for (const ModelObject* obj : this->objects)
|
||||
bb.merge(obj->tight_bounding_box(false));
|
||||
return bb;
|
||||
}
|
||||
|
||||
void Model::center_instances_around_point(const Pointf &point)
|
||||
void Model::center_instances_around_point(const Vec2d &point)
|
||||
{
|
||||
// BoundingBoxf3 bb = this->bounding_box();
|
||||
BoundingBoxf3 bb;
|
||||
|
|
@ -251,7 +243,7 @@ void Model::center_instances_around_point(const Pointf &point)
|
|||
for (size_t i = 0; i < o->instances.size(); ++ i)
|
||||
bb.merge(o->instance_bounding_box(i, false));
|
||||
|
||||
Pointf shift = point - 0.5 * bb.size().xy() - bb.min.xy();
|
||||
Vec2d shift = point - 0.5 * to_2d(bb.size()) - to_2d(bb.min);
|
||||
for (ModelObject *o : this->objects) {
|
||||
for (ModelInstance *i : o->instances)
|
||||
i->offset += shift;
|
||||
|
|
@ -309,8 +301,8 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
|||
for (size_t i = 0; i < o->instances.size(); ++ i) {
|
||||
// an accurate snug bounding box around the transformed mesh.
|
||||
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
|
||||
instance_sizes.push_back(bbox.size().xy());
|
||||
instance_centers.push_back(bbox.center().xy());
|
||||
instance_sizes.emplace_back(to_2d(bbox.size()));
|
||||
instance_centers.emplace_back(to_2d(bbox.center()));
|
||||
}
|
||||
|
||||
Pointfs positions;
|
||||
|
|
@ -332,7 +324,7 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
|||
// Duplicate the entire model preserving instance relative positions.
|
||||
void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
|
||||
{
|
||||
Pointfs model_sizes(copies_num-1, this->bounding_box().size().xy());
|
||||
Pointfs model_sizes(copies_num-1, to_2d(this->bounding_box().size()));
|
||||
Pointfs positions;
|
||||
if (! _arrange(model_sizes, dist, bb, positions))
|
||||
CONFESS("Cannot duplicate part as the resulting objects would not fit on the print bed.\n");
|
||||
|
|
@ -343,7 +335,7 @@ void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
|
|||
// make a copy of the pointers in order to avoid recursion when appending their copies
|
||||
ModelInstancePtrs instances = o->instances;
|
||||
for (const ModelInstance *i : instances) {
|
||||
for (const Pointf &pos : positions) {
|
||||
for (const Vec2d &pos : positions) {
|
||||
ModelInstance *instance = o->add_instance(*i);
|
||||
instance->offset += pos;
|
||||
}
|
||||
|
|
@ -375,7 +367,7 @@ void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
|
|||
ModelObject* object = this->objects.front();
|
||||
object->clear_instances();
|
||||
|
||||
Sizef3 size = object->bounding_box().size();
|
||||
Vec3d size = object->bounding_box().size();
|
||||
|
||||
for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
|
||||
for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
|
||||
|
|
@ -621,54 +613,6 @@ const BoundingBoxf3& ModelObject::bounding_box() const
|
|||
return m_bounding_box;
|
||||
}
|
||||
|
||||
BoundingBoxf3 ModelObject::tight_bounding_box(bool include_modifiers) const
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
|
||||
for (const ModelVolume* vol : this->volumes)
|
||||
{
|
||||
if (include_modifiers || !vol->modifier)
|
||||
{
|
||||
for (const ModelInstance* inst : this->instances)
|
||||
{
|
||||
double c = cos(inst->rotation);
|
||||
double s = sin(inst->rotation);
|
||||
|
||||
for (int f = 0; f < vol->mesh.stl.stats.number_of_facets; ++f)
|
||||
{
|
||||
const stl_facet& facet = vol->mesh.stl.facet_start[f];
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
// original point
|
||||
const stl_vertex& v = facet.vertex[i];
|
||||
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
||||
|
||||
// scale
|
||||
p(0) *= inst->scaling_factor;
|
||||
p(1) *= inst->scaling_factor;
|
||||
p(2) *= inst->scaling_factor;
|
||||
|
||||
// rotate Z
|
||||
double x = p(0);
|
||||
double y = p(1);
|
||||
p(0) = c * x - s * y;
|
||||
p(1) = s * x + c * y;
|
||||
|
||||
// translate
|
||||
p(0) += inst->offset(0);
|
||||
p(1) += inst->offset(1);
|
||||
|
||||
bb.merge(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return bb;
|
||||
}
|
||||
|
||||
// A mesh containing all transformed instances of this object.
|
||||
TriangleMesh ModelObject::mesh() const
|
||||
{
|
||||
|
|
@ -726,24 +670,22 @@ void ModelObject::center_around_origin()
|
|||
if (! v->modifier)
|
||||
bb.merge(v->mesh.bounding_box());
|
||||
|
||||
// first align to origin on XYZ
|
||||
Vectorf3 vector(-bb.min(0), -bb.min(1), -bb.min(2));
|
||||
// First align to origin on XYZ, then center it on XY.
|
||||
Vec3d size = bb.size();
|
||||
size(2) = 0.;
|
||||
Vec3d shift3 = - bb.min - 0.5 * size;
|
||||
// Unaligned vector, for the Rotation2D to work on Visual Studio 2013.
|
||||
Eigen::Vector2d shift2 = to_2d(shift3);
|
||||
|
||||
// then center it on XY
|
||||
Sizef3 size = bb.size();
|
||||
vector(0) -= size(0)/2;
|
||||
vector(1) -= size(1)/2;
|
||||
|
||||
this->translate(vector);
|
||||
this->origin_translation += vector;
|
||||
this->translate(shift3);
|
||||
this->origin_translation += shift3;
|
||||
|
||||
if (!this->instances.empty()) {
|
||||
for (ModelInstance *i : this->instances) {
|
||||
// apply rotation and scaling to vector as well before translating instance,
|
||||
// in order to leave final position unaltered
|
||||
Vectorf v = - vector.xy();
|
||||
v.rotate(i->rotation);
|
||||
i->offset += v * i->scaling_factor;
|
||||
Eigen::Rotation2Dd rot(i->rotation);
|
||||
i->offset -= rot * shift2 * i->scaling_factor;
|
||||
}
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
|
@ -752,39 +694,38 @@ void ModelObject::center_around_origin()
|
|||
void ModelObject::translate(coordf_t x, coordf_t y, coordf_t z)
|
||||
{
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.translate(float(x), float(y), float(z));
|
||||
if (m_bounding_box_valid)
|
||||
v->m_convex_hull.translate(float(x), float(y), float(z));
|
||||
}
|
||||
|
||||
if (m_bounding_box_valid)
|
||||
m_bounding_box.translate(x, y, z);
|
||||
}
|
||||
|
||||
void ModelObject::scale(const Pointf3 &versor)
|
||||
void ModelObject::scale(const Vec3d &versor)
|
||||
{
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.scale(versor);
|
||||
v->m_convex_hull.scale(versor);
|
||||
}
|
||||
// reset origin translation since it doesn't make sense anymore
|
||||
this->origin_translation = Pointf3(0,0,0);
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
void ModelObject::rotate(float angle, const Axis &axis)
|
||||
{
|
||||
float min_z = FLT_MAX;
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.rotate(angle, axis);
|
||||
min_z = std::min(min_z, v->mesh.stl.stats.min.z);
|
||||
v->m_convex_hull.rotate(angle, axis);
|
||||
}
|
||||
|
||||
if (min_z != 0.0f)
|
||||
{
|
||||
// translate the object so that its minimum z lays on the bed
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.translate(0.0f, 0.0f, -min_z);
|
||||
}
|
||||
}
|
||||
center_around_origin();
|
||||
|
||||
this->origin_translation = Pointf3(0, 0, 0);
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
|
|
@ -796,17 +737,22 @@ void ModelObject::transform(const float* matrix3x4)
|
|||
for (ModelVolume* v : volumes)
|
||||
{
|
||||
v->mesh.transform(matrix3x4);
|
||||
v->m_convex_hull.transform(matrix3x4);
|
||||
}
|
||||
|
||||
origin_translation = Pointf3(0.0, 0.0, 0.0);
|
||||
invalidate_bounding_box();
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
void ModelObject::mirror(const Axis &axis)
|
||||
{
|
||||
for (ModelVolume *v : this->volumes)
|
||||
{
|
||||
v->mesh.mirror(axis);
|
||||
this->origin_translation = Pointf3(0,0,0);
|
||||
v->m_convex_hull.mirror(axis);
|
||||
}
|
||||
|
||||
this->origin_translation = Vec3d::Zero();
|
||||
this->invalidate_bounding_box();
|
||||
}
|
||||
|
||||
|
|
@ -910,45 +856,18 @@ void ModelObject::split(ModelObjectPtrs* new_objects)
|
|||
|
||||
void ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_volume)
|
||||
{
|
||||
for (ModelVolume* vol : this->volumes)
|
||||
for (const ModelVolume* vol : this->volumes)
|
||||
{
|
||||
if (!vol->modifier)
|
||||
{
|
||||
for (ModelInstance* inst : this->instances)
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
Transform3d m = Transform3d::Identity();
|
||||
m.translate(Vec3d(inst->offset(0), inst->offset(1), 0.0));
|
||||
m.rotate(Eigen::AngleAxisd(inst->rotation, Vec3d::UnitZ()));
|
||||
m.scale(inst->scaling_factor);
|
||||
|
||||
double c = cos(inst->rotation);
|
||||
double s = sin(inst->rotation);
|
||||
|
||||
for (int f = 0; f < vol->mesh.stl.stats.number_of_facets; ++f)
|
||||
{
|
||||
const stl_facet& facet = vol->mesh.stl.facet_start[f];
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
// original point
|
||||
const stl_vertex& v = facet.vertex[i];
|
||||
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
||||
|
||||
// scale
|
||||
p(0) *= inst->scaling_factor;
|
||||
p(1) *= inst->scaling_factor;
|
||||
p(2) *= inst->scaling_factor;
|
||||
|
||||
// rotate Z
|
||||
double x = p(0);
|
||||
double y = p(1);
|
||||
p(0) = c * x - s * y;
|
||||
p(1) = s * x + c * y;
|
||||
|
||||
// translate
|
||||
p(0) += inst->offset(0);
|
||||
p(1) += inst->offset(1);
|
||||
|
||||
bb.merge(p);
|
||||
}
|
||||
}
|
||||
BoundingBoxf3 bb = vol->get_convex_hull().transformed_bounding_box(m);
|
||||
|
||||
if (print_volume.contains(bb))
|
||||
inst->print_volume_state = ModelInstance::PVS_Inside;
|
||||
|
|
@ -970,7 +889,7 @@ void ModelObject::print_info() const
|
|||
TriangleMesh mesh = this->raw_mesh();
|
||||
mesh.check_topology();
|
||||
BoundingBoxf3 bb = mesh.bounding_box();
|
||||
Sizef3 size = bb.size();
|
||||
Vec3d size = bb.size();
|
||||
cout << "size_x = " << size(0) << endl;
|
||||
cout << "size_y = " << size(1) << endl;
|
||||
cout << "size_z = " << size(2) << endl;
|
||||
|
|
@ -1031,6 +950,16 @@ ModelMaterial* ModelVolume::assign_unique_material()
|
|||
return model->add_material(this->_material_id);
|
||||
}
|
||||
|
||||
void ModelVolume::calculate_convex_hull()
|
||||
{
|
||||
m_convex_hull = mesh.convex_hull_3d();
|
||||
}
|
||||
|
||||
const TriangleMesh& ModelVolume::get_convex_hull() const
|
||||
{
|
||||
return m_convex_hull;
|
||||
}
|
||||
|
||||
// Split this volume, append the result to the object owning this volume.
|
||||
// Return the number of volumes created from this one.
|
||||
// This is useful to assign different materials to different volumes of an object.
|
||||
|
|
@ -1082,30 +1011,20 @@ BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mes
|
|||
for (int i = 0; i < mesh->stl.stats.number_of_facets; ++ i) {
|
||||
const stl_facet &facet = mesh->stl.facet_start[i];
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
stl_vertex v = facet.vertex[j];
|
||||
double xold = v.x;
|
||||
double yold = v.y;
|
||||
v.x = float(c * xold - s * yold);
|
||||
v.y = float(s * xold + c * yold);
|
||||
bbox.merge(Pointf3(v.x, v.y, v.z));
|
||||
const stl_vertex &v = facet.vertex[j];
|
||||
bbox.merge(Vec3d(c * v(0) - s * v(1), s * v(0) + c * v(1), v(2)));
|
||||
}
|
||||
}
|
||||
if (! empty(bbox)) {
|
||||
// Scale the bounding box uniformly.
|
||||
if (std::abs(this->scaling_factor - 1.) > EPSILON) {
|
||||
bbox.min(0) *= float(this->scaling_factor);
|
||||
bbox.min(1) *= float(this->scaling_factor);
|
||||
bbox.min(2) *= float(this->scaling_factor);
|
||||
bbox.max(0) *= float(this->scaling_factor);
|
||||
bbox.max(1) *= float(this->scaling_factor);
|
||||
bbox.max(2) *= float(this->scaling_factor);
|
||||
bbox.min *= this->scaling_factor;
|
||||
bbox.max *= this->scaling_factor;
|
||||
}
|
||||
// Translate the bounding box.
|
||||
if (! dont_translate) {
|
||||
bbox.min(0) += float(this->offset(0));
|
||||
bbox.min(1) += float(this->offset(1));
|
||||
bbox.max(0) += float(this->offset(0));
|
||||
bbox.max(1) += float(this->offset(1));
|
||||
Eigen::Map<Vec2d>(bbox.min.data()) += this->offset;
|
||||
Eigen::Map<Vec2d>(bbox.max.data()) += this->offset;
|
||||
}
|
||||
}
|
||||
return bbox;
|
||||
|
|
@ -1113,10 +1032,11 @@ BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mes
|
|||
|
||||
BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const
|
||||
{
|
||||
auto matrix = Transform3f::Identity();
|
||||
Transform3d matrix = Transform3d::Identity();
|
||||
if (!dont_translate)
|
||||
matrix.translate(Vec3f((float)offset(0), (float)offset(1), 0.0f));
|
||||
matrix.rotate(Eigen::AngleAxisf(rotation, Vec3f::UnitZ()));
|
||||
matrix.translate(Vec3d(offset(0), offset(1), 0.0));
|
||||
|
||||
matrix.rotate(Eigen::AngleAxisd(rotation, Vec3d::UnitZ()));
|
||||
matrix.scale(scaling_factor);
|
||||
return bbox.transformed(matrix);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -84,7 +84,7 @@ public:
|
|||
center_around_origin() method. Callers might want to apply the same translation
|
||||
to new volumes before adding them to this object in order to preserve alignment
|
||||
when user expects that. */
|
||||
Pointf3 origin_translation;
|
||||
Vec3d origin_translation;
|
||||
|
||||
Model* get_model() const { return m_model; };
|
||||
|
||||
|
|
@ -105,9 +105,6 @@ public:
|
|||
// This bounding box is being cached.
|
||||
const BoundingBoxf3& bounding_box() const;
|
||||
void invalidate_bounding_box() { m_bounding_box_valid = false; }
|
||||
// Returns a snug bounding box of the transformed instances.
|
||||
// This bounding box is not being cached.
|
||||
BoundingBoxf3 tight_bounding_box(bool include_modifiers) const;
|
||||
|
||||
// A mesh containing all transformed instances of this object.
|
||||
TriangleMesh mesh() const;
|
||||
|
|
@ -120,9 +117,9 @@ public:
|
|||
// A snug bounding box around the transformed non-modifier object volumes.
|
||||
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
|
||||
void center_around_origin();
|
||||
void translate(const Vectorf3 &vector) { this->translate(vector(0), vector(1), vector(2)); }
|
||||
void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z);
|
||||
void scale(const Pointf3 &versor);
|
||||
void scale(const Vec3d &versor);
|
||||
void rotate(float angle, const Axis &axis);
|
||||
void transform(const float* matrix3x4);
|
||||
void mirror(const Axis &axis);
|
||||
|
|
@ -138,7 +135,7 @@ public:
|
|||
void print_info() const;
|
||||
|
||||
private:
|
||||
ModelObject(Model *model) : layer_height_profile_valid(false), m_model(model), m_bounding_box_valid(false) {}
|
||||
ModelObject(Model *model) : layer_height_profile_valid(false), m_model(model), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false) {}
|
||||
ModelObject(Model *model, const ModelObject &other, bool copy_volumes = true);
|
||||
ModelObject& operator= (ModelObject other);
|
||||
void swap(ModelObject &other);
|
||||
|
|
@ -157,6 +154,10 @@ private:
|
|||
class ModelVolume
|
||||
{
|
||||
friend class ModelObject;
|
||||
|
||||
// The convex hull of this model's mesh.
|
||||
TriangleMesh m_convex_hull;
|
||||
|
||||
public:
|
||||
std::string name;
|
||||
// The triangular model.
|
||||
|
|
@ -180,19 +181,32 @@ public:
|
|||
|
||||
ModelMaterial* assign_unique_material();
|
||||
|
||||
void calculate_convex_hull();
|
||||
const TriangleMesh& get_convex_hull() const;
|
||||
|
||||
private:
|
||||
// Parent object owning this ModelVolume.
|
||||
ModelObject* object;
|
||||
t_model_material_id _material_id;
|
||||
|
||||
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), modifier(false), object(object) {}
|
||||
ModelVolume(ModelObject *object, TriangleMesh &&mesh) : mesh(std::move(mesh)), modifier(false), object(object) {}
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other) :
|
||||
name(other.name), mesh(other.mesh), config(other.config), modifier(other.modifier), object(object)
|
||||
{ this->material_id(other.material_id()); }
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
|
||||
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), modifier(false), object(object)
|
||||
{
|
||||
if (mesh.stl.stats.number_of_facets > 1)
|
||||
calculate_convex_hull();
|
||||
}
|
||||
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull) : mesh(std::move(mesh)), m_convex_hull(std::move(convex_hull)), modifier(false), object(object) {}
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other) :
|
||||
name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), modifier(other.modifier), object(object)
|
||||
{
|
||||
this->material_id(other.material_id());
|
||||
}
|
||||
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
|
||||
name(other.name), mesh(std::move(mesh)), config(other.config), modifier(other.modifier), object(object)
|
||||
{ this->material_id(other.material_id()); }
|
||||
{
|
||||
this->material_id(other.material_id());
|
||||
if (mesh.stl.stats.number_of_facets > 1)
|
||||
calculate_convex_hull();
|
||||
}
|
||||
};
|
||||
|
||||
// A single instance of a ModelObject.
|
||||
|
|
@ -213,7 +227,7 @@ public:
|
|||
// Transform3d transform;
|
||||
double rotation; // Rotation around the Z axis, in radians around mesh center point
|
||||
double scaling_factor;
|
||||
Pointf offset; // in unscaled coordinates
|
||||
Vec2d offset; // in unscaled coordinates
|
||||
|
||||
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
|
||||
EPrintVolumeState print_volume_state;
|
||||
|
|
@ -235,7 +249,7 @@ private:
|
|||
// Parent object, owning this instance.
|
||||
ModelObject* object;
|
||||
|
||||
ModelInstance(ModelObject *object) : rotation(0), scaling_factor(1), object(object), print_volume_state(PVS_Inside) {}
|
||||
ModelInstance(ModelObject *object) : rotation(0), scaling_factor(1), offset(Vec2d::Zero()), object(object), print_volume_state(PVS_Inside) {}
|
||||
ModelInstance(ModelObject *object, const ModelInstance &other) :
|
||||
rotation(other.rotation), scaling_factor(other.scaling_factor), offset(other.offset), object(object), print_volume_state(PVS_Inside) {}
|
||||
};
|
||||
|
|
@ -286,9 +300,7 @@ public:
|
|||
bool add_default_instances();
|
||||
// Returns approximate axis aligned bounding box of this model
|
||||
BoundingBoxf3 bounding_box() const;
|
||||
// Returns tight axis aligned bounding box of this model
|
||||
BoundingBoxf3 transformed_bounding_box() const;
|
||||
void center_instances_around_point(const Pointf &point);
|
||||
void center_instances_around_point(const Vec2d &point);
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
||||
TriangleMesh mesh() const;
|
||||
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
|
|
|
|||
|
|
@ -468,7 +468,7 @@ void applyResult(
|
|||
// appropriately
|
||||
auto off = item.translation();
|
||||
Radians rot = item.rotation();
|
||||
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
||||
Vec2d foff(off.X*SCALING_FACTOR + batch_offset,
|
||||
off.Y*SCALING_FACTOR);
|
||||
|
||||
// write the tranformation data into the model instance
|
||||
|
|
|
|||
|
|
@ -196,7 +196,7 @@ MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
|
|||
|
||||
void MultiPoint3::translate(double x, double y)
|
||||
{
|
||||
for (Point3 &p : points) {
|
||||
for (Vec3crd &p : points) {
|
||||
p(0) += x;
|
||||
p(1) += y;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -85,7 +85,7 @@ class MultiPoint3
|
|||
public:
|
||||
Points3 points;
|
||||
|
||||
void append(const Point3& point) { this->points.push_back(point); }
|
||||
void append(const Vec3crd& point) { this->points.push_back(point); }
|
||||
|
||||
void translate(double x, double y);
|
||||
void translate(const Point& vector);
|
||||
|
|
|
|||
|
|
@ -243,7 +243,7 @@ void PerimeterGenerator::process()
|
|||
perimeter_spacing / 2;
|
||||
// only apply infill overlap if we actually have one perimeter
|
||||
if (inset > 0)
|
||||
inset -= scale_(this->config->get_abs_value("infill_overlap", unscale(inset + solid_infill_spacing / 2)));
|
||||
inset -= scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2)));
|
||||
// simplify infill contours according to resolution
|
||||
Polygons pp;
|
||||
for (ExPolygon &ex : last)
|
||||
|
|
@ -420,7 +420,7 @@ static inline ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyli
|
|||
path.polyline.append(line.b);
|
||||
// Convert from spacing to extrusion width based on the extrusion model
|
||||
// of a square extrusion ended with semi circles.
|
||||
flow.width = unscale(w) + flow.height * (1. - 0.25 * PI);
|
||||
flow.width = unscale<float>(w) + flow.height * (1. - 0.25 * PI);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf(" filling %f gap\n", flow.width);
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -148,33 +148,11 @@ Point Point::projection_onto(const Line &line) const
|
|||
return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf)
|
||||
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
|
||||
{
|
||||
return stm << pointf(0) << "," << pointf(1);
|
||||
}
|
||||
|
||||
void Pointf::rotate(double angle)
|
||||
{
|
||||
double cur_x = (*this)(0);
|
||||
double cur_y = (*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
(*this)(0) = c * cur_x - s * cur_y;
|
||||
(*this)(1) = c * cur_y + s * cur_x;
|
||||
}
|
||||
|
||||
void Pointf::rotate(double angle, const Pointf ¢er)
|
||||
{
|
||||
double cur_x = (*this)(0);
|
||||
double cur_y = (*this)(1);
|
||||
double s = ::sin(angle);
|
||||
double c = ::cos(angle);
|
||||
double dx = cur_x - center(0);
|
||||
double dy = cur_y - center(1);
|
||||
(*this)(0) = center(0) + c * dx - s * dy;
|
||||
(*this)(1) = center(1) + c * dy + s * dx;
|
||||
}
|
||||
|
||||
namespace int128 {
|
||||
|
||||
int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
|
||||
|
|
|
|||
|
|
@ -16,19 +16,7 @@ namespace Slic3r {
|
|||
class Line;
|
||||
class MultiPoint;
|
||||
class Point;
|
||||
class Point3;
|
||||
class Pointf;
|
||||
class Pointf3;
|
||||
typedef Point Vector;
|
||||
typedef Point3 Vector3;
|
||||
typedef Pointf Vectorf;
|
||||
typedef Pointf3 Vectorf3;
|
||||
typedef std::vector<Point> Points;
|
||||
typedef std::vector<Point*> PointPtrs;
|
||||
typedef std::vector<const Point*> PointConstPtrs;
|
||||
typedef std::vector<Point3> Points3;
|
||||
typedef std::vector<Pointf> Pointfs;
|
||||
typedef std::vector<Pointf3> Pointf3s;
|
||||
typedef Point Vector;
|
||||
|
||||
// Eigen types, to replace the Slic3r's own types in the future.
|
||||
// Vector types with a fixed point coordinate base type.
|
||||
|
|
@ -43,16 +31,37 @@ typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
|
|||
typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vec2d;
|
||||
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
|
||||
|
||||
typedef std::vector<Point> Points;
|
||||
typedef std::vector<Point*> PointPtrs;
|
||||
typedef std::vector<const Point*> PointConstPtrs;
|
||||
typedef std::vector<Vec3crd> Points3;
|
||||
typedef std::vector<Vec2d> Pointfs;
|
||||
typedef std::vector<Vec3d> Pointf3s;
|
||||
|
||||
typedef Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign> Transform2f;
|
||||
typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
|
||||
typedef Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign> Transform3f;
|
||||
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;
|
||||
|
||||
inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); }
|
||||
|
||||
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
||||
|
||||
inline Vec2crd to_2d(const Vec3crd &pt3) { return Vec2crd(pt3(0), pt3(1)); }
|
||||
inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
|
||||
inline Vec2f to_2d(const Vec3f &pt3) { return Vec2f (pt3(0), pt3(1)); }
|
||||
inline Vec2d to_2d(const Vec3d &pt3) { return Vec2d (pt3(0), pt3(1)); }
|
||||
|
||||
inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
|
||||
inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
||||
inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
||||
inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
|
||||
inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
||||
inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
||||
|
||||
inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
||||
inline std::string to_string(const Vec2d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
||||
inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
|
||||
|
|
@ -210,81 +219,7 @@ private:
|
|||
coord_t m_grid_log2;
|
||||
};
|
||||
|
||||
class Point3 : public Vec3crd
|
||||
{
|
||||
public:
|
||||
typedef coord_t coord_type;
|
||||
|
||||
explicit Point3() { (*this)(0) = (*this)(1) = (*this)(2) = 0; }
|
||||
explicit Point3(coord_t x, coord_t y, coord_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
|
||||
// This constructor allows you to construct Point3 from Eigen expressions
|
||||
template<typename OtherDerived>
|
||||
Point3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3crd(other) {}
|
||||
static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
Point3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
this->Vec3crd::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Point xy() const { return Point((*this)(0), (*this)(1)); }
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);
|
||||
|
||||
class Pointf : public Vec2d
|
||||
{
|
||||
public:
|
||||
typedef coordf_t coord_type;
|
||||
|
||||
explicit Pointf() { (*this)(0) = (*this)(1) = 0.; }
|
||||
explicit Pointf(coordf_t x, coordf_t y) { (*this)(0) = x; (*this)(1) = y; }
|
||||
// This constructor allows you to construct Pointf from Eigen expressions
|
||||
template<typename OtherDerived>
|
||||
Pointf(const Eigen::MatrixBase<OtherDerived> &other) : Vec2d(other) {}
|
||||
static Pointf new_unscale(coord_t x, coord_t y) { return Pointf(unscale(x), unscale(y)); }
|
||||
static Pointf new_unscale(const Point &p) { return Pointf(unscale(p(0)), unscale(p(1))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
Pointf& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
this->Vec2d::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void rotate(double angle);
|
||||
void rotate(double angle, const Pointf ¢er);
|
||||
|
||||
bool operator< (const Pointf& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
|
||||
};
|
||||
|
||||
class Pointf3 : public Vec3d
|
||||
{
|
||||
public:
|
||||
typedef coordf_t coord_type;
|
||||
|
||||
explicit Pointf3() { (*this)(0) = (*this)(1) = (*this)(2) = 0.; }
|
||||
explicit Pointf3(coordf_t x, coordf_t y, coordf_t z) { (*this)(0) = x; (*this)(1) = y; (*this)(2) = z; }
|
||||
// This constructor allows you to construct Pointf from Eigen expressions
|
||||
template<typename OtherDerived>
|
||||
Pointf3(const Eigen::MatrixBase<OtherDerived> &other) : Vec3d(other) {}
|
||||
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) { return Pointf3(unscale(x), unscale(y), unscale(z)); }
|
||||
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p(0)), unscale(p(1)), unscale(p(2))); }
|
||||
|
||||
// This method allows you to assign Eigen expressions to MyVectorType
|
||||
template<typename OtherDerived>
|
||||
Pointf3& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
||||
{
|
||||
this->Vec3d::operator=(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Pointf xy() const { return Pointf((*this)(0), (*this)(1)); }
|
||||
};
|
||||
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
|
|
|
|||
|
|
@ -297,10 +297,10 @@ Point Polygon::point_projection(const Point &point) const
|
|||
dmin = d;
|
||||
proj = pt1;
|
||||
}
|
||||
Pointf v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1)));
|
||||
Vec2d v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1)));
|
||||
coordf_t div = v1.squaredNorm();
|
||||
if (div > 0.) {
|
||||
Pointf v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1)));
|
||||
Vec2d v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1)));
|
||||
coordf_t t = v1.dot(v2) / div;
|
||||
if (t > 0. && t < 1.) {
|
||||
Point foot(coord_t(floor(coordf_t(pt0(0)) + t * v1(0) + 0.5)), coord_t(floor(coordf_t(pt0(1)) + t * v1(1) + 0.5)));
|
||||
|
|
|
|||
|
|
@ -24,11 +24,12 @@ public:
|
|||
explicit Polygon(const Points &points): MultiPoint(points) {}
|
||||
Polygon(const Polygon &other) : MultiPoint(other.points) {}
|
||||
Polygon(Polygon &&other) : MultiPoint(std::move(other.points)) {}
|
||||
static Polygon new_scale(std::vector<Pointf> points) {
|
||||
Points int_points;
|
||||
for (auto pt : points)
|
||||
int_points.push_back(Point::new_scale(pt(0), pt(1)));
|
||||
return Polygon(int_points);
|
||||
static Polygon new_scale(const std::vector<Vec2d> &points) {
|
||||
Polygon pgn;
|
||||
pgn.points.reserve(points.size());
|
||||
for (const Vec2d &pt : points)
|
||||
pgn.points.emplace_back(Point::new_scale(pt(0), pt(1)));
|
||||
return pgn;
|
||||
}
|
||||
Polygon& operator=(const Polygon &other) { points = other.points; return *this; }
|
||||
Polygon& operator=(Polygon &&other) { points = std::move(other.points); return *this; }
|
||||
|
|
|
|||
|
|
@ -23,12 +23,11 @@ public:
|
|||
explicit Polyline(const Point &p1, const Point &p2) { points.reserve(2); points.emplace_back(p1); points.emplace_back(p2); }
|
||||
Polyline& operator=(const Polyline &other) { points = other.points; return *this; }
|
||||
Polyline& operator=(Polyline &&other) { points = std::move(other.points); return *this; }
|
||||
static Polyline new_scale(std::vector<Pointf> points) {
|
||||
static Polyline new_scale(const std::vector<Vec2d> &points) {
|
||||
Polyline pl;
|
||||
Points int_points;
|
||||
for (auto pt : points)
|
||||
int_points.push_back(Point::new_scale(pt(0), pt(1)));
|
||||
pl.append(int_points);
|
||||
pl.points.reserve(points.size());
|
||||
for (const Vec2d &pt : points)
|
||||
pl.points.emplace_back(Point::new_scale(pt(0), pt(1)));
|
||||
return pl;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -540,7 +540,7 @@ bool Print::has_skirt() const
|
|||
std::string Print::validate() const
|
||||
{
|
||||
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(config.bed_shape.values));
|
||||
BoundingBoxf3 print_volume(Pointf3(unscale(bed_box_2D.min(0)), unscale(bed_box_2D.min(1)), 0.0), Pointf3(unscale(bed_box_2D.max(0)), unscale(bed_box_2D.max(1)), config.max_print_height));
|
||||
BoundingBoxf3 print_volume(unscale(bed_box_2D.min(0), bed_box_2D.min(1), 0.0), unscale(bed_box_2D.max(0), bed_box_2D.max(1), scale_(config.max_print_height)));
|
||||
// Allow the objects to protrude below the print bed, only the part of the object above the print bed will be sliced.
|
||||
print_volume.min(2) = -1e10;
|
||||
unsigned int printable_count = 0;
|
||||
|
|
@ -728,7 +728,7 @@ BoundingBox Print::bounding_box() const
|
|||
for (const PrintObject *object : this->objects)
|
||||
for (Point copy : object->_shifted_copies) {
|
||||
bb.merge(copy);
|
||||
copy += object->size.xy();
|
||||
copy += to_2d(object->size);
|
||||
bb.merge(copy);
|
||||
}
|
||||
return bb;
|
||||
|
|
@ -971,7 +971,7 @@ void Print::_make_skirt()
|
|||
this->skirt.append(eloop);
|
||||
if (this->config.min_skirt_length.value > 0) {
|
||||
// The skirt length is limited. Sum the total amount of filament length extruded, in mm.
|
||||
extruded_length[extruder_idx] += unscale(loop.length()) * extruders_e_per_mm[extruder_idx];
|
||||
extruded_length[extruder_idx] += unscale<double>(loop.length()) * extruders_e_per_mm[extruder_idx];
|
||||
if (extruded_length[extruder_idx] < this->config.min_skirt_length.value) {
|
||||
// Not extruded enough yet with the current extruder. Add another loop.
|
||||
if (i == 1)
|
||||
|
|
|
|||
|
|
@ -118,7 +118,7 @@ public:
|
|||
// so that next call to make_perimeters() performs a union() before computing loops
|
||||
bool typed_slices;
|
||||
|
||||
Point3 size; // XYZ in scaled coordinates
|
||||
Vec3crd size; // XYZ in scaled coordinates
|
||||
|
||||
// scaled coordinates to add to copies (to compensate for the alignment
|
||||
// operated when creating the object but still preserving a coherent API
|
||||
|
|
@ -138,13 +138,13 @@ public:
|
|||
const ModelObject* model_object() const { return this->_model_object; }
|
||||
|
||||
const Points& copies() const { return this->_copies; }
|
||||
bool add_copy(const Pointf &point);
|
||||
bool add_copy(const Vec2d &point);
|
||||
bool delete_last_copy();
|
||||
bool delete_all_copies() { return this->set_copies(Points()); }
|
||||
bool set_copies(const Points &points);
|
||||
bool reload_model_instances();
|
||||
// since the object is aligned to origin, bounding box coincides with size
|
||||
BoundingBox bounding_box() const { return BoundingBox(Point(0,0), this->size.xy()); }
|
||||
BoundingBox bounding_box() const { return BoundingBox(Point(0,0), to_2d(this->size)); }
|
||||
|
||||
// adds region_id, too, if necessary
|
||||
void add_region_volume(unsigned int region_id, int volume_id) {
|
||||
|
|
|
|||
|
|
@ -17,9 +17,51 @@ namespace Slic3r {
|
|||
#define L(s) Slic3r::I18N::translate(s)
|
||||
|
||||
PrintConfigDef::PrintConfigDef()
|
||||
{
|
||||
this->init_common_params();
|
||||
this->init_fff_params();
|
||||
this->init_sla_params();
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_common_params()
|
||||
{
|
||||
t_optiondef_map &Options = this->options;
|
||||
ConfigOptionDef* def;
|
||||
|
||||
def = this->add("printer_technology", coEnum);
|
||||
def->label = L("Printer technology");
|
||||
def->tooltip = L("Printer technology");
|
||||
def->cli = "printer-technology=s";
|
||||
def->enum_keys_map = &ConfigOptionEnum<PrinterTechnology>::get_enum_values();
|
||||
def->enum_values.push_back("FFF");
|
||||
def->enum_values.push_back("SLA");
|
||||
def->default_value = new ConfigOptionEnum<PrinterTechnology>(ptFFF);
|
||||
|
||||
def = this->add("bed_shape", coPoints);
|
||||
def->label = L("Bed shape");
|
||||
def->default_value = new ConfigOptionPoints{ Vec2d(0, 0), Vec2d(200, 0), Vec2d(200, 200), Vec2d(0, 200) };
|
||||
|
||||
def = this->add("layer_height", coFloat);
|
||||
def->label = L("Layer height");
|
||||
def->category = L("Layers and Perimeters");
|
||||
def->tooltip = L("This setting controls the height (and thus the total number) of the slices/layers. "
|
||||
"Thinner layers give better accuracy but take more time to print.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "layer-height=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(0.3);
|
||||
|
||||
def = this->add("max_print_height", coFloat);
|
||||
def->label = L("Max print height");
|
||||
def->tooltip = L("Set this to the maximum height that can be reached by your extruder while printing.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "max-print-height=f";
|
||||
def->default_value = new ConfigOptionFloat(200.0);
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_fff_params()
|
||||
{
|
||||
t_optiondef_map &Options = this->options;
|
||||
ConfigOptionDef* def;
|
||||
|
||||
// Maximum extruder temperature, bumped to 1500 to support printing of glass.
|
||||
|
|
@ -33,10 +75,6 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->cli = "avoid-crossing-perimeters!";
|
||||
def->default_value = new ConfigOptionBool(false);
|
||||
|
||||
def = this->add("bed_shape", coPoints);
|
||||
def->label = L("Bed shape");
|
||||
def->default_value = new ConfigOptionPoints { Pointf(0,0), Pointf(200,0), Pointf(200,200), Pointf(0,200) };
|
||||
|
||||
def = this->add("bed_temperature", coInts);
|
||||
def->label = L("Other layers");
|
||||
def->tooltip = L("Bed temperature for layers after the first one. "
|
||||
|
|
@ -392,7 +430,7 @@ PrintConfigDef::PrintConfigDef()
|
|||
"from the XY coordinate).");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "extruder-offset=s@";
|
||||
def->default_value = new ConfigOptionPoints { Pointf(0,0) };
|
||||
def->default_value = new ConfigOptionPoints { Vec2d(0,0) };
|
||||
|
||||
def = this->add("extrusion_axis", coString);
|
||||
def->label = L("Extrusion axis");
|
||||
|
|
@ -906,16 +944,6 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->height = 50;
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("layer_height", coFloat);
|
||||
def->label = L("Layer height");
|
||||
def->category = L("Layers and Perimeters");
|
||||
def->tooltip = L("This setting controls the height (and thus the total number) of the slices/layers. "
|
||||
"Thinner layers give better accuracy but take more time to print.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "layer-height=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(0.3);
|
||||
|
||||
def = this->add("remaining_times", coBool);
|
||||
def->label = L("Supports remaining times");
|
||||
def->tooltip = L("Emit M73 P[percent printed] R[remaining time in minutes] at 1 minute"
|
||||
|
|
@ -1036,13 +1064,6 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats { 0. };
|
||||
|
||||
def = this->add("max_print_height", coFloat);
|
||||
def->label = L("Max print height");
|
||||
def->tooltip = L("Set this to the maximum height that can be reached by your extruder while printing.");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "max-print-height=f";
|
||||
def->default_value = new ConfigOptionFloat(200.0);
|
||||
|
||||
def = this->add("max_print_speed", coFloat);
|
||||
def->label = L("Max print speed");
|
||||
def->tooltip = L("When setting other speed settings to 0 Slic3r will autocalculate the optimal speed "
|
||||
|
|
@ -1137,25 +1158,37 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->cli = "nozzle-diameter=f@";
|
||||
def->default_value = new ConfigOptionFloats { 0.5 };
|
||||
|
||||
def = this->add("octoprint_apikey", coString);
|
||||
def->label = L("API Key");
|
||||
def->tooltip = L("Slic3r can upload G-code files to OctoPrint. This field should contain "
|
||||
"the API Key required for authentication.");
|
||||
def->cli = "octoprint-apikey=s";
|
||||
def = this->add("host_type", coEnum);
|
||||
def->label = L("Host Type");
|
||||
def->tooltip = L("Slic3r can upload G-code files to a printer host. This field must contain "
|
||||
"the kind of the host.");
|
||||
def->cli = "host-type=s";
|
||||
def->enum_keys_map = &ConfigOptionEnum<PrintHostType>::get_enum_values();
|
||||
def->enum_values.push_back("octoprint");
|
||||
def->enum_values.push_back("duet");
|
||||
def->enum_labels.push_back("OctoPrint");
|
||||
def->enum_labels.push_back("Duet");
|
||||
def->default_value = new ConfigOptionEnum<PrintHostType>(htOctoPrint);
|
||||
|
||||
def = this->add("printhost_apikey", coString);
|
||||
def->label = L("API Key / Password");
|
||||
def->tooltip = L("Slic3r can upload G-code files to a printer host. This field should contain "
|
||||
"the API Key or the password required for authentication.");
|
||||
def->cli = "printhost-apikey=s";
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("octoprint_cafile", coString);
|
||||
def = this->add("printhost_cafile", coString);
|
||||
def->label = "HTTPS CA file";
|
||||
def->tooltip = "Custom CA certificate file can be specified for HTTPS OctoPrint connections, in crt/pem format. "
|
||||
"If left blank, the default OS CA certificate repository is used.";
|
||||
def->cli = "octoprint-cafile=s";
|
||||
def->cli = "printhost-cafile=s";
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("octoprint_host", coString);
|
||||
def = this->add("print_host", coString);
|
||||
def->label = L("Hostname, IP or URL");
|
||||
def->tooltip = L("Slic3r can upload G-code files to OctoPrint. This field should contain "
|
||||
"the hostname, IP address or URL of the OctoPrint instance.");
|
||||
def->cli = "octoprint-host=s";
|
||||
def->tooltip = L("Slic3r can upload G-code files to a printer host. This field should contain "
|
||||
"the hostname, IP address or URL of the printer host instance.");
|
||||
def->cli = "print-host=s";
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("only_retract_when_crossing_perimeters", coBool);
|
||||
|
|
@ -2121,6 +2154,103 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->default_value = new ConfigOptionFloat(35.);
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_sla_params()
|
||||
{
|
||||
t_optiondef_map &Options = this->options;
|
||||
ConfigOptionDef* def;
|
||||
|
||||
// SLA Printer settings
|
||||
def = this->add("display_width", coFloat);
|
||||
def->label = L("Display width");
|
||||
def->tooltip = L("Width of the display");
|
||||
def->cli = "display-width=f";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionFloat(150.);
|
||||
|
||||
def = this->add("display_height", coFloat);
|
||||
def->label = L("Display height");
|
||||
def->tooltip = L("Height of the display");
|
||||
def->cli = "display-height=f";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionFloat(100.);
|
||||
|
||||
def = this->add("display_pixels_x", coInt);
|
||||
def->full_label = L("Number of pixels in");
|
||||
def->label = ("X");
|
||||
def->tooltip = L("Number of pixels in X");
|
||||
def->cli = "display-pixels-x=i";
|
||||
def->min = 100;
|
||||
def->default_value = new ConfigOptionInt(2000);
|
||||
|
||||
def = this->add("display_pixels_y", coInt);
|
||||
def->label = ("Y");
|
||||
def->tooltip = L("Number of pixels in Y");
|
||||
def->cli = "display-pixels-y=i";
|
||||
def->min = 100;
|
||||
def->default_value = new ConfigOptionInt(1000);
|
||||
|
||||
def = this->add("printer_correction", coFloats);
|
||||
def->full_label = L("Printer scaling correction");
|
||||
def->tooltip = L("Printer scaling correction");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats( { 1., 1., 1. } );
|
||||
|
||||
// SLA Material settings.
|
||||
def = this->add("initial_layer_height", coFloat);
|
||||
def->label = L("Initial layer height");
|
||||
def->tooltip = L("Initial layer height");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "initial-layer-height=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(0.3);
|
||||
|
||||
def = this->add("exposure_time", coFloat);
|
||||
def->label = L("Exposure time");
|
||||
def->tooltip = L("Exposure time");
|
||||
def->sidetext = L("s");
|
||||
def->cli = "exposure-time=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(10);
|
||||
|
||||
def = this->add("initial_exposure_time", coFloat);
|
||||
def->label = L("Initial exposure time");
|
||||
def->tooltip = L("Initial exposure time");
|
||||
def->sidetext = L("s");
|
||||
def->cli = "initial-exposure-time=f";
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(15);
|
||||
|
||||
def = this->add("material_correction_printing", coFloats);
|
||||
def->full_label = L("Correction for expansion when printing");
|
||||
def->tooltip = L("Correction for expansion when printing");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats( { 1. , 1., 1. } );
|
||||
|
||||
def = this->add("material_correction_curing", coFloats);
|
||||
def->full_label = L("Correction for expansion after curing");
|
||||
def->tooltip = L("Correction for expansion after curing");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats( { 1. , 1., 1. } );
|
||||
|
||||
def = this->add("material_notes", coString);
|
||||
def->label = L("SLA print material notes");
|
||||
def->tooltip = L("You can put your notes regarding the SLA print material here.");
|
||||
def->cli = "material-notes=s";
|
||||
def->multiline = true;
|
||||
def->full_width = true;
|
||||
def->height = 130;
|
||||
def->default_value = new ConfigOptionString("");
|
||||
|
||||
def = this->add("default_sla_material_profile", coString);
|
||||
def->label = L("Default SLA material profile");
|
||||
def->tooltip = L("Default print profile associated with the current printer profile. "
|
||||
"On selection of the current printer profile, this print profile will be activated.");
|
||||
def->default_value = new ConfigOptionString();
|
||||
|
||||
def = this->add("sla_material_settings_id", coString);
|
||||
def->default_value = new ConfigOptionString("");
|
||||
}
|
||||
|
||||
void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &value)
|
||||
{
|
||||
// handle legacy options
|
||||
|
|
@ -2153,10 +2283,6 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
std::ostringstream oss;
|
||||
oss << "0x0," << p.value(0) << "x0," << p.value(0) << "x" << p.value(1) << ",0x" << p.value(1);
|
||||
value = oss.str();
|
||||
// Maybe one day we will rename octoprint_host to print_host as it has been done in the upstream Slic3r.
|
||||
// Commenting this out fixes github issue #869 for now.
|
||||
// } else if (opt_key == "octoprint_host" && !value.empty()) {
|
||||
// opt_key = "print_host";
|
||||
} else if ((opt_key == "perimeter_acceleration" && value == "25")
|
||||
|| (opt_key == "infill_acceleration" && value == "50")) {
|
||||
/* For historical reasons, the world's full of configs having these very low values;
|
||||
|
|
@ -2167,6 +2293,12 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
} else if (opt_key == "support_material_pattern" && value == "pillars") {
|
||||
// Slic3r PE does not support the pillars. They never worked well.
|
||||
value = "rectilinear";
|
||||
} else if (opt_key == "octoprint_host") {
|
||||
opt_key = "print_host";
|
||||
} else if (opt_key == "octoprint_cafile") {
|
||||
opt_key = "printhost_cafile";
|
||||
} else if (opt_key == "octoprint_apikey") {
|
||||
opt_key = "printhost_apikey";
|
||||
}
|
||||
|
||||
// Ignore the following obsolete configuration keys:
|
||||
|
|
@ -2176,9 +2308,6 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
"standby_temperature", "scale", "rotate", "duplicate", "duplicate_grid",
|
||||
"start_perimeters_at_concave_points", "start_perimeters_at_non_overhang", "randomize_start",
|
||||
"seal_position", "vibration_limit", "bed_size",
|
||||
// Maybe one day we will rename octoprint_host to print_host as it has been done in the upstream Slic3r.
|
||||
// Commenting this out fixes github issue #869 for now.
|
||||
// "octoprint_host",
|
||||
"print_center", "g0", "threads", "pressure_advance", "wipe_tower_per_color_wipe"
|
||||
};
|
||||
|
||||
|
|
@ -2188,7 +2317,6 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
}
|
||||
|
||||
if (! print_config_def.has(opt_key)) {
|
||||
//printf("Unknown option %s\n", opt_key.c_str());
|
||||
opt_key = "";
|
||||
return;
|
||||
}
|
||||
|
|
@ -2446,4 +2574,8 @@ StaticPrintConfig::StaticCache<class Slic3r::PrintConfig> PrintConfig::s_c
|
|||
StaticPrintConfig::StaticCache<class Slic3r::HostConfig> HostConfig::s_cache_HostConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::FullPrintConfig> FullPrintConfig::s_cache_FullPrintConfig;
|
||||
|
||||
StaticPrintConfig::StaticCache<class Slic3r::SLAMaterialConfig> SLAMaterialConfig::s_cache_SLAMaterialConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::SLAPrinterConfig> SLAPrinterConfig::s_cache_SLAPrinterConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::SLAFullPrintConfig> SLAFullPrintConfig::s_cache_SLAFullPrintConfig;
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,11 +22,23 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
enum PrinterTechnology
|
||||
{
|
||||
// Fused Filament Fabrication
|
||||
ptFFF,
|
||||
// Stereolitography
|
||||
ptSLA,
|
||||
};
|
||||
|
||||
enum GCodeFlavor {
|
||||
gcfRepRap, gcfRepetier, gcfTeacup, gcfMakerWare, gcfMarlin, gcfSailfish, gcfMach3, gcfMachinekit,
|
||||
gcfSmoothie, gcfNoExtrusion,
|
||||
};
|
||||
|
||||
enum PrintHostType {
|
||||
htOctoPrint, htDuet,
|
||||
};
|
||||
|
||||
enum InfillPattern {
|
||||
ipRectilinear, ipGrid, ipTriangles, ipStars, ipCubic, ipLine, ipConcentric, ipHoneycomb, ip3DHoneycomb,
|
||||
ipGyroid, ipHilbertCurve, ipArchimedeanChords, ipOctagramSpiral,
|
||||
|
|
@ -44,7 +56,16 @@ enum FilamentType {
|
|||
ftPLA, ftABS, ftPET, ftHIPS, ftFLEX, ftSCAFF, ftEDGE, ftNGEN, ftPVA
|
||||
};
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<GCodeFlavor>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<PrinterTechnology>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["FFF"] = ptFFF;
|
||||
keys_map["SLA"] = ptSLA;
|
||||
}
|
||||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<GCodeFlavor>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["reprap"] = gcfRepRap;
|
||||
|
|
@ -61,7 +82,16 @@ template<> inline t_config_enum_values& ConfigOptionEnum<GCodeFlavor>::get_enum_
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<InfillPattern>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<PrintHostType>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["octoprint"] = htOctoPrint;
|
||||
keys_map["duet"] = htDuet;
|
||||
}
|
||||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<InfillPattern>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["rectilinear"] = ipRectilinear;
|
||||
|
|
@ -81,7 +111,7 @@ template<> inline t_config_enum_values& ConfigOptionEnum<InfillPattern>::get_enu
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<SupportMaterialPattern>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<SupportMaterialPattern>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["rectilinear"] = smpRectilinear;
|
||||
|
|
@ -91,7 +121,7 @@ template<> inline t_config_enum_values& ConfigOptionEnum<SupportMaterialPattern>
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<SeamPosition>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<SeamPosition>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["random"] = spRandom;
|
||||
|
|
@ -102,7 +132,7 @@ template<> inline t_config_enum_values& ConfigOptionEnum<SeamPosition>::get_enum
|
|||
return keys_map;
|
||||
}
|
||||
|
||||
template<> inline t_config_enum_values& ConfigOptionEnum<FilamentType>::get_enum_values() {
|
||||
template<> inline const t_config_enum_values& ConfigOptionEnum<FilamentType>::get_enum_values() {
|
||||
static t_config_enum_values keys_map;
|
||||
if (keys_map.empty()) {
|
||||
keys_map["PLA"] = ftPLA;
|
||||
|
|
@ -126,6 +156,11 @@ public:
|
|||
PrintConfigDef();
|
||||
|
||||
static void handle_legacy(t_config_option_key &opt_key, std::string &value);
|
||||
|
||||
private:
|
||||
void init_common_params();
|
||||
void init_fff_params();
|
||||
void init_sla_params();
|
||||
};
|
||||
|
||||
// The one and only global definition of SLic3r configuration options.
|
||||
|
|
@ -801,18 +836,20 @@ class HostConfig : public StaticPrintConfig
|
|||
{
|
||||
STATIC_PRINT_CONFIG_CACHE(HostConfig)
|
||||
public:
|
||||
ConfigOptionString octoprint_host;
|
||||
ConfigOptionString octoprint_apikey;
|
||||
ConfigOptionString octoprint_cafile;
|
||||
ConfigOptionEnum<PrintHostType> host_type;
|
||||
ConfigOptionString print_host;
|
||||
ConfigOptionString printhost_apikey;
|
||||
ConfigOptionString printhost_cafile;
|
||||
ConfigOptionString serial_port;
|
||||
ConfigOptionInt serial_speed;
|
||||
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
OPT_PTR(octoprint_host);
|
||||
OPT_PTR(octoprint_apikey);
|
||||
OPT_PTR(octoprint_cafile);
|
||||
OPT_PTR(host_type);
|
||||
OPT_PTR(print_host);
|
||||
OPT_PTR(printhost_apikey);
|
||||
OPT_PTR(printhost_cafile);
|
||||
OPT_PTR(serial_port);
|
||||
OPT_PTR(serial_speed);
|
||||
}
|
||||
|
|
@ -844,6 +881,73 @@ protected:
|
|||
}
|
||||
};
|
||||
|
||||
class SLAMaterialConfig : public StaticPrintConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE(SLAMaterialConfig)
|
||||
public:
|
||||
ConfigOptionFloat layer_height;
|
||||
ConfigOptionFloat initial_layer_height;
|
||||
ConfigOptionFloat exposure_time;
|
||||
ConfigOptionFloat initial_exposure_time;
|
||||
ConfigOptionFloats material_correction_printing;
|
||||
ConfigOptionFloats material_correction_curing;
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
OPT_PTR(layer_height);
|
||||
OPT_PTR(initial_layer_height);
|
||||
OPT_PTR(exposure_time);
|
||||
OPT_PTR(initial_exposure_time);
|
||||
OPT_PTR(material_correction_printing);
|
||||
OPT_PTR(material_correction_curing);
|
||||
}
|
||||
};
|
||||
|
||||
class SLAPrinterConfig : public StaticPrintConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE(SLAPrinterConfig)
|
||||
public:
|
||||
ConfigOptionEnum<PrinterTechnology> printer_technology;
|
||||
ConfigOptionPoints bed_shape;
|
||||
ConfigOptionFloat max_print_height;
|
||||
ConfigOptionFloat display_width;
|
||||
ConfigOptionFloat display_height;
|
||||
ConfigOptionInt display_pixels_x;
|
||||
ConfigOptionInt display_pixels_y;
|
||||
ConfigOptionFloats printer_correction;
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
OPT_PTR(printer_technology);
|
||||
OPT_PTR(bed_shape);
|
||||
OPT_PTR(max_print_height);
|
||||
OPT_PTR(display_width);
|
||||
OPT_PTR(display_height);
|
||||
OPT_PTR(display_pixels_x);
|
||||
OPT_PTR(display_pixels_y);
|
||||
OPT_PTR(printer_correction);
|
||||
}
|
||||
};
|
||||
|
||||
class SLAFullPrintConfig : public SLAPrinterConfig, public SLAMaterialConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE_DERIVED(SLAFullPrintConfig)
|
||||
SLAFullPrintConfig() : SLAPrinterConfig(0), SLAMaterialConfig(0) { initialize_cache(); *this = s_cache_SLAFullPrintConfig.defaults(); }
|
||||
|
||||
public:
|
||||
// Validate the SLAFullPrintConfig. Returns an empty string on success, otherwise an error message is returned.
|
||||
// std::string validate();
|
||||
|
||||
protected:
|
||||
// Protected constructor to be called to initialize ConfigCache::m_default.
|
||||
SLAFullPrintConfig(int) : SLAPrinterConfig(0), SLAMaterialConfig(0) {}
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
this->SLAPrinterConfig ::initialize(cache, base_ptr);
|
||||
this->SLAMaterialConfig::initialize(cache, base_ptr);
|
||||
}
|
||||
};
|
||||
|
||||
#undef STATIC_PRINT_CONFIG_CACHE
|
||||
#undef STATIC_PRINT_CONFIG_CACHE_BASE
|
||||
#undef STATIC_PRINT_CONFIG_CACHE_DERIVED
|
||||
|
|
|
|||
|
|
@ -38,6 +38,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
|||
typed_slices(false),
|
||||
_print(print),
|
||||
_model_object(model_object),
|
||||
size(Vec3crd::Zero()),
|
||||
layer_height_profile_valid(false)
|
||||
{
|
||||
// Compute the translation to be applied to our meshes so that we work with smaller coordinates
|
||||
|
|
@ -50,8 +51,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
|||
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
|
||||
this->_copies_shift = Point::new_scale(modobj_bbox.min(0), modobj_bbox.min(1));
|
||||
// Scale the object size and store it
|
||||
Pointf3 size = modobj_bbox.size();
|
||||
this->size = Point3::new_scale(size(0), size(1), size(2));
|
||||
this->size = (modobj_bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
|
||||
}
|
||||
|
||||
this->reload_model_instances();
|
||||
|
|
@ -59,7 +59,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
|
|||
this->layer_height_profile = model_object->layer_height_profile;
|
||||
}
|
||||
|
||||
bool PrintObject::add_copy(const Pointf &point)
|
||||
bool PrintObject::add_copy(const Vec2d &point)
|
||||
{
|
||||
Points points = this->_copies;
|
||||
points.push_back(Point::new_scale(point(0), point(1)));
|
||||
|
|
@ -1121,7 +1121,7 @@ SlicingParameters PrintObject::slicing_parameters() const
|
|||
{
|
||||
return SlicingParameters::create_from_config(
|
||||
this->print()->config, this->config,
|
||||
unscale(this->size(2)), this->print()->object_extruders());
|
||||
unscale<double>(this->size(2)), this->print()->object_extruders());
|
||||
}
|
||||
|
||||
bool PrintObject::update_layer_height_profile(std::vector<coordf_t> &layer_height_profile) const
|
||||
|
|
@ -1335,7 +1335,7 @@ std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::
|
|||
// consider the first one
|
||||
this->model_object()->instances.front()->transform_mesh(&mesh, true);
|
||||
// align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
|
||||
mesh.translate(- float(unscale(this->_copies_shift(0))), - float(unscale(this->_copies_shift(1))), -float(this->model_object()->bounding_box().min(2)));
|
||||
mesh.translate(- unscale<float>(this->_copies_shift(0)), - unscale<float>(this->_copies_shift(1)), - float(this->model_object()->bounding_box().min(2)));
|
||||
// perform actual slicing
|
||||
TriangleMeshSlicer mslicer(&mesh);
|
||||
mslicer.slice(z, &layers);
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
#include <boost/nowide/cstdio.hpp>
|
||||
|
||||
#define COORD(x) ((float)unscale((x))*10)
|
||||
#define COORD(x) (unscale<float>((x))*10)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
|
|
@ -58,8 +58,8 @@ SVG::draw(const Line &line, std::string stroke, coordf_t stroke_width)
|
|||
|
||||
void SVG::draw(const ThickLine &line, const std::string &fill, const std::string &stroke, coordf_t stroke_width)
|
||||
{
|
||||
Pointf dir(line.b(0)-line.a(0), line.b(1)-line.a(1));
|
||||
Pointf perp(-dir(1), dir(0));
|
||||
Vec2d dir(line.b(0)-line.a(0), line.b(1)-line.a(1));
|
||||
Vec2d perp(-dir(1), dir(0));
|
||||
coordf_t len = sqrt(perp(0)*perp(0) + perp(1)*perp(1));
|
||||
coordf_t da = coordf_t(0.5)*line.a_width/len;
|
||||
coordf_t db = coordf_t(0.5)*line.b_width/len;
|
||||
|
|
|
|||
|
|
@ -561,15 +561,15 @@ int generate_layer_height_texture(
|
|||
void *data, int rows, int cols, bool level_of_detail_2nd_level)
|
||||
{
|
||||
// https://github.com/aschn/gnuplot-colorbrewer
|
||||
std::vector<Point3> palette_raw;
|
||||
palette_raw.push_back(Point3(0x01A, 0x098, 0x050));
|
||||
palette_raw.push_back(Point3(0x066, 0x0BD, 0x063));
|
||||
palette_raw.push_back(Point3(0x0A6, 0x0D9, 0x06A));
|
||||
palette_raw.push_back(Point3(0x0D9, 0x0F1, 0x0EB));
|
||||
palette_raw.push_back(Point3(0x0FE, 0x0E6, 0x0EB));
|
||||
palette_raw.push_back(Point3(0x0FD, 0x0AE, 0x061));
|
||||
palette_raw.push_back(Point3(0x0F4, 0x06D, 0x043));
|
||||
palette_raw.push_back(Point3(0x0D7, 0x030, 0x027));
|
||||
std::vector<Vec3crd> palette_raw;
|
||||
palette_raw.push_back(Vec3crd(0x01A, 0x098, 0x050));
|
||||
palette_raw.push_back(Vec3crd(0x066, 0x0BD, 0x063));
|
||||
palette_raw.push_back(Vec3crd(0x0A6, 0x0D9, 0x06A));
|
||||
palette_raw.push_back(Vec3crd(0x0D9, 0x0F1, 0x0EB));
|
||||
palette_raw.push_back(Vec3crd(0x0FE, 0x0E6, 0x0EB));
|
||||
palette_raw.push_back(Vec3crd(0x0FD, 0x0AE, 0x061));
|
||||
palette_raw.push_back(Vec3crd(0x0F4, 0x06D, 0x043));
|
||||
palette_raw.push_back(Vec3crd(0x0D7, 0x030, 0x027));
|
||||
|
||||
// Clear the main texture and the 2nd LOD level.
|
||||
// memset(data, 0, rows * cols * (level_of_detail_2nd_level ? 5 : 4));
|
||||
|
|
@ -600,14 +600,14 @@ int generate_layer_height_texture(
|
|||
int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
|
||||
int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
|
||||
coordf_t t = idxf - coordf_t(idx1);
|
||||
const Point3 &color1 = palette_raw[idx1];
|
||||
const Point3 &color2 = palette_raw[idx2];
|
||||
const Vec3crd &color1 = palette_raw[idx1];
|
||||
const Vec3crd &color2 = palette_raw[idx2];
|
||||
coordf_t z = cell_to_z * coordf_t(cell);
|
||||
assert(z >= lo && z <= hi);
|
||||
// Intensity profile to visualize the layers.
|
||||
coordf_t intensity = cos(M_PI * 0.7 * (mid - z) / h);
|
||||
// Color mapping from layer height to RGB.
|
||||
Pointf3 color(
|
||||
Vec3d color(
|
||||
intensity * lerp(coordf_t(color1(0)), coordf_t(color2(0)), t),
|
||||
intensity * lerp(coordf_t(color1(1)), coordf_t(color2(1)), t),
|
||||
intensity * lerp(coordf_t(color1(2)), coordf_t(color2(2)), t));
|
||||
|
|
@ -636,10 +636,10 @@ int generate_layer_height_texture(
|
|||
int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
|
||||
int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
|
||||
coordf_t t = idxf - coordf_t(idx1);
|
||||
const Point3 &color1 = palette_raw[idx1];
|
||||
const Point3 &color2 = palette_raw[idx2];
|
||||
const Vec3crd &color1 = palette_raw[idx1];
|
||||
const Vec3crd &color2 = palette_raw[idx2];
|
||||
// Color mapping from layer height to RGB.
|
||||
Pointf3 color(
|
||||
Vec3d color(
|
||||
lerp(coordf_t(color1(0)), coordf_t(color2(0)), t),
|
||||
lerp(coordf_t(color1(1)), coordf_t(color2(1)), t),
|
||||
lerp(coordf_t(color1(2)), coordf_t(color2(2)), t));
|
||||
|
|
|
|||
|
|
@ -15,8 +15,8 @@ void SlicingAdaptive::clear()
|
|||
std::pair<float, float> face_z_span(const stl_facet *f)
|
||||
{
|
||||
return std::pair<float, float>(
|
||||
std::min(std::min(f->vertex[0].z, f->vertex[1].z), f->vertex[2].z),
|
||||
std::max(std::max(f->vertex[0].z, f->vertex[1].z), f->vertex[2].z));
|
||||
std::min(std::min(f->vertex[0](2), f->vertex[1](2)), f->vertex[2](2)),
|
||||
std::max(std::max(f->vertex[0](2), f->vertex[1](2)), f->vertex[2](2)));
|
||||
}
|
||||
|
||||
void SlicingAdaptive::prepare()
|
||||
|
|
@ -40,7 +40,7 @@ void SlicingAdaptive::prepare()
|
|||
// 3) Generate Z components of the facet normals.
|
||||
m_face_normal_z.assign(m_faces.size(), 0.f);
|
||||
for (size_t iface = 0; iface < m_faces.size(); ++ iface)
|
||||
m_face_normal_z[iface] = m_faces[iface]->normal.z;
|
||||
m_face_normal_z[iface] = m_faces[iface]->normal(2);
|
||||
}
|
||||
|
||||
float SlicingAdaptive::cusp_height(float z, float cusp_value, int ¤t_facet)
|
||||
|
|
|
|||
|
|
@ -2057,8 +2057,8 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const
|
|||
const Point &p1 = *(it-1);
|
||||
const Point &p2 = *it;
|
||||
// Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
|
||||
const Pointf v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
|
||||
const Pointf v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
|
||||
const Vec2d v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
|
||||
const Vec2d v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
|
||||
coordf_t a = v_seg.squaredNorm();
|
||||
coordf_t b = 2. * v_seg.dot(v_cntr);
|
||||
coordf_t c = v_cntr.squaredNorm() - circle_distance * circle_distance;
|
||||
|
|
|
|||
|
|
@ -1,6 +1,9 @@
|
|||
#include "TriangleMesh.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "qhull/src/libqhullcpp/Qhull.h"
|
||||
#include "qhull/src/libqhullcpp/QhullFacetList.h"
|
||||
#include "qhull/src/libqhullcpp/QhullVertexSet.h"
|
||||
#include <cmath>
|
||||
#include <deque>
|
||||
#include <queue>
|
||||
|
|
@ -15,6 +18,8 @@
|
|||
|
||||
#include <tbb/parallel_for.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
|
||||
#if 0
|
||||
#define DEBUG
|
||||
#define _DEBUG
|
||||
|
|
@ -30,13 +35,7 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
TriangleMesh::TriangleMesh()
|
||||
: repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
}
|
||||
|
||||
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Point3>& facets )
|
||||
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& facets )
|
||||
: repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
|
|
@ -51,51 +50,22 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Point3>& fa
|
|||
|
||||
for (int i = 0; i < stl.stats.number_of_facets; i++) {
|
||||
stl_facet facet;
|
||||
|
||||
const Pointf3& ref_f1 = points[facets[i](0)];
|
||||
facet.vertex[0].x = ref_f1(0);
|
||||
facet.vertex[0].y = ref_f1(1);
|
||||
facet.vertex[0].z = ref_f1(2);
|
||||
|
||||
const Pointf3& ref_f2 = points[facets[i](1)];
|
||||
facet.vertex[1].x = ref_f2(0);
|
||||
facet.vertex[1].y = ref_f2(1);
|
||||
facet.vertex[1].z = ref_f2(2);
|
||||
|
||||
const Pointf3& ref_f3 = points[facets[i](2)];
|
||||
facet.vertex[2].x = ref_f3(0);
|
||||
facet.vertex[2].y = ref_f3(1);
|
||||
facet.vertex[2].z = ref_f3(2);
|
||||
|
||||
facet.vertex[0] = points[facets[i](0)].cast<float>();
|
||||
facet.vertex[1] = points[facets[i](1)].cast<float>();
|
||||
facet.vertex[2] = points[facets[i](2)].cast<float>();
|
||||
facet.extra[0] = 0;
|
||||
facet.extra[1] = 0;
|
||||
|
||||
float normal[3];
|
||||
stl_normal normal;
|
||||
stl_calculate_normal(normal, &facet);
|
||||
stl_normalize_vector(normal);
|
||||
facet.normal.x = normal[0];
|
||||
facet.normal.y = normal[1];
|
||||
facet.normal.z = normal[2];
|
||||
facet.normal = normal;
|
||||
|
||||
stl.facet_start[i] = facet;
|
||||
}
|
||||
stl_get_size(&stl);
|
||||
}
|
||||
|
||||
TriangleMesh::TriangleMesh(const TriangleMesh &other) :
|
||||
repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
*this = other;
|
||||
}
|
||||
|
||||
TriangleMesh::TriangleMesh(TriangleMesh &&other) :
|
||||
repaired(false)
|
||||
{
|
||||
stl_initialize(&this->stl);
|
||||
this->swap(other);
|
||||
}
|
||||
|
||||
TriangleMesh& TriangleMesh::operator=(const TriangleMesh &other)
|
||||
{
|
||||
stl_close(&this->stl);
|
||||
|
|
@ -123,42 +93,8 @@ TriangleMesh& TriangleMesh::operator=(const TriangleMesh &other)
|
|||
return *this;
|
||||
}
|
||||
|
||||
TriangleMesh& TriangleMesh::operator=(TriangleMesh &&other)
|
||||
void TriangleMesh::repair()
|
||||
{
|
||||
this->swap(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::swap(TriangleMesh &other)
|
||||
{
|
||||
std::swap(this->stl, other.stl);
|
||||
std::swap(this->repaired, other.repaired);
|
||||
}
|
||||
|
||||
TriangleMesh::~TriangleMesh() {
|
||||
stl_close(&this->stl);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::ReadSTLFile(const char* input_file) {
|
||||
stl_open(&stl, input_file);
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::write_ascii(const char* output_file)
|
||||
{
|
||||
stl_write_ascii(&this->stl, output_file, "");
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::write_binary(const char* output_file)
|
||||
{
|
||||
stl_write_binary(&this->stl, output_file, "");
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::repair() {
|
||||
if (this->repaired) return;
|
||||
|
||||
// admesh fails when repairing empty meshes
|
||||
|
|
@ -255,13 +191,7 @@ void TriangleMesh::check_topology()
|
|||
}
|
||||
}
|
||||
|
||||
bool TriangleMesh::is_manifold() const
|
||||
{
|
||||
return this->stl.stats.connected_facets_3_edge == this->stl.stats.number_of_facets;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::reset_repair_stats() {
|
||||
void TriangleMesh::reset_repair_stats() {
|
||||
this->stl.stats.degenerate_facets = 0;
|
||||
this->stl.stats.edges_fixed = 0;
|
||||
this->stl.stats.facets_removed = 0;
|
||||
|
|
@ -271,8 +201,7 @@ TriangleMesh::reset_repair_stats() {
|
|||
this->stl.stats.normals_fixed = 0;
|
||||
}
|
||||
|
||||
bool
|
||||
TriangleMesh::needed_repair() const
|
||||
bool TriangleMesh::needed_repair() const
|
||||
{
|
||||
return this->stl.stats.degenerate_facets > 0
|
||||
|| this->stl.stats.edges_fixed > 0
|
||||
|
|
@ -282,14 +211,8 @@ TriangleMesh::needed_repair() const
|
|||
|| this->stl.stats.backwards_edges > 0;
|
||||
}
|
||||
|
||||
size_t
|
||||
TriangleMesh::facets_count() const
|
||||
void TriangleMesh::WriteOBJFile(char* output_file)
|
||||
{
|
||||
return this->stl.stats.number_of_facets;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::WriteOBJFile(char* output_file) {
|
||||
stl_generate_shared_vertices(&stl);
|
||||
stl_write_obj(&stl, output_file);
|
||||
}
|
||||
|
|
@ -300,13 +223,9 @@ void TriangleMesh::scale(float factor)
|
|||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
void TriangleMesh::scale(const Pointf3 &versor)
|
||||
void TriangleMesh::scale(const Vec3d &versor)
|
||||
{
|
||||
float fversor[3];
|
||||
fversor[0] = versor(0);
|
||||
fversor[1] = versor(1);
|
||||
fversor[2] = versor(2);
|
||||
stl_scale_versor(&this->stl, fversor);
|
||||
stl_scale_versor(&this->stl, versor.cast<float>());
|
||||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
|
|
@ -336,21 +255,6 @@ void TriangleMesh::rotate(float angle, const Axis &axis)
|
|||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate_x(float angle)
|
||||
{
|
||||
this->rotate(angle, X);
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate_y(float angle)
|
||||
{
|
||||
this->rotate(angle, Y);
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate_z(float angle)
|
||||
{
|
||||
this->rotate(angle, Z);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror(const Axis &axis)
|
||||
{
|
||||
if (axis == X) {
|
||||
|
|
@ -363,21 +267,6 @@ void TriangleMesh::mirror(const Axis &axis)
|
|||
stl_invalidate_shared_vertices(&this->stl);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror_x()
|
||||
{
|
||||
this->mirror(X);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror_y()
|
||||
{
|
||||
this->mirror(Y);
|
||||
}
|
||||
|
||||
void TriangleMesh::mirror_z()
|
||||
{
|
||||
this->mirror(Z);
|
||||
}
|
||||
|
||||
void TriangleMesh::transform(const float* matrix3x4)
|
||||
{
|
||||
if (matrix3x4 == nullptr)
|
||||
|
|
@ -390,10 +279,9 @@ void TriangleMesh::transform(const float* matrix3x4)
|
|||
void TriangleMesh::align_to_origin()
|
||||
{
|
||||
this->translate(
|
||||
-(this->stl.stats.min.x),
|
||||
-(this->stl.stats.min.y),
|
||||
-(this->stl.stats.min.z)
|
||||
);
|
||||
- this->stl.stats.min(0),
|
||||
- this->stl.stats.min(1),
|
||||
- this->stl.stats.min(2));
|
||||
}
|
||||
|
||||
void TriangleMesh::rotate(double angle, Point* center)
|
||||
|
|
@ -476,14 +364,14 @@ size_t TriangleMesh::number_of_patches() const
|
|||
return num_bodies;
|
||||
}
|
||||
|
||||
TriangleMeshPtrs
|
||||
TriangleMesh::split() const
|
||||
TriangleMeshPtrs TriangleMesh::split() const
|
||||
{
|
||||
TriangleMeshPtrs meshes;
|
||||
std::set<int> seen_facets;
|
||||
TriangleMeshPtrs meshes;
|
||||
std::vector<unsigned char> facet_visited(this->stl.stats.number_of_facets, false);
|
||||
|
||||
// we need neighbors
|
||||
if (!this->repaired) CONFESS("split() requires repair()");
|
||||
if (!this->repaired)
|
||||
CONFESS("split() requires repair()");
|
||||
|
||||
// loop while we have remaining facets
|
||||
for (;;) {
|
||||
|
|
@ -491,25 +379,26 @@ TriangleMesh::split() const
|
|||
std::queue<int> facet_queue;
|
||||
std::deque<int> facets;
|
||||
for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) {
|
||||
if (seen_facets.find(facet_idx) == seen_facets.end()) {
|
||||
if (! facet_visited[facet_idx]) {
|
||||
// if facet was not seen put it into queue and start searching
|
||||
facet_queue.push(facet_idx);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (facet_queue.empty()) break;
|
||||
|
||||
while (!facet_queue.empty()) {
|
||||
if (facet_queue.empty())
|
||||
break;
|
||||
|
||||
while (! facet_queue.empty()) {
|
||||
int facet_idx = facet_queue.front();
|
||||
facet_queue.pop();
|
||||
if (seen_facets.find(facet_idx) != seen_facets.end()) continue;
|
||||
facets.emplace_back(facet_idx);
|
||||
for (int j = 0; j <= 2; j++) {
|
||||
facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]);
|
||||
if (! facet_visited[facet_idx]) {
|
||||
facets.emplace_back(facet_idx);
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]);
|
||||
facet_visited[facet_idx] = true;
|
||||
}
|
||||
seen_facets.insert(facet_idx);
|
||||
}
|
||||
|
||||
|
||||
TriangleMesh* mesh = new TriangleMesh;
|
||||
meshes.emplace_back(mesh);
|
||||
mesh->stl.stats.type = inmemory;
|
||||
|
|
@ -518,19 +407,17 @@ TriangleMesh::split() const
|
|||
stl_clear_error(&mesh->stl);
|
||||
stl_allocate(&mesh->stl);
|
||||
|
||||
int first = 1;
|
||||
for (std::deque<int>::const_iterator facet = facets.begin(); facet != facets.end(); ++facet) {
|
||||
bool first = true;
|
||||
for (std::deque<int>::const_iterator facet = facets.begin(); facet != facets.end(); ++ facet) {
|
||||
mesh->stl.facet_start[facet - facets.begin()] = this->stl.facet_start[*facet];
|
||||
stl_facet_stats(&mesh->stl, this->stl.facet_start[*facet], first);
|
||||
first = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return meshes;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::merge(const TriangleMesh &mesh)
|
||||
void TriangleMesh::merge(const TriangleMesh &mesh)
|
||||
{
|
||||
// reset stats and metadata
|
||||
int number_of_facets = this->stl.stats.number_of_facets;
|
||||
|
|
@ -561,9 +448,9 @@ ExPolygons TriangleMesh::horizontal_projection() const
|
|||
stl_facet* facet = &this->stl.facet_start[i];
|
||||
Polygon p;
|
||||
p.points.resize(3);
|
||||
p.points[0] = Point::new_scale(facet->vertex[0].x, facet->vertex[0].y);
|
||||
p.points[1] = Point::new_scale(facet->vertex[1].x, facet->vertex[1].y);
|
||||
p.points[2] = Point::new_scale(facet->vertex[2].x, facet->vertex[2].y);
|
||||
p.points[0] = Point::new_scale(facet->vertex[0](0), facet->vertex[0](1));
|
||||
p.points[1] = Point::new_scale(facet->vertex[1](0), facet->vertex[1](1));
|
||||
p.points[2] = Point::new_scale(facet->vertex[2](0), facet->vertex[2](1));
|
||||
p.make_counter_clockwise(); // do this after scaling, as winding order might change while doing that
|
||||
pp.emplace_back(p);
|
||||
}
|
||||
|
|
@ -578,28 +465,142 @@ Polygon TriangleMesh::convex_hull()
|
|||
Points pp;
|
||||
pp.reserve(this->stl.stats.shared_vertices);
|
||||
for (int i = 0; i < this->stl.stats.shared_vertices; ++ i) {
|
||||
stl_vertex* v = &this->stl.v_shared[i];
|
||||
pp.emplace_back(Point::new_scale(v->x, v->y));
|
||||
const stl_vertex &v = this->stl.v_shared[i];
|
||||
pp.emplace_back(Point::new_scale(v(0), v(1)));
|
||||
}
|
||||
return Slic3r::Geometry::convex_hull(pp);
|
||||
}
|
||||
|
||||
BoundingBoxf3
|
||||
TriangleMesh::bounding_box() const
|
||||
BoundingBoxf3 TriangleMesh::bounding_box() const
|
||||
{
|
||||
BoundingBoxf3 bb;
|
||||
bb.defined = true;
|
||||
bb.min(0) = this->stl.stats.min.x;
|
||||
bb.min(1) = this->stl.stats.min.y;
|
||||
bb.min(2) = this->stl.stats.min.z;
|
||||
bb.max(0) = this->stl.stats.max.x;
|
||||
bb.max(1) = this->stl.stats.max.y;
|
||||
bb.max(2) = this->stl.stats.max.z;
|
||||
bb.min = this->stl.stats.min.cast<double>();
|
||||
bb.max = this->stl.stats.max.cast<double>();
|
||||
return bb;
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMesh::require_shared_vertices()
|
||||
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d& t) const
|
||||
{
|
||||
bool has_shared = (stl.v_shared != nullptr);
|
||||
if (!has_shared)
|
||||
stl_generate_shared_vertices(&stl);
|
||||
|
||||
unsigned int vertices_count = (stl.stats.shared_vertices > 0) ? (unsigned int)stl.stats.shared_vertices : 3 * (unsigned int)stl.stats.number_of_facets;
|
||||
|
||||
if (vertices_count == 0)
|
||||
return BoundingBoxf3();
|
||||
|
||||
Eigen::MatrixXd src_vertices(3, vertices_count);
|
||||
|
||||
if (stl.stats.shared_vertices > 0)
|
||||
{
|
||||
stl_vertex* vertex_ptr = stl.v_shared;
|
||||
for (int i = 0; i < stl.stats.shared_vertices; ++i)
|
||||
{
|
||||
src_vertices(0, i) = (double)(*vertex_ptr)(0);
|
||||
src_vertices(1, i) = (double)(*vertex_ptr)(1);
|
||||
src_vertices(2, i) = (double)(*vertex_ptr)(2);
|
||||
vertex_ptr += 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
stl_facet* facet_ptr = stl.facet_start;
|
||||
unsigned int v_id = 0;
|
||||
while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
src_vertices(0, v_id) = (double)facet_ptr->vertex[i](0);
|
||||
src_vertices(1, v_id) = (double)facet_ptr->vertex[i](1);
|
||||
src_vertices(2, v_id) = (double)facet_ptr->vertex[i](2);
|
||||
}
|
||||
facet_ptr += 1;
|
||||
++v_id;
|
||||
}
|
||||
}
|
||||
|
||||
if (!has_shared && (stl.stats.shared_vertices > 0))
|
||||
stl_invalidate_shared_vertices(&stl);
|
||||
|
||||
Eigen::MatrixXd dst_vertices(3, vertices_count);
|
||||
dst_vertices = t * src_vertices.colwise().homogeneous();
|
||||
|
||||
Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
|
||||
Vec3d v_max = v_min;
|
||||
|
||||
for (int i = 1; i < vertices_count; ++i)
|
||||
{
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
v_min(j) = std::min(v_min(j), dst_vertices(j, i));
|
||||
v_max(j) = std::max(v_max(j), dst_vertices(j, i));
|
||||
}
|
||||
}
|
||||
|
||||
return BoundingBoxf3(v_min, v_max);
|
||||
}
|
||||
|
||||
TriangleMesh TriangleMesh::convex_hull_3d() const
|
||||
{
|
||||
// Helper struct for qhull:
|
||||
struct PointForQHull{
|
||||
PointForQHull(float x_p, float y_p, float z_p) : x((realT)x_p), y((realT)y_p), z((realT)z_p) {}
|
||||
realT x, y, z;
|
||||
};
|
||||
std::vector<PointForQHull> src_vertices;
|
||||
|
||||
// We will now fill the vector with input points for computation:
|
||||
stl_facet* facet_ptr = stl.facet_start;
|
||||
while (facet_ptr < stl.facet_start + stl.stats.number_of_facets)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
const stl_vertex& v = facet_ptr->vertex[i];
|
||||
src_vertices.emplace_back(v(0), v(1), v(2));
|
||||
}
|
||||
|
||||
facet_ptr += 1;
|
||||
}
|
||||
|
||||
// The qhull call:
|
||||
orgQhull::Qhull qhull;
|
||||
qhull.disableOutputStream(); // we want qhull to be quiet
|
||||
try
|
||||
{
|
||||
qhull.runQhull("", 3, (int)src_vertices.size(), (const realT*)(src_vertices.data()), "Qt");
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
std::cout << "Unable to create convex hull" << std::endl;
|
||||
return TriangleMesh();
|
||||
}
|
||||
|
||||
// Let's collect results:
|
||||
Pointf3s dst_vertices;
|
||||
std::vector<Vec3crd> facets;
|
||||
auto facet_list = qhull.facetList().toStdVector();
|
||||
for (const orgQhull::QhullFacet& facet : facet_list)
|
||||
{ // iterate through facets
|
||||
orgQhull::QhullVertexSet vertices = facet.vertices();
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{ // iterate through facet's vertices
|
||||
|
||||
orgQhull::QhullPoint p = vertices[i].point();
|
||||
const float* coords = p.coordinates();
|
||||
dst_vertices.emplace_back(coords[0], coords[1], coords[2]);
|
||||
}
|
||||
unsigned int size = (unsigned int)dst_vertices.size();
|
||||
facets.emplace_back(size - 3, size - 2, size - 1);
|
||||
}
|
||||
|
||||
TriangleMesh output_mesh(dst_vertices, facets);
|
||||
output_mesh.repair();
|
||||
return output_mesh;
|
||||
}
|
||||
|
||||
void TriangleMesh::require_shared_vertices()
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - start";
|
||||
if (!this->repaired)
|
||||
|
|
@ -619,11 +620,8 @@ TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) :
|
|||
facets_edges.assign(_mesh->stl.stats.number_of_facets * 3, -1);
|
||||
v_scaled_shared.assign(_mesh->stl.v_shared, _mesh->stl.v_shared + _mesh->stl.stats.shared_vertices);
|
||||
// Scale the copied vertices.
|
||||
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i) {
|
||||
this->v_scaled_shared[i].x /= float(SCALING_FACTOR);
|
||||
this->v_scaled_shared[i].y /= float(SCALING_FACTOR);
|
||||
this->v_scaled_shared[i].z /= float(SCALING_FACTOR);
|
||||
}
|
||||
for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i)
|
||||
this->v_scaled_shared[i] *= float(1. / SCALING_FACTOR);
|
||||
|
||||
// Create a mapping from triangle edge into face.
|
||||
struct EdgeToFace {
|
||||
|
|
@ -697,8 +695,7 @@ TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) :
|
|||
}
|
||||
}
|
||||
|
||||
void
|
||||
TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
|
||||
void TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<Polygons>* layers) const
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::slice";
|
||||
|
||||
|
|
@ -779,14 +776,14 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
|
|||
const stl_facet &facet = this->mesh->stl.facet_start[facet_idx];
|
||||
|
||||
// find facet extents
|
||||
const float min_z = fminf(facet.vertex[0].z, fminf(facet.vertex[1].z, facet.vertex[2].z));
|
||||
const float max_z = fmaxf(facet.vertex[0].z, fmaxf(facet.vertex[1].z, facet.vertex[2].z));
|
||||
const float min_z = fminf(facet.vertex[0](2), fminf(facet.vertex[1](2), facet.vertex[2](2)));
|
||||
const float max_z = fmaxf(facet.vertex[0](2), fmaxf(facet.vertex[1](2), facet.vertex[2](2)));
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", facet_idx,
|
||||
facet.vertex[0].x, facet.vertex[0].y, facet.vertex[0].z,
|
||||
facet.vertex[1].x, facet.vertex[1].y, facet.vertex[1].z,
|
||||
facet.vertex[2].x, facet.vertex[2].y, facet.vertex[2].z);
|
||||
facet.vertex[0].x, facet.vertex[0].y, facet.vertex[0](2),
|
||||
facet.vertex[1].x, facet.vertex[1].y, facet.vertex[1](2),
|
||||
facet.vertex[2].x, facet.vertex[2].y, facet.vertex[2](2));
|
||||
printf("z: min = %.2f, max = %.2f\n", min_z, max_z);
|
||||
#endif
|
||||
|
||||
|
|
@ -806,18 +803,18 @@ void TriangleMeshSlicer::_slice_do(size_t facet_idx, std::vector<IntersectionLin
|
|||
if (il.edge_type == feHorizontal) {
|
||||
// Insert all three edges of the face.
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal.z < 0;
|
||||
const bool reverse = this->mesh->stl.facet_start[facet_idx].normal(2) < 0;
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
if (reverse)
|
||||
std::swap(a_id, b_id);
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
il.a(0) = a->x;
|
||||
il.a(1) = a->y;
|
||||
il.b(0) = b->x;
|
||||
il.b(1) = b->y;
|
||||
const stl_vertex &a = this->v_scaled_shared[a_id];
|
||||
const stl_vertex &b = this->v_scaled_shared[b_id];
|
||||
il.a(0) = a(0);
|
||||
il.a(1) = a(1);
|
||||
il.b(0) = b(0);
|
||||
il.b(1) = b(1);
|
||||
il.a_id = a_id;
|
||||
il.b_id = b_id;
|
||||
(*lines)[layer_idx].emplace_back(il);
|
||||
|
|
@ -863,66 +860,63 @@ bool TriangleMeshSlicer::slice_facet(
|
|||
// Reorder vertices so that the first one is the one with lowest Z.
|
||||
// This is needed to get all intersection lines in a consistent order
|
||||
// (external on the right of the line)
|
||||
int i = (facet.vertex[1].z == min_z) ? 1 : ((facet.vertex[2].z == min_z) ? 2 : 0);
|
||||
int i = (facet.vertex[1](2) == min_z) ? 1 : ((facet.vertex[2](2) == min_z) ? 2 : 0);
|
||||
for (int j = i; j - i < 3; ++ j) { // loop through facet edges
|
||||
int edge_id = this->facets_edges[facet_idx * 3 + (j % 3)];
|
||||
const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex;
|
||||
int a_id = vertices[j % 3];
|
||||
int b_id = vertices[(j+1) % 3];
|
||||
const stl_vertex *a = &this->v_scaled_shared[a_id];
|
||||
const stl_vertex *b = &this->v_scaled_shared[b_id];
|
||||
const stl_vertex &a = this->v_scaled_shared[a_id];
|
||||
const stl_vertex &b = this->v_scaled_shared[b_id];
|
||||
|
||||
// Is edge or face aligned with the cutting plane?
|
||||
if (a->z == slice_z && b->z == slice_z) {
|
||||
if (a(2) == slice_z && b(2) == slice_z) {
|
||||
// Edge is horizontal and belongs to the current layer.
|
||||
const stl_vertex &v0 = this->v_scaled_shared[vertices[0]];
|
||||
const stl_vertex &v1 = this->v_scaled_shared[vertices[1]];
|
||||
const stl_vertex &v2 = this->v_scaled_shared[vertices[2]];
|
||||
bool swap = false;
|
||||
if (min_z == max_z) {
|
||||
// All three vertices are aligned with slice_z.
|
||||
line_out->edge_type = feHorizontal;
|
||||
if (this->mesh->stl.facet_start[facet_idx].normal.z < 0) {
|
||||
if (this->mesh->stl.facet_start[facet_idx].normal(2) < 0) {
|
||||
// If normal points downwards this is a bottom horizontal facet so we reverse its point order.
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
swap = true;
|
||||
}
|
||||
} else if (v0.z < slice_z || v1.z < slice_z || v2.z < slice_z) {
|
||||
} else if (v0(2) < slice_z || v1(2) < slice_z || v2(2) < slice_z) {
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
|
||||
line_out->edge_type = feTop;
|
||||
std::swap(a, b);
|
||||
std::swap(a_id, b_id);
|
||||
swap = true;
|
||||
} else {
|
||||
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
||||
line_out->edge_type = feBottom;
|
||||
}
|
||||
line_out->a(0) = a->x;
|
||||
line_out->a(1) = a->y;
|
||||
line_out->b(0) = b->x;
|
||||
line_out->b(1) = b->y;
|
||||
line_out->a_id = a_id;
|
||||
line_out->b_id = b_id;
|
||||
line_out->a = to_2d(swap ? b : a).cast<coord_t>();
|
||||
line_out->b = to_2d(swap ? a : b).cast<coord_t>();
|
||||
line_out->a_id = swap ? b_id : a_id;
|
||||
line_out->b_id = swap ? a_id : b_id;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (a->z == slice_z) {
|
||||
if (a(2) == slice_z) {
|
||||
// Only point a alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point(0) = a->x;
|
||||
point(1) = a->y;
|
||||
point(0) = a(0);
|
||||
point(1) = a(1);
|
||||
point.point_id = a_id;
|
||||
} else if (b->z == slice_z) {
|
||||
} else if (b(2) == slice_z) {
|
||||
// Only point b alings with the cutting plane.
|
||||
points_on_layer[num_points_on_layer ++] = num_points;
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point(0) = b->x;
|
||||
point(1) = b->y;
|
||||
point(0) = b(0);
|
||||
point(1) = b(1);
|
||||
point.point_id = b_id;
|
||||
} else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) {
|
||||
} else if ((a(2) < slice_z && b(2) > slice_z) || (b(2) < slice_z && a(2) > slice_z)) {
|
||||
// A general case. The face edge intersects the cutting plane. Calculate the intersection point.
|
||||
IntersectionPoint &point = points[num_points ++];
|
||||
point(0) = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z);
|
||||
point(1) = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z);
|
||||
point(0) = b(0) + (a(0) - b(0)) * (slice_z - b(2)) / (a(2) - b(2));
|
||||
point(1) = b(1) + (a(1) - b(1)) * (slice_z - b(2)) / (a(2) - b(2));
|
||||
point.edge_id = edge_id;
|
||||
}
|
||||
}
|
||||
|
|
@ -1389,8 +1383,8 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
stl_facet* facet = &this->mesh->stl.facet_start[facet_idx];
|
||||
|
||||
// find facet extents
|
||||
float min_z = std::min(facet->vertex[0].z, std::min(facet->vertex[1].z, facet->vertex[2].z));
|
||||
float max_z = std::max(facet->vertex[0].z, std::max(facet->vertex[1].z, facet->vertex[2].z));
|
||||
float min_z = std::min(facet->vertex[0](2), std::min(facet->vertex[1](2), facet->vertex[2](2)));
|
||||
float max_z = std::max(facet->vertex[0](2), std::max(facet->vertex[1](2), facet->vertex[2](2)));
|
||||
|
||||
// intersect facet with cutting plane
|
||||
IntersectionLine line;
|
||||
|
|
@ -1417,47 +1411,47 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
|
||||
// look for the vertex on whose side of the slicing plane there are no other vertices
|
||||
int isolated_vertex;
|
||||
if ( (facet->vertex[0].z > z) == (facet->vertex[1].z > z) ) {
|
||||
if ( (facet->vertex[0](2) > z) == (facet->vertex[1](2) > z) ) {
|
||||
isolated_vertex = 2;
|
||||
} else if ( (facet->vertex[1].z > z) == (facet->vertex[2].z > z) ) {
|
||||
} else if ( (facet->vertex[1](2) > z) == (facet->vertex[2](2) > z) ) {
|
||||
isolated_vertex = 0;
|
||||
} else {
|
||||
isolated_vertex = 1;
|
||||
}
|
||||
|
||||
// get vertices starting from the isolated one
|
||||
stl_vertex* v0 = &facet->vertex[isolated_vertex];
|
||||
stl_vertex* v1 = &facet->vertex[(isolated_vertex+1) % 3];
|
||||
stl_vertex* v2 = &facet->vertex[(isolated_vertex+2) % 3];
|
||||
const stl_vertex &v0 = facet->vertex[isolated_vertex];
|
||||
const stl_vertex &v1 = facet->vertex[(isolated_vertex+1) % 3];
|
||||
const stl_vertex &v2 = facet->vertex[(isolated_vertex+2) % 3];
|
||||
|
||||
// intersect v0-v1 and v2-v0 with cutting plane and make new vertices
|
||||
stl_vertex v0v1, v2v0;
|
||||
v0v1.x = v1->x + (v0->x - v1->x) * (z - v1->z) / (v0->z - v1->z);
|
||||
v0v1.y = v1->y + (v0->y - v1->y) * (z - v1->z) / (v0->z - v1->z);
|
||||
v0v1.z = z;
|
||||
v2v0.x = v2->x + (v0->x - v2->x) * (z - v2->z) / (v0->z - v2->z);
|
||||
v2v0.y = v2->y + (v0->y - v2->y) * (z - v2->z) / (v0->z - v2->z);
|
||||
v2v0.z = z;
|
||||
v0v1(0) = v1(0) + (v0(0) - v1(0)) * (z - v1(2)) / (v0(2) - v1(2));
|
||||
v0v1(1) = v1(1) + (v0(1) - v1(1)) * (z - v1(2)) / (v0(2) - v1(2));
|
||||
v0v1(2) = z;
|
||||
v2v0(0) = v2(0) + (v0(0) - v2(0)) * (z - v2(2)) / (v0(2) - v2(2));
|
||||
v2v0(1) = v2(1) + (v0(1) - v2(1)) * (z - v2(2)) / (v0(2) - v2(2));
|
||||
v2v0(2) = z;
|
||||
|
||||
// build the triangular facet
|
||||
stl_facet triangle;
|
||||
triangle.normal = facet->normal;
|
||||
triangle.vertex[0] = *v0;
|
||||
triangle.vertex[0] = v0;
|
||||
triangle.vertex[1] = v0v1;
|
||||
triangle.vertex[2] = v2v0;
|
||||
|
||||
// build the facets forming a quadrilateral on the other side
|
||||
stl_facet quadrilateral[2];
|
||||
quadrilateral[0].normal = facet->normal;
|
||||
quadrilateral[0].vertex[0] = *v1;
|
||||
quadrilateral[0].vertex[1] = *v2;
|
||||
quadrilateral[0].vertex[0] = v1;
|
||||
quadrilateral[0].vertex[1] = v2;
|
||||
quadrilateral[0].vertex[2] = v0v1;
|
||||
quadrilateral[1].normal = facet->normal;
|
||||
quadrilateral[1].vertex[0] = *v2;
|
||||
quadrilateral[1].vertex[0] = v2;
|
||||
quadrilateral[1].vertex[1] = v2v0;
|
||||
quadrilateral[1].vertex[2] = v0v1;
|
||||
|
||||
if (v0->z > z) {
|
||||
if (v0(2) > z) {
|
||||
if (upper != NULL) stl_add_facet(&upper->stl, &triangle);
|
||||
if (lower != NULL) {
|
||||
stl_add_facet(&lower->stl, &quadrilateral[0]);
|
||||
|
|
@ -1489,13 +1483,11 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
Polygon p = *polygon;
|
||||
p.reverse();
|
||||
stl_facet facet;
|
||||
facet.normal.x = 0;
|
||||
facet.normal.y = 0;
|
||||
facet.normal.z = -1;
|
||||
facet.normal = stl_normal(0, 0, -1.f);
|
||||
for (size_t i = 0; i <= 2; ++i) {
|
||||
facet.vertex[i].x = unscale(p.points[i](0));
|
||||
facet.vertex[i].y = unscale(p.points[i](1));
|
||||
facet.vertex[i].z = z;
|
||||
facet.vertex[i](0) = unscale<float>(p.points[i](0));
|
||||
facet.vertex[i](1) = unscale<float>(p.points[i](1));
|
||||
facet.vertex[i](2) = z;
|
||||
}
|
||||
stl_add_facet(&upper->stl, &facet);
|
||||
}
|
||||
|
|
@ -1515,13 +1507,11 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
// convert triangles to facets and append them to mesh
|
||||
for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) {
|
||||
stl_facet facet;
|
||||
facet.normal.x = 0;
|
||||
facet.normal.y = 0;
|
||||
facet.normal.z = 1;
|
||||
facet.normal = stl_normal(0, 0, 1.f);
|
||||
for (size_t i = 0; i <= 2; ++i) {
|
||||
facet.vertex[i].x = unscale(polygon->points[i](0));
|
||||
facet.vertex[i].y = unscale(polygon->points[i](1));
|
||||
facet.vertex[i].z = z;
|
||||
facet.vertex[i](0) = unscale<float>(polygon->points[i](0));
|
||||
facet.vertex[i](1) = unscale<float>(polygon->points[i](1));
|
||||
facet.vertex[i](2) = z;
|
||||
}
|
||||
stl_add_facet(&lower->stl, &facet);
|
||||
}
|
||||
|
|
@ -1534,19 +1524,19 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
|
||||
// Generate the vertex list for a cube solid of arbitrary size in X/Y/Z.
|
||||
TriangleMesh make_cube(double x, double y, double z) {
|
||||
Pointf3 pv[8] = {
|
||||
Pointf3(x, y, 0), Pointf3(x, 0, 0), Pointf3(0, 0, 0),
|
||||
Pointf3(0, y, 0), Pointf3(x, y, z), Pointf3(0, y, z),
|
||||
Pointf3(0, 0, z), Pointf3(x, 0, z)
|
||||
Vec3d pv[8] = {
|
||||
Vec3d(x, y, 0), Vec3d(x, 0, 0), Vec3d(0, 0, 0),
|
||||
Vec3d(0, y, 0), Vec3d(x, y, z), Vec3d(0, y, z),
|
||||
Vec3d(0, 0, z), Vec3d(x, 0, z)
|
||||
};
|
||||
Point3 fv[12] = {
|
||||
Point3(0, 1, 2), Point3(0, 2, 3), Point3(4, 5, 6),
|
||||
Point3(4, 6, 7), Point3(0, 4, 7), Point3(0, 7, 1),
|
||||
Point3(1, 7, 6), Point3(1, 6, 2), Point3(2, 6, 5),
|
||||
Point3(2, 5, 3), Point3(4, 0, 3), Point3(4, 3, 5)
|
||||
Vec3crd fv[12] = {
|
||||
Vec3crd(0, 1, 2), Vec3crd(0, 2, 3), Vec3crd(4, 5, 6),
|
||||
Vec3crd(4, 6, 7), Vec3crd(0, 4, 7), Vec3crd(0, 7, 1),
|
||||
Vec3crd(1, 7, 6), Vec3crd(1, 6, 2), Vec3crd(2, 6, 5),
|
||||
Vec3crd(2, 5, 3), Vec3crd(4, 0, 3), Vec3crd(4, 3, 5)
|
||||
};
|
||||
|
||||
std::vector<Point3> facets(&fv[0], &fv[0]+12);
|
||||
std::vector<Vec3crd> facets(&fv[0], &fv[0]+12);
|
||||
Pointf3s vertices(&pv[0], &pv[0]+8);
|
||||
|
||||
TriangleMesh mesh(vertices ,facets);
|
||||
|
|
@ -1558,11 +1548,11 @@ TriangleMesh make_cube(double x, double y, double z) {
|
|||
// Default is 360 sides, angle fa is in radians.
|
||||
TriangleMesh make_cylinder(double r, double h, double fa) {
|
||||
Pointf3s vertices;
|
||||
std::vector<Point3> facets;
|
||||
std::vector<Vec3crd> facets;
|
||||
|
||||
// 2 special vertices, top and bottom center, rest are relative to this
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, 0.0));
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, h));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, 0.0));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, h));
|
||||
|
||||
// adjust via rounding to get an even multiple for any provided angle.
|
||||
double angle = (2*PI / floor(2*PI / fa));
|
||||
|
|
@ -1572,24 +1562,23 @@ TriangleMesh make_cylinder(double r, double h, double fa) {
|
|||
// top and bottom.
|
||||
// Special case: Last line shares 2 vertices with the first line.
|
||||
unsigned id = vertices.size() - 1;
|
||||
vertices.emplace_back(Pointf3(sin(0) * r , cos(0) * r, 0));
|
||||
vertices.emplace_back(Pointf3(sin(0) * r , cos(0) * r, h));
|
||||
vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, 0));
|
||||
vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, h));
|
||||
for (double i = 0; i < 2*PI; i+=angle) {
|
||||
Pointf p(0, r);
|
||||
p.rotate(i);
|
||||
vertices.emplace_back(Pointf3(p(0), p(1), 0.));
|
||||
vertices.emplace_back(Pointf3(p(0), p(1), h));
|
||||
Vec2d p = Eigen::Rotation2Dd(i) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), 0.));
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), h));
|
||||
id = vertices.size() - 1;
|
||||
facets.emplace_back(Point3( 0, id - 1, id - 3)); // top
|
||||
facets.emplace_back(Point3(id, 1, id - 2)); // bottom
|
||||
facets.emplace_back(Point3(id, id - 2, id - 3)); // upper-right of side
|
||||
facets.emplace_back(Point3(id, id - 3, id - 1)); // bottom-left of side
|
||||
facets.emplace_back(Vec3crd( 0, id - 1, id - 3)); // top
|
||||
facets.emplace_back(Vec3crd(id, 1, id - 2)); // bottom
|
||||
facets.emplace_back(Vec3crd(id, id - 2, id - 3)); // upper-right of side
|
||||
facets.emplace_back(Vec3crd(id, id - 3, id - 1)); // bottom-left of side
|
||||
}
|
||||
// Connect the last set of vertices with the first.
|
||||
facets.emplace_back(Point3( 2, 0, id - 1));
|
||||
facets.emplace_back(Point3( 1, 3, id));
|
||||
facets.emplace_back(Point3(id, 3, 2));
|
||||
facets.emplace_back(Point3(id, 2, id - 1));
|
||||
facets.emplace_back(Vec3crd( 2, 0, id - 1));
|
||||
facets.emplace_back(Vec3crd( 1, 3, id));
|
||||
facets.emplace_back(Vec3crd(id, 3, 2));
|
||||
facets.emplace_back(Vec3crd(id, 2, id - 1));
|
||||
|
||||
TriangleMesh mesh(vertices, facets);
|
||||
return mesh;
|
||||
|
|
@ -1600,7 +1589,7 @@ TriangleMesh make_cylinder(double r, double h, double fa) {
|
|||
// Default angle is 1 degree.
|
||||
TriangleMesh make_sphere(double rho, double fa) {
|
||||
Pointf3s vertices;
|
||||
std::vector<Point3> facets;
|
||||
std::vector<Vec3crd> facets;
|
||||
|
||||
// Algorithm:
|
||||
// Add points one-by-one to the sphere grid and form facets using relative coordinates.
|
||||
|
|
@ -1619,17 +1608,16 @@ TriangleMesh make_sphere(double rho, double fa) {
|
|||
|
||||
// special case: first ring connects to 0,0,0
|
||||
// insert and form facets.
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, -rho));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, -rho));
|
||||
size_t id = vertices.size();
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
// Fixed scaling
|
||||
const double z = -rho + increment*rho*2.0;
|
||||
// radius of the circle for this step.
|
||||
const double r = sqrt(abs(rho*rho - z*z));
|
||||
Pointf b(0, r);
|
||||
b.rotate(ring[i]);
|
||||
vertices.emplace_back(Pointf3(b(0), b(1), z));
|
||||
facets.emplace_back((i == 0) ? Point3(1, 0, ring.size()) : Point3(id, 0, id - 1));
|
||||
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
||||
facets.emplace_back((i == 0) ? Vec3crd(1, 0, ring.size()) : Vec3crd(id, 0, id - 1));
|
||||
++ id;
|
||||
}
|
||||
|
||||
|
|
@ -1639,16 +1627,15 @@ TriangleMesh make_sphere(double rho, double fa) {
|
|||
const double r = sqrt(abs(rho*rho - z*z));
|
||||
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
Pointf b(0, r);
|
||||
b.rotate(ring[i]);
|
||||
vertices.emplace_back(Pointf3(b(0), b(1), z));
|
||||
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
||||
if (i == 0) {
|
||||
// wrap around
|
||||
facets.emplace_back(Point3(id + ring.size() - 1 , id, id - 1));
|
||||
facets.emplace_back(Point3(id, id - ring.size(), id - 1));
|
||||
facets.emplace_back(Vec3crd(id + ring.size() - 1 , id, id - 1));
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size(), id - 1));
|
||||
} else {
|
||||
facets.emplace_back(Point3(id , id - ring.size(), (id - 1) - ring.size()));
|
||||
facets.emplace_back(Point3(id, id - 1 - ring.size() , id - 1));
|
||||
facets.emplace_back(Vec3crd(id , id - ring.size(), (id - 1) - ring.size()));
|
||||
facets.emplace_back(Vec3crd(id, id - 1 - ring.size() , id - 1));
|
||||
}
|
||||
id++;
|
||||
}
|
||||
|
|
@ -1657,13 +1644,13 @@ TriangleMesh make_sphere(double rho, double fa) {
|
|||
|
||||
// special case: last ring connects to 0,0,rho*2.0
|
||||
// only form facets.
|
||||
vertices.emplace_back(Pointf3(0.0, 0.0, rho));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, rho));
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
if (i == 0) {
|
||||
// third vertex is on the other side of the ring.
|
||||
facets.emplace_back(Point3(id, id - ring.size(), id - 1));
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size(), id - 1));
|
||||
} else {
|
||||
facets.emplace_back(Point3(id, id - ring.size() + i, id - ring.size() + (i - 1)));
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size() + i, id - ring.size() + (i - 1)));
|
||||
}
|
||||
}
|
||||
id++;
|
||||
|
|
|
|||
|
|
@ -20,33 +20,33 @@ typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
|
|||
class TriangleMesh
|
||||
{
|
||||
public:
|
||||
TriangleMesh();
|
||||
TriangleMesh(const Pointf3s &points, const std::vector<Point3> &facets);
|
||||
TriangleMesh(const TriangleMesh &other);
|
||||
TriangleMesh(TriangleMesh &&other);
|
||||
TriangleMesh() : repaired(false) { stl_initialize(&this->stl); }
|
||||
TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd> &facets);
|
||||
TriangleMesh(const TriangleMesh &other) : repaired(false) { stl_initialize(&this->stl); *this = other; }
|
||||
TriangleMesh(TriangleMesh &&other) : repaired(false) { stl_initialize(&this->stl); this->swap(other); }
|
||||
~TriangleMesh() { stl_close(&this->stl); }
|
||||
TriangleMesh& operator=(const TriangleMesh &other);
|
||||
TriangleMesh& operator=(TriangleMesh &&other);
|
||||
void swap(TriangleMesh &other);
|
||||
~TriangleMesh();
|
||||
void ReadSTLFile(const char* input_file);
|
||||
void write_ascii(const char* output_file);
|
||||
void write_binary(const char* output_file);
|
||||
TriangleMesh& operator=(TriangleMesh &&other) { this->swap(other); return *this; }
|
||||
void swap(TriangleMesh &other) { std::swap(this->stl, other.stl); std::swap(this->repaired, other.repaired); }
|
||||
void ReadSTLFile(const char* input_file) { stl_open(&stl, input_file); }
|
||||
void write_ascii(const char* output_file) { stl_write_ascii(&this->stl, output_file, ""); }
|
||||
void write_binary(const char* output_file) { stl_write_binary(&this->stl, output_file, ""); }
|
||||
void repair();
|
||||
float volume();
|
||||
void check_topology();
|
||||
bool is_manifold() const;
|
||||
bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == this->stl.stats.number_of_facets; }
|
||||
void WriteOBJFile(char* output_file);
|
||||
void scale(float factor);
|
||||
void scale(const Pointf3 &versor);
|
||||
void scale(const Vec3d &versor);
|
||||
void translate(float x, float y, float z);
|
||||
void rotate(float angle, const Axis &axis);
|
||||
void rotate_x(float angle);
|
||||
void rotate_y(float angle);
|
||||
void rotate_z(float angle);
|
||||
void rotate_x(float angle) { this->rotate(angle, X); }
|
||||
void rotate_y(float angle) { this->rotate(angle, Y); }
|
||||
void rotate_z(float angle) { this->rotate(angle, Z); }
|
||||
void mirror(const Axis &axis);
|
||||
void mirror_x();
|
||||
void mirror_y();
|
||||
void mirror_z();
|
||||
void mirror_x() { this->mirror(X); }
|
||||
void mirror_y() { this->mirror(Y); }
|
||||
void mirror_z() { this->mirror(Z); }
|
||||
void transform(const float* matrix3x4);
|
||||
void align_to_origin();
|
||||
void rotate(double angle, Point* center);
|
||||
|
|
@ -55,9 +55,13 @@ public:
|
|||
ExPolygons horizontal_projection() const;
|
||||
Polygon convex_hull();
|
||||
BoundingBoxf3 bounding_box() const;
|
||||
// Returns the bbox of this TriangleMesh transformed by the given transformation
|
||||
BoundingBoxf3 transformed_bounding_box(const Transform3d& t) const;
|
||||
// Returns the convex hull of this TriangleMesh
|
||||
TriangleMesh convex_hull_3d() const;
|
||||
void reset_repair_stats();
|
||||
bool needed_repair() const;
|
||||
size_t facets_count() const;
|
||||
size_t facets_count() const { return this->stl.stats.number_of_facets; }
|
||||
|
||||
// Returns true, if there are two and more connected patches in the mesh.
|
||||
// Returns false, if one or zero connected patch is in the mesh.
|
||||
|
|
@ -66,7 +70,7 @@ public:
|
|||
// Count disconnected triangle patches.
|
||||
size_t number_of_patches() const;
|
||||
|
||||
stl_file stl;
|
||||
mutable stl_file stl;
|
||||
bool repaired;
|
||||
|
||||
private:
|
||||
|
|
|
|||
|
|
@ -45,7 +45,6 @@ typedef double coordf_t;
|
|||
//FIXME Better to use an inline function with an explicit return type.
|
||||
//inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); }
|
||||
#define scale_(val) ((val) / SCALING_FACTOR)
|
||||
#define unscale(val) ((val) * SCALING_FACTOR)
|
||||
#define SCALED_EPSILON scale_(EPSILON)
|
||||
/* Implementation of CONFESS("foo"): */
|
||||
#ifdef _MSC_VER
|
||||
|
|
@ -102,6 +101,9 @@ inline std::string debug_out_path(const char *name, ...)
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
template<typename T, typename Q>
|
||||
inline T unscale(Q v) { return T(v) * T(SCALING_FACTOR); }
|
||||
|
||||
enum Axis { X=0, Y, Z, E, F, NUM_AXES };
|
||||
|
||||
template <class T>
|
||||
|
|
|
|||
|
|
@ -41,9 +41,8 @@ REGISTER_CLASS(BoundingBoxf, "Geometry::BoundingBoxf");
|
|||
REGISTER_CLASS(BoundingBoxf3, "Geometry::BoundingBoxf3");
|
||||
REGISTER_CLASS(BridgeDetector, "BridgeDetector");
|
||||
REGISTER_CLASS(Point, "Point");
|
||||
REGISTER_CLASS(Point3, "Point3");
|
||||
REGISTER_CLASS(Pointf, "Pointf");
|
||||
REGISTER_CLASS(Pointf3, "Pointf3");
|
||||
__REGISTER_CLASS(Vec2d, "Pointf");
|
||||
__REGISTER_CLASS(Vec3d, "Pointf3");
|
||||
REGISTER_CLASS(DynamicPrintConfig, "Config");
|
||||
REGISTER_CLASS(StaticPrintConfig, "Config::Static");
|
||||
REGISTER_CLASS(PrintObjectConfig, "Config::PrintObject");
|
||||
|
|
@ -64,9 +63,9 @@ REGISTER_CLASS(PresetCollection, "GUI::PresetCollection");
|
|||
REGISTER_CLASS(PresetBundle, "GUI::PresetBundle");
|
||||
REGISTER_CLASS(TabIface, "GUI::Tab");
|
||||
REGISTER_CLASS(PresetUpdater, "PresetUpdater");
|
||||
REGISTER_CLASS(OctoPrint, "OctoPrint");
|
||||
REGISTER_CLASS(AppController, "AppController");
|
||||
REGISTER_CLASS(PrintController, "PrintController");
|
||||
REGISTER_CLASS(PrintHost, "PrintHost");
|
||||
|
||||
SV* ConfigBase__as_hash(ConfigBase* THIS)
|
||||
{
|
||||
|
|
@ -133,7 +132,7 @@ SV* ConfigOption_to_SV(const ConfigOption &opt, const ConfigOptionDef &def)
|
|||
auto optv = static_cast<const ConfigOptionPoints*>(&opt);
|
||||
AV* av = newAV();
|
||||
av_fill(av, optv->values.size()-1);
|
||||
for (const Pointf &v : optv->values)
|
||||
for (const Vec2d &v : optv->values)
|
||||
av_store(av, &v - optv->values.data(), perl_to_SV_clone_ref(v));
|
||||
return newRV_noinc((SV*)av);
|
||||
}
|
||||
|
|
@ -263,14 +262,14 @@ bool ConfigBase__set(ConfigBase* THIS, const t_config_option_key &opt_key, SV* v
|
|||
return from_SV_check(value, &static_cast<ConfigOptionPoint*>(opt)->value);
|
||||
case coPoints:
|
||||
{
|
||||
std::vector<Pointf> &values = static_cast<ConfigOptionPoints*>(opt)->values;
|
||||
std::vector<Vec2d> &values = static_cast<ConfigOptionPoints*>(opt)->values;
|
||||
AV* av = (AV*)SvRV(value);
|
||||
const size_t len = av_len(av)+1;
|
||||
values.clear();
|
||||
values.reserve(len);
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
SV** elem = av_fetch(av, i, 0);
|
||||
Pointf point;
|
||||
Vec2d point(Vec2d::Zero());
|
||||
if (elem == NULL || !from_SV_check(*elem, &point)) return false;
|
||||
values.emplace_back(point);
|
||||
}
|
||||
|
|
@ -509,7 +508,7 @@ void from_SV_check(SV* point_sv, Point* point)
|
|||
}
|
||||
}
|
||||
|
||||
SV* to_SV_pureperl(const Pointf* point)
|
||||
SV* to_SV_pureperl(const Vec2d* point)
|
||||
{
|
||||
AV* av = newAV();
|
||||
av_fill(av, 1);
|
||||
|
|
@ -518,23 +517,23 @@ SV* to_SV_pureperl(const Pointf* point)
|
|||
return newRV_noinc((SV*)av);
|
||||
}
|
||||
|
||||
bool from_SV(SV* point_sv, Pointf* point)
|
||||
bool from_SV(SV* point_sv, Vec2d* point)
|
||||
{
|
||||
AV* point_av = (AV*)SvRV(point_sv);
|
||||
SV* sv_x = *av_fetch(point_av, 0, 0);
|
||||
SV* sv_y = *av_fetch(point_av, 1, 0);
|
||||
if (!looks_like_number(sv_x) || !looks_like_number(sv_y)) return false;
|
||||
|
||||
*point = Pointf(SvNV(sv_x), SvNV(sv_y));
|
||||
*point = Vec2d(SvNV(sv_x), SvNV(sv_y));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool from_SV_check(SV* point_sv, Pointf* point)
|
||||
bool from_SV_check(SV* point_sv, Vec2d* point)
|
||||
{
|
||||
if (sv_isobject(point_sv) && (SvTYPE(SvRV(point_sv)) == SVt_PVMG)) {
|
||||
if (!sv_isa(point_sv, perl_class_name(point)) && !sv_isa(point_sv, perl_class_name_ref(point)))
|
||||
CONFESS("Not a valid %s object (got %s)", perl_class_name(point), HvNAME(SvSTASH(SvRV(point_sv))));
|
||||
*point = *(Pointf*)SvIV((SV*)SvRV( point_sv ));
|
||||
*point = *(Vec2d*)SvIV((SV*)SvRV( point_sv ));
|
||||
return true;
|
||||
} else {
|
||||
return from_SV(point_sv, point);
|
||||
|
|
|
|||
47
xs/src/qhull/Announce.txt
Normal file
|
|
@ -0,0 +1,47 @@
|
|||
|
||||
Qhull 2015.2 2016/01/18
|
||||
|
||||
http://www.qhull.org
|
||||
git@github.com:qhull/qhull.git
|
||||
http://www.geomview.org
|
||||
|
||||
Qhull computes convex hulls, Delaunay triangulations, Voronoi diagrams,
|
||||
furthest-site Voronoi diagrams, and halfspace intersections about a point.
|
||||
It runs in 2-d, 3-d, 4-d, or higher. It implements the Quickhull algorithm
|
||||
for computing convex hulls. Qhull handles round-off errors from floating
|
||||
point arithmetic. It can approximate a convex hull.
|
||||
|
||||
The program includes options for hull volume, facet area, partial hulls,
|
||||
input transformations, randomization, tracing, multiple output formats, and
|
||||
execution statistics. The program can be called from within your application.
|
||||
You can view the results in 2-d, 3-d and 4-d with Geomview.
|
||||
|
||||
To download Qhull:
|
||||
http://www.qhull.org/download
|
||||
git@github.com:qhull/qhull.git
|
||||
|
||||
Download qhull-96.ps for:
|
||||
|
||||
Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The
|
||||
Quickhull Algorithm for Convex Hulls," ACM Trans. on
|
||||
Mathematical Software, 22(4):469-483, Dec. 1996.
|
||||
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
|
||||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.405
|
||||
|
||||
Abstract:
|
||||
|
||||
The convex hull of a set of points is the smallest convex set that contains
|
||||
the points. This article presents a practical convex hull algorithm that
|
||||
combines the two-dimensional Quickhull Algorithm with the general dimension
|
||||
Beneath-Beyond Algorithm. It is similar to the randomized, incremental
|
||||
algorithms for convex hull and Delaunay triangulation. We provide empirical
|
||||
evidence that the algorithm runs faster when the input contains non-extreme
|
||||
points, and that it uses less memory.
|
||||
|
||||
Computational geometry algorithms have traditionally assumed that input sets
|
||||
are well behaved. When an algorithm is implemented with floating point
|
||||
arithmetic, this assumption can lead to serious errors. We briefly describe
|
||||
a solution to this problem when computing the convex hull in two, three, or
|
||||
four dimensions. The output is a set of "thick" facets that contain all
|
||||
possible exact convex hulls of the input. A variation is effective in five
|
||||
or more dimensions.
|
||||
128
xs/src/qhull/CMakeLists.txt
Normal file
|
|
@ -0,0 +1,128 @@
|
|||
|
||||
# This CMake file is written specifically to integrate qhull library with Slic3rPE
|
||||
# (see https://github.com/prusa3d/Slic3r for more information about the project)
|
||||
#
|
||||
# Only original libraries qhullstatic_r and qhullcpp are included.
|
||||
# They are built as a single statically linked library.
|
||||
#
|
||||
# Created by modification of the original qhull CMakeLists.
|
||||
# Lukas Matena (25.7.2018), lukasmatena@seznam.cz
|
||||
|
||||
|
||||
project(qhull)
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
|
||||
# Define qhull_VERSION in CMakeLists.txt, Makefile, qhull-exports.def, qhull_p-exports.def, qhull_r-exports.def, qhull-warn.pri
|
||||
set(qhull_VERSION2 "2015.2 2016/01/18") # not used, See global.c, global_r.c, rbox.c, rbox_r.c
|
||||
set(qhull_VERSION "7.2.0") # Advance every release
|
||||
|
||||
#include(CMakeModules/CheckLFS.cmake)
|
||||
#option(WITH_LFS "Enable Large File Support" ON)
|
||||
#check_lfs(WITH_LFS)
|
||||
|
||||
|
||||
message(STATUS "qhull Version: ${qhull_VERSION} (static linking)")
|
||||
|
||||
|
||||
set(libqhull_HEADERS
|
||||
# reentrant qhull HEADERS:
|
||||
src/libqhull_r/libqhull_r.h
|
||||
src/libqhull_r/geom_r.h
|
||||
src/libqhull_r/io_r.h
|
||||
src/libqhull_r/mem_r.h
|
||||
src/libqhull_r/merge_r.h
|
||||
src/libqhull_r/poly_r.h
|
||||
src/libqhull_r/qhull_ra.h
|
||||
src/libqhull_r/qset_r.h
|
||||
src/libqhull_r/random_r.h
|
||||
src/libqhull_r/stat_r.h
|
||||
src/libqhull_r/user_r.h
|
||||
|
||||
# C++ interface to reentrant Qhull HEADERS:
|
||||
src/libqhullcpp/Coordinates.h
|
||||
src/libqhullcpp/functionObjects.h
|
||||
src/libqhullcpp/PointCoordinates.h
|
||||
src/libqhullcpp/Qhull.h
|
||||
src/libqhullcpp/QhullError.h
|
||||
src/libqhullcpp/QhullFacet.h
|
||||
src/libqhullcpp/QhullFacetList.h
|
||||
src/libqhullcpp/QhullFacetSet.h
|
||||
src/libqhullcpp/QhullHyperplane.h
|
||||
src/libqhullcpp/QhullIterator.h
|
||||
src/libqhullcpp/QhullLinkedList.h
|
||||
src/libqhullcpp/QhullPoint.h
|
||||
src/libqhullcpp/QhullPoints.h
|
||||
src/libqhullcpp/QhullPointSet.h
|
||||
src/libqhullcpp/QhullQh.h
|
||||
src/libqhullcpp/QhullRidge.h
|
||||
src/libqhullcpp/QhullSet.h
|
||||
src/libqhullcpp/QhullSets.h
|
||||
src/libqhullcpp/QhullStat.h
|
||||
src/libqhullcpp/QhullVertex.h
|
||||
src/libqhullcpp/QhullVertexSet.h
|
||||
src/libqhullcpp/RboxPoints.h
|
||||
src/libqhullcpp/RoadError.h
|
||||
src/libqhullcpp/RoadLogEvent.h
|
||||
src/qhulltest/RoadTest.h
|
||||
)
|
||||
|
||||
set(libqhull_SOURCES
|
||||
# reentrant qhull SOURCES:
|
||||
src/libqhull_r/global_r.c
|
||||
src/libqhull_r/stat_r.c
|
||||
src/libqhull_r/geom2_r.c
|
||||
src/libqhull_r/poly2_r.c
|
||||
src/libqhull_r/merge_r.c
|
||||
src/libqhull_r/libqhull_r.c
|
||||
src/libqhull_r/geom_r.c
|
||||
src/libqhull_r/poly_r.c
|
||||
src/libqhull_r/qset_r.c
|
||||
src/libqhull_r/mem_r.c
|
||||
src/libqhull_r/random_r.c
|
||||
src/libqhull_r/usermem_r.c
|
||||
src/libqhull_r/userprintf_r.c
|
||||
src/libqhull_r/io_r.c
|
||||
src/libqhull_r/user_r.c
|
||||
src/libqhull_r/rboxlib_r.c
|
||||
src/libqhull_r/userprintf_rbox_r.c
|
||||
|
||||
# C++ interface to reentrant Qhull SOURCES:
|
||||
src/libqhullcpp/Coordinates.cpp
|
||||
src/libqhullcpp/PointCoordinates.cpp
|
||||
src/libqhullcpp/Qhull.cpp
|
||||
src/libqhullcpp/QhullFacet.cpp
|
||||
src/libqhullcpp/QhullFacetList.cpp
|
||||
src/libqhullcpp/QhullFacetSet.cpp
|
||||
src/libqhullcpp/QhullHyperplane.cpp
|
||||
src/libqhullcpp/QhullPoint.cpp
|
||||
src/libqhullcpp/QhullPointSet.cpp
|
||||
src/libqhullcpp/QhullPoints.cpp
|
||||
src/libqhullcpp/QhullQh.cpp
|
||||
src/libqhullcpp/QhullRidge.cpp
|
||||
src/libqhullcpp/QhullSet.cpp
|
||||
src/libqhullcpp/QhullStat.cpp
|
||||
src/libqhullcpp/QhullVertex.cpp
|
||||
src/libqhullcpp/QhullVertexSet.cpp
|
||||
src/libqhullcpp/RboxPoints.cpp
|
||||
src/libqhullcpp/RoadError.cpp
|
||||
src/libqhullcpp/RoadLogEvent.cpp
|
||||
|
||||
# headers for both (libqhullr and libqhullcpp:
|
||||
${libqhull_HEADERS}
|
||||
)
|
||||
|
||||
|
||||
##################################################
|
||||
# combined library (reentrant qhull and qhullcpp) for Slic3r:
|
||||
set(qhull_STATIC qhull)
|
||||
add_library(${qhull_STATIC} STATIC ${libqhull_SOURCES})
|
||||
set_target_properties(${qhull_STATIC} PROPERTIES
|
||||
VERSION ${qhull_VERSION})
|
||||
|
||||
if(UNIX)
|
||||
target_link_libraries(${qhull_STATIC} m)
|
||||
endif(UNIX)
|
||||
##################################################
|
||||
|
||||
# LIBDIR is defined in the main xs CMake file:
|
||||
target_include_directories(${qhull_STATIC} PRIVATE ${LIBDIR}/qhull/src)
|
||||
38
xs/src/qhull/COPYING.txt
Normal file
|
|
@ -0,0 +1,38 @@
|
|||
Qhull, Copyright (c) 1993-2015
|
||||
|
||||
C.B. Barber
|
||||
Arlington, MA
|
||||
|
||||
and
|
||||
|
||||
The National Science and Technology Research Center for
|
||||
Computation and Visualization of Geometric Structures
|
||||
(The Geometry Center)
|
||||
University of Minnesota
|
||||
|
||||
email: qhull@qhull.org
|
||||
|
||||
This software includes Qhull from C.B. Barber and The Geometry Center.
|
||||
Qhull is copyrighted as noted above. Qhull is free software and may
|
||||
be obtained via http from www.qhull.org. It may be freely copied, modified,
|
||||
and redistributed under the following conditions:
|
||||
|
||||
1. All copyright notices must remain intact in all files.
|
||||
|
||||
2. A copy of this text file must be distributed along with any copies
|
||||
of Qhull that you redistribute; this includes copies that you have
|
||||
modified, or copies of programs or other software products that
|
||||
include Qhull.
|
||||
|
||||
3. If you modify Qhull, you must include a notice giving the
|
||||
name of the person performing the modification, the date of
|
||||
modification, and the reason for such modification.
|
||||
|
||||
4. When distributing modified versions of Qhull, or other software
|
||||
products that include Qhull, you must provide notice that the original
|
||||
source code may be obtained as noted above.
|
||||
|
||||
5. There is no warranty or other guarantee of fitness for Qhull, it is
|
||||
provided solely "as is". Bug reports or fixes may be sent to
|
||||
qhull_bug@qhull.org; the authors may or may not act on them as
|
||||
they desire.
|
||||
623
xs/src/qhull/README.txt
Normal file
|
|
@ -0,0 +1,623 @@
|
|||
This distribution of qhull library is only meant for interfacing qhull with Slic3rPE
|
||||
(https://github.com/prusa3d/Slic3r).
|
||||
|
||||
The qhull source file was acquired from https://github.com/qhull/qhull at revision
|
||||
f0bd8ceeb84b554d7cdde9bbfae7d3351270478c.
|
||||
|
||||
No changes to the qhull library were made, except for
|
||||
- setting REALfloat=1 in user_r.h to enforce calculations in floats
|
||||
- modifying CMakeLists.txt (the original was renamed to origCMakeLists.txt)
|
||||
|
||||
Many thanks to C. Bradford Barber and all contributors.
|
||||
|
||||
Lukas Matena (lukasmatena@seznam.cz)
|
||||
25.7.2018
|
||||
|
||||
|
||||
See original contents of the README file below.
|
||||
|
||||
======================================================================================
|
||||
======================================================================================
|
||||
======================================================================================
|
||||
|
||||
|
||||
Name
|
||||
|
||||
qhull, rbox 2015.2 2016/01/18
|
||||
|
||||
Convex hull, Delaunay triangulation, Voronoi diagrams, Halfspace intersection
|
||||
|
||||
Documentation:
|
||||
html/index.htm
|
||||
<http://www.qhull.org/html>
|
||||
|
||||
Available from:
|
||||
<http://www.qhull.org>
|
||||
<http://www.qhull.org/download>
|
||||
<http://github.com/qhull/qhull> (git@github.com:qhull/qhull.git)
|
||||
|
||||
News and a paper:
|
||||
<http://www.qhull.org/news>
|
||||
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.405>
|
||||
|
||||
Version 1 (simplicial only):
|
||||
<http://www.qhull.org/download/qhull-1.0.tar.gz>
|
||||
|
||||
Purpose
|
||||
|
||||
Qhull is a general dimension convex hull program that reads a set
|
||||
of points from stdin, and outputs the smallest convex set that contains
|
||||
the points to stdout. It also generates Delaunay triangulations, Voronoi
|
||||
diagrams, furthest-site Voronoi diagrams, and halfspace intersections
|
||||
about a point.
|
||||
|
||||
Rbox is a useful tool in generating input for Qhull; it generates
|
||||
hypercubes, diamonds, cones, circles, simplices, spirals,
|
||||
lattices, and random points.
|
||||
|
||||
Qhull produces graphical output for Geomview. This helps with
|
||||
understanding the output. <http://www.geomview.org>
|
||||
|
||||
Environment requirements
|
||||
|
||||
Qhull and rbox should run on all 32-bit and 64-bit computers. Use
|
||||
an ANSI C or C++ compiler to compile the program. The software is
|
||||
self-contained. It comes with examples and test scripts.
|
||||
|
||||
Qhull's C++ interface uses the STL. The C++ test program uses QTestLib
|
||||
from the Qt Framework. Qhull's C++ interface may change without
|
||||
notice. Eventually, it will move into the qhull shared library.
|
||||
|
||||
Qhull is copyrighted software. Please read COPYING.txt and REGISTER.txt
|
||||
before using or distributing Qhull.
|
||||
|
||||
To cite Qhull, please use
|
||||
|
||||
Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The Quickhull
|
||||
algorithm for convex hulls," ACM Trans. on Mathematical Software,
|
||||
22(4):469-483, Dec 1996, http://www.qhull.org.
|
||||
|
||||
To modify Qhull, particularly the C++ interface
|
||||
|
||||
Qhull is on GitHub
|
||||
(http://github.com/qhull/qhull, git@github.com:qhull/qhull.git)
|
||||
|
||||
For internal documentation, see html/qh-code.htm
|
||||
|
||||
To install Qhull
|
||||
|
||||
Qhull is precompiled for Windows 32-bit, otherwise it needs compilation.
|
||||
|
||||
Qhull includes Makefiles for gcc and other targets, CMakeLists.txt for CMake,
|
||||
.sln/.vcproj/.vcxproj files for Microsoft Visual Studio, and .pro files
|
||||
for Qt Creator. It compiles under Windows with mingw.
|
||||
|
||||
Install and build instructions follow.
|
||||
|
||||
See the end of this document for a list of distributed files.
|
||||
|
||||
-----------------
|
||||
Installing Qhull on Windows 10, 8, 7 (32- or 64-bit), Windows XP, and Windows NT
|
||||
|
||||
The zip file contains rbox.exe, qhull.exe, qconvex.exe, qdelaunay.exe,
|
||||
qhalf.exe, qvoronoi.exe, testqset.exe, user_eg*.exe, documentation files,
|
||||
and source files. Qhull.exe and user-eg3.exe are compiled with the reentrant
|
||||
library while the other executables use the non-reentrant library.
|
||||
|
||||
To install Qhull:
|
||||
- Unzip the files into a directory (e.g., named 'qhull')
|
||||
- Click on QHULL-GO or open a command window into Qhull's bin directory.
|
||||
- Test with 'rbox D4 | qhull'
|
||||
|
||||
To uninstall Qhull
|
||||
- Delete the qhull directory
|
||||
|
||||
To learn about Qhull:
|
||||
- Execute 'qconvex' for a synopsis and examples.
|
||||
- Execute 'rbox 10 | qconvex' to compute the convex hull of 10 random points.
|
||||
- Execute 'rbox 10 | qconvex i TO file' to write results to 'file'.
|
||||
- Browse the documentation: qhull\html\index.htm
|
||||
- If an error occurs, Windows sends the error to stdout instead of stderr.
|
||||
Use 'TO xxx' to send normal output to xxx
|
||||
|
||||
To improve the command window
|
||||
- Double-click the window bar to increase the size of the window
|
||||
- Right-click the window bar
|
||||
- Select Properties
|
||||
- Check QuickEdit Mode
|
||||
Select text with right-click or Enter
|
||||
Paste text with right-click
|
||||
- Change Font to Lucinda Console
|
||||
- Change Layout to Screen Buffer Height 999, Window Size Height 55
|
||||
- Change Colors to Screen Background White, Screen Text Black
|
||||
- Click OK
|
||||
- Select 'Modify shortcut that started this window', then OK
|
||||
|
||||
If you use qhull a lot, install a bash shell such as
|
||||
MSYS (www.mingw.org/wiki/msys), Road Bash (www.qhull.org/bash),
|
||||
or Cygwin (www.cygwin.com).
|
||||
|
||||
-----------------
|
||||
Installing Qhull on Unix with gcc
|
||||
|
||||
To build Qhull, static libraries, shared library, and C++ interface
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- make
|
||||
- export LD_LIBRARY_PATH=$PWD/lib:$LD_LIBRARY_PATH
|
||||
|
||||
The Makefiles may be edited for other compilers.
|
||||
If 'testqset' exits with an error, qhull is broken
|
||||
|
||||
A simple Makefile for Qhull is in src/libqhull and src/libqhull_r.
|
||||
To build the Qhull executables and libqhullstatic
|
||||
- Extract Qhull from qhull...tgz or qhull...zip
|
||||
- cd src/libqhull_r # cd src/libqhull
|
||||
- make
|
||||
|
||||
|
||||
-----------------
|
||||
Installing Qhull with CMake 2.6 or later
|
||||
|
||||
See CMakeLists.txt for examples and further build instructions
|
||||
|
||||
To build Qhull, static libraries, shared library, and C++ interface
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- cd build
|
||||
- cmake --help # List build generators
|
||||
- make -G "<generator>" .. && cmake ..
|
||||
- cmake ..
|
||||
- make
|
||||
- make install
|
||||
|
||||
The ".." is important. It refers to the parent directory (i.e., qhull/)
|
||||
|
||||
On Windows, CMake installs to C:/Program Files/qhull. 64-bit generators
|
||||
have a "Win64" tag.
|
||||
|
||||
If creating a qhull package, please include a pkg-config file based on build/qhull*.pc.in
|
||||
|
||||
If cmake fails with "No CMAKE_C_COMPILER could be found"
|
||||
- cmake was not able to find the build environment specified by -G "..."
|
||||
|
||||
-----------------
|
||||
Installing Qhull with Qt
|
||||
|
||||
To build Qhull, including its C++ test (qhulltest)
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- Load src/qhull-all.pro into QtCreator
|
||||
- Build
|
||||
|
||||
-------------------
|
||||
Working with Qhull's C++ interface
|
||||
|
||||
See html/qh-code.htm#cpp for calling Qhull from C++ programs
|
||||
|
||||
See html/qh-code.htm#reentrant for converting from Qhull-2012
|
||||
|
||||
Examples of using the C++ interface
|
||||
user_eg3_r.cpp
|
||||
qhulltest/*_test.cpp
|
||||
|
||||
Qhull's C++ interface is likely to change. Stay current with GitHub.
|
||||
|
||||
To clone Qhull's next branch from http://github.com/qhull/qhull
|
||||
git init
|
||||
git clone git@github.com:qhull/qhull.git
|
||||
cd qhull
|
||||
git checkout next
|
||||
...
|
||||
git pull origin next
|
||||
|
||||
Compile qhullcpp and libqhullstatic_r with the same compiler. Both libraries
|
||||
use the C routines setjmp() and longjmp() for error handling. They must
|
||||
be compiled with the same compiler.
|
||||
|
||||
-------------------
|
||||
Calling Qhull from C programs
|
||||
|
||||
See html/qh-code.htm#library for calling Qhull from C programs
|
||||
|
||||
See html/qh-code.htm#reentrant for converting from Qhull-2012
|
||||
|
||||
Warning: You will need to understand Qhull's data structures and read the
|
||||
code. Most users will find it easier to call Qhull as an external command.
|
||||
|
||||
The new, reentrant 'C' code (src/libqhull_r), passes a pointer to qhT
|
||||
to most Qhull routines. This allows multiple instances of Qhull to run
|
||||
at the same time. It simplifies the C++ interface.
|
||||
|
||||
The non-reentrant 'C' code (src/libqhull) looks unusual. It refers to
|
||||
Qhull's global data structure, qhT, through a 'qh' macro (e.g., 'qh ferr').
|
||||
This allows the same code to use static memory or heap memory.
|
||||
If qh_QHpointer is defined, qh_qh is a pointer to an allocated qhT;
|
||||
otherwise qh_qh is a global static data structure of type qhT.
|
||||
|
||||
------------------
|
||||
Compiling Qhull with Microsoft Visual C++
|
||||
|
||||
To compile 32-bit Qhull with Microsoft Visual C++ 2010 and later
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- Load solution build/qhull-32.sln
|
||||
- Build target 'Win32'
|
||||
- Project qhulltest requires Qt for DevStudio (http://www.qt.io)
|
||||
Set the QTDIR environment variable to your Qt directory (e.g., c:/qt/5.2.0/5.2.0/msvc2012)
|
||||
If QTDIR is incorrect, precompile will fail with 'Can not locate the file specified'
|
||||
|
||||
To compile 64-bit Qhull with Microsoft Visual C++ 2010 and later
|
||||
- 64-bit Qhull has larger data structures due to 64-bit pointers
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- Load solution build/qhull-64.sln
|
||||
- Build target 'Win32'
|
||||
- Project qhulltest requires Qt for DevStudio (http://www.qt.io)
|
||||
Set the QTDIR environment variable to your Qt directory (e.g., c:/qt/5.2.0/5.2.0/msvc2012_64)
|
||||
If QTDIR is incorrect, precompile will fail with 'Can not locate the file specified'
|
||||
|
||||
To compile Qhull with Microsoft Visual C++ 2005 (vcproj files)
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- Load solution build/qhull.sln
|
||||
- Build target 'win32' (not 'x64')
|
||||
- Project qhulltest requires Qt for DevStudio (http://www.qt.io)
|
||||
Set the QTDIR environment variable to your Qt directory (e.g., c:/qt/4.7.4)
|
||||
If QTDIR is incorrect, precompile will fail with 'Can not locate the file specified'
|
||||
|
||||
-----------------
|
||||
Compiling Qhull with Qt Creator
|
||||
|
||||
Qt (http://www.qt.io) is a C++ framework for Windows, Linux, and Macintosh
|
||||
|
||||
Qhull uses QTestLib to test qhull's C++ interface (see src/qhulltest/)
|
||||
|
||||
To compile Qhull with Qt Creator
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- Download the Qt SDK
|
||||
- Start Qt Creator
|
||||
- Load src/qhull-all.pro
|
||||
- Build
|
||||
|
||||
-----------------
|
||||
Compiling Qhull with mingw on Windows
|
||||
|
||||
To compile Qhull with MINGW
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- Install Road Bash (http://www.qhull.org/bash)
|
||||
or install MSYS (http://www.mingw.org/wiki/msys)
|
||||
- Install MINGW-w64 (http://sourceforge.net/projects/mingw-w64).
|
||||
Mingw is included with Qt SDK.
|
||||
- make
|
||||
|
||||
-----------------
|
||||
Compiling Qhull with cygwin on Windows
|
||||
|
||||
To compile Qhull with cygwin
|
||||
- Download and extract Qhull (either GitHub, .tgz file, or .zip file)
|
||||
- Install cygwin (http://www.cygwin.com)
|
||||
- Include packages for gcc, make, ar, and ln
|
||||
- make
|
||||
|
||||
-----------------
|
||||
Compiling from Makfile without gcc
|
||||
|
||||
The file, qhull-src.tgz, contains documentation and source files for
|
||||
qhull and rbox.
|
||||
|
||||
To unpack the tgz file
|
||||
- tar zxf qhull-src.tgz
|
||||
- cd qhull
|
||||
- Use qhull/Makefile
|
||||
Simpler Makefiles are qhull/src/libqhull/Makefile and qhull/src/libqhull_r/Makefile
|
||||
|
||||
Compiling qhull and rbox with Makefile
|
||||
- in Makefile, check the CC, CCOPTS1, PRINTMAN, and PRINTC defines
|
||||
- the defaults are gcc and enscript
|
||||
- CCOPTS1 should include the ANSI flag. It defines __STDC__
|
||||
- in user.h, check the definitions of qh_SECticks and qh_CPUclock.
|
||||
- use '#define qh_CLOCKtype 2' for timing runs longer than 1 hour
|
||||
- type: make
|
||||
- this builds: qhull qconvex qdelaunay qhalf qvoronoi rbox libqhull.a libqhull_r.a
|
||||
- type: make doc
|
||||
- this prints the man page
|
||||
- See also qhull/html/index.htm
|
||||
- if your compiler reports many errors, it is probably not a ANSI C compiler
|
||||
- you will need to set the -ansi switch or find another compiler
|
||||
- if your compiler warns about missing prototypes for fprintf() etc.
|
||||
- this is ok, your compiler should have these in stdio.h
|
||||
- if your compiler warns about missing prototypes for memset() etc.
|
||||
- include memory.h in qhull_a.h
|
||||
- if your compiler reports "global.c: storage size of 'qh_qh' isn't known"
|
||||
- delete the initializer "={0}" in global.c, stat.c and mem.c
|
||||
- if your compiler warns about "stat.c: improper initializer"
|
||||
- this is ok, the initializer is not used
|
||||
- if you have trouble building libqhull.a with 'ar'
|
||||
- try 'make -f Makefile.txt qhullx'
|
||||
- if the code compiles, the qhull test case will automatically execute
|
||||
- if an error occurs, there's an incompatibility between machines
|
||||
- If you can, try a different compiler
|
||||
- You can turn off the Qhull memory manager with qh_NOmem in mem.h
|
||||
- You can turn off compiler optimization (-O2 in Makefile)
|
||||
- If you find the source of the problem, please let us know
|
||||
- to install the programs and their man pages:
|
||||
- define MANDIR and BINDIR
|
||||
- type 'make install'
|
||||
|
||||
- if you have Geomview (www.geomview.org)
|
||||
- try 'rbox 100 | qconvex G >a' and load 'a' into Geomview
|
||||
- run 'q_eg' for Geomview examples of Qhull output (see qh-eg.htm)
|
||||
|
||||
------------------
|
||||
Compiling on other machines and compilers
|
||||
|
||||
Qhull may compile with Borland C++ 5.0 bcc32. A Makefile is included.
|
||||
Execute 'cd src/libqhull; make -f Mborland'. If you use the Borland IDE, set
|
||||
the ANSI option in Options:Project:Compiler:Source:Language-compliance.
|
||||
|
||||
Qhull may compile with Borland C++ 4.02 for Win32 and DOS Power Pack.
|
||||
Use 'cd src/libqhull; make -f Mborland -D_DPMI'. Qhull 1.0 compiles with
|
||||
Borland C++ 4.02. For rbox 1.0, use "bcc32 -WX -w- -O2-e -erbox -lc rbox.c".
|
||||
Use the same options for Qhull 1.0. [D. Zwick]
|
||||
|
||||
If you have troubles with the memory manager, you can turn it off by
|
||||
defining qh_NOmem in mem.h.
|
||||
|
||||
-----------------
|
||||
Distributed files
|
||||
|
||||
README.txt // Instructions for installing Qhull
|
||||
REGISTER.txt // Qhull registration
|
||||
COPYING.txt // Copyright notice
|
||||
QHULL-GO.lnk // Windows icon for eg/qhull-go.bat
|
||||
Announce.txt // Announcement
|
||||
CMakeLists.txt // CMake build file (2.6 or later)
|
||||
CMakeModules/CheckLFS.cmake // enables Large File Support in cmake
|
||||
File_id.diz // Package descriptor
|
||||
index.htm // Home page
|
||||
Makefile // Makefile for gcc and other compilers
|
||||
qhull*.md5sum // md5sum for all files
|
||||
|
||||
bin/* // Qhull executables and dll (.zip only)
|
||||
build/qhull*.pc.in // pkg-config templates for qhull_r, qhull, and qhull_p
|
||||
build/qhull-32.sln // 32-bit DevStudio solution and project files (2010 and later)
|
||||
build/*-32.vcxproj
|
||||
build/qhull-64.sln // 64-bit DevStudio solution and project files (2010 and later)
|
||||
build/*-64.vcxproj
|
||||
build/qhull.sln // DevStudio solution and project files (2005 and 2009)
|
||||
build/*.vcproj
|
||||
eg/* // Test scripts and geomview files from q_eg
|
||||
html/index.htm // Manual
|
||||
html/qh-faq.htm // Frequently asked questions
|
||||
html/qh-get.htm // Download page
|
||||
html/qhull-cpp.xml // C++ style notes as a Road FAQ (www.qhull.org/road)
|
||||
src/Changes.txt // Change history for Qhull and rbox
|
||||
src/qhull-all.pro // Qt project
|
||||
|
||||
eg/
|
||||
q_eg // shell script for Geomview examples (eg.01.cube)
|
||||
q_egtest // shell script for Geomview test examples
|
||||
q_test // shell script to test qhull
|
||||
q_test-ok.txt // output from q_test
|
||||
qhulltest-ok.txt // output from qhulltest (Qt only)
|
||||
make-vcproj.sh // bash shell script to create vcproj and vcxprog files
|
||||
qhull-zip.sh // bash shell script for distribution files
|
||||
|
||||
rbox consists of (bin, html):
|
||||
rbox.exe // Win32 executable (.zip only)
|
||||
rbox.htm // html manual
|
||||
rbox.man // Unix man page
|
||||
rbox.txt
|
||||
|
||||
qhull consists of (bin, html):
|
||||
qconvex.exe // Win32 executables and dlls (.zip download only)
|
||||
qhull.exe // Built with the reentrant library (about 2% slower)
|
||||
qdelaunay.exe
|
||||
qhalf.exe
|
||||
qvoronoi.exe
|
||||
qhull_r.dll
|
||||
qhull-go.bat // command window
|
||||
qconvex.htm // html manual
|
||||
qdelaun.htm
|
||||
qdelau_f.htm
|
||||
qhalf.htm
|
||||
qvoronoi.htm
|
||||
qvoron_f.htm
|
||||
qh-eg.htm
|
||||
qh-code.htm
|
||||
qh-impre.htm
|
||||
index.htm
|
||||
qh-opt*.htm
|
||||
qh-quick.htm
|
||||
qh--*.gif // images for manual
|
||||
normal_voronoi_knauss_oesterle.jpg
|
||||
qhull.man // Unix man page
|
||||
qhull.txt
|
||||
|
||||
bin/
|
||||
msvcr80.dll // Visual C++ redistributable file (.zip download only)
|
||||
|
||||
src/
|
||||
qhull/unix.c // Qhull and rbox applications using non-reentrant libqhullstatic.a
|
||||
rbox/rbox.c
|
||||
qconvex/qconvex.c
|
||||
qhalf/qhalf.c
|
||||
qdelaunay/qdelaunay.c
|
||||
qvoronoi/qvoronoi.c
|
||||
|
||||
qhull/unix_r.c // Qhull and rbox applications using reentrant libqhullstatic_r.a
|
||||
rbox/rbox_r.c
|
||||
qconvex/qconvex_r.c // Qhull applications built with reentrant libqhull_r/Makefile
|
||||
qhalf/qhalf_r.c
|
||||
qdelaunay/qdelaun_r.c
|
||||
qvoronoi/qvoronoi_r.c
|
||||
|
||||
user_eg/user_eg_r.c // example of using qhull_r.dll from a user program
|
||||
user_eg2/user_eg2_r.c // example of using libqhullstatic_r.a from a user program
|
||||
user_eg3/user_eg3_r.cpp // example of Qhull's C++ interface libqhullcpp with libqhullstatic_r.a
|
||||
qhulltest/qhulltest.cpp // Test of Qhull's C++ interface using Qt's QTestLib
|
||||
qhull-*.pri // Include files for Qt projects
|
||||
testqset_r/testqset_r.c // Test of reentrant qset_r.c and mem_r.c
|
||||
testqset/testqset.c // Test of non-rentrant qset.c and mem.c
|
||||
|
||||
|
||||
src/libqhull
|
||||
libqhull.pro // Qt project for non-rentrant, shared library (qhull.dll)
|
||||
index.htm // design documentation for libqhull
|
||||
qh-*.htm
|
||||
qhull-exports.def // Export Definition file for Visual C++
|
||||
Makefile // Simple gcc Makefile for qhull and libqhullstatic.a
|
||||
Mborland // Makefile for Borland C++ 5.0
|
||||
|
||||
libqhull.h // header file for qhull
|
||||
user.h // header file of user definable constants
|
||||
libqhull.c // Quickhull algorithm with partitioning
|
||||
user.c // user re-definable functions
|
||||
usermem.c
|
||||
userprintf.c
|
||||
userprintf_rbox.c
|
||||
|
||||
qhull_a.h // include files for libqhull/*.c
|
||||
geom.c // geometric routines
|
||||
geom2.c
|
||||
geom.h
|
||||
global.c // global variables
|
||||
io.c // input-output routines
|
||||
io.h
|
||||
mem.c // memory routines, this is stand-alone code
|
||||
mem.h
|
||||
merge.c // merging of non-convex facets
|
||||
merge.h
|
||||
poly.c // polyhedron routines
|
||||
poly2.c
|
||||
poly.h
|
||||
qset.c // set routines, this only depends on mem.c
|
||||
qset.h
|
||||
random.c // utilities w/ Park & Miller's random number generator
|
||||
random.h
|
||||
rboxlib.c // point set generator for rbox
|
||||
stat.c // statistics
|
||||
stat.h
|
||||
|
||||
src/libqhull_r
|
||||
libqhull_r.pro // Qt project for rentrant, shared library (qhull_r.dll)
|
||||
index.htm // design documentation for libqhull_r
|
||||
qh-*_r.htm
|
||||
qhull-exports_r.def // Export Definition file for Visual C++
|
||||
Makefile // Simple gcc Makefile for qhull and libqhullstatic.a
|
||||
|
||||
libqhull_r.h // header file for qhull
|
||||
user_r.h // header file of user definable constants
|
||||
libqhull_r.c // Quickhull algorithm wi_r.hpartitioning
|
||||
user_r.c // user re-definable functions
|
||||
usermem.c
|
||||
userprintf.c
|
||||
userprintf_rbox.c
|
||||
qhull_ra.h // include files for libqhull/*_r.c
|
||||
geom_r.c // geometric routines
|
||||
geom2.c
|
||||
geom_r.h
|
||||
global_r.c // global variables
|
||||
io_r.c // input-output routines
|
||||
io_r.h
|
||||
mem_r.c // memory routines, this is stand-alone code
|
||||
mem.h
|
||||
merge_r.c // merging of non-convex facets
|
||||
merge.h
|
||||
poly_r.c // polyhedron routines
|
||||
poly2.c
|
||||
poly_r.h
|
||||
qset_r.c // set routines, this only depends on mem_r.c
|
||||
qset.h
|
||||
random_r.c // utilities w/ Park & Miller's random number generator
|
||||
random.h
|
||||
rboxlib_r.c // point set generator for rbox
|
||||
stat_r.c // statistics
|
||||
stat.h
|
||||
|
||||
src/libqhullcpp/
|
||||
libqhullcpp.pro // Qt project for renentrant, static C++ library
|
||||
Qhull.cpp // Calls libqhull_r.c from C++
|
||||
Qhull.h
|
||||
qt-qhull.cpp // Supporting methods for Qt
|
||||
|
||||
Coordinates.cpp // input classes
|
||||
Coordinates.h
|
||||
|
||||
PointCoordinates.cpp
|
||||
PointCoordinates.h
|
||||
RboxPoints.cpp // call rboxlib.c from C++
|
||||
RboxPoints.h
|
||||
|
||||
QhullFacet.cpp // data structure classes
|
||||
QhullFacet.h
|
||||
QhullHyperplane.cpp
|
||||
QhullHyperplane.h
|
||||
QhullPoint.cpp
|
||||
QhullPoint.h
|
||||
QhullQh.cpp
|
||||
QhullRidge.cpp
|
||||
QhullRidge.h
|
||||
QhullVertex.cpp
|
||||
QhullVertex.h
|
||||
|
||||
QhullFacetList.cpp // collection classes
|
||||
QhullFacetList.h
|
||||
QhullFacetSet.cpp
|
||||
QhullFacetSet.h
|
||||
QhullIterator.h
|
||||
QhullLinkedList.h
|
||||
QhullPoints.cpp
|
||||
QhullPoints.h
|
||||
QhullPointSet.cpp
|
||||
QhullPointSet.h
|
||||
QhullSet.cpp
|
||||
QhullSet.h
|
||||
QhullSets.h
|
||||
QhullVertexSet.cpp
|
||||
QhullVertexSet.h
|
||||
|
||||
functionObjects.h // supporting classes
|
||||
QhullError.cpp
|
||||
QhullError.h
|
||||
QhullQh.cpp
|
||||
QhullQh.h
|
||||
QhullStat.cpp
|
||||
QhullStat.h
|
||||
RoadError.cpp // Supporting base classes
|
||||
RoadError.h
|
||||
RoadLogEvent.cpp
|
||||
RoadLogEvent.h
|
||||
usermem_r-cpp.cpp // Optional override for qh_exit() to throw an error
|
||||
|
||||
src/libqhullstatic/
|
||||
libqhullstatic.pro // Qt project for non-reentrant, static library
|
||||
|
||||
src/libqhullstatic_r/
|
||||
libqhullstatic_r.pro // Qt project for reentrant, static library
|
||||
|
||||
src/qhulltest/
|
||||
qhulltest.pro // Qt project for test of C++ interface
|
||||
Coordinates_test.cpp // Test of each class
|
||||
PointCoordinates_test.cpp
|
||||
Qhull_test.cpp
|
||||
QhullFacet_test.cpp
|
||||
QhullFacetList_test.cpp
|
||||
QhullFacetSet_test.cpp
|
||||
QhullHyperplane_test.cpp
|
||||
QhullLinkedList_test.cpp
|
||||
QhullPoint_test.cpp
|
||||
QhullPoints_test.cpp
|
||||
QhullPointSet_test.cpp
|
||||
QhullRidge_test.cpp
|
||||
QhullSet_test.cpp
|
||||
QhullVertex_test.cpp
|
||||
QhullVertexSet_test.cpp
|
||||
RboxPoints_test.cpp
|
||||
RoadTest.cpp // Run multiple test files with QTestLib
|
||||
RoadTest.h
|
||||
|
||||
-----------------
|
||||
Authors:
|
||||
|
||||
C. Bradford Barber Hannu Huhdanpaa (Version 1.0)
|
||||
bradb@shore.net hannu@qhull.org
|
||||
|
||||
Qhull 1.0 and 2.0 were developed under NSF grants NSF/DMS-8920161
|
||||
and NSF-CCR-91-15793 750-7504 at the Geometry Center and Harvard
|
||||
University. If you find Qhull useful, please let us know.
|
||||
32
xs/src/qhull/REGISTER.txt
Normal file
|
|
@ -0,0 +1,32 @@
|
|||
Dear Qhull User
|
||||
|
||||
We would like to find out how you are using our software. Think of
|
||||
Qhull as a new kind of shareware: you share your science and successes
|
||||
with us, and we share our software and support with you.
|
||||
|
||||
If you use Qhull, please send us a note telling
|
||||
us what you are doing with it.
|
||||
|
||||
We need to know:
|
||||
|
||||
(1) What you are working on - an abstract of your work would be
|
||||
fine.
|
||||
|
||||
(2) How Qhull has helped you, for example, by increasing your
|
||||
productivity or allowing you to do things you could not do
|
||||
before. If Qhull had a direct bearing on your work, please
|
||||
tell us about this.
|
||||
|
||||
We encourage you to cite Qhull in your publications.
|
||||
|
||||
To cite Qhull, please use
|
||||
|
||||
Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The Quickhull
|
||||
algorithm for convex hulls," ACM Trans. on Mathematical Software,
|
||||
22(4):469-483, Dec 1996, http://www.qhull.org.
|
||||
|
||||
Please send e-mail to
|
||||
|
||||
bradb@shore.net
|
||||
|
||||
Thank you!
|
||||
935
xs/src/qhull/html/index.htm
Normal file
|
|
@ -0,0 +1,935 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type"
|
||||
content="text/html; charset=iso-8859-1">
|
||||
<meta name="GENERATOR" content="Microsoft FrontPage 2.0">
|
||||
<title>Qhull manual</title>
|
||||
<!-- Navigation links
|
||||
NOTE -- verify all links by 'grep href=' 'grep name=' add # 'sort /+7'
|
||||
index.htm
|
||||
-->
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<p><a name="TOP"><b>Up:</b></a> <a
|
||||
href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b><a
|
||||
href="http://www.qhull.org/news">News</a> about Qhull<br>
|
||||
<b>Up:</b> <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> about Qhull<br>
|
||||
<b>To:</b> <a href="#TOC">Qhull manual: Table of Contents</a>
|
||||
(please wait while loading) <br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/fixed.html"><img
|
||||
src="qh--rand.gif" alt="[random-fixed]" align="middle"
|
||||
width="100" height="100"></a> Qhull manual </h1>
|
||||
|
||||
<p>Qhull is a general dimension code for computing convex hulls,
|
||||
Delaunay triangulations, halfspace intersections about a point, Voronoi
|
||||
diagrams, furthest-site Delaunay triangulations, and
|
||||
furthest-site Voronoi diagrams. These structures have
|
||||
applications in science, engineering, statistics, and
|
||||
mathematics. See <a
|
||||
href="http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/polyfaq.html">Fukuda's
|
||||
introduction</a> to convex hulls, Delaunay triangulations,
|
||||
Voronoi diagrams, and linear programming. For a detailed
|
||||
introduction, see O'Rourke [<a href="#orou94">'94</a>], <i>Computational
|
||||
Geometry in C</i>.
|
||||
</p>
|
||||
|
||||
<p>There are six programs. Except for rbox, they use
|
||||
the same code. Each program includes instructions and examples.
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li><a href="qconvex.htm">qconvex</a> -- convex hulls
|
||||
<li><a href="qdelaun.htm">qdelaunay</a> -- Delaunay triangulations and
|
||||
furthest-site Delaunay triangulations
|
||||
<li><a href="qhalf.htm">qhalf</a> -- halfspace intersections about a point
|
||||
<li><a href="qhull.htm">qhull</a> -- all structures with additional options
|
||||
<li><a href="qvoronoi.htm">qvoronoi</a> -- Voronoi diagrams and
|
||||
furthest-site Voronoi diagrams
|
||||
<li><a href="rbox.htm">rbox</a> -- generate point distributions for qhull
|
||||
</ul>
|
||||
</blockquote>
|
||||
|
||||
<p>Qhull implements the Quickhull algorithm for computing the
|
||||
convex hull. Qhull includes options
|
||||
for hull volume, facet area, multiple output formats, and
|
||||
graphical output. It can approximate a convex hull. </p>
|
||||
|
||||
<p>Qhull handles roundoff errors from floating point
|
||||
arithmetic. It generates a convex hull with "thick" facets.
|
||||
A facet's outer plane is clearly above all of the points;
|
||||
its inner plane is clearly below the facet's vertices. Any
|
||||
exact convex hull must lie between the inner and outer plane.
|
||||
|
||||
<p>Qhull uses merged facets, triangulated output, or joggled
|
||||
input. Triangulated output triangulates non-simplicial, merged
|
||||
facets. Joggled input also
|
||||
guarantees simplicial output, but it
|
||||
is less accurate than merged facets. For merged facets, Qhull
|
||||
reports the maximum outer and inner plane.
|
||||
|
||||
<p><i>Brad Barber, Arlington, MA</i></p>
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h2><a href="#TOP">»</a><a name="TOC">Qhull manual: Table of
|
||||
Contents </a></h2>
|
||||
|
||||
<ul>
|
||||
<li><a href="#when">When</a> to use Qhull
|
||||
<ul>
|
||||
<li><a href="http://www.qhull.org/news">News</a> for Qhull
|
||||
with new features and reported bugs.
|
||||
<li><a href="http://www.qhull.org">Home</a> for Qhull with additional URLs
|
||||
(<a href=index.htm>local copy</a>)
|
||||
<li><a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> for Qhull (<a href="qh-faq.htm">local copy</a>)
|
||||
<li><a href="http://www.qhull.org/download">Download</a> Qhull (<a href=qh-get.htm>local copy</a>)
|
||||
<li><a href="qh-quick.htm#programs">Quick</a> reference for Qhull and its <a href="qh-quick.htm#options">options</a>
|
||||
<p>
|
||||
<li><a href="../COPYING.txt">COPYING.txt</a> - copyright notice<br>
|
||||
<li><a href="../REGISTER.txt">REGISTER.txt</a> - registration<br>
|
||||
<li><a href="../README.txt">README.txt</a> - installation
|
||||
instructions<br>
|
||||
<li><a href="../src/Changes.txt">Changes.txt</a> - change history <br>
|
||||
<li><a href="qhull.txt">qhull.txt</a> - Unix manual page
|
||||
</ul>
|
||||
<p>
|
||||
<li><a href="#description">Description</a> of Qhull
|
||||
<ul>
|
||||
<li><a href="#definition">de</a>finition • <a
|
||||
href="#input">in</a>put • <a href="#output">ou</a>tput
|
||||
• <a href="#algorithm">al</a>gorithm • <a
|
||||
href="#structure">da</a>ta structure </li>
|
||||
<li><a href="qh-impre.htm">Imprecision</a> in Qhull</li>
|
||||
<li><a href="qh-impre.htm#joggle">Merged facets</a> or joggled input
|
||||
<li><a href="qh-eg.htm">Examples</a> of Qhull</li>
|
||||
</ul>
|
||||
<p>
|
||||
<li><a href=qh-quick.htm#programs>Qhull programs</a>, with instructions and examples
|
||||
<ul>
|
||||
<li><a href="qconvex.htm">qconvex</a> -- convex hulls
|
||||
<li><a href="qdelaun.htm">qdelaunay</a> -- Delaunay triangulations and
|
||||
furthest-site Delaunay triangulations
|
||||
<li><a href="qhalf.htm">qhalf</a> -- halfspace intersections about a point
|
||||
<li><a href="qhull.htm">qhull</a> -- all structures with additional options
|
||||
<li><a href="qvoronoi.htm">qvoronoi</a> -- Voronoi diagrams and
|
||||
furthest-site Voronoi diagrams
|
||||
<li><a href="rbox.htm">rbox</a> -- generate point distributions for qhull
|
||||
</ul>
|
||||
<p>
|
||||
<li><a href="qh-quick.htm#options">Qhull options</a><ul>
|
||||
<li><a href="qh-opto.htm#output">Output</a> formats</li>
|
||||
<li><a href="qh-optf.htm#format">Additional</a> I/O
|
||||
formats</li>
|
||||
<li><a href="qh-optg.htm#geomview">Geomview</a>
|
||||
output options</li>
|
||||
<li><a href="qh-optp.htm#print">Print</a> options</li>
|
||||
<li><a href="qh-optq.htm#qhull">Qhull</a> control
|
||||
options</li>
|
||||
<li><a href="qh-optc.htm#prec">Precision</a> options</li>
|
||||
<li><a href="qh-optt.htm#trace">Trace</a> options</li>
|
||||
</ul>
|
||||
</li>
|
||||
<p>
|
||||
<li><a href="#geomview">Geomview</a>, Qhull's graphical viewer</li>
|
||||
<ul>
|
||||
<li><a href="#geomview-install">Installing Geomview</a></li>
|
||||
<li><a href="#geomview-use">Using Geomview</a></li>
|
||||
<li><a href="#geomview-win">Building Geomview for Windows</a></li>
|
||||
</ul>
|
||||
<p>
|
||||
<li><a href="qh-code.htm">Qhull internals</a><ul>
|
||||
<li><a href="qh-code.htm#reentrant">Reentrant</a> Qhull</li>
|
||||
<li><a href="qh-code.htm#convert">How to convert</a> code to reentrant Qhull</li>
|
||||
<li><a href="qh-code.htm#64bit">Qhull</a> on 64-bit computers</li>
|
||||
<li><a href="qh-code.htm#cpp">Calling</a> Qhull
|
||||
from C++ programs</li>
|
||||
<li><a href="qh-code.htm#library">Calling</a> Qhull
|
||||
from C programs</li>
|
||||
<li><a href="qh-code.htm#performance">Performance</a>
|
||||
of Qhull</li>
|
||||
<li><a href="qh-code.htm#enhance">Enhancements</a> to
|
||||
Qhull</li>
|
||||
<li><a href="../src/libqhull_r/index.htm">Reentrant</a> Qhull functions, macros, and
|
||||
data structures </li>
|
||||
<li><a href="../src/libqhull/index.htm">Qhull</a> functions, macros, and
|
||||
data structures </li>
|
||||
</ul>
|
||||
</li>
|
||||
<p>
|
||||
<li>Related URLs
|
||||
<ul>
|
||||
|
||||
<li><a href="news:comp.graphics.algorithms">Newsgroup</a>:
|
||||
comp.graphics.algorithms
|
||||
<li><a
|
||||
href="http://www.faqs.org/faqs/graphics/algorithms-faq/">FAQ</a> for computer graphics algorithms and
|
||||
Exaflop's <a href="http://exaflop.org/docs/cgafaq/cga6.html">geometric</a> structures.
|
||||
<li>Amenta's <a href="http://www.geom.uiuc.edu/software/cglist">Directory
|
||||
of Computational Geometry Software </a></li>
|
||||
<li>Erickson's <a
|
||||
href="http://compgeom.cs.uiuc.edu/~jeffe/compgeom/code.html">Computational
|
||||
Geometry Software</a> </li>
|
||||
<li>Fukuda's <a
|
||||
href="http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/polyfaq.html">
|
||||
introduction</a> to convex hulls, Delaunay triangulations,
|
||||
Voronoi diagrams, and linear programming.
|
||||
<li>Stony Brook's <a
|
||||
href="http://www.cs.sunysb.edu/~algorith/major_section/1.6.shtml">Algorithm Repository</a> on computational geometry.
|
||||
</li>
|
||||
</ul>
|
||||
<p>
|
||||
<li><a href="#bugs">What to do</a> if something goes wrong</li>
|
||||
<li><a href="#email">Email</a></li>
|
||||
<li><a href="#authors">Authors</a></li>
|
||||
<li><a href="#ref">References</a></li>
|
||||
<li><a href="#acknowledge">Acknowledgments</a></li>
|
||||
</ul>
|
||||
<h2><a href="#TOC">»</a><a name="when">When to use Qhull</a></h2>
|
||||
<blockquote>
|
||||
|
||||
<p>Qhull constructs convex hulls, Delaunay triangulations,
|
||||
halfspace intersections about a point, Voronoi diagrams, furthest-site Delaunay
|
||||
triangulations, and furthest-site Voronoi diagrams.</p>
|
||||
|
||||
<p>For convex hulls and halfspace intersections, Qhull may be used
|
||||
for 2-d upto 8-d. For Voronoi diagrams and Delaunay triangulations, Qhull may be
|
||||
used for 2-d upto 7-d. In higher dimensions, the size of the output
|
||||
grows rapidly and Qhull does not work well with virtual memory.
|
||||
If <i>n</i> is the size of
|
||||
the input and <i>d</i> is the dimension (d>=3), the size of the output
|
||||
and execution time
|
||||
grows by <i>n^(floor(d/2)</i>
|
||||
[see <a href=qh-code.htm#performance>Performance</a>]. For example, do
|
||||
not try to build a 16-d convex hull of 1000 points. It will
|
||||
have on the order of 1,000,000,000,000,000,000,000,000 facets.
|
||||
|
||||
<p>On a 600 MHz Pentium 3, Qhull computes the 2-d convex hull of
|
||||
300,000 cocircular points in 11 seconds. It computes the
|
||||
2-d Delaunay triangulation and 3-d convex hull of 120,000 points
|
||||
in 12 seconds. It computes the
|
||||
3-d Delaunay triangulation and 4-d convex hull of 40,000 points
|
||||
in 18 seconds. It computes the
|
||||
4-d Delaunay triangulation and 5-d convex hull of 6,000 points
|
||||
in 12 seconds. It computes the
|
||||
5-d Delaunay triangulation and 6-d convex hull of 1,000 points
|
||||
in 12 seconds. It computes the
|
||||
6-d Delaunay triangulation and 7-d convex hull of 300 points
|
||||
in 15 seconds. It computes the
|
||||
7-d Delaunay triangulation and 8-d convex hull of 120 points
|
||||
in 15 seconds. It computes the
|
||||
8-d Delaunay triangulation and 9-d convex hull of 70 points
|
||||
in 15 seconds. It computes the
|
||||
9-d Delaunay triangulation and 10-d convex hull of 50 points
|
||||
in 17 seconds. The 10-d convex hull of 50 points has about 90,000 facets.
|
||||
|
||||
<!-- duplicated in index.htm and html/index.htm -->
|
||||
<p>Qhull does <i>not</i> support constrained Delaunay
|
||||
triangulations, triangulation of non-convex surfaces, mesh
|
||||
generation of non-convex objects, or medium-sized inputs in 9-D
|
||||
and higher. </p>
|
||||
|
||||
<p>This is a big package with many options. It is one of the
|
||||
fastest available. It is the only 3-d code that handles precision
|
||||
problems due to floating point arithmetic. For example, it
|
||||
implements the identity function for extreme points (see <a
|
||||
href="qh-impre.htm">Imprecision in Qhull</a>). </p>
|
||||
|
||||
<p>[2016] A newly discovered, bad case for Qhull is multiple, nearly incident points within a 10^-13 ball of 3-d and higher
|
||||
Delaunay triangulations (input sites in the unit cube). Nearly incident points within substantially
|
||||
smaller or larger balls are OK. Error QH6271 is reported if a problem occurs. A future release of Qhull
|
||||
will handle this case. For more information, see "Nearly coincident points on an edge" in <a href="../html/qh-impre.htm#limit">Limitations of merged facets</a>
|
||||
|
||||
<p>If you need a short code for convex hull, Delaunay
|
||||
triangulation, or Voronoi volumes consider Clarkson's <a
|
||||
href="http://www.netlib.org/voronoi/hull.html">hull
|
||||
program</a>. If you need 2-d Delaunay triangulations consider
|
||||
Shewchuk's <a href="http://www.cs.cmu.edu/~quake/triangle.html">triangle
|
||||
program</a>. It is much faster than Qhull and it allows
|
||||
constraints. Both programs use exact arithmetic. They are in <a
|
||||
href="http://www.netlib.org/voronoi/">http://www.netlib.org/voronoi/</a>.
|
||||
|
||||
<p>If your input is in general position (i.e., no coplanar or colinear points),
|
||||
<li><a href="https://github.com/tomilov/quickhull/blob/master/include/quickhull.hpp">Tomilov's quickhull.hpp</a> (<a href"http://habrahabr.ru/post/245221/"documentation-ru</a/>)
|
||||
or Qhull <a
|
||||
href="http://www.qhull.org/download">version
|
||||
1.0</a> may meet your needs. Both programs detect precision problems,
|
||||
but do not handle them.</p>
|
||||
|
||||
<p><a href=http://www.cgal.org>CGAL</a> is a library of efficient and reliable
|
||||
geometric algorithms. It uses C++ templates and the Boost library to produce dimension-specific
|
||||
code. This allows more efficient use of memory than Qhull's general-dimension
|
||||
code. CGAL simulates arbitrary precision while Qhull handles round-off error
|
||||
with thick facets. Compare the two approaches with <a href="http://doc.cgal.org/latest/Manual/devman_robustness.html">Robustness Issues in CGAL</a>,
|
||||
and <a href+"qh-impre.htm">Imprecision in Qhull</a>.
|
||||
|
||||
|
||||
<p><a href=http://www.algorithmic-solutions.com/enleda.htm>Leda</a> is a
|
||||
library for writing computational
|
||||
geometry programs and other combinatorial algorithms. It
|
||||
includes routines for computing 3-d convex
|
||||
hulls, 2-d Delaunay triangulations, and 3-d Delaunay triangulations.
|
||||
It provides rational arithmetic and graphical output. It runs on most
|
||||
platforms.
|
||||
|
||||
<p>If your problem is in high dimensions with a few,
|
||||
non-simplicial facets, try Fukuda's <a
|
||||
href="http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html">cdd</a>.
|
||||
It is much faster than Qhull for these distributions. </p>
|
||||
|
||||
<p>Custom software for 2-d and 3-d convex hulls may be faster
|
||||
than Qhull. Custom software should use less memory. Qhull uses
|
||||
general-dimension data structures and code. The data structures
|
||||
support non-simplicial facets.</p>
|
||||
|
||||
<p>Qhull is not suitable for mesh generation or triangulation of
|
||||
arbitrary surfaces. You may use Qhull if the surface is convex or
|
||||
completely visible from an interior point (e.g., a star-shaped
|
||||
polyhedron). First, project each site to a sphere that is
|
||||
centered at the interior point. Then, compute the convex hull of
|
||||
the projected sites. The facets of the convex hull correspond to
|
||||
a triangulation of the surface. For mesh generation of arbitrary
|
||||
surfaces, see <a
|
||||
href="http://www.robertschneiders.de/meshgeneration/meshgeneration.html">Schneiders'
|
||||
Finite Element Mesh Generation</a>.</p>
|
||||
|
||||
<p>Qhull is not suitable for constrained Delaunay triangulations.
|
||||
With a lot of work, you can write a program that uses Qhull to
|
||||
add constraints by adding additional points to the triangulation.</p>
|
||||
|
||||
<p>Qhull is not suitable for the subdivision of arbitrary
|
||||
objects. Use <tt>qdelaunay</tt> to subdivide a convex object.</p>
|
||||
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a><a name="description">Description of
|
||||
Qhull </a></h2>
|
||||
<blockquote>
|
||||
|
||||
<h3><a href="#TOC">»</a><a name="definition">definition</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The <i>convex hull</i> of a point set <i>P</i> is the smallest
|
||||
convex set that contains <i>P</i>. If <i>P</i> is finite, the
|
||||
convex hull defines a matrix <i>A</i> and a vector <i>b</i> such
|
||||
that for all <i>x</i> in <i>P</i>, <i>Ax+b <= [0,...]</i>. </p>
|
||||
|
||||
<p>Qhull computes the convex hull in 2-d, 3-d, 4-d, and higher
|
||||
dimensions. Qhull represents a convex hull as a list of facets.
|
||||
Each facet has a set of vertices, a set of neighboring facets,
|
||||
and a halfspace. A halfspace is defined by a unit normal and an
|
||||
offset (i.e., a row of <i>A</i> and an element of <i>b</i>). </p>
|
||||
|
||||
<p>Qhull accounts for round-off error. It returns
|
||||
"thick" facets defined by two parallel hyperplanes. The
|
||||
outer planes contain all input points. The inner planes exclude
|
||||
all output vertices. See <a href="qh-impre.htm#imprecise">Imprecise
|
||||
convex hulls</a>.</p>
|
||||
|
||||
<p>Qhull may be used for the Delaunay triangulation or the
|
||||
Voronoi diagram of a set of points. It may be used for the
|
||||
intersection of halfspaces. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a><a name="input">input format</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The input data on <tt>stdin</tt> consists of:</p>
|
||||
|
||||
<ul>
|
||||
<li>first line contains the dimension</li>
|
||||
<li>second line contains the number of input points</li>
|
||||
<li>remaining lines contain point coordinates</li>
|
||||
</ul>
|
||||
|
||||
<p>For example: </p>
|
||||
|
||||
<pre>
|
||||
3 #sample 3-d input
|
||||
5
|
||||
0.4 -0.5 1.0
|
||||
1000 -1e-5 -100
|
||||
0.3 0.2 0.1
|
||||
1.0 1.0 1.0
|
||||
0 0 0
|
||||
</pre>
|
||||
|
||||
<p>Input may be entered by hand. End the input with a control-D
|
||||
(^D) character. </p>
|
||||
|
||||
<p>To input data from a file, use I/O redirection or '<a
|
||||
href="qh-optt.htm#TI">TI file</a>'. The filename may not
|
||||
include spaces or quotes.</p>
|
||||
|
||||
<p>A comment starts with a non-numeric character and continues to
|
||||
the end of line. The first comment is reported in summaries and
|
||||
statistics. With multiple <tt>qhull</tt> commands, use option '<a
|
||||
href="qh-optf.htm#FQ">FQ</a>' to place a comment in the output.</p>
|
||||
|
||||
<p>The dimension and number of points can be reversed. Comments
|
||||
and line breaks are ignored. Error reporting is better if there
|
||||
is one point per line.</p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a><a name="option">option format</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Use options to specify the output formats and control
|
||||
Qhull. The <tt>qhull</tt> program takes all options. The
|
||||
other programs use a subset of the options. They disallow
|
||||
experimental and inappropriate options.
|
||||
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li>
|
||||
qconvex == qhull
|
||||
<li>
|
||||
qdelaunay == qhull d Qbb
|
||||
<li>
|
||||
qhalf == qhull H
|
||||
<li>
|
||||
qvoronoi == qhull v Qbb
|
||||
</ul>
|
||||
</blockquote>
|
||||
|
||||
<p>Single letters are used for output formats and precision
|
||||
constants. The other options are grouped into menus for formats
|
||||
('<a href="qh-optf.htm#format">F</a>'), Geomview ('<a
|
||||
href="qh-optg.htm#geomview">G </a>'), printing ('<a
|
||||
href="qh-optp.htm#print">P</a>'), Qhull control ('<a
|
||||
href="qh-optq.htm#qhull">Q </a>'), and tracing ('<a
|
||||
href="qh-optt.htm#trace">T</a>'). The menu options may be listed
|
||||
together (e.g., 'GrD3' for 'Gr' and 'GD3'). Options may be in any
|
||||
order. Capitalized options take a numeric argument (except for '<a
|
||||
href="qh-optp.htm#PG">PG</a>' and '<a href="qh-optf.htm#format">F</a>'
|
||||
options). Use option '<a href="qh-optf.htm#FO">FO</a>' to print
|
||||
the selected options.</p>
|
||||
|
||||
<p>Qhull uses zero-relative indexing. If there are <i>n</i>
|
||||
points, the index of the first point is <i>0</i> and the index of
|
||||
the last point is <i>n-1</i>.</p>
|
||||
|
||||
<p>The default options are:</p>
|
||||
|
||||
<ul>
|
||||
<li>summary output ('<a href="qh-opto.htm#s">s</a>') </li>
|
||||
<li>merged facets ('<a href="qh-optc.htm#C0">C-0</a>' in 2-d,
|
||||
3-d, 4-d; '<a href="qh-optq.htm#Qx">Qx</a>' in 5-d and
|
||||
up)</li>
|
||||
</ul>
|
||||
|
||||
<p>Except for bounding box
|
||||
('<a href="qh-optq.htm#Qbk">Qbk:n</a>', etc.), drop facets
|
||||
('<a href="qh-optp.htm#Pdk">Pdk:n</a>', etc.), and
|
||||
Qhull command ('<a href="qh-optf.htm#FQ">FQ</a>'), only the last
|
||||
occurence of an option counts.
|
||||
Bounding box and drop facets may be repeated for each dimension.
|
||||
Option 'FQ' may be repeated any number of times.
|
||||
|
||||
<p>The Unix <tt>tcsh</tt> and <tt>ksh </tt>shells make it easy to
|
||||
try out different options. In Windows 95, use a command window with <tt>doskey</tt>
|
||||
and a window scroller (e.g., <tt>peruse</tt>). </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a><a name="output">output format</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>To write the results to a file, use I/O redirection or '<a
|
||||
href="qh-optt.htm#TO">TO file</a>'. Windows 95 users should use
|
||||
'TO file' or the console. If a filename is surrounded by single quotes,
|
||||
it may include spaces.
|
||||
</p>
|
||||
|
||||
<p>The default output option is a short summary ('<a
|
||||
href="qh-opto.htm#s">s</a>') to <tt>stdout</tt>. There are many
|
||||
others (see <a href="qh-opto.htm">output</a> and <a
|
||||
href="qh-optf.htm">formats</a>). You can list vertex incidences,
|
||||
vertices and facets, vertex coordinates, or facet normals. You
|
||||
can view Qhull objects with Geomview, Mathematica, or Maple. You can
|
||||
print the internal data structures. You can call Qhull from your
|
||||
application (see <a href="qh-code.htm#library">Qhull library</a>).</p>
|
||||
|
||||
<p>For example, 'qhull <a href="qh-opto.htm#o">o</a>' lists the
|
||||
vertices and facets of the convex hull. </p>
|
||||
|
||||
<p>Error messages and additional summaries ('<a
|
||||
href="qh-opto.htm#s">s</a>') go to <tt>stderr</tt>. Unless
|
||||
redirected, <tt>stderr</tt> is the console.</p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a><a name="algorithm">algorithm</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Qhull implements the Quickhull algorithm for convex hull
|
||||
[Barber et al. <a href="#bar-dob96">'96</a>]. This algorithm
|
||||
combines the 2-d Quickhull algorithm with the <em>n</em>-d
|
||||
beneath-beyond algorithm [c.f., Preparata & Shamos <a
|
||||
href="#pre-sha85">'85</a>]. It is similar to the randomized
|
||||
algorithms of Clarkson and others [Clarkson & Shor <a
|
||||
href="#cla-sho89">'89</a>; Clarkson et al. <a href="#cla-meh93">'93</a>;
|
||||
Mulmuley <a href="#mulm94">'94</a>]. For a demonstration, see <a
|
||||
href="qh-eg.htm#how">How Qhull adds a point</a>. The main
|
||||
advantages of Quickhull are output sensitive performance (in
|
||||
terms of the number of extreme points), reduced space
|
||||
requirements, and floating-point error handling. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a><a name="structure">data structures</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Qhull produces the following data structures for dimension <i>d</i>:
|
||||
</p>
|
||||
|
||||
<ul>
|
||||
<li>A <em>coordinate</em> is a real number in floating point
|
||||
format. </li>
|
||||
<li>A <em>point</em> is an array of <i>d</i> coordinates.
|
||||
With option '<a href="qh-optq.htm#QJn">QJ</a>', the
|
||||
coordinates are joggled by a small amount. </li>
|
||||
<li>A <em>vertex</em> is an input point. </li>
|
||||
<li>A <em>hyperplane</em> is <i>d</i> normal coefficients and
|
||||
an offset. The length of the normal is one. The
|
||||
hyperplane defines a halfspace. If <i>V</i> is a normal, <i>b</i>
|
||||
is an offset, and <i>x</i> is a point inside the convex
|
||||
hull, then <i>Vx+b <0</i>.</li>
|
||||
<li>An <em>outer plane</em> is a positive
|
||||
offset from a hyperplane. When Qhull is done, all points
|
||||
will be below all outer planes.</li>
|
||||
<li>An <em>inner plane</em> is a negative
|
||||
offset from a hyperplane. When Qhull is done, all
|
||||
vertices will be above the corresponding inner planes.</li>
|
||||
<li>An <em>orientation</em> is either 'top' or 'bottom'. It is the
|
||||
topological equivalent of a hyperplane's geometric
|
||||
orientation. </li>
|
||||
<li>A <em>simplicial facet</em> is a set of
|
||||
<i>d</i> neighboring facets, a set of <i>d</i> vertices, a
|
||||
hyperplane equation, an inner plane, an outer plane, and
|
||||
an orientation. For example in 3-d, a simplicial facet is
|
||||
a triangle. </li>
|
||||
<li>A <em>centrum</em> is a point on a facet's hyperplane. A
|
||||
centrum is the average of a facet's vertices. Neighboring
|
||||
facets are <em>convex</em> if each centrum is below the
|
||||
neighbor facet's hyperplane. </li>
|
||||
<li>A <em>ridge</em> is a set of <i>d-1</i> vertices, two
|
||||
neighboring facets, and an orientation. For example in
|
||||
3-d, a ridge is a line segment. </li>
|
||||
<li>A <em>non-simplicial facet</em> is a set of ridges, a
|
||||
hyperplane equation, a centrum, an outer plane, and an
|
||||
inner plane. The ridges determine a set of neighboring
|
||||
facets, a set of vertices, and an orientation. Qhull
|
||||
produces a non-simplicial facet when it merges two facets
|
||||
together. For example, a cube has six non-simplicial
|
||||
facets. </li>
|
||||
</ul>
|
||||
|
||||
<p>For examples, use option '<a href="qh-opto.htm#f">f</a>'. See <a
|
||||
href="../src/libqhull/qh-poly.htm">polyhedron operations</a> for further
|
||||
design documentation. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a>Imprecision in Qhull</h3>
|
||||
<blockquote>
|
||||
|
||||
<p>See <a href="qh-impre.htm">Imprecision in Qhull</a> and <a href="qh-impre.htm#joggle">Merged facets or joggled input</a></p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a>Examples of Qhull</h3>
|
||||
<blockquote>
|
||||
|
||||
<p>See <a href="qh-eg.htm">Examples of Qhull</a>. Most of these examples require <a href="#geomview">Geomview</a>.
|
||||
Some of the examples have <a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/welcome.html">pictures
|
||||
</a>.</p>
|
||||
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a>Options for using Qhull </h2>
|
||||
<blockquote>
|
||||
|
||||
<p>See <a href="qh-quick.htm#options">Options</a>.</p>
|
||||
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a>Qhull internals </h2>
|
||||
<blockquote>
|
||||
|
||||
<p>See <a href="qh-code.htm">Internals</a>.</p>
|
||||
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a><a name="geomview">Geomview, Qhull's
|
||||
graphical viewer</a></h2>
|
||||
<blockquote>
|
||||
|
||||
<p><a href="http://www.geomview.org">Geomview</a>
|
||||
is an interactive geometry viewing program.
|
||||
Geomview provides a good visualization of Qhull's 2-d and 3-d results.
|
||||
|
||||
<p>Qhull includes <a href="qh-eg.htm">Examples of Qhull</a> that may be viewed with Geomview.
|
||||
|
||||
<p>Geomview can help visulalize a 3-d Delaunay triangulation or the surface of a 4-d convex hull,
|
||||
Use option '<a href="qh-optq.htm#QVn">QVn</a>' to select the 3-D facets adjacent to a vertex.
|
||||
|
||||
<p>You may use Geomview to create movies that animate your objects (c.f., <a href="http://www.geomview.org/FAQ/answers.shtml#mpeg">How can I create a video animation?</a>).
|
||||
Geomview helped create the <a href="http://www.geom.uiuc.edu/video/">mathematical videos</a> "Not Knot", "Outside In", and "The Shape of Space" from the Geometry Center.
|
||||
|
||||
|
||||
<h3><a href="#TOC">»</a><a name="geomview-install">Installing Geomview</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Geomview is an <a href=http://sourceforge.net/projects/geomview>open source project</a>
|
||||
under SourceForge.
|
||||
|
||||
<p>
|
||||
For build instructions see
|
||||
<a href="http://www.geomview.org/download/">Downloading Geomview</a>.
|
||||
Geomview builds under Linux, Unix, Macintosh OS X, and Windows.
|
||||
|
||||
<p>Geomview has <a href="https://packages.debian.org/search?keywords=geomview">installable packages</a> for Debian and Ubuntu.
|
||||
The OS X build needs Xcode, an X11 SDK, and Lesstif or Motif.
|
||||
The Windows build uses Cygwin (see <a href="#geomview-win">Building Geomview</a> below for instructions).
|
||||
|
||||
<p>If using Xforms (e.g., for Geomview's <a href="http://www.geomview.org/docs/html/Modules.html">External Modules</a>), install the 'libXpm-devel' package from cygwin and move the xforms directory into your geomview directory, e.g.,<br><tt>mv xforms-1.2.4 geomview-1.9.5/xforms</tt>
|
||||
|
||||
<p>Geomview's <a href="http://www.geom.uiuc.edu/software/geomview/docs/NDview/manpagehelp.html">ndview<a/> provides multiple views into 4-d and higher objects.
|
||||
This module is out-of-date (<a href="http://sourceforge.net/p/geomview/mailman/message/2004152/">geomview-users: 4dview</a>).
|
||||
Download NDview-sgi.tar.Z at <a href="ftp://www.geom.uiuc.edu/pub/software/geomview/newpieces/sgi">newpieces</a> and 4dview at <a href="https://stuff.mit.edu/afs/sipb/project/3d/arch/sgi_62/lib/Geomview/modules/">Geomview/modules</a>.
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a><a name="geomview-use">Using Geomview</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Use Geomview to view <a href="qh-eg.htm">Examples of Qhull</a>. You can spin the convex hull, fly a camera through its facets,
|
||||
and see how Qhull produces thick facets in response to round-off error.
|
||||
|
||||
<p>Follow these instructions to view 'eg,01.cube' from Examples of Qhull
|
||||
<ol>
|
||||
<li>Launch an XTerm command shell
|
||||
<ul>
|
||||
<li>If needed, start the X terminal server, Use 'xinit' or 'startx' in /usr/X11R6/bin<br><tt>xinit -- -multiwindow -clipboard</tt><br><tt>startx</tt>
|
||||
<li>Start an XTerm command shell. In Windows, click the Cygwin/bash icon on your desktop.
|
||||
<li>Set the DISPLAY variable, e.g.,<br><tt>export DISPLAY=:0</tt><br><tt>export DISPLAY=:0 >>~/.bashenv</tt>
|
||||
</ul>
|
||||
<li>Use Qhull's <a href="qh-optg.htm">Geomview options</a> to create a geomview object
|
||||
<ul>
|
||||
<li><tt>rbox c D3 | qconvex G >eg.01.cube</tt>
|
||||
<li>On windows, convert the output to Unix text format with 'd2u'<br><tt>rbox c D3 | qconvex G | d2u >eg.01.cube</tt><br><tt>d2u eg.*</tt>
|
||||
</ul>
|
||||
<li>Run Geomview
|
||||
<ul>
|
||||
<li>Start Geomview with your example<br><tt>./geomview eg.01.cube</tt>
|
||||
<li>Follow the instructions in <a href="http://www.geomview.org/docs/html/Tutorial.html">Gemoview Tutorial</a>
|
||||
<li>Geomview creates the <i>Geomview control panel</i> with Targets and External Module, the <i>Geomview toolbar</i> with buttons for controlling Geomview, and the <i>Geomview camera window</i> showing a cube.
|
||||
<li>Clear the camera window by selecting your object in the Targets list and 'Edit > Delete' or 'dd'
|
||||
<li>Load the <i>Geomview files panel</i>. Select 'Open' in the 'File' menu.
|
||||
<li>Set 'Filter' in the files panel to your example directory followed by '/*' (e.g., '/usr/local/qhull-2015.2/eg/*')
|
||||
<li>Click 'Filter' in the files panel to view your examples in the 'Files' list.
|
||||
<li>Load another example into the camera window by selecting it and clicking 'OK'.
|
||||
<li>Review the instructions for <a href="http://www.geomview.org/docs/html/Interaction.html">Interacting with Geomview</a>
|
||||
<li>When viewing multiple objects at once, you may want to turn off normalization. In the 'Inspect > Apperance' control panel, set 'Normalize' to 'None'.
|
||||
</ul>
|
||||
</ol>
|
||||
|
||||
<p>Geomview defines GCL (a textual API for controlling Geomview) and OOGL (a textual file format for defining objects).
|
||||
<ul>
|
||||
<li>To control Geomview, you may use any program that reads and writes from stdin and stdout. For example, it could report Qhull's information about a vertex identified by a double-click 'pick' event.
|
||||
<li><a href="http://www.geomview.org/docs/html/GCL.html">GCL</a> command language for controlling Geomview
|
||||
<li><a href="http://www.geomview.org/docs/html/OOGL-File-Formats.html">OOGL</a> file format for defining objects (<a href="http://www.geomview.org/docs/oogltour.html">tutorial</a>).
|
||||
<li><a href="http://www.geomview.org/docs/html/Modules.html">External Modules</a> for interacting with Geomview via GCL
|
||||
<li>Interact with your objects via <a href="http://www.geomview.org/docs/html/pick.html">pick</a> commands in response to right-mouse double clicks. Enable pick events with the <a href="http://www.geomview.org/docs/html/interest.html">interest</a> command.
|
||||
</ul>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOC">»</a><a name="geomview-win">Building Geomview for Windows</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Compile Geomview under Cygwin. For detailed instructions, see
|
||||
<a href="http://www.ee.surrey.ac.uk/Personal/L.Wood/software/SaVi/building-under-Windows/"
|
||||
>Building Savi and Geomview under Windows</a>. These instructions are somewhat out-of-date. Updated
|
||||
instructions follow.
|
||||
|
||||
<p>How to compile Geomview under 32-bit Cygwin (October 2015)</p>
|
||||
<ol>
|
||||
<li><b>Note:</b> L. Wood has run into multiple issues with Geomview on Cygwin. He recommends Virtualbox/Ubuntu
|
||||
and a one-click install of geomview via the Ubuntu package. See his Savi/Geomview link above.
|
||||
<li>Install 32-bit <a href="http://cygwin.com/">Cygwin</a> as follows.
|
||||
For additional guidance, see Cygwin's <a href="https://cygwin.com/install.html">Installing and Updating Cygwin Packages</a>
|
||||
and <a href="http://www.qhull.org/road/road-faq/xml/cmdline.xml#setup-cygwin">Setup cygwin</a>.
|
||||
<ul>
|
||||
<li>Launch the cygwin installer.
|
||||
<li>Select a mirror from <a href="http://cygwin.com/mirrors.html">Cygwin mirrors</a> (e.g., http://mirrors.kernel.org/sourceware/cygwin/ in California).
|
||||
<li>Select the packages to install. Besides the cygwin packages listed in the Savi/Windows instructions consider adding
|
||||
<ul>
|
||||
<li><b>Default</b> -- libXm-devel (required for /usr/include/Xm/Xm.h)
|
||||
<li><b>Devel</b> -- bashdb, gcc-core (in place of gcc), gdb
|
||||
<li><b>Lib</b> -- libGL-devel, libGLU1 (required, obsolete), libGLU-devel (required, obsolete), libjpeg-devel(XForms), libXext-devel (required), libXpm-devel (Xforms)
|
||||
libGL and lib
|
||||
<li><b>Math</b> -- bc
|
||||
<li><b>Net</b> -- autossh, inetutils, openssh
|
||||
<li><b>System</b> -- chere
|
||||
<li><b>Utils</b> -- dos2unix (required for qhull), keychain
|
||||
<li>If installing perl, ActiveState Perl may be a better choice than cygwin's perl. Perl is not used by Geomview or Qhull.
|
||||
<li><a href="https://cygwin.com/cgi-bin2/package-grep.cgi">Cygwin Package Search</a> -- Search for cygwin programs and packages
|
||||
</ul>
|
||||
<li>Click 'Next' to download and install the packages.
|
||||
<li>If the download is incomplete, try again.
|
||||
<li>If you try again after a successful install, cygwin will uninstall and reinstall all modules..
|
||||
<li>Click on the 'Cywin Terminal' icon on the Desktop. It sets up a user directory in /home from /etc/skel/...
|
||||
<li>Mount your disk drives<br>mount c: /c # Ignore the warning /c does not exist
|
||||
</ul>
|
||||
<li>Consider installing the <a href="http://www.qhull.org/bash/doc/road-bash.html">Road Bash</a> scripts (/etc/road-*) from <a href="http://www.qhull.org/road/">Road</a>.
|
||||
They define aliases and functions for Unix command shells (Unix, Linux, Mac OS X, Windows),
|
||||
<ul>
|
||||
<li>Download Road Bash and unzip the downloaded file
|
||||
<li>Copy .../bash/etc/road-* to the Cywin /etc directory (by default, C:\cygwin\etc).
|
||||
<li>Using the cygwin terminal, convert the road scripts to Unix format<br>d2u /etc/road-*
|
||||
<li>Try it<br>source /etc/road-home.bashrc
|
||||
<li>Install it<br>cp /etc/road-home.bashrc ~/.bashrc
|
||||
</ul>
|
||||
<li>Launch the X terminal server from '<tt>Start > All programs > Cygwin-X > Xwin Server</tt>'. Alternatively, run 'startx'
|
||||
<li>Launch an XTerm shell
|
||||
<ul>
|
||||
<li>Right click the Cywin icon on the system tray in the Windows taskbar.
|
||||
<li>Select '<tt>System Tools > XTerm</tt>'
|
||||
</ul>
|
||||
<li>Download and extract Geomview -- <a href="http://www.geomview.org/download/">Downloading Geomview</a>
|
||||
<li>Compile Geomview
|
||||
<ul>
|
||||
<li>./configure
|
||||
<li>make
|
||||
</ul>
|
||||
<li>If './configure' fails, check 'config.log' at the failing step. Look carefully for missing libraries, etc. The <a href="http://www.geomview.org/FAQ/answers.shtml">Geomview FAQ</a> contains suggestions (e.g., "configure claims it can't find OpenGl").
|
||||
<li>If 'make' fails, read the output carefully for error messages. Usually it is a missing include file or package. Locate and install the missing cygwin packages
|
||||
(<a href="https://cygwin.com/cgi-bin2/package-grep.cgi">Cygwin Package Search</a>).
|
||||
</ol>
|
||||
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a><a name="bugs">What to do if something
|
||||
goes wrong</a></h2>
|
||||
<blockquote>
|
||||
|
||||
<p>Please report bugs to <a href=mailto:qhull_bug@qhull.org>qhull_bug@qhull.org</a>
|
||||
</a>. Please report if Qhull crashes. Please report if Qhull
|
||||
generates an "internal error". Please report if Qhull
|
||||
produces a poor approximate hull in 2-d, 3-d or 4-d. Please
|
||||
report documentation errors. Please report missing or incorrect
|
||||
links.</p>
|
||||
|
||||
<p>If you do not understand something, try a small example. The <a
|
||||
href="rbox.htm">rbox</a> program is an easy way to generate
|
||||
test cases. The <a href="#geomview">Geomview</a> program helps to
|
||||
visualize the output from Qhull.</p>
|
||||
|
||||
<p>If Qhull does not compile, it is due to an incompatibility
|
||||
between your system and ours. The first thing to check is that
|
||||
your compiler is ANSI standard. Qhull produces a compiler error
|
||||
if __STDC__ is not defined. You may need to set a flag (e.g.,
|
||||
'-A' or '-ansi').</p>
|
||||
|
||||
<p>If Qhull compiles but crashes on the test case (rbox D4),
|
||||
there's still incompatibility between your system and ours.
|
||||
Sometimes it is due to memory management. This can be turned off
|
||||
with qh_NOmem in mem.h. Please let us know if you figure out how
|
||||
to fix these problems. </p>
|
||||
|
||||
<p>If you doubt the output from Qhull, add option '<a
|
||||
href="qh-optt.htm#Tv">Tv</a>'. It checks that every point is
|
||||
inside the outer planes of the convex hull. It checks that every
|
||||
facet is convex with its neighbors. It checks the topology of the
|
||||
convex hull.</p>
|
||||
|
||||
<p>Qhull should work on all inputs. It may report precision
|
||||
errors if you turn off merged facets with option '<a
|
||||
href="qh-optq.htm#Q0">Q0</a>'. This can get as bad as facets with
|
||||
flipped orientation or two facets with the same vertices. You'll
|
||||
get a long help message if you run into such a case. They are
|
||||
easy to generate with <tt>rbox</tt>.</p>
|
||||
|
||||
<p>If you do find a problem, try to simplify it before reporting
|
||||
the error. Try different size inputs to locate the smallest one
|
||||
that causes an error. You're welcome to hunt through the code
|
||||
using the execution trace ('<a href="qh-optt.htm#Tn">T4</a>') as
|
||||
a guide. This is especially true if you're incorporating Qhull
|
||||
into your own program. </p>
|
||||
|
||||
<p>When you report an error, please attach a data set to the end
|
||||
of your message. Include the options that you used with Qhull,
|
||||
the results of option '<a href="qh-optf.htm#FO">FO</a>', and any
|
||||
messages generated by Qhull. This allows me to see the error for
|
||||
myself. Qhull is maintained part-time. </p>
|
||||
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a><a name="email">Email</a></h2>
|
||||
<blockquote>
|
||||
|
||||
<p>Please send correspondence to Brad Barber at <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
and report bugs to <a href=mailto:qhull_bug@qhull.org>qhull_bug@qhull.org</a>
|
||||
</a>. Let me know how you use Qhull. If you mention it in a
|
||||
paper, please send a reference and abstract.</p>
|
||||
|
||||
<p>If you would like to get Qhull announcements (e.g., a new
|
||||
version) and news (any bugs that get fixed, etc.), let us know
|
||||
and we will add you to our mailing list. For Internet news about geometric algorithms
|
||||
and convex hulls, look at comp.graphics.algorithms and
|
||||
sci.math.num-analysis. For Qhull news look at <a
|
||||
href="http://www.qhull.org/news">qhull-news.html</a>.</p>
|
||||
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a><a name="authors">Authors</a></h2>
|
||||
<blockquote>
|
||||
|
||||
<pre>
|
||||
C. Bradford Barber Hannu Huhdanpaa
|
||||
bradb@shore.net hannu@qhull.org
|
||||
</pre>
|
||||
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a><a name="acknowledge">Acknowledgments</a></h2>
|
||||
<blockquote>
|
||||
|
||||
<p>A special thanks to David Dobkin for his guidance. A special
|
||||
thanks to Albert Marden, Victor Milenkovic, the Geometry Center,
|
||||
and Harvard University for supporting this work.</p>
|
||||
|
||||
<p>A special thanks to Mark Phillips, Robert Miner, and Stuart Levy for running the Geometry
|
||||
Center web site long after the Geometry Center closed.
|
||||
Stuart moved the web site to the University of Illinois at Champaign-Urbana.
|
||||
Mark and Robert are founders of <a href=http://www.geomtech.com>Geometry Technologies</a>.
|
||||
Mark, Stuart, and Tamara Munzner are the original authors of <a href=http://www.geomview.org>Geomview</a>.
|
||||
|
||||
<p>A special thanks to <a href="http://www.endocardial.com/">Endocardial
|
||||
Solutions, Inc.</a> of St. Paul, Minnesota for their support of the
|
||||
internal documentation (<a href=../src/libqhull/index.htm>src/libqhull/index.htm</a>). They use Qhull to build 3-d models of
|
||||
heart chambers.</p>
|
||||
|
||||
<p>Qhull 1.0 and 2.0 were developed under National Science Foundation
|
||||
grants NSF/DMS-8920161 and NSF-CCR-91-15793 750-7504. If you find
|
||||
it useful, please let us know.</p>
|
||||
|
||||
<p>The Geometry Center was supported by grant DMS-8920161 from the
|
||||
National Science Foundation, by grant DOE/DE-FG02-92ER25137 from
|
||||
the Department of Energy, by the University of Minnesota, and by
|
||||
Minnesota Technology, Inc.</p>
|
||||
|
||||
</blockquote>
|
||||
<h2><a href="#TOC">»</a><a name="ref">References</a></h2>
|
||||
<blockquote>
|
||||
|
||||
<p><a name="aure91">Aurenhammer</a>, F., "Voronoi diagrams
|
||||
-- A survey of a fundamental geometric data structure," <i>ACM
|
||||
Computing Surveys</i>, 1991, 23:345-405. </p>
|
||||
|
||||
<p><a name="bar-dob96">Barber</a>, C. B., D.P. Dobkin, and H.T.
|
||||
Huhdanpaa, "The Quickhull Algorithm for Convex Hulls," <i>ACM
|
||||
Transactions on Mathematical Software</i>, 22(4):469-483, Dec 1996, www.qhull.org
|
||||
[<a
|
||||
href="http://portal.acm.org/citation.cfm?doid=235815.235821">http://portal.acm.org</a>;
|
||||
<a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.405">http://citeseerx.ist.psu.edu</a>].
|
||||
</p>
|
||||
|
||||
<p><a name="cla-sho89">Clarkson</a>, K.L. and P.W. Shor,
|
||||
"Applications of random sampling in computational geometry,
|
||||
II", <i>Discrete Computational Geometry</i>, 4:387-421, 1989</p>
|
||||
|
||||
<p><a name="cla-meh93">Clarkson</a>, K.L., K. Mehlhorn, and R.
|
||||
Seidel, "Four results on randomized incremental
|
||||
construction," <em>Computational Geometry: Theory and
|
||||
Applications</em>, vol. 3, p. 185-211, 1993.</p>
|
||||
|
||||
<p><a name="devi01">Devillers</a>, et. al.,
|
||||
"Walking in a triangulation," <i>ACM Symposium on
|
||||
Computational Geometry</i>, June 3-5,2001, Medford MA.
|
||||
|
||||
<p><a name="dob-kir90">Dobkin</a>, D.P. and D.G. Kirkpatrick,
|
||||
"Determining the separation of preprocessed polyhedra--a
|
||||
unified approach," in <i>Proc. 17th Inter. Colloq. Automata
|
||||
Lang. Program.</i>, in <i>Lecture Notes in Computer Science</i>,
|
||||
Springer-Verlag, 443:400-413, 1990. </p>
|
||||
|
||||
<p><a name="edel01">Edelsbrunner</a>, H, <i>Geometry and Topology for Mesh Generation</i>,
|
||||
Cambridge University Press, 2001.
|
||||
|
||||
<p><a name=gart99>Gartner, B.</a>, "Fast and robust smallest enclosing balls", <i>Algorithms - ESA '99</i>, LNCS 1643.
|
||||
|
||||
<p><a name=golub83>Golub, G.H. and van Loan, C.F.</a>, <i>Matric Computations</i>, Baltimore, Maryland, USA: John Hopkins Press, 1983
|
||||
|
||||
<p><a name="fort93">Fortune, S.</a>, "Computational
|
||||
geometry," in R. Martin, editor, <i>Directions in Geometric
|
||||
Computation</i>, Information Geometers, 47 Stockers Avenue,
|
||||
Winchester, SO22 5LB, UK, ISBN 1-874728-02-X, 1993.</p>
|
||||
|
||||
<p><a name="mile93">Milenkovic, V.</a>, "Robust polygon
|
||||
modeling," Computer-Aided Design, vol. 25, p. 546-566,
|
||||
September 1993. </p>
|
||||
|
||||
<p><a name="muck96">Mucke</a>, E.P., I. Saias, B. Zhu, <i>Fast
|
||||
randomized point location without preprocessing in Two- and
|
||||
Three-dimensional Delaunay Triangulations</i>, ACM Symposium on
|
||||
Computational Geometry, p. 274-283, 1996 [<a
|
||||
href="http://www.geom.uiuc.edu/software/cglist/GeomDir/">GeomDir</a>].
|
||||
</p>
|
||||
|
||||
<p><a name="mulm94">Mulmuley</a>, K., <i>Computational Geometry,
|
||||
An Introduction Through Randomized Algorithms</i>, Prentice-Hall,
|
||||
NJ, 1994.</p>
|
||||
|
||||
<p><a name="orou94">O'Rourke</a>, J., <i>Computational Geometry
|
||||
in C</i>, Cambridge University Press, 1994.</p>
|
||||
|
||||
<p><a name="pre-sha85">Preparata</a>, F. and M. Shamos, <i>Computational
|
||||
Geometry</i>, Springer-Verlag, New York, 1985.</p>
|
||||
|
||||
</blockquote>
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a
|
||||
href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b><a
|
||||
href="http://www.qhull.org/news">News</a> about Qhull<br>
|
||||
<b>Up:</b> <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> about Qhull<br>
|
||||
<b>To:</b> <a href="#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>Dn:</b> <a href="qh-impre.htm">Imprecision in Qhull</a><br>
|
||||
<b>Dn:</b> <a href="qh-eg.htm">Description of Qhull examples</a><br>
|
||||
<b>Dn:</b> <a href="qh-code.htm">Qhull internals</a><br>
|
||||
<b>Dn:</b> <a href="../src/libqhull/index.htm">Qhull functions, macros, and data
|
||||
structures</a>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
BIN
xs/src/qhull/html/normal_voronoi_knauss_oesterle.jpg
Normal file
|
After Width: | Height: | Size: 23 KiB |
630
xs/src/qhull/html/qconvex.htm
Normal file
|
|
@ -0,0 +1,630 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>qconvex -- convex hull</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<a name="TOP"><b>Up</b></a><b>:</b>
|
||||
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a> -- Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
|
||||
src="qh--cone.gif" alt="[cone]" align="middle" width="100"
|
||||
height="100"></a>qconvex -- convex hull</h1>
|
||||
|
||||
<p>The convex hull of a set of points is the smallest convex set
|
||||
containing the points. See the detailed introduction by O'Rourke
|
||||
[<a href="index.htm#orou94">'94</a>]. See <a
|
||||
href="index.htm#description">Description of Qhull</a> and <a
|
||||
href="qh-eg.htm#how">How Qhull adds a point</a>.</p>
|
||||
|
||||
<blockquote>
|
||||
<dl>
|
||||
<dt><b>Example:</b> rbox 10 D3 | qconvex <a
|
||||
href="qh-opto.htm#s">s</a> <a href="qh-opto.htm#o">o</a> <a
|
||||
href="qh-optt.htm#TO">TO result</a></dt>
|
||||
<dd>Compute the 3-d convex hull of 10 random points. Write a
|
||||
summary to the console and the points and facets to
|
||||
'result'.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox c | qconvex <a
|
||||
href="qh-opto.htm#n">n</a></dt>
|
||||
<dd>Print the normals for each facet of a cube.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox c | qconvex <a
|
||||
href="qh-opto.htm#i">i</a> <a href="qh-optq.htm#Qt">Qt</a></dt>
|
||||
<dd>Print the triangulated facets of a cube.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox y 500 W0 | qconvex</dt>
|
||||
<dd>Compute the convex hull of a simplex with 500
|
||||
points on its surface.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox x W1e-12 1000 | qconvex
|
||||
<a href="qh-optq.htm#QR">QR0</a></dt>
|
||||
<dd>Compute the convex hull of 1000 points near the
|
||||
surface of a randomly rotated simplex. Report
|
||||
the maximum thickness of a facet.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox 1000 s | qconvex <a
|
||||
href="qh-opto.htm#s">s</a> <a
|
||||
href="qh-optf.htm#FA">FA</a> </dt>
|
||||
<dd>Compute the convex hull of 1000 cospherical
|
||||
points. Verify the results and print a summary
|
||||
with the total area and volume.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox d D12 | qconvex <a
|
||||
href="qh-optq.htm#QRn">QR0</a> <a
|
||||
href="qh-optf.htm#FA">FA</a></dt>
|
||||
<dd>Compute the convex hull of a 12-d diamond.
|
||||
Randomly rotate the input. Note the large number
|
||||
of facets and the small volume.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox c D7 | qconvex <a
|
||||
href="qh-optf.htm#FA">FA</a> <a
|
||||
href="qh-optt.htm#TFn">TF1000</a></dt>
|
||||
<dd>Compute the convex hull of the 7-d hypercube.
|
||||
Report on progress every 1000 facets. Computing
|
||||
the convex hull of the 9-d hypercube takes too
|
||||
much time and space. </dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox c d D2 | qconvex <a
|
||||
href="qh-optq.htm#Qc">Qc</a> <a
|
||||
href="qh-opto.htm#s">s</a> <a
|
||||
href="qh-opto.htm#f">f</a> <a
|
||||
href="qh-optf.htm#Fx">Fx</a> | more</dt>
|
||||
<dd>Dump all fields of all facets for a square and a
|
||||
diamond. Also print a summary and a list of
|
||||
vertices. Note the coplanar points.</dd>
|
||||
<dt> </dt>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
<p>Except for rbox, all of the qhull programs compute a convex hull.
|
||||
|
||||
<p>By default, Qhull merges coplanar facets. For example, the convex
|
||||
hull of a cube's vertices has six facets.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output),
|
||||
all facets will be simplicial (e.g., triangles in 2-d). For the cube
|
||||
example, it will have 12 facets. Some facets may be
|
||||
degenerate and have zero area.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input),
|
||||
all facets will be simplicial. The corresponding vertices will be
|
||||
slightly perturbed and identical points will be joggled apart.
|
||||
Joggled input is less accurate that triangulated
|
||||
output.See <a
|
||||
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
|
||||
|
||||
<p>The output for 4-d convex hulls may be confusing if the convex
|
||||
hull contains non-simplicial facets (e.g., a hypercube). See
|
||||
<a href=qh-faq.htm#extra>Why
|
||||
are there extra points in a 4-d or higher convex hull?</a><br>
|
||||
</p>
|
||||
</p>
|
||||
|
||||
<p>The 'qconvex' program is equivalent to
|
||||
'<a href=qhull.htm#outputs>qhull</a>' in 2-d to 4-d, and
|
||||
'<a href=qhull.htm#outputs>qhull</a> <a href=qh-optq.htm#Qx>Qx</a>'
|
||||
in 5-d and higher. It disables the following Qhull
|
||||
<a href=qh-quick.htm#options>options</a>: <i>d v H Qbb Qf Qg Qm
|
||||
Qr Qu Qv Qx Qz TR E V Fp Gt Q0,etc</i>.
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">qconvex synopsis</a></h3>
|
||||
<pre>
|
||||
qconvex- compute the convex hull.
|
||||
input (stdin): dimension, number of points, point coordinates
|
||||
comments start with a non-numeric character
|
||||
|
||||
options (qconvex.htm):
|
||||
Qt - triangulated output
|
||||
QJ - joggle input instead of merging facets
|
||||
Tv - verify result: structure, convexity, and point inclusion
|
||||
. - concise list of all options
|
||||
- - one-line description of all options
|
||||
|
||||
output options (subset):
|
||||
s - summary of results (default)
|
||||
i - vertices incident to each facet
|
||||
n - normals with offsets
|
||||
p - vertex coordinates (includes coplanar points if 'Qc')
|
||||
Fx - extreme points (convex hull vertices)
|
||||
FA - compute total area and volume
|
||||
o - OFF format (dim, n, points, facets)
|
||||
G - Geomview output (2-d, 3-d, and 4-d)
|
||||
m - Mathematica output (2-d and 3-d)
|
||||
QVn - print facets that include point n, -n if not
|
||||
TO file- output results to file, may be enclosed in single quotes
|
||||
|
||||
examples:
|
||||
rbox c D2 | qconvex s n rbox c D2 | qconvex i
|
||||
rbox c D2 | qconvex o rbox 1000 s | qconvex s Tv FA
|
||||
rbox c d D2 | qconvex s Qc Fx rbox y 1000 W0 | qconvex s n
|
||||
rbox y 1000 W0 | qconvex s QJ rbox d G1 D12 | qconvex QR0 FA Pp
|
||||
rbox c D7 | qconvex FA TF1000
|
||||
</pre>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="input">qconvex
|
||||
input</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The input data on <tt>stdin</tt> consists of:</p>
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>number of points</li>
|
||||
<li>point coordinates</li>
|
||||
</ul>
|
||||
|
||||
<p>Use I/O redirection (e.g., qconvex < data.txt), a pipe (e.g., rbox 10 | qconvex),
|
||||
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qconvex TI data.txt).
|
||||
|
||||
<p>Comments start with a non-numeric character. Error reporting is
|
||||
simpler if there is one point per line. Dimension
|
||||
and number of points may be reversed.
|
||||
|
||||
<p>Here is the input for computing the convex
|
||||
hull of the unit cube. The output is the normals, one
|
||||
per facet.</p>
|
||||
|
||||
<blockquote>
|
||||
<p>rbox c > data </p>
|
||||
<pre>
|
||||
3 RBOX c
|
||||
8
|
||||
-0.5 -0.5 -0.5
|
||||
-0.5 -0.5 0.5
|
||||
-0.5 0.5 -0.5
|
||||
-0.5 0.5 0.5
|
||||
0.5 -0.5 -0.5
|
||||
0.5 -0.5 0.5
|
||||
0.5 0.5 -0.5
|
||||
0.5 0.5 0.5
|
||||
</pre>
|
||||
<p>qconvex s n < data</p>
|
||||
<pre>
|
||||
|
||||
Convex hull of 8 points in 3-d:
|
||||
|
||||
Number of vertices: 8
|
||||
Number of facets: 6
|
||||
Number of non-simplicial facets: 6
|
||||
|
||||
Statistics for: RBOX c | QCONVEX s n
|
||||
|
||||
Number of points processed: 8
|
||||
Number of hyperplanes created: 11
|
||||
Number of distance tests for qhull: 35
|
||||
Number of merged facets: 6
|
||||
Number of distance tests for merging: 84
|
||||
CPU seconds to compute hull (after input): 0.081
|
||||
|
||||
4
|
||||
6
|
||||
0 0 -1 -0.5
|
||||
0 -1 0 -0.5
|
||||
1 0 0 -0.5
|
||||
-1 0 0 -0.5
|
||||
0 1 0 -0.5
|
||||
0 0 1 -0.5
|
||||
</pre>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="outputs">qconvex outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options control the output of qconvex. They may be used
|
||||
individually or together.</p>
|
||||
<blockquote>
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>Vertices</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fx">Fx</a></dt>
|
||||
<dd>list extreme points (i.e., vertices). The first line is the number of
|
||||
extreme points. Each point is listed, one per line. The cube example
|
||||
has eight vertices.</dd>
|
||||
<dt><a href="qh-optf.htm#Fv">Fv</a></dt>
|
||||
<dd>list vertices for each facet. The first line is the number of facets.
|
||||
Each remaining line starts with the number of vertices. For the cube example,
|
||||
each facet has four vertices.</dd>
|
||||
<dt><a href="qh-opto.htm#i">i</a></dt>
|
||||
<dd>list vertices for each facet. The first line is the number of facets. The
|
||||
remaining lines list the vertices for each facet. In 4-d and
|
||||
higher, triangulate non-simplicial facets by adding an extra point.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Coordinates</b></dd>
|
||||
<dt><a href="qh-opto.htm#o">o</a></dt>
|
||||
<dd>print vertices and facets of the convex hull in OFF format. The
|
||||
first line is the dimension. The second line is the number of
|
||||
vertices, facets, and ridges. The vertex
|
||||
coordinates are next, followed by the facets. Each facet starts with
|
||||
the number of vertices. The cube example has four vertices per facet.</dd>
|
||||
<dt><a href="qh-optf.htm#Ft">Ft</a></dt>
|
||||
<dd>print a triangulation of the convex hull in OFF format. The first line
|
||||
is the dimension. The second line is the number of vertices and added points,
|
||||
followed by the number of facets and the number of ridges.
|
||||
The vertex coordinates are next, followed by the centrum coordinates. There is
|
||||
one centrum for each non-simplicial facet.
|
||||
The cube example has six centrums, one per square.
|
||||
Each facet starts with the number of vertices or centrums.
|
||||
In the cube example, each facet uses two vertices and one centrum.</dd>
|
||||
<dt><a href="qh-opto.htm#p">p</a></dt>
|
||||
<dd>print vertex coordinates. The first line is the dimension and the second
|
||||
line is the number of vertices. The following lines are the coordinates of each
|
||||
vertex. The cube example has eight vertices.</dd>
|
||||
<dt><a href="qh-optq.htm#Qc">Qc</a> <a href="qh-opto.htm#p">p</a></dt>
|
||||
<dd>print coordinates of vertices and coplanar points. The first line is the dimension.
|
||||
The second line is the number of vertices and coplanar points. The coordinates
|
||||
are next, one line per point. Use '<a href="qh-optq.htm#Qc">Qc</a> <a href="qh-optq.htm#Qi">Qi</a> p'
|
||||
to print the coordinates of all points.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Facets</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fn">Fn</a></dt>
|
||||
<dd>list neighboring facets for each facet. The first line is the
|
||||
number of facets. Each remaining line starts with the number of
|
||||
neighboring facets. The cube example has four neighbors per facet.</dd>
|
||||
<dt><a href="qh-optf.htm#FN">FN</a></dt>
|
||||
<dd>list neighboring facets for each point. The first line is the
|
||||
total number of points. Each remaining line starts with the number of
|
||||
neighboring facets. Each vertex of the cube example has three neighboring
|
||||
facets. Use '<a href="qh-optq.htm#Qc">Qc</a> <a href="qh-optq.htm#Qi">Qi</a> FN'
|
||||
to include coplanar and interior points. </dd>
|
||||
<dt><a href="qh-optf.htm#Fa">Fa</a></dt>
|
||||
<dd>print area for each facet. The first line is the number of facets.
|
||||
Facet area follows, one line per facet. For the cube example, each facet has area one.</dd>
|
||||
<dt><a href="qh-optf.htm#FI">FI</a></dt>
|
||||
<dd>list facet IDs. The first line is the number of
|
||||
facets. The IDs follow, one per line.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Coplanar and interior points</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fc">Fc</a></dt>
|
||||
<dd>list coplanar points for each facet. The first line is the number
|
||||
of facets. The remaining lines start with the number of coplanar points.
|
||||
A coplanar point is assigned to one facet.</dd>
|
||||
<dt><a href="qh-optq.htm#Qi">Qi</a> <a href="qh-optf.htm#Fc">Fc</a></dt>
|
||||
<dd>list interior points for each facet. The first line is the number
|
||||
of facets. The remaining lines start with the number of interior points.
|
||||
A coplanar point is assigned to one facet.</dd>
|
||||
<dt><a href="qh-optf.htm#FP">FP</a></dt>
|
||||
<dd>print distance to nearest vertex for coplanar points. The first line is the
|
||||
number of coplanar points. Each remaining line starts with the point ID of
|
||||
a vertex, followed by the point ID of a coplanar point, its facet, and distance.
|
||||
Use '<a href="qh-optq.htm#Qc">Qc</a> <a href="qh-optq.htm#Qi">Qi</a>
|
||||
<a href="qh-optf.htm#FP">FP</a>' for coplanar and interior points.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Hyperplanes</b></dd>
|
||||
<dt><a href="qh-opto.htm#n">n</a></dt>
|
||||
<dd>print hyperplane for each facet. The first line is the dimension. The
|
||||
second line is the number of facets. Each remaining line is the hyperplane's
|
||||
coefficients followed by its offset.</dd>
|
||||
<dt><a href="qh-optf.htm#Fo">Fo</a></dt>
|
||||
<dd>print outer plane for each facet. The output plane is above all points.
|
||||
The first line is the dimension. The
|
||||
second line is the number of facets. Each remaining line is the outer plane's
|
||||
coefficients followed by its offset.</dd>
|
||||
<dt><a href="qh-optf.htm#Fi">Fi</a></dt>
|
||||
<dd>print inner plane for each facet. The inner plane of a facet is
|
||||
below its vertices.
|
||||
The first line is the dimension. The
|
||||
second line is the number of facets. Each remaining line is the inner plane's
|
||||
coefficients followed by its offset.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="qh-opto.htm#s">s</a></dt>
|
||||
<dd>print summary for the convex hull. Use '<a
|
||||
href="qh-optf.htm#Fs">Fs</a>' and '<a
|
||||
href="qh-optf.htm#FS">FS</a>' if you need numeric data.</dd>
|
||||
<dt><a href="qh-optf.htm#FA">FA</a></dt>
|
||||
<dd>compute total area and volume for '<a
|
||||
href="qh-opto.htm#s">s</a>' and '<a href="qh-optf.htm#FS">FS</a>'</dd>
|
||||
<dt><a href="qh-opto.htm#m">m</a></dt>
|
||||
<dd>Mathematica output for the convex hull in 2-d or 3-d.</dd>
|
||||
<dt><a href="qh-optf.htm#FM">FM</a></dt>
|
||||
<dd>Maple output for the convex hull in 2-d or 3-d.</dd>
|
||||
<dt><a href="qh-optg.htm#G">G</a></dt>
|
||||
<dd>Geomview output for the convex hull in 2-d, 3-d, or 4-d.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Scaling and rotation</b></dd>
|
||||
<dt><a href="qh-optq.htm#Qbk">Qbk:n</a></dt>
|
||||
<dd>scale k'th coordinate to lower bound.</dd>
|
||||
<dt><a href="qh-optq.htm#QBk">QBk:n</a></dt>
|
||||
<dd>scale k'th coordinate to upper bound.</dd>
|
||||
<dt><a href="qh-optq.htm#QbB">QbB</a></dt>
|
||||
<dd>scale input to unit cube centered at the origin.</dd>
|
||||
<dt><a href="qh-optq.htm#QRn">QRn</a></dt>
|
||||
<dd>randomly rotate the input with a random seed of n. If n=0, the
|
||||
seed is the time. If n=-1, use time for the random seed, but do
|
||||
not rotate the input.</dd>
|
||||
<dt><a href="qh-optq.htm#Qb0">Qbk:0Bk:0</a></dt>
|
||||
<dd>remove k'th coordinate from input. This computes the
|
||||
convex hull in one lower dimension.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="controls">qconvex controls</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options provide additional control:</p>
|
||||
|
||||
<blockquote>
|
||||
<dl compact>
|
||||
<dt><a href="qh-optq.htm#Qt">Qt</a></dt>
|
||||
<dd>triangulated output. Qhull triangulates non-simplicial facets. It may produce
|
||||
degenerate facets of zero area.</dd>
|
||||
<dt><a href="qh-optq.htm#QJn">QJ</a></dt>
|
||||
<dd>joggle the input instead of merging facets. This guarantees simplicial facets
|
||||
(e.g., triangles in 3-d). It is less accurate than triangulated output ('Qt').</dd>
|
||||
<dt><a href="qh-optq.htm#Qc">Qc</a></dt>
|
||||
<dd>keep coplanar points</dd>
|
||||
<dt><a href="qh-optq.htm#Qi">Qi</a></dt>
|
||||
<dd>keep interior points</dd>
|
||||
<dt><a href="qh-opto.htm#f">f </a></dt>
|
||||
<dd>facet dump. Print the data structure for each facet.</dd>
|
||||
<dt><a href="qh-optq.htm#QVn">QVn</a></dt>
|
||||
<dd>select facets containing point <em>n</em> as a vertex,</dd>
|
||||
<dt><a href="qh-optq.htm#QGn">QGn</a></dt>
|
||||
<dd>select facets that are visible from point <em>n</em>
|
||||
(marked 'good'). Use <em>-n</em> for the remainder.</dd>
|
||||
<dt><a href="qh-optp.htm#PDk">PDk:0</a></dt>
|
||||
<dd>select facets with a negative coordinate for dimension <i>k</i></dd>
|
||||
<dt><a href="qh-optt.htm#TFn">TFn</a></dt>
|
||||
<dd>report progress after constructing <em>n</em> facets</dd>
|
||||
<dt><a href="qh-optt.htm#Tv">Tv</a></dt>
|
||||
<dd>verify result</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TI file</a></dt>
|
||||
<dd>input data from file. The filename may not use spaces or quotes.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TO file</a></dt>
|
||||
<dd>output results to file. Use single quotes if the filename
|
||||
contains spaces (e.g., <tt>TO 'file with spaces.txt'</tt></dd>
|
||||
<dt><a href="qh-optq.htm#Qs">Qs</a></dt>
|
||||
<dd>search all points for the initial simplex. If Qhull can
|
||||
not construct an initial simplex, it reports a
|
||||
descriptive message. Usually, the point set is degenerate and one
|
||||
or more dimensions should be removed ('<a href="qh-optq.htm#Qb0">Qbk:0Bk:0</a>').
|
||||
If not, use option 'Qs'. It performs an exhaustive search for the
|
||||
best initial simplex. This is expensive is high dimensions.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="graphics">qconvex graphics</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Display 2-d, 3-d, and 4-d convex hulls with Geomview ('<a
|
||||
href="qh-optg.htm#G">G</a>').</p>
|
||||
|
||||
<p>Display 2-d and 3-d convex hulls with Mathematica ('<a
|
||||
href="qh-opto.htm#m">m</a>').</p>
|
||||
|
||||
<p>To view 4-d convex hulls in 3-d, use '<a
|
||||
href="qh-optp.htm#Pdk">Pd0d1d2d3</a>' to select the positive
|
||||
octant and '<a href="qh-optg.htm#GDn">GrD2</a>' to drop dimension
|
||||
2. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="notes">qconvex notes</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>Qhull always computes a convex hull. The
|
||||
convex hull may be used for other geometric structures. The
|
||||
general technique is to transform the structure into an
|
||||
equivalent convex hull problem. For example, the Delaunay
|
||||
triangulation is equivalent to the convex hull of the input sites
|
||||
after lifting the points to a paraboloid.</p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="conventions">qconvex
|
||||
conventions</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The following terminology is used for convex hulls in Qhull.
|
||||
See <a href="index.htm#structure">Qhull's data structures</a>.</p>
|
||||
|
||||
<ul>
|
||||
<li><em>point</em> - <em>d</em> coordinates</li>
|
||||
<li><em>vertex</em> - extreme point of the input set</li>
|
||||
<li><em>ridge</em> - <i>d-1</i> vertices between two
|
||||
neighboring facets</li>
|
||||
<li><em>hyperplane</em> - halfspace defined by a unit normal
|
||||
and offset</li>
|
||||
<li><em>coplanar point</em> - a nearly incident point to a
|
||||
hyperplane</li>
|
||||
<li><em>centrum</em> - a point on the hyperplane for testing
|
||||
convexity</li>
|
||||
<li><em>facet</em> - a facet with vertices, ridges, coplanar
|
||||
points, neighboring facets, and hyperplane</li>
|
||||
<li><em>simplicial facet</em> - a facet with <em>d</em>
|
||||
vertices, <em>d</em> ridges, and <em>d</em> neighbors</li>
|
||||
<li><em>non-simplicial facet</em> - a facet with more than <em>d</em>
|
||||
vertices</li>
|
||||
<li><em>good facet</em> - a facet selected by '<a
|
||||
href="qh-optq.htm#QVn">QVn</a>', etc.</li>
|
||||
</ul>
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">qconvex options</a></h3>
|
||||
|
||||
<pre>
|
||||
qconvex- compute the convex hull
|
||||
http://www.qhull.org
|
||||
|
||||
input (stdin):
|
||||
first lines: dimension and number of points (or vice-versa).
|
||||
other lines: point coordinates, best if one point per line
|
||||
comments: start with a non-numeric character
|
||||
|
||||
options:
|
||||
Qt - triangulated output
|
||||
QJ - joggle input instead of merging facets
|
||||
Qc - keep coplanar points with nearest facet
|
||||
Qi - keep interior points with nearest facet
|
||||
|
||||
Qhull control options:
|
||||
Qbk:n - scale coord k so that low bound is n
|
||||
QBk:n - scale coord k so that upper bound is n (QBk is 0.5)
|
||||
QbB - scale input to unit cube centered at the origin
|
||||
Qbk:0Bk:0 - remove k-th coordinate from input
|
||||
QJn - randomly joggle input in range [-n,n]
|
||||
QRn - random rotation (n=seed, n=0 time, n=-1 time/no rotate)
|
||||
Qs - search all points for the initial simplex
|
||||
QGn - good facet if visible from point n, -n for not visible
|
||||
QVn - good facet if it includes point n, -n if not
|
||||
|
||||
Trace options:
|
||||
T4 - trace at level n, 4=all, 5=mem/gauss, -1= events
|
||||
Tc - check frequently during execution
|
||||
Ts - print statistics
|
||||
Tv - verify result: structure, convexity, and point inclusion
|
||||
Tz - send all output to stdout
|
||||
TFn - report summary when n or more facets created
|
||||
TI file - input data from file, no spaces or single quotes
|
||||
TO file - output results to file, may be enclosed in single quotes
|
||||
TPn - turn on tracing when point n added to hull
|
||||
TMn - turn on tracing at merge n
|
||||
TWn - trace merge facets when width > n
|
||||
TVn - stop qhull after adding point n, -n for before (see TCn)
|
||||
TCn - stop qhull after building cone for point n (see TVn)
|
||||
|
||||
Precision options:
|
||||
Cn - radius of centrum (roundoff added). Merge facets if non-convex
|
||||
An - cosine of maximum angle. Merge facets if cosine > n or non-convex
|
||||
C-0 roundoff, A-0.99/C-0.01 pre-merge, A0.99/C0.01 post-merge
|
||||
Rn - randomly perturb computations by a factor of [1-n,1+n]
|
||||
Un - max distance below plane for a new, coplanar point
|
||||
Wn - min facet width for outside point (before roundoff)
|
||||
|
||||
Output formats (may be combined; if none, produces a summary to stdout):
|
||||
f - facet dump
|
||||
G - Geomview output (see below)
|
||||
i - vertices incident to each facet
|
||||
m - Mathematica output (2-d and 3-d)
|
||||
n - normals with offsets
|
||||
o - OFF file format (dim, points and facets; Voronoi regions)
|
||||
p - point coordinates
|
||||
s - summary (stderr)
|
||||
|
||||
More formats:
|
||||
Fa - area for each facet
|
||||
FA - compute total area and volume for option 's'
|
||||
Fc - count plus coplanar points for each facet
|
||||
use 'Qc' (default) for coplanar and 'Qi' for interior
|
||||
FC - centrum for each facet
|
||||
Fd - use cdd format for input (homogeneous with offset first)
|
||||
FD - use cdd format for numeric output (offset first)
|
||||
FF - facet dump without ridges
|
||||
Fi - inner plane for each facet
|
||||
FI - ID for each facet
|
||||
Fm - merge count for each facet (511 max)
|
||||
FM - Maple output (2-d and 3-d)
|
||||
Fn - count plus neighboring facets for each facet
|
||||
FN - count plus neighboring facets for each point
|
||||
Fo - outer plane (or max_outside) for each facet
|
||||
FO - options and precision constants
|
||||
FP - nearest vertex for each coplanar point
|
||||
FQ - command used for qconvex
|
||||
Fs - summary: #int (8), dimension, #points, tot vertices, tot facets,
|
||||
for output: #vertices, #facets,
|
||||
#coplanar points, #non-simplicial facets
|
||||
#real (2), max outer plane, min vertex
|
||||
FS - sizes: #int (0)
|
||||
#real(2) tot area, tot volume
|
||||
Ft - triangulation with centrums for non-simplicial facets (OFF format)
|
||||
Fv - count plus vertices for each facet
|
||||
FV - average of vertices (a feasible point for 'H')
|
||||
Fx - extreme points (in order for 2-d)
|
||||
|
||||
Geomview output (2-d, 3-d, and 4-d)
|
||||
Ga - all points as dots
|
||||
Gp - coplanar points and vertices as radii
|
||||
Gv - vertices as spheres
|
||||
Gi - inner planes only
|
||||
Gn - no planes
|
||||
Go - outer planes only
|
||||
Gc - centrums
|
||||
Gh - hyperplane intersections
|
||||
Gr - ridges
|
||||
GDn - drop dimension n in 3-d and 4-d output
|
||||
|
||||
Print options:
|
||||
PAn - keep n largest facets by area
|
||||
Pdk:n - drop facet if normal[k] <= n (default 0.0)
|
||||
PDk:n - drop facet if normal[k] >= n
|
||||
Pg - print good facets (needs 'QGn' or 'QVn')
|
||||
PFn - keep facets whose area is at least n
|
||||
PG - print neighbors of good facets
|
||||
PMn - keep n facets with most merges
|
||||
Po - force output. If error, output neighborhood of facet
|
||||
Pp - do not report precision problems
|
||||
|
||||
. - list of all options
|
||||
- - one line descriptions of all options
|
||||
|
||||
</pre>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
•<a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
416
xs/src/qhull/html/qdelau_f.htm
Normal file
|
|
@ -0,0 +1,416 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>qdelaunay Qu -- furthest-site Delaunay triangulation</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<a name="TOP"><b>Up</b></a><b>:</b>
|
||||
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a>qdelaunay Qu -- furthest-site Delaunay triangulation</h1>
|
||||
|
||||
<p>The furthest-site Delaunay triangulation corresponds to the upper facets of the <a href="qdelaun.htm">Delaunay construction</a>.
|
||||
Its vertices are the
|
||||
extreme points of the input sites.
|
||||
It is the dual of the <a
|
||||
href="qvoron_f.htm">furthest-site Voronoi diagram</a>.
|
||||
|
||||
<blockquote>
|
||||
<dl>
|
||||
<dt><b>Example:</b> rbox 10 D2 | qdelaunay <a
|
||||
href="qh-optq.htm#Qu">Qu</a> <a
|
||||
href="qh-optq.htm#Qt">Qt</a> <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-opto.htm#i">i</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d, furthest-site Delaunay triangulation of 10 random
|
||||
points. Triangulate the output.
|
||||
Write a summary to the console and the regions to
|
||||
'result'.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox 10 D2 | qdelaunay <a
|
||||
href="qh-optq.htm#Qu">Qu</a> <a
|
||||
href="qh-optq.htm#QJn">QJ</a> <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-opto.htm#i">i</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d, furthest-site Delaunay triangulation of 10 random
|
||||
points. Joggle the input to guarantee triangular output.
|
||||
Write a summary to the console and the regions to
|
||||
'result'.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox r y c G1 D2 | qdelaunay <a
|
||||
href="qh-optq.htm#Qu">Qu</a> <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-optf.htm#Fv">Fv</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d, furthest-site Delaunay triangulation of a triangle inside
|
||||
a square.
|
||||
Write a summary to the console and unoriented regions to 'result'.
|
||||
Merge regions for cocircular input sites (e.g., the square).
|
||||
The square is the only furthest-site
|
||||
Delaunay region.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
<p>As with the Delaunay triangulation, Qhull computes the
|
||||
furthest-site Delaunay triangulation by lifting the input sites to a
|
||||
paraboloid. The lower facets correspond to the Delaunay
|
||||
triangulation while the upper facets correspond to the
|
||||
furthest-site triangulation. Neither triangulation includes
|
||||
"vertical" facets (i.e., facets whose last hyperplane
|
||||
coefficient is nearly zero). Vertical facets correspond to input
|
||||
sites that are coplanar to the convex hull of the input. An
|
||||
example is points on the boundary of a lattice.</p>
|
||||
|
||||
<p>By default, qdelaunay merges cocircular and cospherical regions.
|
||||
For example, the furthest-site Delaunay triangulation of a square inside a diamond
|
||||
('rbox D2 c d G4 | qdelaunay Qu') consists of one region (the diamond).
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output),
|
||||
all furthest-site Delaunay regions will be simplicial (e.g., triangles in 2-d).
|
||||
Some regions may be
|
||||
degenerate and have zero area.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input), all furthest-site
|
||||
Delaunay regions
|
||||
will be simplicial (e.g., triangles in 2-d). Joggled input
|
||||
is less accurate than triangulated output ('Qt'). See <a
|
||||
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
|
||||
|
||||
<p>The output for 3-d, furthest-site Delaunay triangulations may be confusing if the
|
||||
input contains cospherical data. See the FAQ item
|
||||
<a href=qh-faq.htm#extra>Why
|
||||
are there extra points in a 4-d or higher convex hull?</a>
|
||||
Avoid these problems with triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>') or
|
||||
joggled input ('<a href="qh-optq.htm#QJn">QJ</a>').
|
||||
</p>
|
||||
|
||||
<p>The 'qdelaunay' program is equivalent to
|
||||
'<a href=qhull.htm#outputs>qhull d</a> <a href=qh-optq.htm#Qbb>Qbb</a>' in 2-d to 3-d, and
|
||||
'<a href=qhull.htm#outputs>qhull d</a> <a href=qh-optq.htm#Qbb>Qbb</a> <a href=qh-optq.htm#Qx>Qx</a>'
|
||||
in 4-d and higher. It disables the following Qhull
|
||||
<a href=qh-quick.htm#options>options</a>: <i>d n v H U Qb QB Qc Qf Qg Qi
|
||||
Qm Qr QR Qv Qx TR E V FC Fi Fo Fp FV Q0,etc</i>.
|
||||
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">furthest-site qdelaunay synopsis</a></h3>
|
||||
<blockquote>
|
||||
|
||||
See <a href="qdelaun.htm#synopsis">qdelaunay synopsis</a>. The same
|
||||
program is used for both constructions. Use option '<a href="qh-optq.htm#Qu">Qu</a>'
|
||||
for furthest-site Delaunay triangulations.
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="input">furthest-site qdelaunay
|
||||
input</a></h3>
|
||||
|
||||
<blockquote>
|
||||
<p>The input data on <tt>stdin</tt> consists of:</p>
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>number of points</li>
|
||||
<li>point coordinates</li>
|
||||
</ul>
|
||||
|
||||
<p>Use I/O redirection (e.g., qdelaunay Qu < data.txt), a pipe (e.g., rbox 10 | qdelaunay Qu),
|
||||
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qdelaunay Qu TI data.txt).
|
||||
|
||||
<p>For example, this is a square containing four random points.
|
||||
Its furthest-site Delaunay
|
||||
triangulation contains one square.
|
||||
<p>
|
||||
<blockquote>
|
||||
<tt>rbox c 4 D2 > data</tt>
|
||||
<blockquote><pre>
|
||||
2 RBOX c 4 D2
|
||||
8
|
||||
-0.4999921736307369 -0.3684622117955817
|
||||
0.2556053225468894 -0.0413498678629751
|
||||
0.0327672376602583 -0.2810408135699488
|
||||
-0.452955383763607 0.17886471718444
|
||||
-0.5 -0.5
|
||||
-0.5 0.5
|
||||
0.5 -0.5
|
||||
0.5 0.5
|
||||
</pre></blockquote>
|
||||
|
||||
<p><tt>qdelaunay Qu i < data</tt>
|
||||
<blockquote><pre>
|
||||
|
||||
Furthest-site Delaunay triangulation by the convex hull of 8 points in 3-d:
|
||||
|
||||
Number of input sites: 8
|
||||
Number of Delaunay regions: 1
|
||||
Number of non-simplicial Delaunay regions: 1
|
||||
|
||||
Statistics for: RBOX c 4 D2 | QDELAUNAY s Qu i
|
||||
|
||||
Number of points processed: 8
|
||||
Number of hyperplanes created: 20
|
||||
Number of facets in hull: 11
|
||||
Number of distance tests for qhull: 34
|
||||
Number of merged facets: 1
|
||||
Number of distance tests for merging: 107
|
||||
CPU seconds to compute hull (after input): 0.02
|
||||
|
||||
1
|
||||
7 6 4 5
|
||||
</pre></blockquote>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="outputs">furthest-site qdelaunay
|
||||
outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options control the output of furthest-site Delaunay triangulations:</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dd><b>furthest-site Delaunay regions</b></dd>
|
||||
<dt><a href="qh-opto.htm#i">i</a></dt>
|
||||
<dd>list input sites for each furthest-site Delaunay region. The first line is the number of regions. The
|
||||
remaining lines list the input sites for each region. The regions are
|
||||
oriented. In 3-d and
|
||||
higher, report cospherical sites by adding extra points. For the points-in-square example,
|
||||
the square is the only furthest-site Delaunay region.</dd>
|
||||
<dt><a href="qh-optf.htm#Fv">Fv</a></dt>
|
||||
<dd>list input sites for each furthest-site Delaunay region. The first line is the number of regions.
|
||||
Each remaining line starts with the number of input sites. The regions
|
||||
are unoriented. For the points-in-square example,
|
||||
the square is the only furthest-site Delaunay region.</dd>
|
||||
<dt><a href="qh-optf.htm#Ft">Ft</a></dt>
|
||||
<dd>print a triangulation of the furthest-site Delaunay regions in OFF format. The first line
|
||||
is the dimension. The second line is the number of input sites and added points,
|
||||
followed by the number of simplices and the number of ridges.
|
||||
The input coordinates are next, followed by the centrum coordinates. There is
|
||||
one centrum for each non-simplicial furthest-site Delaunay region. Each remaining line starts
|
||||
with dimension+1. The
|
||||
simplices are oriented.
|
||||
For the points-in-square example, the square has a centrum at the
|
||||
origin. It splits the square into four triangular regions.</dd>
|
||||
<dt><a href="qh-optf.htm#Fn">Fn</a></dt>
|
||||
<dd>list neighboring regions for each furthest-site Delaunay region. The first line is the
|
||||
number of regions. Each remaining line starts with the number of
|
||||
neighboring regions. Negative indices (e.g., <em>-1</em>) indicate regions
|
||||
outside of the furthest-site Delaunay triangulation.
|
||||
For the points-in-square example, the four neighboring regions
|
||||
are outside of the triangulation. They belong to the regular
|
||||
Delaunay triangulation.</dd>
|
||||
<dt><a href="qh-optf.htm#FN">FN</a></dt>
|
||||
<dd>list the furthest-site Delaunay regions for each input site. The first line is the
|
||||
total number of input sites. Each remaining line starts with the number of
|
||||
furthest-site Delaunay regions. Negative indices (e.g., <em>-1</em>) indicate regions
|
||||
outside of the furthest-site Delaunay triangulation.
|
||||
For the points-in-square example, the four random points belong to no region
|
||||
while the square's vertices belong to region <em>0</em> and three
|
||||
regions outside of the furthest-site Delaunay triangulation.</dd>
|
||||
<dt><a href="qh-optf.htm#Fa">Fa</a></dt>
|
||||
<dd>print area for each furthest-site Delaunay region. The first line is the number of regions.
|
||||
The areas follow, one line per region. For the points-in-square example, the
|
||||
square has unit area. </dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Input sites</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fx">Fx</a></dt>
|
||||
<dd>list extreme points of the input sites. These points are vertices of the furthest-point
|
||||
Delaunay triangulation. They are on the
|
||||
boundary of the convex hull. The first line is the number of
|
||||
extreme points. Each point is listed, one per line. The points-in-square example
|
||||
has four extreme points.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="qh-optf.htm#FA">FA</a></dt>
|
||||
<dd>compute total area for '<a href="qh-opto.htm#s">s</a>'
|
||||
and '<a href="qh-optf.htm#FS">FS</a>'. This is the
|
||||
same as the area of the convex hull.</dd>
|
||||
<dt><a href="qh-opto.htm#o">o</a></dt>
|
||||
<dd>print upper facets of the corresponding convex hull (a
|
||||
paraboloid)</dd>
|
||||
<dt><a href="qh-opto.htm#m">m</a></dt>
|
||||
<dd>Mathematica output for the upper facets of the paraboloid (2-d triangulations).</dd>
|
||||
<dt><a href="qh-optf.htm#FM">FM</a></dt>
|
||||
<dd>Maple output for the upper facets of the paraboloid (2-d triangulations).</dd>
|
||||
<dt><a href="qh-optg.htm#G">G</a></dt>
|
||||
<dd>Geomview output for the paraboloid (2-d or 3-d triangulations).</dd>
|
||||
<dt><a href="qh-opto.htm#s">s</a></dt>
|
||||
<dd>print summary for the furthest-site Delaunay triangulation. Use '<a
|
||||
href="qh-optf.htm#Fs">Fs</a>' and '<a
|
||||
href="qh-optf.htm#FS">FS</a>' for numeric data.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="controls">furthest-site qdelaunay
|
||||
controls</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options provide additional control:</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dt><a href="qh-optq.htm#Qu">Qu</a></dt>
|
||||
<dd>must be used for furthest-site Delaunay triangulation.</dd>
|
||||
<dt><a href="qh-optq.htm#Qt">Qt</a></dt>
|
||||
<dd>triangulated output. Qhull triangulates non-simplicial facets. It may produce
|
||||
degenerate facets of zero area.</dd>
|
||||
<dt><a href="qh-optq.htm#QJn">QJ</a></dt>
|
||||
<dd>joggle the input to avoid cospherical and coincident
|
||||
sites. It is less accurate than triangulated output ('Qt').</dd>
|
||||
<dt><a href="qh-optq.htm#QVn">QVn</a></dt>
|
||||
<dd>select facets adjacent to input site <em>n</em> (marked
|
||||
'good').</dd>
|
||||
<dt><a href="qh-optt.htm#Tv">Tv</a></dt>
|
||||
<dd>verify result.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TI file</a></dt>
|
||||
<dd>input data from file. The filename may not use spaces or quotes.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TO file</a></dt>
|
||||
<dd>output results to file. Use single quotes if the filename
|
||||
contains spaces (e.g., <tt>TO 'file with spaces.txt'</tt></dd>
|
||||
<dt><a href="qh-optt.htm#TFn">TFn</a></dt>
|
||||
<dd>report progress after constructing <em>n</em> facets</dd>
|
||||
<dt><a href="qh-optp.htm#PDk">PDk:1</a></dt>
|
||||
<dd>include upper and lower facets in the output. Set <em>k</em>
|
||||
to the last dimension (e.g., 'PD2:1' for 2-d inputs). </dd>
|
||||
<dt><a href="qh-opto.htm#f">f</a></dt>
|
||||
<dd>facet dump. Print the data structure for each facet (i.e., furthest-site Delaunay region).</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="graphics">furthest-site qdelaunay
|
||||
graphics</a></h3>
|
||||
<blockquote>
|
||||
|
||||
See <a href="qdelaun.htm#graphics">Delaunay graphics</a>.
|
||||
They are the same except for Mathematica and Maple output.
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="notes">furthest-site
|
||||
qdelaunay notes</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The furthest-site Delaunay triangulation does not
|
||||
record coincident input sites. Use <tt>qdelaunay</tt> instead.
|
||||
|
||||
<p><tt>qdelaunay Qu</tt> does not work for purely cocircular
|
||||
or cospherical points (e.g., rbox c | qdelaunay Qu). Instead,
|
||||
use <tt>qdelaunay Qz</tt> -- when all points are vertices of the convex
|
||||
hull of the input sites, the Delaunay triangulation is the same
|
||||
as the furthest-site Delaunay triangulation.
|
||||
|
||||
<p>A non-simplicial, furthest-site Delaunay region indicates nearly cocircular or
|
||||
cospherical input sites. To avoid non-simplicial regions triangulate
|
||||
the output ('<a href="qh-optq.htm#Qt">Qt</a>') or joggle
|
||||
the input ('<a href="qh-optq.htm#QJn">QJ</a>'). Joggled input
|
||||
is less accurate than triangulated output.
|
||||
You may also triangulate
|
||||
non-simplicial regions with option '<a
|
||||
href="qh-optf.htm#Ft">Ft</a>'. It adds
|
||||
the centrum to non-simplicial regions. Alternatively, use an <a
|
||||
href="qh-impre.htm#exact">exact arithmetic code</a>.</p>
|
||||
|
||||
<p>Furthest-site Delaunay triangulations do not include facets that are
|
||||
coplanar with the convex hull of the input sites. A facet is
|
||||
coplanar if the last coefficient of its normal is
|
||||
nearly zero (see <a href="../src/libqhull/user.h#ZEROdelaunay">qh_ZEROdelaunay</a>).
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="conventions">furthest-site qdelaunay conventions</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The following terminology is used for furthest-site Delaunay
|
||||
triangulations in Qhull. The underlying structure is the upper
|
||||
facets of a convex hull in one higher dimension. See <a
|
||||
href="qconvex.htm#conventions">convex hull conventions</a>, <a
|
||||
href="qdelaun.htm#conventions">Delaunay conventions</a>,
|
||||
and <a href="index.htm#structure">Qhull's data structures</a></p>
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li><em>input site</em> - a point in the input (one dimension
|
||||
lower than a point on the convex hull)</li>
|
||||
<li><em>point</em> - <i>d+1</i> coordinates. The last
|
||||
coordinate is the sum of the squares of the input site's
|
||||
coordinates</li>
|
||||
<li><em>vertex</em> - a point on the paraboloid. It
|
||||
corresponds to a unique input site. </li>
|
||||
<li><em>furthest-site Delaunay facet</em> - an upper facet of the
|
||||
paraboloid. The last coefficient of its normal is
|
||||
clearly positive.</li>
|
||||
<li><em>furthest-site Delaunay region</em> - a furthest-site Delaunay
|
||||
facet projected to the input sites</li>
|
||||
<li><em>non-simplicial facet</em> - more than <em>d</em>
|
||||
points are cocircular or cospherical</li>
|
||||
<li><em>good facet</em> - a furthest-site Delaunay facet with optional
|
||||
restrictions by '<a href="qh-optq.htm#QVn">QVn</a>', etc.</li>
|
||||
</ul>
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">furthest-site qdelaunay options</a></h3>
|
||||
<blockquote>
|
||||
|
||||
See <a href="qdelaun.htm#options">qdelaunay options</a>. The same
|
||||
program is used for both constructions. Use option '<a href="qh-optq.htm#Qu">Qu</a>'
|
||||
for furthest-site Delaunay triangulations.
|
||||
|
||||
</blockquote>
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
628
xs/src/qhull/html/qdelaun.htm
Normal file
|
|
@ -0,0 +1,628 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>qdelaunay -- Delaunay triangulation</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<a name="TOP"><b>Up</b></a><b>:</b>
|
||||
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a>qdelaunay -- Delaunay triangulation</h1>
|
||||
|
||||
<p>The Delaunay triangulation is the triangulation with empty
|
||||
circumspheres. It has many useful properties and applications.
|
||||
See the survey article by Aurenhammer [<a
|
||||
href="index.htm#aure91">'91</a>] and the detailed introduction
|
||||
by O'Rourke [<a href="index.htm#orou94">'94</a>]. </p>
|
||||
|
||||
<blockquote>
|
||||
<dl>
|
||||
<dt><b>Example:</b> rbox r y c G0.1 D2 | qdelaunay <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-optf.htm#Fv">Fv</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d Delaunay triangulation of a triangle and
|
||||
a small square.
|
||||
Write a summary to the console and unoriented regions to 'result'.
|
||||
Merge regions for cocircular input sites (i.e., the
|
||||
square).</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox r y c G0.1 D2 | qdelaunay <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-optf.htm#Fv">Fv</a> <a href="qh-optq.htm#Qt">Qt</a></dt>
|
||||
<dd>Compute the 2-d Delaunay triangulation of a triangle and
|
||||
a small square. Write a summary and unoriented
|
||||
regions to the console. Produce triangulated output.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox 10 D2 | qdelaunay <a
|
||||
href="qh-optq.htm#QJn">QJ</a> <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-opto.htm#i">i</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d Delaunay triangulation of 10 random
|
||||
points. Joggle the input to guarantee triangular output.
|
||||
Write a summary to the console and the regions to
|
||||
'result'.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
<p>Qhull computes the Delaunay triangulation by computing a
|
||||
convex hull. It lifts the input sites to a paraboloid by adding
|
||||
the sum of the squares of the coordinates. It scales the height
|
||||
of the paraboloid to improve numeric precision ('<a href=qh-optq.htm#Qbb>Qbb</a>').
|
||||
It computes the convex
|
||||
hull of the lifted sites, and projects the lower convex hull to
|
||||
the input.
|
||||
|
||||
<p>Each region of the Delaunay triangulation
|
||||
corresponds to a facet of the lower half of the convex hull.
|
||||
Facets of the upper half of the convex hull correspond to the <a
|
||||
href="qdelau_f.htm">furthest-site Delaunay triangulation</a>.
|
||||
See the examples, <a href="qh-eg.htm#delaunay">Delaunay and
|
||||
Voronoi diagrams</a>.</p>
|
||||
|
||||
<p>See <a href="http://www.qhull.org/html/qh-faq.htm#TOC">Qhull FAQ</a> - Delaunay and
|
||||
Voronoi diagram questions.</p>
|
||||
|
||||
<p>By default, qdelaunay merges cocircular and cospherical regions.
|
||||
For example, the Delaunay triangulation of a square inside a diamond
|
||||
('rbox D2 c d G4 | qdelaunay') contains one region for the square.
|
||||
|
||||
<p>Use option '<a href="qh-optq.htm#Qz">Qz</a>' if the input is circular, cospherical, or
|
||||
nearly so. It improves precision by adding a point "at infinity," above the corresponding paraboloid.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output),
|
||||
all Delaunay regions will be simplicial (e.g., triangles in 2-d).
|
||||
Some regions may be
|
||||
degenerate and have zero area. Triangulated output identifies coincident
|
||||
points.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input), all Delaunay regions
|
||||
will be simplicial (e.g., triangles in 2-d). Coincident points will
|
||||
create small regions since the points are joggled apart. Joggled input
|
||||
is less accurate than triangulated output ('Qt'). See <a
|
||||
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
|
||||
|
||||
<p>The output for 3-d Delaunay triangulations may be confusing if the
|
||||
input contains cospherical data. See the FAQ item
|
||||
<a href=qh-faq.htm#extra>Why
|
||||
are there extra points in a 4-d or higher convex hull?</a>
|
||||
Avoid these problems with triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>') or
|
||||
joggled input ('<a href="qh-optq.htm#QJn">QJ</a>').
|
||||
</p>
|
||||
|
||||
<p>The 'qdelaunay' program is equivalent to
|
||||
'<a href=qhull.htm#outputs>qhull d</a> <a href=qh-optq.htm#Qbb>Qbb</a>' in 2-d to 3-d, and
|
||||
'<a href=qhull.htm#outputs>qhull d</a> <a href=qh-optq.htm#Qbb>Qbb</a> <a href=qh-optq.htm#Qx>Qx</a>'
|
||||
in 4-d and higher. It disables the following Qhull
|
||||
<a href=qh-quick.htm#options>options</a>: <i>d n v H U Qb QB Qc Qf Qg Qi
|
||||
Qm Qr QR Qv Qx TR E V FC Fi Fo Fp Ft FV Q0,etc</i>.
|
||||
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">qdelaunay synopsis</a></h3>
|
||||
|
||||
<pre>
|
||||
qdelaunay- compute the Delaunay triangulation.
|
||||
input (stdin): dimension, number of points, point coordinates
|
||||
comments start with a non-numeric character
|
||||
|
||||
options (qdelaun.htm):
|
||||
Qt - triangulated output
|
||||
QJ - joggle input instead of merging facets
|
||||
Qu - furthest-site Delaunay triangulation
|
||||
Tv - verify result: structure, convexity, and in-circle test
|
||||
. - concise list of all options
|
||||
- - one-line description of all options
|
||||
|
||||
output options (subset):
|
||||
s - summary of results (default)
|
||||
i - vertices incident to each Delaunay region
|
||||
Fx - extreme points (vertices of the convex hull)
|
||||
o - OFF format (shows the points lifted to a paraboloid)
|
||||
G - Geomview output (2-d and 3-d points lifted to a paraboloid)
|
||||
m - Mathematica output (2-d inputs lifted to a paraboloid)
|
||||
QVn - print Delaunay regions that include point n, -n if not
|
||||
TO file- output results to file, may be enclosed in single quotes
|
||||
|
||||
examples:
|
||||
rbox c P0 D2 | qdelaunay s o rbox c P0 D2 | qdelaunay i
|
||||
rbox c P0 D3 | qdelaunay Fv Qt rbox c P0 D2 | qdelaunay s Qu Fv
|
||||
rbox c G1 d D2 | qdelaunay s i rbox c G1 d D2 | qdelaunay s i Qt
|
||||
rbox M3,4 z 100 D2 | qdelaunay s rbox M3,4 z 100 D2 | qdelaunay s Qt
|
||||
</pre>
|
||||
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="input">qdelaunay
|
||||
input</a></h3>
|
||||
|
||||
<blockquote>
|
||||
<p>The input data on <tt>stdin</tt> consists of:</p>
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>number of points</li>
|
||||
<li>point coordinates</li>
|
||||
</ul>
|
||||
|
||||
<p>Use I/O redirection (e.g., qdelaunay < data.txt), a pipe (e.g., rbox 10 | qdelaunay),
|
||||
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qdelaunay TI data.txt).
|
||||
|
||||
<p>For example, this is four cocircular points inside a square. Its Delaunay
|
||||
triangulation contains 8 triangles and one four-sided
|
||||
figure.
|
||||
<p>
|
||||
<blockquote>
|
||||
<tt>rbox s 4 W0 c G1 D2 > data</tt>
|
||||
<blockquote><pre>
|
||||
2 RBOX s 4 W0 c D2
|
||||
8
|
||||
-0.4941988586954018 -0.07594397977563715
|
||||
-0.06448037284989526 0.4958248496365813
|
||||
0.4911154367094632 0.09383830681375946
|
||||
-0.348353580869097 -0.3586778257652367
|
||||
-1 -1
|
||||
-1 1
|
||||
1 -1
|
||||
1 1
|
||||
</pre></blockquote>
|
||||
|
||||
<p><tt>qdelaunay s i < data</tt>
|
||||
<blockquote><pre>
|
||||
|
||||
Delaunay triangulation by the convex hull of 8 points in 3-d
|
||||
|
||||
Number of input sites: 8
|
||||
Number of Delaunay regions: 9
|
||||
Number of non-simplicial Delaunay regions: 1
|
||||
|
||||
Statistics for: RBOX s 4 W0 c D2 | QDELAUNAY s i
|
||||
|
||||
Number of points processed: 8
|
||||
Number of hyperplanes created: 18
|
||||
Number of facets in hull: 10
|
||||
Number of distance tests for qhull: 33
|
||||
Number of merged facets: 2
|
||||
Number of distance tests for merging: 102
|
||||
CPU seconds to compute hull (after input): 0.028
|
||||
|
||||
9
|
||||
1 7 5
|
||||
6 3 4
|
||||
2 3 6
|
||||
7 2 6
|
||||
2 7 1
|
||||
0 5 4
|
||||
3 0 4
|
||||
0 1 5
|
||||
1 0 3 2
|
||||
</pre></blockquote>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="outputs">qdelaunay
|
||||
outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options control the output of Delaunay triangulations:</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dd><b>Delaunay regions</b></dd>
|
||||
<dt><a href="qh-opto.htm#i">i</a></dt>
|
||||
<dd>list input sites for each Delaunay region. The first line is the number of regions. The
|
||||
remaining lines list the input sites for each region. The regions are
|
||||
oriented. In 3-d and
|
||||
higher, report cospherical sites by adding extra points. Use triangulated
|
||||
output ('<a href="qh-optq.htm#Qt">Qt</a>') to avoid non-simpicial regions. For the circle-in-square example,
|
||||
eight Delaunay regions are triangular and the ninth has four input sites.</dd>
|
||||
<dt><a href="qh-optf.htm#Fv">Fv</a></dt>
|
||||
<dd>list input sites for each Delaunay region. The first line is the number of regions.
|
||||
Each remaining line starts with the number of input sites. The regions
|
||||
are unoriented. For the circle-in-square example,
|
||||
eight Delaunay regions are triangular and the ninth has four input sites.</dd>
|
||||
<dt><a href="qh-optf.htm#Fn">Fn</a></dt>
|
||||
<dd>list neighboring regions for each Delaunay region. The first line is the
|
||||
number of regions. Each remaining line starts with the number of
|
||||
neighboring regions. Negative indices (e.g., <em>-1</em>) indicate regions
|
||||
outside of the Delaunay triangulation.
|
||||
For the circle-in-square example, the four regions on the square are neighbors to
|
||||
the region-at-infinity.</dd>
|
||||
<dt><a href="qh-optf.htm#FN">FN</a></dt>
|
||||
<dd>list the Delaunay regions for each input site. The first line is the
|
||||
total number of input sites. Each remaining line starts with the number of
|
||||
Delaunay regions. Negative indices (e.g., <em>-1</em>) indicate regions
|
||||
outside of the Delaunay triangulation.
|
||||
For the circle-in-square example, each point on the circle belongs to four
|
||||
Delaunay regions. Use '<a href="qh-optq.htm#Qc">Qc</a> FN'
|
||||
to include coincident input sites and deleted vertices. </dd>
|
||||
<dt><a href="qh-optf.htm#Fa">Fa</a></dt>
|
||||
<dd>print area for each Delaunay region. The first line is the number of regions.
|
||||
The areas follow, one line per region. For the circle-in-square example, the
|
||||
cocircular region has area 0.4. </dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Input sites</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fc">Fc</a></dt>
|
||||
<dd>list coincident input sites for each Delaunay region.
|
||||
The first line is the number of regions. The remaining lines start with
|
||||
the number of coincident sites and deleted vertices. Deleted vertices
|
||||
indicate highly degenerate input (see'<a href="qh-optf.htm#Fs">Fs</a>').
|
||||
A coincident site is assigned to one Delaunay
|
||||
region. Do not use '<a href="qh-optq.htm#QJn">QJ</a>' with 'Fc'; the joggle will separate
|
||||
coincident sites.</dd>
|
||||
<dt><a href="qh-optf.htm#FP">FP</a></dt>
|
||||
<dd>print coincident input sites with distance to
|
||||
nearest site (i.e., vertex). The first line is the
|
||||
number of coincident sites. Each remaining line starts with the point ID of
|
||||
an input site, followed by the point ID of a coincident point, its region, and distance.
|
||||
Includes deleted vertices which
|
||||
indicate highly degenerate input (see'<a href="qh-optf.htm#Fs">Fs</a>').
|
||||
Do not use '<a href="qh-optq.htm#QJn">QJ</a>' with 'FP'; the joggle will separate
|
||||
coincident sites.</dd>
|
||||
<dt><a href="qh-optf.htm#Fx">Fx</a></dt>
|
||||
<dd>list extreme points of the input sites. These points are on the
|
||||
boundary of the convex hull. The first line is the number of
|
||||
extreme points. Each point is listed, one per line. The circle-in-square example
|
||||
has four extreme points.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="qh-optf.htm#FA">FA</a></dt>
|
||||
<dd>compute total area for '<a href="qh-opto.htm#s">s</a>'
|
||||
and '<a href="qh-optf.htm#FS">FS</a>'</dd>
|
||||
<dt><a href="qh-opto.htm#o">o</a></dt>
|
||||
<dd>print lower facets of the corresponding convex hull (a
|
||||
paraboloid)</dd>
|
||||
<dt><a href="qh-opto.htm#m">m</a></dt>
|
||||
<dd>Mathematica output for the lower facets of the paraboloid (2-d triangulations).</dd>
|
||||
<dt><a href="qh-optf.htm#FM">FM</a></dt>
|
||||
<dd>Maple output for the lower facets of the paraboloid (2-d triangulations).</dd>
|
||||
<dt><a href="qh-optg.htm#G">G</a></dt>
|
||||
<dd>Geomview output for the paraboloid (2-d or 3-d triangulations).</dd>
|
||||
<dt><a href="qh-opto.htm#s">s</a></dt>
|
||||
<dd>print summary for the Delaunay triangulation. Use '<a
|
||||
href="qh-optf.htm#Fs">Fs</a>' and '<a
|
||||
href="qh-optf.htm#FS">FS</a>' for numeric data.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="controls">qdelaunay
|
||||
controls</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options provide additional control:</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dt><a href="qh-optq.htm#Qt">Qt</a></dt>
|
||||
<dd>triangulated output. Qhull triangulates non-simplicial facets. It may produce
|
||||
degenerate facets of zero area.</dd>
|
||||
<dt><a href="qh-optq.htm#QJn">QJ</a></dt>
|
||||
<dd>joggle the input to avoid cospherical and coincident
|
||||
sites. It is less accurate than triangulated output ('Qt').</dd>
|
||||
<dt><a href="qh-optq.htm#Qu">Qu</a></dt>
|
||||
<dd>compute the <a href="qdelau_f.htm">furthest-site Delaunay triangulation</a>.</dd>
|
||||
<dt><a href="qh-optq.htm#Qz">Qz</a></dt>
|
||||
<dd>add a point above the paraboloid to reduce precision
|
||||
errors. Use it for nearly cocircular/cospherical input
|
||||
(e.g., 'rbox c | qdelaunay Qz'). The point is printed for
|
||||
options '<a href="qh-optf.htm#Ft">Ft</a>' and '<a
|
||||
href="qh-opto.htm#o">o</a>'.</dd>
|
||||
<dt><a href="qh-optq.htm#QVn">QVn</a></dt>
|
||||
<dd>select facets adjacent to input site <em>n</em> (marked
|
||||
'good').</dd>
|
||||
<dt><a href="qh-optt.htm#Tv">Tv</a></dt>
|
||||
<dd>verify result.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TI file</a></dt>
|
||||
<dd>input data from file. The filename may not use spaces or quotes.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TO file</a></dt>
|
||||
<dd>output results to file. Use single quotes if the filename
|
||||
contains spaces (e.g., <tt>TO 'file with spaces.txt'</tt></dd>
|
||||
<dt><a href="qh-optt.htm#TFn">TFn</a></dt>
|
||||
<dd>report progress after constructing <em>n</em> facets</dd>
|
||||
<dt><a href="qh-optp.htm#PDk">PDk:1</a></dt>
|
||||
<dd>include upper and lower facets in the output. Set <em>k</em>
|
||||
to the last dimension (e.g., 'PD2:1' for 2-d inputs). </dd>
|
||||
<dt><a href="qh-opto.htm#f">f</a></dt>
|
||||
<dd>facet dump. Print the data structure for each facet (i.e., Delaunay region).</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="graphics">qdelaunay
|
||||
graphics</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>For 2-d and 3-d Delaunay triangulations, Geomview ('qdelaunay <a
|
||||
href="qh-optg.htm#G">G</a>') displays the corresponding convex
|
||||
hull (a paraboloid). </p>
|
||||
|
||||
<p>To view a 2-d Delaunay triangulation, use 'qdelaunay <a
|
||||
href="qh-optg.htm#GDn">GrD2</a>' to drop the last dimension. This
|
||||
is the same as viewing the hull without perspective (see
|
||||
Geomview's 'cameras' menu). </p>
|
||||
|
||||
<p>To view a 3-d Delaunay triangulation, use 'qdelaunay <a
|
||||
href="qh-optg.htm#GDn">GrD3</a>' to drop the last dimension. You
|
||||
may see extra edges. These are interior edges that Geomview moves
|
||||
towards the viewer (see 'lines closer' in Geomview's camera
|
||||
options). Use option '<a href="qh-optg.htm#Gt">Gt</a>' to make
|
||||
the outer ridges transparent in 3-d. See <a
|
||||
href="qh-eg.htm#delaunay">Delaunay and Voronoi examples</a>.</p>
|
||||
|
||||
<p>For 2-d Delaunay triangulations, Mathematica ('<a
|
||||
href="qh-opto.htm#m">m</a>') and Maple ('<a
|
||||
href="qh-optf.htm#FM">FM</a>') output displays the lower facets of the corresponding convex
|
||||
hull (a paraboloid). </p>
|
||||
|
||||
<p>For 2-d, furthest-site Delaunay triangulations, Maple and Mathematica output ('<a
|
||||
href="qh-optq.htm#Qu">Qu</a> <a
|
||||
href="qh-opto.htm#m">m</a>') displays the upper facets of the corresponding convex
|
||||
hull (a paraboloid). </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="notes">qdelaunay
|
||||
notes</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>You can simplify the Delaunay triangulation by enclosing the input
|
||||
sites in a large square or cube. This is particularly recommended
|
||||
for cocircular or cospherical input data.
|
||||
|
||||
<p>A non-simplicial Delaunay region indicates nearly cocircular or
|
||||
cospherical input sites. To avoid non-simplicial regions either triangulate
|
||||
the output ('<a href="qh-optq.htm#Qt">Qt</a>') or joggle
|
||||
the input ('<a href="qh-optq.htm#QJn">QJ</a>'). Triangulated output
|
||||
is more accurate than joggled input. Alternatively, use an <a
|
||||
href="qh-impre.htm#exact">exact arithmetic code</a>.</p>
|
||||
|
||||
<p>Delaunay triangulations do not include facets that are
|
||||
coplanar with the convex hull of the input sites. A facet is
|
||||
coplanar if the last coefficient of its normal is
|
||||
nearly zero (see <a href="../src/libqhull/user.h#ZEROdelaunay">qh_ZEROdelaunay</a>).
|
||||
|
||||
<p>See <a href=qh-impre.htm#delaunay>Imprecision issues :: Delaunay triangulations</a>
|
||||
for a discussion of precision issues. Deleted vertices indicate
|
||||
highly degenerate input. They are listed in the summary output and
|
||||
option '<a href="qh-optf.htm#Fs">Fs</a>'.</p>
|
||||
|
||||
<p>To compute the Delaunay triangulation of points on a sphere,
|
||||
compute their convex hull. If the sphere is the unit sphere at
|
||||
the origin, the facet normals are the Voronoi vertices of the
|
||||
input. The points may be restricted to a hemisphere. [S. Fortune]
|
||||
</p>
|
||||
|
||||
<p>The 3-d Delaunay triangulation of regular points on a half
|
||||
spiral (e.g., 'rbox 100 l | qdelaunay') has quadratic size, while the Delaunay triangulation
|
||||
of random 3-d points is
|
||||
approximately linear for reasonably sized point sets.
|
||||
|
||||
<p>With the <a href="qh-code.htm#library">Qhull library</a>, you
|
||||
can use <tt>qh_findbestfacet</tt> in <tt>poly2.c</tt> to locate the facet
|
||||
that contains a point. You should first lift the point to the
|
||||
paraboloid (i.e., the last coordinate is the sum of the squares
|
||||
of the point's coordinates -- <tt>qh_setdelaunay</tt>). Do not use options
|
||||
'<a href="qh-optq.htm#Qbb">Qbb</a>', '<a href="qh-optq.htm#QbB">QbB</a>',
|
||||
'<a href="qh-optq.htm#Qbk">Qbk:n</a>', or '<a
|
||||
href="qh-optq.htm#QBk">QBk:n</a>' since these scale the last
|
||||
coordinate. </p>
|
||||
|
||||
<p>If a point is interior to the convex hull of the input set, it
|
||||
is interior to the adjacent vertices of the Delaunay
|
||||
triangulation. This is demonstrated by the following pipe for
|
||||
point 0:
|
||||
|
||||
<pre>
|
||||
qdelaunay <data s FQ QV0 p | qconvex s Qb3:0B3:0 p
|
||||
</pre>
|
||||
|
||||
<p>The first call to qdelaunay returns the neighboring points of
|
||||
point 0 in the Delaunay triangulation. The second call to qconvex
|
||||
returns the vertices of the convex hull of these points (after
|
||||
dropping the lifted coordinate). If point 0 is interior to the
|
||||
original point set, it is interior to the reduced point set. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="conventions">qdelaunay conventions</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The following terminology is used for Delaunay triangulations
|
||||
in Qhull for dimension <i>d</i>. The underlying structure is the
|
||||
lower facets of a convex hull in dimension <i>d+1</i>. For
|
||||
further information, see <a href="index.htm#structure">data
|
||||
structures</a> and <a href="qconvex.htm#conventions">convex hull
|
||||
conventions</a>.</p>
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li><em>input site</em> - a point in the input (one dimension
|
||||
lower than a point on the convex hull)</li>
|
||||
<li><em>point</em> - a point has <i>d+1</i> coordinates. The
|
||||
last coordinate is the sum of the squares of the input
|
||||
site's coordinates</li>
|
||||
<li><em>coplanar point</em> - a <em>coincident</em>
|
||||
input site or a deleted vertex. Deleted vertices
|
||||
indicate highly degenerate input.</li>
|
||||
<li><em>vertex</em> - a point on the paraboloid. It
|
||||
corresponds to a unique input site. </li>
|
||||
<li><em>point-at-infinity</em> - a point added above the
|
||||
paraboloid by option '<a href="qh-optq.htm#Qz">Qz</a>'</li>
|
||||
<li><em>lower facet</em> - a facet corresponding to a
|
||||
Delaunay region. The last coefficient of its normal is
|
||||
clearly negative.</li>
|
||||
<li><em>upper facet</em> - a facet corresponding to a
|
||||
furthest-site Delaunay region. The last coefficient of
|
||||
its normal is clearly positive. </li>
|
||||
<li><em>Delaunay region</em> - a
|
||||
lower facet projected to the input sites</li>
|
||||
<li><em>upper Delaunay region</em> - an upper facet projected
|
||||
to the input sites</li>
|
||||
<li><em>non-simplicial facet</em> - more than <em>d</em>
|
||||
input sites are cocircular or cospherical</li>
|
||||
<li><em>good facet</em> - a Delaunay region with optional
|
||||
restrictions by '<a href="qh-optq.htm#QVn">QVn</a>', etc.</li>
|
||||
</ul>
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">qdelaunay options</a></h3>
|
||||
|
||||
<pre>
|
||||
qdelaunay- compute the Delaunay triangulation
|
||||
http://www.qhull.org
|
||||
|
||||
input (stdin):
|
||||
first lines: dimension and number of points (or vice-versa).
|
||||
other lines: point coordinates, best if one point per line
|
||||
comments: start with a non-numeric character
|
||||
|
||||
options:
|
||||
Qt - triangulated output
|
||||
QJ - joggle input instead of merging facets
|
||||
Qu - compute furthest-site Delaunay triangulation
|
||||
|
||||
Qhull control options:
|
||||
QJn - randomly joggle input in range [-n,n]
|
||||
Qs - search all points for the initial simplex
|
||||
Qz - add point-at-infinity to Delaunay triangulation
|
||||
QGn - print Delaunay region if visible from point n, -n if not
|
||||
QVn - print Delaunay regions that include point n, -n if not
|
||||
|
||||
Trace options:
|
||||
T4 - trace at level n, 4=all, 5=mem/gauss, -1= events
|
||||
Tc - check frequently during execution
|
||||
Ts - print statistics
|
||||
Tv - verify result: structure, convexity, and in-circle test
|
||||
Tz - send all output to stdout
|
||||
TFn - report summary when n or more facets created
|
||||
TI file - input data from file, no spaces or single quotes
|
||||
TO file - output results to file, may be enclosed in single quotes
|
||||
TPn - turn on tracing when point n added to hull
|
||||
TMn - turn on tracing at merge n
|
||||
TWn - trace merge facets when width > n
|
||||
TVn - stop qhull after adding point n, -n for before (see TCn)
|
||||
TCn - stop qhull after building cone for point n (see TVn)
|
||||
|
||||
Precision options:
|
||||
Cn - radius of centrum (roundoff added). Merge facets if non-convex
|
||||
An - cosine of maximum angle. Merge facets if cosine > n or non-convex
|
||||
C-0 roundoff, A-0.99/C-0.01 pre-merge, A0.99/C0.01 post-merge
|
||||
Rn - randomly perturb computations by a factor of [1-n,1+n]
|
||||
Wn - min facet width for outside point (before roundoff)
|
||||
|
||||
Output formats (may be combined; if none, produces a summary to stdout):
|
||||
f - facet dump
|
||||
G - Geomview output (see below)
|
||||
i - vertices incident to each Delaunay region
|
||||
m - Mathematica output (2-d only, lifted to a paraboloid)
|
||||
o - OFF format (dim, points, and facets as a paraboloid)
|
||||
p - point coordinates (lifted to a paraboloid)
|
||||
s - summary (stderr)
|
||||
|
||||
More formats:
|
||||
Fa - area for each Delaunay region
|
||||
FA - compute total area for option 's'
|
||||
Fc - count plus coincident points for each Delaunay region
|
||||
Fd - use cdd format for input (homogeneous with offset first)
|
||||
FD - use cdd format for numeric output (offset first)
|
||||
FF - facet dump without ridges
|
||||
FI - ID of each Delaunay region
|
||||
Fm - merge count for each Delaunay region (511 max)
|
||||
FM - Maple output (2-d only, lifted to a paraboloid)
|
||||
Fn - count plus neighboring region for each Delaunay region
|
||||
FN - count plus neighboring region for each point
|
||||
FO - options and precision constants
|
||||
FP - nearest point and distance for each coincident point
|
||||
FQ - command used for qdelaunay
|
||||
Fs - summary: #int (8), dimension, #points, tot vertices, tot facets,
|
||||
for output: #vertices, #Delaunay regions,
|
||||
#coincident points, #non-simplicial regions
|
||||
#real (2), max outer plane, min vertex
|
||||
FS - sizes: #int (0)
|
||||
#real (2), tot area, 0
|
||||
Fv - count plus vertices for each Delaunay region
|
||||
Fx - extreme points of Delaunay triangulation (on convex hull)
|
||||
|
||||
Geomview options (2-d and 3-d)
|
||||
Ga - all points as dots
|
||||
Gp - coplanar points and vertices as radii
|
||||
Gv - vertices as spheres
|
||||
Gi - inner planes only
|
||||
Gn - no planes
|
||||
Go - outer planes only
|
||||
Gc - centrums
|
||||
Gh - hyperplane intersections
|
||||
Gr - ridges
|
||||
GDn - drop dimension n in 3-d and 4-d output
|
||||
Gt - transparent outer ridges to view 3-d Delaunay
|
||||
|
||||
Print options:
|
||||
PAn - keep n largest Delaunay regions by area
|
||||
Pdk:n - drop facet if normal[k] <= n (default 0.0)
|
||||
PDk:n - drop facet if normal[k] >= n
|
||||
Pg - print good Delaunay regions (needs 'QGn' or 'QVn')
|
||||
PFn - keep Delaunay regions whose area is at least n
|
||||
PG - print neighbors of good regions (needs 'QGn' or 'QVn')
|
||||
PMn - keep n Delaunay regions with most merges
|
||||
Po - force output. If error, output neighborhood of facet
|
||||
Pp - do not report precision problems
|
||||
|
||||
. - list of all options
|
||||
- - one line descriptions of all options
|
||||
</pre>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
BIN
xs/src/qhull/html/qh--4d.gif
Normal file
|
After Width: | Height: | Size: 4.3 KiB |
BIN
xs/src/qhull/html/qh--cone.gif
Normal file
|
After Width: | Height: | Size: 2.9 KiB |
BIN
xs/src/qhull/html/qh--dt.gif
Normal file
|
After Width: | Height: | Size: 3.7 KiB |
BIN
xs/src/qhull/html/qh--geom.gif
Normal file
|
After Width: | Height: | Size: 318 B |
BIN
xs/src/qhull/html/qh--half.gif
Normal file
|
After Width: | Height: | Size: 2.5 KiB |
BIN
xs/src/qhull/html/qh--rand.gif
Normal file
|
After Width: | Height: | Size: 3.8 KiB |
1062
xs/src/qhull/html/qh-code.htm
Normal file
693
xs/src/qhull/html/qh-eg.htm
Normal file
|
|
@ -0,0 +1,693 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Examples of Qhull</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><a name="TOP"><b>Up:</b></a> <a href="http://www.qhull.org">Home
|
||||
page</a> for Qhull <br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To: </b><a href="#TOC">Qhull examples: Table of Contents</a> (please wait
|
||||
while loading)<br>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/half.html"><img
|
||||
src="qh--half.gif" alt="[halfspace]" align="middle" width="100"
|
||||
height="100"></a> Examples of Qhull</h1>
|
||||
|
||||
<p>This section of the Qhull manual will introduce you to Qhull
|
||||
and its options. Each example is a file for viewing with <a
|
||||
href="index.htm#geomview">Geomview</a>. You will need to
|
||||
use a Unix computer with a copy of Geomview.
|
||||
<p>
|
||||
If you are not running Unix, you can view <a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/welcome.html">pictures</a>
|
||||
for some of the examples. To understand Qhull without Geomview, try the
|
||||
examples in <a href="qh-quick.htm#programs">Programs</a> and
|
||||
<a href="qh-quick.htm#programs">Programs/input</a>. You can also try small
|
||||
examples that you compute by hand. Use <a href="rbox.htm">rbox</a>
|
||||
to generate examples.
|
||||
<p>
|
||||
To generate the Geomview examples, execute the shell script <tt>eg/q_eg</tt>.
|
||||
It uses <tt>rbox</tt>. The shell script <tt>eg/q_egtest</tt> generates
|
||||
test examples, and <tt>eg/q_test</tt> exercises the code. If you
|
||||
find yourself viewing the inside of a 3-d example, use Geomview's
|
||||
normalization option on the 'obscure' menu.</p>
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h2><a href="#TOP">»</a><a name="TOC">Qhull examples: Table of
|
||||
Contents </a></h2>
|
||||
|
||||
<ul>
|
||||
<li><a href="#2d">2-d and 3-d examples</a></li>
|
||||
<li><a href="#how">How Qhull adds a point</a></li>
|
||||
<li><a href="#joggle">Triangulated output or joggled input</a></li>
|
||||
<li><a href="#delaunay">Delaunay and Voronoi diagrams</a></li>
|
||||
<li><a href="#merge">Facet merging for imprecision</a></li>
|
||||
<li><a href="#4d">4-d objects</a></li>
|
||||
<li><a href="#half">Halfspace intersections</a></li>
|
||||
</ul>
|
||||
|
||||
<hr>
|
||||
<ul>
|
||||
<li><a href="#TOC">»</a><a name="2d">2-d and 3-d examples</a><ul>
|
||||
<li><a href="#01">eg.01.cube</a></li>
|
||||
<li><a href="#02">eg.02.diamond.cube</a></li>
|
||||
<li><a href="#03">eg.03.sphere</a></li>
|
||||
<li><a href="#04">eg.04.circle</a></li>
|
||||
<li><a href="#05">eg.05.spiral</a></li>
|
||||
<li><a href="#06">eg.06.merge.square</a></li>
|
||||
<li><a href="#07">eg.07.box</a></li>
|
||||
<li><a href="#08a">eg.08a.cube.sphere</a></li>
|
||||
<li><a href="#08b">eg.08b.diamond.sphere</a></li>
|
||||
<li><a href="#09">eg.09.lens</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#TOC">»</a><a name="how">How Qhull adds a point</a><ul>
|
||||
<li><a href="#10a">eg.10a.sphere.visible</a></li>
|
||||
<li><a href="#10b">eg.10b.sphere.beyond</a></li>
|
||||
<li><a href="#10c">eg.10c.sphere.horizon</a></li>
|
||||
<li><a href="#10d">eg.10d.sphere.cone</a></li>
|
||||
<li><a href="#10e">eg.10e.sphere.new</a></li>
|
||||
<li><a href="#14">eg.14.sphere.corner</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#TOC">»</a> <a name="joggle">Triangulated output or joggled input</a>
|
||||
<ul>
|
||||
<li><a href="#15a">eg.15a.surface</a></li>
|
||||
<li><a href="#15b">eg.15b.triangle</a></li>
|
||||
<li><a href="#15c">eg.15c.joggle</a></li>
|
||||
</ul>
|
||||
<li><a href="#TOC">»</a><a name="delaunay"> Delaunay and
|
||||
Voronoi diagrams</a><ul>
|
||||
<li><a href="#17a">eg.17a.delaunay.2</a></li>
|
||||
<li><a href="#17b">eg.17b.delaunay.2i</a></li>
|
||||
<li><a href="#17c">eg.17c.delaunay.2-3</a></li>
|
||||
<li><a href="#17d">eg.17d.voronoi.2</a></li>
|
||||
<li><a href="#17e">eg.17e.voronoi.2i</a></li>
|
||||
<li><a href="#17f">eg.17f.delaunay.3</a></li>
|
||||
<li><a href="#18a">eg.18a.furthest.2-3</a></li>
|
||||
<li><a href="#18b">eg.18b.furthest-up.2-3</a></li>
|
||||
<li><a href="#18c">eg.18c.furthest.2</a></li>
|
||||
<li><a href="#19">eg.19.voronoi.region.3</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#TOC">»</a><a name="merge">Facet merging for
|
||||
imprecision </a><ul>
|
||||
<li><a href="#20">eg.20.cone</a></li>
|
||||
<li><a href="#21a">eg.21a.roundoff.errors</a></li>
|
||||
<li><a href="#21b">eg.21b.roundoff.fixed</a></li>
|
||||
<li><a href="#22a">eg.22a.merge.sphere.01</a></li>
|
||||
<li><a href="#22b">eg.22b.merge.sphere.-01</a></li>
|
||||
<li><a href="#22c">eg.22c.merge.sphere.05</a></li>
|
||||
<li><a href="#22d">eg.22d.merge.sphere.-05</a></li>
|
||||
<li><a href="#23">eg.23.merge.cube</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#TOC">»</a><a name="4d">4-d objects</a><ul>
|
||||
<li><a href="#24">eg.24.merge.cube.4d-in-3d</a></li>
|
||||
<li><a href="#30">eg.30.4d.merge.cube</a></li>
|
||||
<li><a href="#31">eg.31.4d.delaunay</a></li>
|
||||
<li><a href="#32">eg.32.4d.octant</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#TOC">»</a><a name="half">Halfspace
|
||||
intersections</a><ul>
|
||||
<li><a href="#33a">eg.33a.cone</a></li>
|
||||
<li><a href="#33b">eg.33b.cone.dual</a></li>
|
||||
<li><a href="#33c">eg.33c.cone.halfspace</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<hr>
|
||||
|
||||
<h2><a href="#TOC">»</a>2-d and 3-d examples</h2>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="01">rbox c D3 | qconvex G
|
||||
>eg.01.cube </a></h3>
|
||||
|
||||
<p>The first example is a cube in 3-d. The color of each facet
|
||||
indicates its normal. For example, normal [0,0,1] along the Z
|
||||
axis is (r=0.5, g=0.5, b=1.0). With the 'Dn' option in <tt>rbox</tt>,
|
||||
you can generate hypercubes in any dimension. Above 7-d the
|
||||
number of intermediate facets grows rapidly. Use '<a
|
||||
href="qh-optt.htm#TFn">TFn</a>' to track qconvex's progress. Note
|
||||
that each facet is a square that qconvex merged from coplanar
|
||||
triangles.</p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="02">rbox c d G3.0 | qconvex G
|
||||
>eg.02.diamond.cube </a></h3>
|
||||
|
||||
<p>The second example is a cube plus a diamond ('d') scaled by <tt>rbox</tt>'s
|
||||
'G' option. In higher dimensions, diamonds are much simpler than
|
||||
hypercubes. </p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="03">rbox s 100 D3 | qconvex G
|
||||
>eg.03.sphere </a></h3>
|
||||
|
||||
<p>The <tt>rbox s</tt> option generates random points and
|
||||
projects them to the d-sphere. All points should be on the convex
|
||||
hull. Notice that random points look more clustered than you
|
||||
might expect. You can get a smoother distribution by merging
|
||||
facets and printing the vertices, e.g.,<i> rbox 1000 s | qconvex
|
||||
A-0.95 p | qconvex G >eg.99</i>.</p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="04">rbox s 100 D2 | qconvex G
|
||||
>eg.04.circle </a></h3>
|
||||
|
||||
<p>In 2-d, there are many ways to generate a convex hull. One of
|
||||
the earliest algorithms, and one of the fastest, is the 2-d
|
||||
Quickhull algorithm [c.f., Preparata & Shamos <a
|
||||
href="index.htm#pre-sha85">'85</a>]. It was the model for
|
||||
Qhull.</p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="05">rbox 10 l | qconvex G
|
||||
>eg.05.spiral </a></h3>
|
||||
|
||||
<p>One rotation of a spiral.</p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="06">rbox 1000 D2 | qconvex C-0.03
|
||||
Qc Gapcv >eg.06.merge.square</a></h3>
|
||||
|
||||
<p>This demonstrates how Qhull handles precision errors. Option '<a
|
||||
href="qh-optc.htm#Cn">C-0.03</a>' requires a clearly convex angle
|
||||
between adjacent facets. Otherwise, Qhull merges the facets. </p>
|
||||
|
||||
<p>This is the convex hull of random points in a square. The
|
||||
facets have thickness because they must be outside all points and
|
||||
must include their vertices. The colored lines represent the
|
||||
original points and the spheres represent the vertices. Floating
|
||||
in the middle of each facet is the centrum. Each centrum is at
|
||||
least 0.03 below the planes of its neighbors. This guarantees
|
||||
that the facets are convex.</p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="07">rbox 1000 D3 | qconvex G
|
||||
>eg.07.box </a></h3>
|
||||
|
||||
<p>Here's the same distribution but in 3-d with Qhull handling
|
||||
machine roundoff errors. Note the large number of facets. </p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="08a">rbox c G0.4 s 500 | qconvex G
|
||||
>eg.08a.cube.sphere </a></h3>
|
||||
|
||||
<p>The sphere is just barely poking out of the cube. Try the same
|
||||
distribution with randomization turned on ('<a
|
||||
href="qh-optq.htm#Qr">Qr</a>'). This turns Qhull into a
|
||||
randomized incremental algorithm. To compare Qhull and
|
||||
randomization, look at the number of hyperplanes created and the
|
||||
number of points partitioned. Don't compare CPU times since Qhull's
|
||||
implementation of randomization is inefficient. The number of
|
||||
hyperplanes and partitionings indicate the dominant costs for
|
||||
Qhull. With randomization, you'll notice that the number of
|
||||
facets created is larger than before. This is especially true as
|
||||
you increase the number of points. It is because the randomized
|
||||
algorithm builds most of the sphere before it adds the cube's
|
||||
vertices.</p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="08b">rbox d G0.6 s 500 | qconvex G
|
||||
>eg.08b.diamond.sphere </a></h3>
|
||||
|
||||
<p>This is a combination of the diamond distribution and the
|
||||
sphere.</p>
|
||||
|
||||
<h3><a href="#2d">»</a><a name="09">rbox 100 L3 G0.5 s | qconvex
|
||||
G >eg.09.lens </a></h3>
|
||||
|
||||
<p>Each half of the lens distribution lies on a sphere of radius
|
||||
three. A directed search for the furthest facet below a point
|
||||
(e.g., qh_findbest in <tt>geom.c</tt>) may fail if started from
|
||||
an arbitrary facet. For example, if the first facet is on the
|
||||
opposite side of the lens, a directed search will report that the
|
||||
point is inside the convex hull even though it is outside. This
|
||||
problem occurs whenever the curvature of the convex hull is less
|
||||
than a sphere centered at the test point. </p>
|
||||
|
||||
<p>To prevent this problem, Qhull does not use directed search
|
||||
all the time. When Qhull processes a point on the edge of the
|
||||
lens, it partitions the remaining points with an exhaustive
|
||||
search instead of a directed search (see qh_findbestnew in <tt>geom2.c</tt>).
|
||||
</p>
|
||||
|
||||
<h2><a href="#TOC">»</a>How Qhull adds a point</h2>
|
||||
|
||||
<h3><a href="#how">»</a><a name="10a">rbox 100 s P0.5,0.5,0.5 |
|
||||
qconvex Ga QG0 >eg.10a.sphere.visible</a></h3>
|
||||
|
||||
<p>The next 4 examples show how Qhull adds a point. The point
|
||||
[0.5,0.5,0.5] is at one corner of the bounding box. Qhull adds a
|
||||
point using the beneath-beyond algorithm. First Qhull finds all
|
||||
of the facets that are visible from the point. Qhull will replace
|
||||
these facets with new facets.</p>
|
||||
|
||||
<h3><a href="#how">»</a><a name="10b">rbox 100 s
|
||||
P0.5,0.5,0.5|qconvex Ga QG-0 >eg.10b.sphere.beyond </a></h3>
|
||||
|
||||
<p>These are the facets that are not visible from the point.
|
||||
Qhull will keep these facets.</p>
|
||||
|
||||
<h3><a href="#how">»</a><a name="10c">rbox 100 s P0.5,0.5,0.5 |
|
||||
qconvex PG Ga QG0 >eg.10c.sphere.horizon </a></h3>
|
||||
|
||||
<p>These facets are the horizon facets; they border the visible
|
||||
facets. The inside edges are the horizon ridges. Each horizon
|
||||
ridge will form the base for a new facet.</p>
|
||||
|
||||
<h3><a href="#how">»</a><a name="10d">rbox 100 s P0.5,0.5,0.5 |
|
||||
qconvex Ga QV0 PgG >eg.10d.sphere.cone </a></h3>
|
||||
|
||||
<p>This is the cone of points from the new point to the horizon
|
||||
facets. Try combining this image with <tt>eg.10c.sphere.horizon</tt>
|
||||
and <tt>eg.10a.sphere.visible</tt>.
|
||||
</p>
|
||||
|
||||
<h3><a href="#how">»</a><a name="10e">rbox 100 s P0.5,0.5,0.5 |
|
||||
qconvex Ga >eg.10e.sphere.new</a></h3>
|
||||
|
||||
<p>This is the convex hull after [0.5,0.5,0.5] has been added.
|
||||
Note that in actual practice, the above sequence would never
|
||||
happen. Unlike the randomized algorithms, Qhull always processes
|
||||
a point that is furthest in an outside set. A point like
|
||||
[0.5,0.5,0.5] would be one of the first points processed.</p>
|
||||
|
||||
<h3><a href="#how">»</a><a name="14">rbox 100 s P0.5,0.5,0.5 |
|
||||
qhull Ga QV0g Q0 >eg.14.sphere.corner</a></h3>
|
||||
|
||||
<p>The '<a href="qh-optq.htm#QVn">QVn</a>', '<a
|
||||
href="qh-optq.htm#QGn">QGn </a>' and '<a href="qh-optp.htm#Pdk">Pdk</a>'
|
||||
options define good facets for Qhull. In this case '<a
|
||||
href="qh-optq.htm#QVn">QV0</a>' defines the 0'th point
|
||||
[0.5,0.5,0.5] as the good vertex, and '<a href="qh-optq.htm#Qg">Qg</a>'
|
||||
tells Qhull to only build facets that might be part of a good
|
||||
facet. This technique reduces output size in low dimensions. It
|
||||
does not work with facet merging.</p>
|
||||
|
||||
<h2><a href="#TOC">»</a>Triangulated output or joggled input</h2>
|
||||
|
||||
<h3><a href="#joggle">»</a><a name="15a">rbox 500 W0 | qconvex QR0 Qc Gvp >eg.15a.surface</a></h3>
|
||||
|
||||
<p>This is the convex hull of 500 points on the surface of
|
||||
a cube. Note the large, non-simplicial facet for each face.
|
||||
Qhull merges non-convex facets.
|
||||
|
||||
<p>If the facets were not merged, Qhull
|
||||
would report precision problems. For example, turn off facet merging
|
||||
with option '<a href="qh-optq.htm#Q0">Q0</a>'. Qhull may report concave
|
||||
facets, flipped facets, or other precision errors:
|
||||
<blockquote>
|
||||
rbox 500 W0 | qhull QR0 Q0
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
<h3><a href="#joggle">»</a><a name="15b">rbox 500 W0 | qconvex QR0 Qt Qc Gvp >eg.15b.triangle</a></h3>
|
||||
|
||||
<p>Like the previous examples, this is the convex hull of 500 points on the
|
||||
surface of a cube. Option '<a href="qh-optq.htm#Qt">Qt</a>' triangulates the
|
||||
non-simplicial facets. Triangulated output is
|
||||
particularly helpful for Delaunay triangulations.
|
||||
|
||||
<p>
|
||||
<h3><a href="#joggle">»</a><a name="15c">rbox 500 W0 | qconvex QR0 QJ5e-2 Qc Gvp >eg.15c.joggle</a></h3>
|
||||
|
||||
<p>This is the convex hull of 500 joggled points on the surface of
|
||||
a cube. The option '<a href="qh-optq.htm#QJn">QJ5e-2</a>'
|
||||
sets a very large joggle to make the effect visible. Notice
|
||||
that all of the facets are triangles. If you rotate the cube,
|
||||
you'll see red-yellow lines for coplanar points.
|
||||
<p>
|
||||
With option '<a href="qh-optq.htm#QJn">QJ</a>', Qhull joggles the
|
||||
input to avoid precision problems. It adds a small random number
|
||||
to each input coordinate. If a precision
|
||||
error occurs, it increases the joggle and tries again. It repeats
|
||||
this process until no precision problems occur.
|
||||
<p>
|
||||
Joggled input is a simple solution to precision problems in
|
||||
computational geometry. Qhull can also merge facets to handle
|
||||
precision problems. See <a href="qh-impre.htm#joggle">Merged facets or joggled input</a>.
|
||||
|
||||
<h2><a href="#TOC">»</a>Delaunay and Voronoi diagrams</h2>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="17a">qdelaunay Qt
|
||||
<eg.data.17 GnraD2 >eg.17a.delaunay.2</a></h3>
|
||||
|
||||
<p>
|
||||
The input file, <tt>eg.data.17</tt>, consists of a square, 15 random
|
||||
points within the outside half of the square, and 6 co-circular
|
||||
points centered on the square.
|
||||
|
||||
<p>The Delaunay triangulation is the triangulation with empty
|
||||
circumcircles. The input for this example is unusual because it
|
||||
includes six co-circular points. Every triangular subset of these
|
||||
points has the same circumcircle. Option '<a href="qh-optq.htm#Qt">Qt</a>'
|
||||
triangulates the co-circular facet.</p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="17b">qdelaunay <eg.data.17
|
||||
GnraD2 >eg.17b.delaunay.2i</a></h3>
|
||||
|
||||
<p>This is the same example without triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>'). qdelaunay
|
||||
merges the non-unique Delaunay triangles into a hexagon.</p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="17c">qdelaunay <eg.data.17
|
||||
Ga >eg.17c.delaunay.2-3 </a></h3>
|
||||
|
||||
<p>This is how Qhull generated both diagrams. Use Geomview's
|
||||
'obscure' menu to turn off normalization, and Geomview's
|
||||
'cameras' menu to turn off perspective. Then load this <a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html">object</a>
|
||||
with one of the previous diagrams.</p>
|
||||
|
||||
<p>The points are lifted to a paraboloid by summing the squares
|
||||
of each coordinate. These are the light blue points. Then the
|
||||
convex hull is taken. That's what you see here. If you look up
|
||||
the Z-axis, you'll see that points and edges coincide.</p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="17d">qvoronoi QJ
|
||||
<eg.data.17 Gna >eg.17d.voronoi.2</a></h3>
|
||||
|
||||
<p>The Voronoi diagram is the dual of the Delaunay triangulation.
|
||||
Here you see the original sites and the Voronoi vertices.
|
||||
Notice the each
|
||||
vertex is equidistant from three sites. The edges indicate the
|
||||
Voronoi region for a site. Qhull does not draw the unbounded
|
||||
edges. Instead, it draws extra edges to close the unbounded
|
||||
Voronoi regions. You may find it helpful to enclose the input
|
||||
points in a square. You can compute the unbounded
|
||||
rays from option '<a href="qh-optf.htm#Fo2">Fo</a>'.
|
||||
</p>
|
||||
|
||||
<p>Instead
|
||||
of triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>'), this
|
||||
example uses joggled input ('<a href="qh-optq.htm#QJn">QJ</a>').
|
||||
Normally, you should use neither 'QJ' nor 'Qt' for Voronoi diagrams.
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="17e">qvoronoi <eg.data.17
|
||||
Gna >eg.17e.voronoi.2i </a></h3>
|
||||
|
||||
<p>This looks the same as the previous diagrams, but take a look
|
||||
at the data. Run 'qvoronoi p <eg/eg.data.17'. This prints
|
||||
the Voronoi vertices.
|
||||
|
||||
<p>With 'QJ', there are four nearly identical Voronoi vertices
|
||||
within 10^-11 of the origin. Option 'QJ' joggled the input. After the joggle,
|
||||
the cocircular
|
||||
input sites are no longer cocircular. The corresponding Voronoi vertices are
|
||||
similar but not identical.
|
||||
|
||||
<p>This example does not use options 'Qt' or 'QJ'. The cocircular
|
||||
input sites define one Voronoi vertex near the origin. </p>
|
||||
|
||||
<p>Option 'Qt' would triangulate the corresponding Delaunay region into
|
||||
four triangles. Each triangle is assigned the same Voronoi vertex.</p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="17f"> rbox c G0.1 d |
|
||||
qdelaunay Gt Qz <eg.17f.delaunay.3 </a></h3>
|
||||
|
||||
<p>This is the 3-d Delaunay triangulation of a small cube inside
|
||||
a prism. Since the outside ridges are transparent, it shows the
|
||||
interior of the outermost facets. If you slice open the
|
||||
triangulation with Geomview's ginsu, you will see that the innermost
|
||||
facet is a cube. Note the use of '<a href="qh-optq.htm#Qz">Qz</a>'
|
||||
to add a point "at infinity". This avoids a degenerate
|
||||
input due to cospherical points.</p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="18a">rbox 10 D2 d | qdelaunay
|
||||
Qu G >eg.18a.furthest.2-3 </a></h3>
|
||||
|
||||
<p>The furthest-site Voronoi diagram contains Voronoi regions for
|
||||
points that are <i>furthest </i>from an input site. It is the
|
||||
dual of the furthest-site Delaunay triangulation. You can
|
||||
determine the furthest-site Delaunay triangulation from the
|
||||
convex hull of the lifted points (<a href="#17c">eg.17c.delaunay.2-3</a>).
|
||||
The upper convex hull (blue) generates the furthest-site Delaunay
|
||||
triangulation. </p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="18b">rbox 10 D2 d | qdelaunay
|
||||
Qu Pd2 G >eg.18b.furthest-up.2-3</a></h3>
|
||||
|
||||
<p>This is the upper convex hull of the preceding example. The
|
||||
furthest-site Delaunay triangulation is the projection of the
|
||||
upper convex hull back to the input points. The furthest-site
|
||||
Voronoi vertices are the circumcenters of the furthest-site
|
||||
Delaunay triangles. </p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="18c">rbox 10 D2 d | qvoronoi
|
||||
Qu Gv >eg.18c.furthest.2</a></h3>
|
||||
|
||||
<p>This shows an incomplete furthest-site Voronoi diagram. It
|
||||
only shows regions with more than two vertices. The regions are
|
||||
artificially truncated. The actual regions are unbounded. You can
|
||||
print the regions' vertices with 'qvoronoi Qu <a
|
||||
href="qh-opto.htm#o">o</a>'. </p>
|
||||
|
||||
<p>Use Geomview's 'obscure' menu to turn off normalization, and
|
||||
Geomview's 'cameras' menu to turn off perspective. Then load this
|
||||
with the upper convex hull.</p>
|
||||
|
||||
<h3><a href="#delaunay">»</a><a name="19">rbox 10 D3 | qvoronoi QV5
|
||||
p | qconvex G >eg.19.voronoi.region.3 </a></h3>
|
||||
|
||||
<p>This shows the Voronoi region for input site 5 of a 3-d
|
||||
Voronoi diagram.</p>
|
||||
|
||||
<h2><a href="#TOC">»</a>Facet merging for imprecision</h2>
|
||||
|
||||
<h3><a href="#merge">»</a><a name="20">rbox r s 20 Z1 G0.2 |
|
||||
qconvex G >eg.20.cone </a></h3>
|
||||
|
||||
<p>There are two things unusual about this <a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html">cone</a>.
|
||||
One is the large flat disk at one end and the other is the
|
||||
rectangles about the middle. That's how the points were
|
||||
generated, and if those points were exact, this is the correct
|
||||
hull. But <tt>rbox</tt> used floating point arithmetic to
|
||||
generate the data. So the precise convex hull should have been
|
||||
triangles instead of rectangles. By requiring convexity, Qhull
|
||||
has recovered the original design.</p>
|
||||
|
||||
<h3><a href="#merge">»</a><a name="21a">rbox 200 s | qhull Q0
|
||||
R0.01 Gav Po >eg.21a.roundoff.errors </a></h3>
|
||||
|
||||
<p>This is the convex hull of 200 cospherical points with
|
||||
precision errors ignored ('<a href="qh-optq.htm#Q0">Q0</a>'). To
|
||||
demonstrate the effect of roundoff error, we've added a random
|
||||
perturbation ('<a href="qh-optc.htm#Rn">R0.01</a>') to every
|
||||
distance and hyperplane calculation. Qhull, like all other convex
|
||||
hull algorithms with floating point arithmetic, makes
|
||||
inconsistent decisions and generates wildly wrong results. In
|
||||
this case, one or more facets are flipped over. These facets have
|
||||
the wrong color. You can also turn on 'normals' in Geomview's
|
||||
appearances menu and turn off 'facing normals'. There should be
|
||||
some white lines pointing in the wrong direction. These
|
||||
correspond to flipped facets. </p>
|
||||
|
||||
<p>Different machines may not produce this picture. If your
|
||||
machine generated a long error message, decrease the number of
|
||||
points or the random perturbation ('<a href="qh-optc.htm#Rn">R0.01</a>').
|
||||
If it did not report flipped facets, increase the number of
|
||||
points or perturbation.</p>
|
||||
|
||||
<h3><a href="#merge">»</a><a name="21b">rbox 200 s | qconvex Qc
|
||||
R0.01 Gpav >eg.21b.roundoff.fixed </a></h3>
|
||||
|
||||
<p>Qhull handles the random perturbations and returns an
|
||||
imprecise <a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/fixed.html">sphere</a>.
|
||||
In this case, the output is a weak approximation to the points.
|
||||
This is because a random perturbation of '<a
|
||||
href="qh-optc.htm#Rn">R0.01 </a>' is equivalent to losing all but
|
||||
1.8 digits of precision. The outer planes float above the points
|
||||
because Qhull needs to allow for the maximum roundoff error. </p>
|
||||
<p>
|
||||
If you start with a smaller random perturbation, you
|
||||
can use joggle ('<a href="qh-optq.htm#QJn">QJn</a>') to avoid
|
||||
precision problems. You need to set <i>n</i> significantly
|
||||
larger than the random perturbation. For example, try
|
||||
'rbox 200 s | qconvex Qc R1e-4 QJ1e-1'.
|
||||
|
||||
<h3><a href="#merge">»</a><a name="22a">rbox 1000 s| qconvex C0.01
|
||||
Qc Gcrp >eg.22a.merge.sphere.01</a></h3>
|
||||
|
||||
<h3><a href="#merge">»</a><a name="22b">rbox 1000 s| qconvex
|
||||
C-0.01 Qc Gcrp >eg.22b.merge.sphere.-01</a></h3>
|
||||
|
||||
<h3><a href="#merge">»</a><a name="22c">rbox 1000 s| qconvex C0.05
|
||||
Qc Gcrpv >eg.22c.merge.sphere.05</a></h3>
|
||||
|
||||
<h3><a href="#merge">»</a><a name="22d">rbox 1000 s| qconvex
|
||||
C-0.05 Qc Gcrpv >eg.22d.merge.sphere.-05</a></h3>
|
||||
|
||||
<p>The next four examples compare post-merging and pre-merging ('<a
|
||||
href="qh-optc.htm#Cn2">Cn</a>' vs. '<a href="qh-optc.htm#Cn">C-n</a>').
|
||||
Qhull uses '-' as a flag to indicate pre-merging.</p>
|
||||
|
||||
<p>Post-merging happens after the convex hull is built. During
|
||||
post-merging, Qhull repeatedly merges an independent set of
|
||||
non-convex facets. For a given set of parameters, the result is
|
||||
about as good as one can hope for.</p>
|
||||
|
||||
<p>Pre-merging does the same thing as post-merging, except that
|
||||
it happens after adding each point to the convex hull. With
|
||||
pre-merging, Qhull guarantees a convex hull, but the facets are
|
||||
wider than those from post-merging. If a pre-merge option is not
|
||||
specified, Qhull handles machine round-off errors.</p>
|
||||
|
||||
<p>You may see coplanar points appearing slightly outside
|
||||
the facets of the last example. This is becomes Geomview moves
|
||||
line segments forward toward the viewer. You can avoid the
|
||||
effect by setting 'lines closer' to '0' in Geomview's camera menu.
|
||||
|
||||
<h3><a href="#merge">»</a><a name="23">rbox 1000 | qconvex s
|
||||
Gcprvah C0.1 Qc >eg.23.merge.cube</a></h3>
|
||||
|
||||
<p>Here's the 3-d imprecise cube with all of the Geomview
|
||||
options. There's spheres for the vertices, radii for the coplanar
|
||||
points, dots for the interior points, hyperplane intersections,
|
||||
centrums, and inner and outer planes. The radii are shorter than
|
||||
the spheres because this uses post-merging ('<a href="qh-optc.htm#Cn2">C0.1</a>')
|
||||
instead of pre-merging.
|
||||
|
||||
<h2><a href="#TOC">»</a>4-d objects</h2>
|
||||
|
||||
<p>With Qhull and Geomview you can develop an intuitive sense of
|
||||
4-d surfaces. When you get into trouble, think of viewing the
|
||||
surface of a 3-d sphere in a 2-d plane.</p>
|
||||
|
||||
<h3><a href="#4d">»</a><a name="24">rbox 5000 D4 | qconvex s GD0v
|
||||
Pd0:0.5 C-0.02 C0.1 >eg.24.merge.cube.4d-in-3d</a></h3>
|
||||
|
||||
<p>Here's one facet of the imprecise cube in 4-d. It's projected
|
||||
into 3-d (the '<a href="qh-optg.htm#GDn">GDn</a>' option drops
|
||||
dimension n). Each ridge consists of two triangles between this
|
||||
facet and the neighboring facet. In this case, Geomview displays
|
||||
the topological ridges, i.e., as triangles between three
|
||||
vertices. That is why the cube looks lopsided.</p>
|
||||
|
||||
<h3><a href="#4d">»</a><a name="30">rbox 5000 D4 | qconvex s
|
||||
C-0.02 C0.1 Gh >eg.30.4d.merge.cube </a></h3>
|
||||
|
||||
<p><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/4dcube.html">Here</a>
|
||||
is the equivalent in 4-d of the imprecise <a href="#06">square</a>
|
||||
and imprecise <a href="#23">cube</a>. It's the imprecise convex
|
||||
hull of 5000 random points in a hypercube. It's a full 4-d object
|
||||
so Geomview's <tt>ginsu </tt>does not work. If you view it in
|
||||
Geomview, you'll be inside the hypercube. To view 4-d objects
|
||||
directly, either load the <tt>4dview</tt> module or the <tt>ndview
|
||||
</tt>module. For <tt>4dview</tt>, you must have started Geomview
|
||||
in the same directory as the object. For <tt>ndview</tt>,
|
||||
initialize a set of windows with the prefab menu, and load the
|
||||
object through Geomview. The <tt>4dview</tt> module includes an
|
||||
option for slicing along any hyperplane. If you do this in the x,
|
||||
y, or z plane, you'll see the inside of a hypercube.</p>
|
||||
|
||||
<p>The '<a href="qh-optg.htm#Gh">Gh</a>' option prints the
|
||||
geometric intersections between adjacent facets. Note the strong
|
||||
convexity constraint for post-merging ('<a href="qh-optc.htm#Cn2">C0.1</a>').
|
||||
It deletes the small facets.</p>
|
||||
|
||||
<h3><a href="#4d">»</a><a name="31">rbox 20 D3 | qdelaunay G
|
||||
>eg.31.4d.delaunay </a></h3>
|
||||
|
||||
<p>The Delaunay triangulation of 3-d sites corresponds to a 4-d
|
||||
convex hull. You can't see 4-d directly but each facet is a 3-d
|
||||
object that you can project to 3-d. This is exactly the same as
|
||||
projecting a 2-d facet of a soccer ball onto a plane.</p>
|
||||
|
||||
<p>Here we see all of the facets together. You can use Geomview's
|
||||
<tt>ndview</tt> to look at the object from several directions.
|
||||
Try turning on edges in the appearance menu. You'll notice that
|
||||
some edges seem to disappear. That's because the object is
|
||||
actually two sets of overlapping facets.</p>
|
||||
|
||||
<p>You can slice the object apart using Geomview's <tt>4dview</tt>.
|
||||
With <tt>4dview</tt>, try slicing along the w axis to get a
|
||||
single set of facets and then slice along the x axis to look
|
||||
inside. Another interesting picture is to slice away the equator
|
||||
in the w dimension.</p>
|
||||
|
||||
<h3><a href="#4d">»</a><a name="32">rbox 30 s D4 | qconvex s G
|
||||
Pd0d1d2D3</a></h3>
|
||||
|
||||
<p>This is the positive octant of the convex hull of 30 4-d
|
||||
points. When looking at 4-d, it's easier to look at just a few
|
||||
facets at once. If you picked a facet that was directly above
|
||||
you, then that facet looks exactly the same in 3-d as it looks in
|
||||
4-d. If you pick several facets, then you need to imagine that
|
||||
the space of a facet is rotated relative to its neighbors. Try
|
||||
Geomview's <tt>ndview</tt> on this example.</p>
|
||||
|
||||
<h2><a href="#TOC">»</a>Halfspace intersections</h2>
|
||||
|
||||
<h3><a href="#half">»</a><a name="33a">rbox 10 r s Z1 G0.3 |
|
||||
qconvex G >eg.33a.cone </a></h3>
|
||||
|
||||
<h3><a href="#half">»</a><a name="33b">rbox 10 r s Z1 G0.3 |
|
||||
qconvex FV n | qhalf G >eg.33b.cone.dual</a></h3>
|
||||
|
||||
<h3><a href="#half">»</a><a name="33c">rbox 10 r s Z1 G0.3 |
|
||||
qconvex FV n | qhalf Fp | qconvex G >eg.33c.cone.halfspace</a></h3>
|
||||
|
||||
<p>These examples illustrate halfspace intersection. The first
|
||||
picture is the convex hull of two 20-gons plus an apex. The
|
||||
second picture is the dual of the first. Try loading <a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/half.html">both</a>
|
||||
at once. Each vertex of the second picture corresponds to a facet
|
||||
or halfspace of the first. The vertices with four edges
|
||||
correspond to a facet with four neighbors. Similarly the facets
|
||||
correspond to vertices. A facet's normal coefficients divided by
|
||||
its negative offset is the vertice's coordinates. The coordinates
|
||||
are the intersection of the original halfspaces. </p>
|
||||
|
||||
<p>The third picture shows how Qhull can go back and forth
|
||||
between equivalent representations. It starts with a cone,
|
||||
generates the halfspaces that define each facet of the cone, and
|
||||
then intersects these halfspaces. Except for roundoff error, the
|
||||
third picture is a duplicate of the first. </p>
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home
|
||||
page for Qhull</a> <br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual: Table of Contents</a><br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To: </b><a href="#TOC">Qhull examples: Table of Contents</a> (please wait
|
||||
while loading)<br>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
1547
xs/src/qhull/html/qh-faq.htm
Normal file
106
xs/src/qhull/html/qh-get.htm
Normal file
|
|
@ -0,0 +1,106 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull Downloads</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org"><i>Qhull Home Page</i></a><br>
|
||||
</p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
|
||||
src="../html/qh--cone.gif" alt="[CONE]" align="middle"
|
||||
width="100" height="100"></a> Qhull Downloads</h1>
|
||||
|
||||
<ul>
|
||||
<li><a href="http://www.qhull.org">Qhull Home Page</a> <p>Qhull
|
||||
computes the convex hull, Delaunay triangulation, Voronoi diagram, halfspace
|
||||
intersection about a point, furthest-site Delaunay
|
||||
triangulation, and furthest-site Voronoi diagram. It
|
||||
runs in 2-d, 3-d, 4-d, and higher dimensions. It
|
||||
implements the Quickhull algorithm for computing the
|
||||
convex hull. Qhull handles roundoff errors from floating
|
||||
point arithmetic. It can approximate a convex hull. </p>
|
||||
|
||||
<p>Visit <a href="http://www.qhull.org/news">Qhull News</a>
|
||||
for news, bug reports, change history, and users.
|
||||
If you use Qhull 2003.1 or 2009.1, please upgrade to 2015.2 or apply
|
||||
<a href="http://www.qhull.org/download/poly.c-qh_gethash.patch">poly.c-qh_gethash.patch</a>.</p>
|
||||
</li>
|
||||
<li><a
|
||||
href="http://www.qhull.org/download/qhull-2015.2.zip">Download:
|
||||
Qhull 2015.2 for Windows 10, 8, 7, XP, and NT</a> (2.6 MB,
|
||||
<a href="http://www.qhull.org/README.txt">readme</a>,
|
||||
<a href="http://www.qhull.org/download/qhull-2015.2.md5sum">md5sum</a>,
|
||||
<a href="http://www.qhull.org/download/qhull-2015.2.zip.md5sum">contents</a>)
|
||||
<p>Type: console programs for Windows (32- or 64-bit)</p>
|
||||
<p>Includes 32-bit executables, documentation, and sources files. It runs in a
|
||||
command window. Qhull may be compiled for 64-bits.</p>
|
||||
</li>
|
||||
<li><a href="http://github.com/qhull/qhull/wiki">GitHub Qhull</a> (git@github.com:qhull/qhull.git)
|
||||
<p>Type: git repository for Qhull. See recent <a href="https://github.com/qhull/qhull/blob/master/src/Changes.txt">Changes.txt</a></p>
|
||||
<p>Includes documentation, source files, C++ interface, and test programs. It builds with gcc, mingw,
|
||||
CMake, DevStudio, and Qt Creator.
|
||||
</p>
|
||||
</li>
|
||||
<li><a href="http://www.qhull.org/download/qhull-2015-src-7.2.0.tgz">Download: Qhull 2015.2 for Unix</a> (1.0 MB,
|
||||
<a href="http://www.qhull.org/README.txt">readme</a>,
|
||||
<a href="http://www.qhull.org/download/qhull-2015.2.md5sum">md5sum</a>,
|
||||
<a href="http://www.qhull.org/download/qhull-2015-src-7.2.0.tgz.md5sum">contents</a>)
|
||||
<p>Type: C/C++ source code for 32-bit and 64-bit architectures. See <a href="http://www.qhull.org/src/Changes.txt">Changes.txt</a></p>
|
||||
<p>Includes documentation, source files, Makefiles, CMakeLists.txt, DevStudio projects, and Qt projects.
|
||||
Includes preliminary C++ support.</p>
|
||||
<p>Download and search sites for pre-built packages include
|
||||
<ul>
|
||||
<li><a href="https://launchpad.net/ubuntu/+source/qhull">https://launchpad.net/ubuntu/+source/qhull</a>
|
||||
<li><a href="http://software.opensuse.org/download.html?project=openSUSE%3AFactory&package=qhull">http://software.opensuse.org/download.html?project=openSUSE%3AFactory&package=qhull</a>
|
||||
<li><a href="https://www.archlinux.org/packages/extra/i686/qhull/">https://www.archlinux.org/packages/extra/i686/qhull/</a>
|
||||
<li><a href="http://rpmfind.net/linux/rpm2html/search.php?query=qhull">http://rpmfind.net/linux/rpm2html/search.php?query=qhull</a>
|
||||
<li><a href="http://rpm.pbone.net/index.php3/stat/3/srodzaj/1/search/qhull">http://rpm.pbone.net/index.php3/stat/3/srodzaj/1/search/qhull</a>
|
||||
</ul></p>
|
||||
</li>
|
||||
|
||||
<li><a
|
||||
href="http://dl.acm.org/author_page.cfm?id=81100129162">Download:
|
||||
Article about Qhull</a> (307K)
|
||||
<p>Type: PDF on ACM Digital Library (from this page only)</p>
|
||||
<p>Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T.,
|
||||
"The Quickhull algorithm for convex hulls," <i>ACM
|
||||
Transactions on Mathematical Software</i>, 22(4):469-483, Dec 1996 [<a
|
||||
href="http://portal.acm.org/citation.cfm?doid=235815.235821">abstract</a>].</p>
|
||||
</li>
|
||||
|
||||
<li><a
|
||||
href="http://www.qhull.org/download/qhull-1.0.tar.gz">Download:
|
||||
Qhull version 1.0</a> (92K) <p>Type: C source code for
|
||||
32-bit architectures </p>
|
||||
<p>Version 1.0 is a fifth the size of version 2.4. It
|
||||
computes convex hulls and Delaunay triangulations. If a
|
||||
precision error occurs, it stops with an error message.
|
||||
It reports an initialization error for inputs made with
|
||||
0/1 coordinates. </p>
|
||||
<p>Version 1.0 compiles on a PC with Borland C++ 4.02 for
|
||||
Win32 and DOS Power Pack. The options for rbox are
|
||||
"bcc32 -WX -w- -O2-e -erbox -lc rbox.c". The
|
||||
options for qhull are the same. [D. Zwick] </p>
|
||||
</li>
|
||||
</ul>
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org"><i>Qhull Home Page</i></a><br>
|
||||
<!-- GC common information --></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="../html/qh--geom.gif" alt="[HOME]"
|
||||
align="middle"></a> <i>The Geometry Center Home Page</i> </p>
|
||||
|
||||
<p>Comments to: <a href="mailto:qhull@qhull.org">qhull@qhull.org</a><br>
|
||||
</body>
|
||||
</html>
|
||||
826
xs/src/qhull/html/qh-impre.htm
Normal file
|
|
@ -0,0 +1,826 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Imprecision in Qhull</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><a name="TOP"><b>Up:</b></a> <a href="http://www.qhull.org">Home
|
||||
page</a> for Qhull <br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of
|
||||
Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To: </b><a href="#TOC">Qhull imprecision</a>: Table of Contents
|
||||
(please wait while loading)
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/4dcube.html"><img
|
||||
src="qh--4d.gif" alt="[4-d cube]" align="middle" width="100"
|
||||
height="100"></a> Imprecision in Qhull</h1>
|
||||
|
||||
<p>This section of the Qhull manual discusses the problems caused
|
||||
by coplanar points and why Qhull uses options '<a
|
||||
href="qh-optc.htm#C0">C-0</a>' or '<a href="qh-optq.htm#Qx">Qx</a>'
|
||||
by default. If you ignore precision issues with option '<a
|
||||
href="qh-optq.htm#Q0">Q0</a>', the output from Qhull can be
|
||||
arbitrarily bad. Qhull avoids precision problems if you merge facets (the default) or joggle
|
||||
the input ('<a
|
||||
href="qh-optq.htm#QJn">QJ</a>'). </p>
|
||||
|
||||
<p>Use option '<a href="qh-optt.htm#Tv">Tv</a>' to verify the
|
||||
output from Qhull. It verifies that adjacent facets are clearly
|
||||
convex. It verifies that all points are on or below all facets. </p>
|
||||
|
||||
<p>Qhull automatically tests for convexity if it detects
|
||||
precision errors while constructing the hull. </p>
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h2><a href="#TOP">»</a><a name="TOC">Qhull
|
||||
imprecision: Table of Contents </a></h2>
|
||||
|
||||
<ul>
|
||||
<li><a href="#prec">Precision problems</a></li>
|
||||
<li><a href="#joggle">Merged facets or joggled input</a></li>
|
||||
<li><a href="#delaunay">Delaunay triangulations</a></li>
|
||||
<li><a href="#halfspace">Halfspace intersection/a></li>
|
||||
<li><a href="#imprecise">Merged facets</a></li>
|
||||
<li><a href="#how">How Qhull merges facets</a></li>
|
||||
<li><a href="#limit">Limitations of merged facets</a></li>
|
||||
<li><a href="#injoggle">Joggled input</a></li>
|
||||
<li><a href="#exact">Exact arithmetic</a></li>
|
||||
<li><a href="#approximate">Approximating a convex hull</a></li>
|
||||
</ul>
|
||||
|
||||
<hr>
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="prec">Precision problems</a></h2>
|
||||
|
||||
<p>Since Qhull uses floating point arithmetic, roundoff error
|
||||
occurs with each calculation. This causes problems for
|
||||
geometric algorithms. Other floating point codes for convex
|
||||
hulls, Delaunay triangulations, and Voronoi diagrams also suffer
|
||||
from these problems. Qhull handles most of them.</p>
|
||||
|
||||
<p>There are several kinds of precision errors:</p>
|
||||
|
||||
<ul>
|
||||
<li>Representation error occurs when there are not enough
|
||||
digits to represent a number, e.g., 1/3.</li>
|
||||
<li>Measurement error occurs when the input coordinates are
|
||||
from measurements. </li>
|
||||
<li>Roundoff error occurs when a calculation is rounded to a
|
||||
fixed number of digits, e.g., a floating point
|
||||
calculation.</li>
|
||||
<li>Approximation error occurs when the user wants an
|
||||
approximate result because the exact result contains too
|
||||
much detail.</li>
|
||||
</ul>
|
||||
|
||||
<p>Under imprecision, calculations may return erroneous results.
|
||||
For example, roundoff error can turn a small, positive number
|
||||
into a small, negative number. See Milenkovic [<a
|
||||
href="index.htm#mile93">'93</a>] for a discussion of <em>strict
|
||||
robust geometry</em>. Qhull does not meet Milenkovic's criterion
|
||||
for accuracy. Qhull's error bound is empirical instead of
|
||||
theoretical.</p>
|
||||
|
||||
<p>Qhull 1.0 checked for precision errors but did not handle
|
||||
them. The output could contain concave facets, facets with
|
||||
inverted orientation ("flipped" facets), more than two
|
||||
facets adjacent to a ridge, and two facets with exactly the same
|
||||
set of vertices.</p>
|
||||
|
||||
<p>Qhull 2.4 and later automatically handles errors due to
|
||||
machine round-off. Option '<a href="qh-optc.htm#C0">C-0</a>' or '<a
|
||||
href="qh-optq.htm#Qx">Qx</a>' is set by default. In 5-d and
|
||||
higher, the output is clearly convex but an input point could be
|
||||
outside of the hull. This may be corrected by using option '<a
|
||||
href="qh-optc.htm#C0">C-0</a>', but then the output may contain
|
||||
wide facets.</p>
|
||||
|
||||
<p>Qhull 2.5 and later provides option '<a href="qh-optq.htm#QJn">QJ</a>'
|
||||
to joggled input. Each input coordinate is modified by a
|
||||
small, random quantity. If a precision error occurs, a larger
|
||||
modification is tried. When no precision errors occur, Qhull is
|
||||
done. </p>
|
||||
|
||||
<p>Qhull 3.1 and later provides option '<a href="qh-optq.htm#Qt">Qt</a>'
|
||||
for triangulated output. This removes the need for
|
||||
joggled input ('<a href="qh-optq.htm#QJn">QJ</a>').
|
||||
Non-simplicial facets are triangulated.
|
||||
The facets may have zero area.
|
||||
Triangulated output is particularly useful for Delaunay triangulations.</p>
|
||||
|
||||
<p>By handling round-off errors, Qhull can provide a variety of
|
||||
output formats. For example, it can return the halfspace that
|
||||
defines each facet ('<a href="qh-opto.htm#n">n</a>'). The
|
||||
halfspaces include roundoff error. If the halfspaces were exact,
|
||||
their intersection would return the original extreme points. With
|
||||
imprecise halfspaces and exact arithmetic, nearly incident points
|
||||
may be returned for an original extreme point. By handling
|
||||
roundoff error, Qhull returns one intersection point for each of
|
||||
the original extreme points. Qhull may split or merge an extreme
|
||||
point, but this appears to be unlikely.</p>
|
||||
|
||||
<p>The following pipe implements the identity function for
|
||||
extreme points (with roundoff):
|
||||
<blockquote>
|
||||
qconvex <a href="qh-optf.htm#FV">FV</a> <a
|
||||
href="qh-opto.htm#n">n</a> | qhalf <a href="qh-optf.htm#Fp">Fp</a>
|
||||
</blockquote>
|
||||
|
||||
<p>Bernd Gartner published his
|
||||
<a href=http://www.inf.ethz.ch/personal/gaertner/miniball.html>Miniball</a>
|
||||
algorithm ["Fast and robust smallest enclosing balls", <i>Algorithms - ESA '99</i>, LNCS 1643].
|
||||
It uses floating point arithmetic and a carefully designed primitive operation.
|
||||
It is practical to 20-D or higher, and identifies at least two points on the
|
||||
convex hull of the input set. Like Qhull, it is an incremental algorithm that
|
||||
processes points furthest from the intermediate result and ignores
|
||||
points that are close to the intermediate result.
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="joggle">Merged facets or joggled input</a></h2>
|
||||
|
||||
<p>This section discusses the choice between merged facets and joggled input.
|
||||
By default, Qhull uses merged facets to handle
|
||||
precision problems. With option '<a href="qh-optq.htm#QJn">QJ</a>',
|
||||
the input is joggled. See <a href="qh-eg.htm#joggle">examples</a>
|
||||
of joggled input and triangulated output.
|
||||
<ul>
|
||||
<li>Use merged facets (the default)
|
||||
when you want non-simplicial output (e.g., the faces of a cube).
|
||||
<li>Use merged facets and triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>') when
|
||||
you want simplicial output and coplanar facets (e.g., triangles for a Delaunay triangulation).
|
||||
<li>Use joggled input ('<a href="qh-optq.htm#QJn">QJ</a>') when you need clearly-convex,
|
||||
simplicial output.
|
||||
</ul>
|
||||
|
||||
<p>The choice between merged facets and joggled input depends on
|
||||
the application. Both run about the same speed. Joggled input may
|
||||
be faster if the initial joggle is sufficiently large to avoid
|
||||
precision errors.
|
||||
|
||||
<p>Most applications should used merged facets
|
||||
with triangulated output. </p>
|
||||
|
||||
<p>Use merged facets (the
|
||||
default, '<a href="qh-optc.htm#C0">C-0</a>')
|
||||
or triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>') if </p>
|
||||
|
||||
<ul>
|
||||
<li>Your application supports non-simplicial facets, or
|
||||
it allows degenerate, simplicial facets (option '<a href="qh-optq.htm#Qt">Qt</a>'). </li>
|
||||
<li>You do not want the input modified. </li>
|
||||
<li>You want to set additional options for approximating the
|
||||
hull. </li>
|
||||
<li>You use single precision arithmetic (<a href="../src/libqhull/user.h#realT">realT</a>).
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<p>Use joggled input ('<a href="qh-optq.htm#QJn">QJ</a>') if </p>
|
||||
|
||||
<ul>
|
||||
<li>Your application needs clearly convex, simplicial output</li>
|
||||
<li>Your application supports perturbed input points and narrow triangles.</li>
|
||||
<li>Seven significant digits is sufficient accuracy.</li>
|
||||
</ul>
|
||||
|
||||
<p>You may use both techniques or combine joggle with
|
||||
post-merging ('<a href="qh-optc.htm#Cn2">Cn</a>'). </p>
|
||||
|
||||
<p>Other researchers have used techniques similar to joggled
|
||||
input. Sullivan and Beichel [ref?] randomly perturb the input
|
||||
before computing the Delaunay triangulation. Corkum and Wyllie
|
||||
[news://comp.graphics, 1990] randomly rotate a polytope before
|
||||
testing point inclusion. Edelsbrunner and Mucke [Symp. Comp.
|
||||
Geo., 1988] and Yap [J. Comp. Sys. Sci., 1990] symbolically
|
||||
perturb the input to remove singularities. </p>
|
||||
|
||||
<p>Merged facets ('<a href="qh-optc.htm#C0">C-0</a>') handles
|
||||
precision problems directly. If a precision problem occurs, Qhull
|
||||
merges one of the offending facets into one of its neighbors.
|
||||
Since all precision problems in Qhull are associated with one or
|
||||
more facets, Qhull will either fix the problem or attempt to merge the
|
||||
last remaining facets. </p>
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="delaunay">Delaunay
|
||||
triangulations </a></h2>
|
||||
|
||||
<p>Programs that use Delaunay triangulations traditionally assume
|
||||
a triangulated input. By default, <a href=qdelaun.htm>qdelaunay</a>
|
||||
merges regions with cocircular or cospherical input sites.
|
||||
If you want a simplicial triangulation
|
||||
use triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>') or joggled
|
||||
input ('<a href="qh-optq.htm#QJn">QJ</a>').
|
||||
|
||||
<p>For Delaunay triangulations, triangulated
|
||||
output should produce good results. All points are within roundoff error of
|
||||
a paraboloid. If two points are nearly incident, one will be a
|
||||
coplanar point. So all points are clearly separated and convex.
|
||||
If qhull reports deleted vertices, the triangulation
|
||||
may contain serious precision faults. Deleted vertices are reported
|
||||
in the summary ('<a href="qh-opto.htm#s">s</a>', '<a href="qh-optf.htm#Fs">Fs</a>'</p>
|
||||
|
||||
<p>You should use option '<a href="qh-optq.htm#Qbb">Qbb</a>' with Delaunay
|
||||
triangulations. It scales the last coordinate and may reduce
|
||||
roundoff error. It is automatically set for <a href=qdelaun.htm>qdelaunay</a>,
|
||||
<a href=qvoronoi.htm>qvoronoi</a>, and option '<a
|
||||
href="qh-optq.htm#QJn">QJ</a>'.</p>
|
||||
|
||||
<p>Edelsbrunner, H, <i>Geometry and Topology for Mesh Generation</i>, Cambridge University Press, 2001.
|
||||
Good mathematical treatise on Delaunay triangulation and mesh generation for 2-d
|
||||
and 3-d surfaces. The chapter on surface simplification is
|
||||
particularly interesting. It is similar to facet merging in Qhull.
|
||||
|
||||
<p>Veron and Leon published an algorithm for shape preserving polyhedral
|
||||
simplification with bounded error [<i>Computers and Graphics</i>, 22.5:565-585, 1998].
|
||||
It remove nodes using front propagation and multiple remeshing.
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="halfspace">Halfspace intersection</a></h2>
|
||||
|
||||
<p>
|
||||
The identity pipe for Qhull reveals some precision questions for
|
||||
halfspace intersections. The identity pipe creates the convex hull of
|
||||
a set of points and intersects the facets' hyperplanes. It should return the input
|
||||
points, but narrow distributions may drop points while offset distributions may add
|
||||
points. It may be better to normalize the input set about the origin.
|
||||
For example, compare the first results with the later two results: [T. Abraham]
|
||||
<blockquote>
|
||||
rbox 100 s t | tee r | qconvex FV n | qhalf Fp | cat - r | /bin/sort -n | tail
|
||||
<br>
|
||||
rbox 100 L1e5 t | tee r | qconvex FV n | qhalf Fp | cat - r | /bin/sort -n | tail
|
||||
<br>
|
||||
rbox 100 s O10 t | tee r | qconvex FV n | qhalf Fp | cat - r | /bin/sort -n | tail
|
||||
</blockquote>
|
||||
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="imprecise">Merged facets </a></h2>
|
||||
|
||||
<p>Qhull detects precision
|
||||
problems when computing distances. A precision problem occurs if
|
||||
the distance computation is less than the maximum roundoff error.
|
||||
Qhull treats the result of a hyperplane computation as if it
|
||||
were exact.</p>
|
||||
|
||||
<p>Qhull handles precision problems by merging non-convex facets.
|
||||
The result of merging two facets is a thick facet defined by an <i>inner
|
||||
plane</i> and an <i>outer plane</i>. The inner and outer planes
|
||||
are offsets from the facet's hyperplane. The inner plane is
|
||||
clearly below the facet's vertices. At the end of Qhull, the
|
||||
outer planes are clearly above all input points. Any exact convex
|
||||
hull must lie between the inner and outer planes.</p>
|
||||
|
||||
<p>Qhull tests for convexity by computing a point for each facet.
|
||||
This point is called the facet's <i>centrum</i>. It is the
|
||||
arithmetic center of the facet's vertices projected to the
|
||||
facet's hyperplane. For simplicial facets with <em>d</em>
|
||||
vertices, the centrum is equivalent to the centroid or center of
|
||||
gravity. </p>
|
||||
|
||||
<p>Two neighboring facets are convex if each centrum is clearly
|
||||
below the other hyperplane. The '<a href="qh-optc.htm#Cn2">Cn</a>'
|
||||
or '<a href="qh-optc.htm#Cn">C-n</a>' options sets the centrum's
|
||||
radius to <i>n </i>. A centrum is clearly below a hyperplane if
|
||||
the computed distance from the centrum to the hyperplane is
|
||||
greater than the centrum's radius plus two maximum roundoff
|
||||
errors. Two are required because the centrum can be the maximum
|
||||
roundoff error above its hyperplane and the distance computation
|
||||
can be high by the maximum roundoff error.</p>
|
||||
|
||||
<p>With the '<a href="qh-optc.htm#Cn">C-n</a>' or '<a
|
||||
href="qh-optc.htm#An">A-n </a>' options, Qhull merges non-convex
|
||||
facets while constructing the hull. The remaining facets are
|
||||
clearly convex. With the '<a href="qh-optq.htm#Qx">Qx </a>'
|
||||
option, Qhull merges coplanar facets after constructing the hull.
|
||||
While constructing the hull, it merges coplanar horizon facets,
|
||||
flipped facets, concave facets and duplicated ridges. With '<a
|
||||
href="qh-optq.htm#Qx">Qx</a>', coplanar points may be missed, but
|
||||
it appears to be unlikely.</p>
|
||||
|
||||
<p>If the user sets the '<a href="qh-optc.htm#An2">An</a>' or '<a
|
||||
href="qh-optc.htm#An">A-n</a>' option, then all neighboring
|
||||
facets are clearly convex and the maximum (exact) cosine of an
|
||||
angle is <i>n</i>.</p>
|
||||
|
||||
<p>If '<a href="qh-optc.htm#C0">C-0</a>' or '<a
|
||||
href="qh-optq.htm#Qx">Qx</a>' is used without other precision
|
||||
options (default), Qhull tests vertices instead of centrums for
|
||||
adjacent simplices. In 3-d, if simplex <i>abc</i> is adjacent to
|
||||
simplex <i>bcd</i>, Qhull tests that vertex <i>a</i> is clearly
|
||||
below simplex <i>bcd </i>, and vertex <i>d</i> is clearly below
|
||||
simplex <i>abc</i>. When building the hull, Qhull tests vertices
|
||||
if the horizon is simplicial and no merges occur. </p>
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="how">How Qhull merges facets</a></h2>
|
||||
|
||||
<p>If two facets are not clearly convex, then Qhull removes one
|
||||
or the other facet by merging the facet into a neighbor. It
|
||||
selects the merge which minimizes the distance from the
|
||||
neighboring hyperplane to the facet's vertices. Qhull also
|
||||
performs merges when a facet has fewer than <i>d</i> neighbors (called a
|
||||
degenerate facet), when a facet's vertices are included in a
|
||||
neighboring facet's vertices (called a redundant facet), when a
|
||||
facet's orientation is flipped, or when a ridge occurs between
|
||||
more than two facets.</p>
|
||||
|
||||
<p>Qhull performs merges in a series of passes sorted by merge
|
||||
angle. Each pass merges those facets which haven't already been
|
||||
merged in that pass. After a pass, Qhull checks for redundant
|
||||
vertices. For example, if a vertex has only two neighbors in 3-d,
|
||||
the vertex is redundant and Qhull merges it into an adjacent
|
||||
vertex.</p>
|
||||
|
||||
<p>Merging two simplicial facets creates a non-simplicial facet
|
||||
of <em>d+1</em> vertices. Additional merges create larger facets.
|
||||
When merging facet A into facet B, Qhull retains facet B's
|
||||
hyperplane. It merges the vertices, neighbors, and ridges of both
|
||||
facets. It recomputes the centrum if a wide merge has not
|
||||
occurred (qh_WIDEcoplanar) and the number of extra vertices is
|
||||
smaller than a constant (qh_MAXnewcentrum).</p>
|
||||
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="limit">Limitations of merged
|
||||
facets</a></h2>
|
||||
|
||||
<ul>
|
||||
<li><b>Uneven dimensions</b> --
|
||||
If one coordinate has a larger absolute value than other
|
||||
coordinates, it may dominate the effect of roundoff errors on
|
||||
distance computations. You may use option '<a
|
||||
href="qh-optq.htm#QbB">QbB</a>' to scale points to the unit cube.
|
||||
For Delaunay triangulations and Voronoi diagrams, <a href=qdelaun.htm>qdelaunay</a>
|
||||
and <a href=qvoronoi.htm>qvoronoi</a> always set
|
||||
option '<a href="qh-optq.htm#Qbb">Qbb</a>'. It scales the last
|
||||
coordinate to [0,m] where <i>m</i> is the maximum width of the
|
||||
other coordinates. Option '<a href="qh-optq.htm#Qbb">Qbb</a>' is
|
||||
needed for Delaunay triangulations of integer coordinates
|
||||
and nearly cocircular points.
|
||||
|
||||
<p>For example, compare
|
||||
<pre>
|
||||
rbox 1000 W0 t | qconvex Qb2:-1e-14B2:1e-14
|
||||
</pre>
|
||||
with
|
||||
<pre>
|
||||
rbox 1000 W0 t | qconvex
|
||||
</pre>
|
||||
The distributions are the same but the first is compressed to a 2e-14 slab.
|
||||
<p>
|
||||
<li><b>Post-merging of coplanar facets</b> -- In 5-d and higher, option '<a href="qh-optq.htm#Qx">Qx</a>'
|
||||
(default) delays merging of coplanar facets until post-merging.
|
||||
This may allow "dents" to occur in the intermediate
|
||||
convex hulls. A point may be poorly partitioned and force a poor
|
||||
approximation. See option '<a href="qh-optq.htm#Qx">Qx</a>' for
|
||||
further discussion.</p>
|
||||
|
||||
<p>This is difficult to produce in 5-d and higher. Option '<a href="qh-optq.htm#Q6">Q6</a>' turns off merging of concave
|
||||
facets. This is similar to 'Qx'. It may lead to serious precision errors,
|
||||
for example,
|
||||
<pre>
|
||||
rbox 10000 W1e-13 | qhull Q6 Tv
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<li><b>Maximum facet width</b> --
|
||||
Qhull reports the maximum outer plane and inner planes (if
|
||||
more than roundoff error apart). There is no upper bound
|
||||
for either figure. This is an area for further research. Qhull
|
||||
does a good job of post-merging in all dimensions. Qhull does a
|
||||
good job of pre-merging in 2-d, 3-d, and 4-d. With the '<a
|
||||
href="qh-optq.htm#Qx">Qx</a>' option, it does a good job in
|
||||
higher dimensions. In 5-d and higher, Qhull does poorly at
|
||||
detecting redundant vertices. </p>
|
||||
|
||||
<p>In the summary ('<a href="qh-opto.htm#s">s</a>'), look at the
|
||||
ratio between the maximum facet width and the maximum width of a
|
||||
single merge, e.g., "(3.4x)". Qhull usually reports a
|
||||
ratio of four or lower in 3-d and six or lower in 4-d. If it
|
||||
reports a ratio greater than 10, this may indicate an
|
||||
implementation error. Narrow distributions (see following) may
|
||||
produce wide facets.
|
||||
|
||||
<p>For example, if special processing for narrow distributions is
|
||||
turned off ('<a href="qh-optq.htm#Q10">Q10</a>'), qhull may produce
|
||||
a wide facet:</p>
|
||||
<pre>
|
||||
rbox 1000 L100000 s G1e-16 t1002074964 | qhull Tv Q10
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<li><b>Narrow distribution</b> -- In 3-d, a narrow distribution may result in a poor
|
||||
approximation. For example, if you do not use qdelaunay nor option
|
||||
'<a href="qh-optq.htm#Qbb">Qbb</a>', the furthest-site
|
||||
Delaunay triangulation of nearly cocircular points may produce a poor
|
||||
approximation:
|
||||
<pre>
|
||||
rbox s 5000 W1e-13 D2 t1002151341 | qhull d Qt
|
||||
rbox 1000 s W1e-13 t1002231672 | qhull d Tv
|
||||
</pre>
|
||||
|
||||
<p>During
|
||||
construction of the hull, a point may be above two
|
||||
facets with opposite orientations that span the input
|
||||
set. Even though the point may be nearly coplanar with both
|
||||
facets, and can be distant from the precise convex
|
||||
hull of the input sites. Additional facets leave the point distant from
|
||||
a facet. To fix this problem, add option '<a href="qh-optq.htm#Qbb">Qbb</a>'
|
||||
(it scales the last coordinate). Option '<a href="qh-optq.htm#Qbb">Qbb</a>'
|
||||
is automatically set for <a href=qdelaun.htm>qdelaunay</a> and <a href=qvoronoi.htm>qvoronoi</a>.
|
||||
|
||||
<p>Qhull generates a warning if the initial simplex is narrow.
|
||||
For narrow distributions, Qhull changes how it processes coplanar
|
||||
points -- it does not make a point coplanar until the hull is
|
||||
finished.
|
||||
Use option '<a href="qh-optq.htm#Q10">Q10</a>' to try Qhull without
|
||||
special processing for narrow distributions.
|
||||
For example, special processing is needed for:
|
||||
<pre>
|
||||
rbox 1000 L100000 s G1e-16 t1002074964 | qhull Tv Q10
|
||||
</pre>
|
||||
|
||||
<p>You may turn off the warning message by reducing
|
||||
qh_WARNnarrow in <tt>user.h</tt> or by setting option
|
||||
'<a href="qh-optp.htm#Pp">Pp</a>'. </p>
|
||||
|
||||
<p>Similar problems occur for distributions with a large flat facet surrounded
|
||||
with many small facet at a sharp angle to the large facet.
|
||||
Qhull 3.1 fixes most of these problems, but a poor approximation can occur.
|
||||
A point may be left outside of the convex hull ('<a href="qh-optt.htm#Tv">Tv</a>').
|
||||
Examples include
|
||||
the furthest-site Delaunay triangulation of nearly cocircular points plus the origin, and the convex hull of a cone of nearly cocircular points. The width of the band is 10^-13.
|
||||
<pre>
|
||||
rbox s 1000 W1e-13 P0 D2 t996799242 | qhull d Tv
|
||||
rbox 1000 s Z1 G1e-13 t1002152123 | qhull Tv
|
||||
rbox 1000 s Z1 G1e-13 t1002231668 | qhull Tv
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
<li><b>Quadratic running time</b> -- If the output contains large, non-simplicial
|
||||
facets, the running time for Qhull may be quadratic in the size of the triangulated
|
||||
output. For example, <tt>rbox 1000 s W1e-13 c G2 | qhull d</tt> is 4 times
|
||||
faster for 500 points. The convex hull contains two large nearly spherical facets and
|
||||
many nearly coplanar facets. Each new point retriangulates the spherical facet and repartitions the remaining points into all of the nearly coplanar facets.
|
||||
In this case, quadratic running time is avoided if you use qdelaunay,
|
||||
add option '<a href="qh-optq.htm#Qbb">Qbb</a>',
|
||||
or add the origin ('P0') to the input.
|
||||
<p>
|
||||
<li><b>Nearly coincident points within 1e-13</b> --
|
||||
Multiple, nearly coincident points within a 1e-13 ball of points in the unit cube
|
||||
may lead to wide facets or quadratic running time.
|
||||
For example, the convex hull a 1000 coincident, cospherical points in 4-D,
|
||||
or the 3-D Delaunay triangulation of nearly coincident points, may lead to very
|
||||
wide facets (e.g., 2267021951.3x).
|
||||
|
||||
<p>For Delaunay triangulations, the problem typically occurs for extreme points of the input
|
||||
set (i.e., on the edge between the upper and lower convex hull). After multiple facet merges, four
|
||||
facets may share the same, duplicate ridge and must be merged.
|
||||
Some of these facets may be long and narrow, leading to a very wide merged facet.
|
||||
If so, error QH6271 is reported. It may be overriden with option '<a href="qh-optq.htm#Q12">Q12</a>'.
|
||||
|
||||
<p>Duplicate ridges occur when the horizon facets for a new point is "pinched".
|
||||
In a duplicate ridge, a subridge (e.g., a line segment in 3-d) is shared by two horizon facets.
|
||||
At least two of its vertices are nearly coincident. It is easy to generate coincident points with
|
||||
option 'Cn,r,m' of rbox. It generates n points within an r ball for each of m input sites. For example,
|
||||
every point of the following distributions has a nearly coincident point within a 1e-13 ball.
|
||||
Substantially smaller or larger balls do not lead to pinched horizons.
|
||||
<pre>
|
||||
rbox 1000 C1,1e-13 D4 s t | qhull
|
||||
rbox 75 C1,1e-13 t | qhull d
|
||||
</pre>
|
||||
For Delaunay triangulations, a bounding box may alleviate this error (e.g., <tt>rbox 500 C1,1E-13 t c G1 | qhull d</tt>).
|
||||
A later release of qhull will avoid pinched horizons by merging duplicate subridges. A subridge is
|
||||
merged by merging adjacent vertices.
|
||||
<p>
|
||||
<li><b>Facet with zero-area</b> --
|
||||
It is possible for a zero-area facet to be convex with its
|
||||
neighbors. This can occur if the hyperplanes of neighboring
|
||||
facets are above the facet's centrum, and the facet's hyperplane
|
||||
is above the neighboring centrums. Qhull computes the facet's
|
||||
hyperplane so that it passes through the facet's vertices. The
|
||||
vertices can be collinear. </p>
|
||||
|
||||
<p>
|
||||
<li><b>No more facets</b> -- Qhull reports an error if there are <em>d+1</em> facets left
|
||||
and two of the facets are not clearly convex. This typically
|
||||
occurs when the convexity constraints are too strong or the input
|
||||
points are degenerate. The former is more likely in 5-d and
|
||||
higher -- especially with option '<a href="qh-optc.htm#Cn">C-n</a>'.</p>
|
||||
|
||||
<p>
|
||||
<li><b>Deleted cone</b> -- Lots of merging can end up deleting all
|
||||
of the new facets for a point. This is a rare event that has
|
||||
only been seen while debugging the code.
|
||||
|
||||
<p>
|
||||
<li><b>Triangulated output leads to precision problems</b> -- With sufficient
|
||||
merging, the ridges of a non-simplicial facet may have serious topological
|
||||
and geometric problems. A ridge may be between more than two
|
||||
neighboring facets. If so, their triangulation ('<a href="qh-optq.htm#Qt">Qt</a>')
|
||||
will fail since two facets have the same vertex set. Furthermore,
|
||||
a triangulated facet may have flipped orientation compared to its
|
||||
neighbors.</li>
|
||||
|
||||
<p>The triangulation process detects degenerate facets with
|
||||
only two neighbors. These are marked degenerate. They have
|
||||
zero area.
|
||||
|
||||
<p>
|
||||
<li><b>Coplanar points</b> --
|
||||
Option '<a href="qh-optq.htm#Qc">Qc</a>' is determined by
|
||||
qh_check_maxout() after constructing the hull. Qhull needs to
|
||||
retain all possible coplanar points in the facets' coplanar sets.
|
||||
This depends on qh_RATIOnearInside in <tt>user.h.</tt>
|
||||
Furthermore, the cutoff for a coplanar point is arbitrarily set
|
||||
at the minimum vertex. If coplanar points are important to your
|
||||
application, remove the interior points by hand (set '<a
|
||||
href="qh-optq.htm#Qc">Qc</a> <a href="qh-optq.htm#Qi">Qi</a>') or
|
||||
make qh_RATIOnearInside sufficiently large.</p>
|
||||
|
||||
<p>
|
||||
<li><b>Maximum roundoff error</b> -- Qhull computes the maximum roundoff error from the maximum
|
||||
coordinates of the point set. Usually the maximum roundoff error
|
||||
is a reasonable choice for all distance computations. The maximum
|
||||
roundoff error could be computed separately for each point or for
|
||||
each distance computation. This is expensive and it conflicts
|
||||
with option '<a href="qh-optc.htm#Cn">C-n</a>'.
|
||||
|
||||
<p>
|
||||
<li><b>All flipped or upper Delaunay</b> -- When a lot of merging occurs for
|
||||
Delaunay triangulations, a new point may lead to no good facets. For example,
|
||||
try a strong convexity constraint:
|
||||
<pre>
|
||||
rbox 1000 s t993602376 | qdelaunay C-1e-3
|
||||
</pre>
|
||||
|
||||
</ul>
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="injoggle">Joggled input</a></h2>
|
||||
|
||||
<p>Joggled input is a simple work-around for precision problems
|
||||
in computational geometry ["joggle: to shake or jar
|
||||
slightly," Amer. Heritage Dictionary]. Other names are
|
||||
<i>jostled input</i> or <i>random perturbation</i>.
|
||||
Qhull joggles the
|
||||
input by modifying each coordinate by a small random quantity. If
|
||||
a precision problem occurs, Qhull joggles the input with a larger
|
||||
quantity and the algorithm is restarted. This process continues
|
||||
until no precision problems occur. Unless all inputs incur
|
||||
precision problems, Qhull will terminate. Qhull adjusts the inner
|
||||
and outer planes to account for the joggled input. </p>
|
||||
|
||||
<p>Neither joggle nor merged facets has an upper bound for the width of the output
|
||||
facets, but both methods work well in practice. Joggled input is
|
||||
easier to justify. Precision errors occur when the points are
|
||||
nearly singular. For example, four points may be coplanar or
|
||||
three points may be collinear. Consider a line and an incident
|
||||
point. A precision error occurs if the point is within some
|
||||
epsilon of the line. Now joggle the point away from the line by a
|
||||
small, uniformly distributed, random quantity. If the point is
|
||||
changed by more than epsilon, the precision error is avoided. The
|
||||
probability of this event depends on the maximum joggle. Once the
|
||||
maximum joggle is larger than epsilon, doubling the maximum
|
||||
joggle will halve the probability of a precision error. </p>
|
||||
|
||||
<p>With actual data, an analysis would need to account for each
|
||||
point changing independently and other computations. It is easier
|
||||
to determine the probabilities empirically ('<a href="qh-optt.htm#TRn">TRn</a>') . For example, consider
|
||||
computing the convex hull of the unit cube centered on the
|
||||
origin. The arithmetic has 16 significant decimal digits. </p>
|
||||
|
||||
<blockquote>
|
||||
<p><b>Convex hull of unit cube</b> </p>
|
||||
<table border="1">
|
||||
<tr>
|
||||
<th align="left">joggle</th>
|
||||
<th align="right">error prob. </th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">1.0e-15</td>
|
||||
<td align="center">0.983 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">2.0e-15</td>
|
||||
<td align="center">0.830 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">4.0e-15</td>
|
||||
<td align="center">0.561 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">8.0e-15</td>
|
||||
<td align="center">0.325 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">1.6e-14</td>
|
||||
<td align="center">0.185 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">3.2e-14</td>
|
||||
<td align="center">0.099 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">6.4e-14</td>
|
||||
<td align="center">0.051 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">1.3e-13</td>
|
||||
<td align="center">0.025 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">2.6e-13</td>
|
||||
<td align="center">0.010 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">5.1e-13</td>
|
||||
<td align="center">0.004 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">1.0e-12</td>
|
||||
<td align="center">0.002 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">2.0e-12</td>
|
||||
<td align="center">0.001 </td>
|
||||
</tr>
|
||||
</table>
|
||||
</blockquote>
|
||||
|
||||
<p>A larger joggle is needed for multiple points. Since the
|
||||
number of potential singularities increases, the probability of
|
||||
one or more precision errors increases. Here is an example. </p>
|
||||
|
||||
<blockquote>
|
||||
<p><b>Convex hull of 1000 points on unit cube</b> </p>
|
||||
<table border="1">
|
||||
<tr>
|
||||
<th align="left">joggle</th>
|
||||
<th align="right">error prob. </th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">1.0e-12</td>
|
||||
<td align="center">0.870 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">2.0e-12</td>
|
||||
<td align="center">0.700 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">4.0e-12</td>
|
||||
<td align="center">0.450 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">8.0e-12</td>
|
||||
<td align="center">0.250 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">1.6e-11</td>
|
||||
<td align="center">0.110 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">3.2e-11</td>
|
||||
<td align="center">0.065 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">6.4e-11</td>
|
||||
<td align="center">0.030 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">1.3e-10</td>
|
||||
<td align="center">0.010 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">2.6e-10</td>
|
||||
<td align="center">0.008 </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="right">5.1e-09</td>
|
||||
<td align="center">0.003 </td>
|
||||
</tr>
|
||||
</table>
|
||||
</blockquote>
|
||||
|
||||
<p>Other distributions behave similarly. No distribution should
|
||||
behave significantly worse. In Euclidean space, the probability
|
||||
measure of all singularities is zero. With floating point
|
||||
numbers, the probability of a singularity is non-zero. With
|
||||
sufficient digits, the probability of a singularity is extremely
|
||||
small for random data. For a sufficiently large joggle, all data
|
||||
is nearly random data. </p>
|
||||
|
||||
<p>Qhull uses an initial joggle of 30,000 times the maximum
|
||||
roundoff error for a distance computation. This avoids most
|
||||
potential singularities. If a failure occurs, Qhull retries at
|
||||
the initial joggle (in case bad luck occurred). If it occurs
|
||||
again, Qhull increases the joggle by ten-fold and tries again.
|
||||
This process repeats until the joggle is a hundredth of the width
|
||||
of the input points. Qhull reports an error after 100 attempts.
|
||||
This should never happen with double-precision arithmetic. Once
|
||||
the probability of success is non-zero, the probability of
|
||||
success increases about ten-fold at each iteration. The
|
||||
probability of repeated failures becomes extremely small. </p>
|
||||
|
||||
<p>Merged facets produces a significantly better approximation.
|
||||
Empirically, the maximum separation between inner and outer
|
||||
facets is about 30 times the maximum roundoff error for a
|
||||
distance computation. This is about 2,000 times better than
|
||||
joggled input. Most applications though will not notice the
|
||||
difference. </p>
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="exact">Exact arithmetic</a></h2>
|
||||
|
||||
<p>Exact arithmetic may be used instead of floating point.
|
||||
Singularities such as coplanar points can either be handled
|
||||
directly or the input can be symbolically perturbed. Using exact
|
||||
arithmetic is slower than using floating point arithmetic and the
|
||||
output may take more space. Chaining a sequence of operations
|
||||
increases the time and space required. Some operations are
|
||||
difficult to do.</p>
|
||||
|
||||
<p>Clarkson's <a
|
||||
href="http://www.netlib.org/voronoi/hull.html">hull
|
||||
program</a> and Shewchuk's <a
|
||||
href="http://www.cs.cmu.edu/~quake/triangle.html">triangle
|
||||
program</a> are practical implementations of exact arithmetic.</p>
|
||||
|
||||
<p>Clarkson limits the input precision to about fifteen digits.
|
||||
This reduces the number of nearly singular computations. When a
|
||||
determinant is nearly singular, he uses exact arithmetic to
|
||||
compute a precise result.</p>
|
||||
|
||||
<h2><a href="#TOC">»</a><a name="approximate">Approximating a
|
||||
convex hull</a></h2>
|
||||
|
||||
<p>Qhull may be used for approximating a convex hull. This is
|
||||
particularly valuable in 5-d and higher where hulls can be
|
||||
immense. You can use '<a href="qh-optq.htm#Qx">Qx</a> <a
|
||||
href="qh-optc.htm#Cn">C-n</a>' to merge facets as the hull is
|
||||
being constructed. Then use '<a href="qh-optc.htm#Cn2">Cn</a>'
|
||||
and/or '<a href="qh-optc.htm#An2">An</a>' to merge small facets
|
||||
during post-processing. You can print the <i>n</i> largest facets
|
||||
with option '<a href="qh-optp.htm#PAn">PAn</a>'. You can print
|
||||
facets whose area is at least <i>n</i> with option '<a
|
||||
href="qh-optp.htm#PFn">PFn</a>'. You can output the outer planes
|
||||
and an interior point with '<a href="qh-optf.htm#FV">FV</a> <a
|
||||
href="qh-optf.htm#Fo">Fo</a>' and then compute their intersection
|
||||
with 'qhalf'. </p>
|
||||
|
||||
<p>To approximate a convex hull in 6-d and higher, use
|
||||
post-merging with '<a href="qh-optc.htm#Wn">Wn</a>' (e.g., qhull
|
||||
W1e-1 C1e-2 TF2000). Pre-merging with a convexity constraint
|
||||
(e.g., qhull Qx C-1e-2) often produces a poor approximation or
|
||||
terminates with a simplex. Option '<a href="qh-optq.htm#QbB">QbB</a>'
|
||||
may help to spread out the data.</p>
|
||||
|
||||
<p>You will need to experiment to determine a satisfactory set of
|
||||
options. Use <a href="rbox.htm">rbox</a> to generate test sets
|
||||
quickly and <a href="index.htm#geomview">Geomview</a> to view
|
||||
the results. You will probably want to write your own driver for
|
||||
Qhull using the Qhull library. For example, you could select the
|
||||
largest facet in each quadrant.</p>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home
|
||||
page</a> for Qhull <br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of
|
||||
Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#TOC">Qhull imprecision: Table of Contents</a>
|
||||
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
292
xs/src/qhull/html/qh-optc.htm
Normal file
|
|
@ -0,0 +1,292 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull precision options</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a> Qhull precision options</h1>
|
||||
|
||||
This section lists the precision options for Qhull. These options are
|
||||
indicated by an upper-case letter followed by a number.
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="index.htm#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
<a name="prec">•</a> <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<h2>Precision options</h2>
|
||||
|
||||
<p>Most users will not need to set these options. They are best
|
||||
used for <a href="qh-impre.htm#approximate">approximating</a> a
|
||||
convex hull. They may also be used for testing Qhull's handling
|
||||
of precision errors.</p>
|
||||
|
||||
<p>By default, Qhull uses options '<a href="#C0">C-0</a>' for
|
||||
2-d, 3-d and 4-d, and '<a href="qh-optq.htm#Qx">Qx</a>' for 5-d
|
||||
and higher. These options use facet merging to handle precision
|
||||
errors. You may also use joggled input '<a href="qh-optq.htm#QJn">QJ</a>'
|
||||
to avoid precision problems.
|
||||
For more information see <a
|
||||
href="qh-impre.htm">Imprecision in Qhull</a>.</p>
|
||||
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="#Cn2">Cn</a></dt>
|
||||
<dd>centrum radius for post-merging</dd>
|
||||
<dt><a href="#Cn">C-n</a></dt>
|
||||
<dd>centrum radius for pre-merging</dd>
|
||||
<dt><a href="#An2">An</a></dt>
|
||||
<dd>cosine of maximum angle for post-merging</dd>
|
||||
<dt><a href="#An">A-n</a></dt>
|
||||
<dd>cosine of maximum angle for pre-merging</dd>
|
||||
<dt><a href="qh-optq.htm#Qx">Qx</a></dt>
|
||||
<dd>exact pre-merges (allows coplanar facets)</dd>
|
||||
<dt><a href="#C0">C-0</a></dt>
|
||||
<dd>handle all precision errors</dd>
|
||||
<dt><a href="#Wn">Wn</a></dt>
|
||||
<dd>min distance above plane for outside points</dd>
|
||||
</dl>
|
||||
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>Experimental</b></dd>
|
||||
<dt><a href="#Un">Un</a></dt>
|
||||
<dd>max distance below plane for a new, coplanar point</dd>
|
||||
<dt><a href="#En">En</a></dt>
|
||||
<dd>max roundoff error for distance computation</dd>
|
||||
<dt><a href="#Vn">Vn</a></dt>
|
||||
<dd>min distance above plane for a visible facet</dd>
|
||||
<dt><a href="#Rn">Rn</a></dt>
|
||||
<dd>randomly perturb computations by a factor of [1-n,1+n]</dd>
|
||||
</dl>
|
||||
|
||||
<dl compact>
|
||||
</dl>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="An">A-n - cosine of maximum
|
||||
angle for pre-merging.</a></h3>
|
||||
|
||||
<p>Pre-merging occurs while Qhull constructs the hull. It is
|
||||
indicated by '<a href="#Cn">C-n</a>', 'A-n', or '<a
|
||||
href="qh-optq.htm#Qx">Qx</a>'.</p>
|
||||
|
||||
<p>If the angle between a pair of facet normals is greater than <i>n</i>,
|
||||
Qhull merges one of the facets into a neighbor. It selects the
|
||||
facet that is closest to a neighboring facet.</p>
|
||||
|
||||
<p>For example, option 'A-0.99' merges facets during the
|
||||
construction of the hull. If the cosine of the angle between
|
||||
facets is greater than 0.99, one or the other facet is merged.
|
||||
Qhull accounts for the maximum roundoff error.</p>
|
||||
|
||||
<p>If 'A-n' is set without '<a href="#Cn">C-n</a>', then '<a
|
||||
href="#C0">C-0</a>' is automatically set. </p>
|
||||
|
||||
<p>In 5-d and higher, you should set '<a href="qh-optq.htm#Qx">Qx</a>'
|
||||
along with 'A-n'. It skips merges of coplanar facets until after
|
||||
the hull is constructed and before '<a href="#An2">An</a>' and '<a
|
||||
href="#Cn2">Cn</a>' are checked. </p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="An2">An - cosine of maximum angle for
|
||||
post-merging.</a></h3>
|
||||
|
||||
<p>Post merging occurs after the hull is constructed. For
|
||||
example, option 'A0.99' merges a facet if the cosine of the angle
|
||||
between facets is greater than 0.99. Qhull accounts for the
|
||||
maximum roundoff error.</p>
|
||||
|
||||
<p>If 'An' is set without '<a href="#Cn2">Cn</a>', then '<a
|
||||
href="#Cn2">C0</a>' is automatically set. </p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="C0">C-0 - handle all precision
|
||||
errors </a></h3>
|
||||
|
||||
<p>Qhull handles precision errors by merging facets. The 'C-0'
|
||||
option handles all precision errors in 2-d, 3-d, and 4-d. It is
|
||||
set by default. It may be used in higher dimensions, but
|
||||
sometimes the facet width grows rapidly. It is usually better to
|
||||
use '<a href="qh-optq.htm#Qx">Qx</a>' in 5-d and higher.
|
||||
Use '<a href="qh-optq.htm#QJn">QJ</a>' to joggle the input
|
||||
instead of merging facets.
|
||||
Use '<a
|
||||
href="qh-optq.htm#Q0">Q0</a>' to turn both options off.</p>
|
||||
|
||||
<p>Qhull optimizes 'C-0' ("_zero-centrum") by testing
|
||||
vertices instead of centrums for adjacent simplices. This may be
|
||||
slower in higher dimensions if merges decrease the number of
|
||||
processed points. The optimization may be turned off by setting a
|
||||
small value such as 'C-1e-30'. See <a href="qh-impre.htm">How
|
||||
Qhull handles imprecision</a>.</p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="Cn">C-n - centrum radius for
|
||||
pre-merging</a></h3>
|
||||
|
||||
<p>Pre-merging occurs while Qhull constructs the hull. It is
|
||||
indicated by 'C-n', '<a href="#An">A-n</a>', or '<a
|
||||
href="qh-optq.htm#Qx">Qx</a>'.</p>
|
||||
|
||||
<p>The <i>centrum</i> of a facet is a point on the facet for
|
||||
testing facet convexity. It is the average of the vertices
|
||||
projected to the facet's hyperplane. Two adjacent facets are
|
||||
convex if each centrum is clearly below the other facet. </p>
|
||||
|
||||
<p>If adjacent facets are non-convex, one of the facets is merged
|
||||
into a neighboring facet. Qhull merges the facet that is closest
|
||||
to a neighboring facet. </p>
|
||||
|
||||
<p>For option 'C-n', <i>n</i> is the centrum radius. For example,
|
||||
'C-0.001' merges facets whenever the centrum is less than 0.001
|
||||
from a neighboring hyperplane. Qhull accounts for roundoff error
|
||||
when testing the centrum.</p>
|
||||
|
||||
<p>In 5-d and higher, you should set '<a href="qh-optq.htm#Qx">Qx</a>'
|
||||
along with 'C-n'. It skips merges of coplanar facets until after
|
||||
the hull is constructed and before '<a href="#An2">An</a>' and '<a
|
||||
href="#Cn2">Cn</a>' are checked. </p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="Cn2">Cn - centrum radius for
|
||||
post-merging</a></h3>
|
||||
|
||||
<p>Post-merging occurs after Qhull constructs the hull. It is
|
||||
indicated by '<a href="#Cn2">Cn</a>' or '<a href="#An2">An</a>'. </p>
|
||||
|
||||
<p>For option '<a href="#Cn2">Cn</a>', <i>n</i> is the centrum
|
||||
radius. For example, 'C0.001' merges facets when the centrum is
|
||||
less than 0.001 from a neighboring hyperplane. Qhull accounts for
|
||||
roundoff error when testing the centrum.</p>
|
||||
|
||||
<p>Both pre-merging and post-merging may be defined. If only
|
||||
post-merging is used ('<a href="qh-optq.htm#Q0">Q0</a>' with
|
||||
'Cn'), Qhull may fail to produce a hull due to precision errors
|
||||
during the hull's construction.</p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="En">En - max roundoff error
|
||||
for distance computations</a></h3>
|
||||
|
||||
<p>This allows the user to change the maximum roundoff error
|
||||
computed by Qhull. The value computed by Qhull may be overly
|
||||
pessimistic. If 'En' is set too small, then the output may not be
|
||||
convex. The statistic "max. distance of a new vertex to a
|
||||
facet" (from option '<a href="qh-optt.htm#Ts">Ts</a>') is a
|
||||
reasonable upper bound for the actual roundoff error. </p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="Rn">Rn - randomly perturb
|
||||
computations </a></h3>
|
||||
|
||||
<p>This option perturbs every distance, hyperplane, and angle
|
||||
computation by up to <i>(+/- n * max_coord)</i>. It simulates the
|
||||
effect of roundoff errors. Unless '<a href="#En">En</a>' is
|
||||
explicitly set, it is adjusted for 'Rn'. The command 'qhull Rn'
|
||||
will generate a convex hull despite the perturbations. See the <a
|
||||
href="qh-eg.htm#merge">Examples </a>section for an example.</p>
|
||||
|
||||
<p>Options 'Rn C-n' have the effect of '<a href="#Wn">W2n</a>'
|
||||
and '<a href="#Cn">C-2n</a>'. To use time as the random number
|
||||
seed, use option '<a href="qh-optq.htm#QRn">QR-1</a>'.</p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="Un">Un - max distance for a
|
||||
new, coplanar point </a></h3>
|
||||
|
||||
<p>This allows the user to set coplanarity. When pre-merging ('<a
|
||||
href="#Cn">C-n </a>', '<a href="#An">A-n</a>' or '<a
|
||||
href="qh-optq.htm#Qx">Qx</a>'), Qhull merges a new point into any
|
||||
coplanar facets. The default value for 'Un' is '<a href="#Vn">Vn</a>'.</p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="Vn">Vn - min distance for a
|
||||
visible facet </a></h3>
|
||||
|
||||
<p>This allows the user to set facet visibility. When adding a
|
||||
point to the convex hull, Qhull determines all facets that are
|
||||
visible from the point. A facet is visible if the distance from
|
||||
the point to the facet is greater than 'Vn'.</p>
|
||||
|
||||
<p>Without merging, the default value for 'Vn' is the roundoff
|
||||
error ('<a href="#En">En</a>'). With merging, the default value
|
||||
is the pre-merge centrum ('<a href="#Cn">C-n</a>') in 2-d or 3-d,
|
||||
or three times that in other dimensions. If the outside width is
|
||||
specified with option '<a href="#Wn">Wn </a>', the maximum,
|
||||
default value for 'Vn' is '<a href="#Wn">Wn</a>'.</p>
|
||||
|
||||
<p>Qhull warns if 'Vn' is greater than '<a href="#Wn">Wn</a>' and
|
||||
furthest outside ('<a href="qh-optq.htm#Qf">Qf</a>') is not
|
||||
selected; this combination usually results in flipped facets
|
||||
(i.e., reversed normals).</p>
|
||||
|
||||
<h3><a href="#prec">»</a><a name="Wn">Wn - min distance above
|
||||
plane for outside points</a></h3>
|
||||
|
||||
<p>Points are added to the convex hull only if they are clearly
|
||||
outside of a facet. A point is outside of a facet if its distance
|
||||
to the facet is greater than 'Wn'. Without pre-merging, the
|
||||
default value for 'Wn' is '<a href="#En">En </a>'. If the user
|
||||
specifies pre-merging and does not set 'Wn', than 'Wn' is set to
|
||||
the maximum of '<a href="#Cn">C-n</a>' and <i>maxcoord*(1 - </i><a
|
||||
href="#An"><i>A-n</i></a><i>)</i>.</p>
|
||||
|
||||
<p>This option is good for <a href="qh-impre.htm#approximate">approximating</a>
|
||||
a convex hull.</p>
|
||||
|
||||
<p>Options '<a href="qh-optq.htm#Qc">Qc</a>' and '<a
|
||||
href="qh-optq.htm#Qi">Qi</a>' use the minimum vertex to
|
||||
distinguish coplanar points from interior points.</p>
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
736
xs/src/qhull/html/qh-optf.htm
Normal file
|
|
@ -0,0 +1,736 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull format options (F)</title>
|
||||
</head>
|
||||
|
||||
<body><!-- Navigation links -->
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><IMG
|
||||
align=middle alt=[delaunay] height=100
|
||||
src="qh--dt.gif" width=100 ></a> Qhull format options (F)</h1>
|
||||
|
||||
<p>This section lists the format options for Qhull. These options
|
||||
are indicated by 'F' followed by a letter. See <A
|
||||
href="qh-opto.htm#output" >Output</a>, <a href="qh-optp.htm#print">Print</a>,
|
||||
and <a href="qh-optg.htm#geomview">Geomview</a> for other output
|
||||
options. </p>
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="index.htm#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
<a name="format">•</a> <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<h2>Additional input & output formats</h2>
|
||||
|
||||
<p>These options allow for automatic processing of Qhull output.
|
||||
Options '<a href="qh-opto.htm#i">i</a>', '<a href="qh-opto.htm#o">o</a>',
|
||||
'<a href="qh-opto.htm#n">n</a>', and '<a href="qh-opto.htm#p">p</a>'
|
||||
may also be used.</p>
|
||||
|
||||
<dl compact>
|
||||
<dt>
|
||||
<dd><b>Summary and control</b>
|
||||
<dt><a href="#FA">FA</a>
|
||||
<dd>compute total area and volume for option '<A
|
||||
href="qh-opto.htm#s">s</a>'
|
||||
|
||||
<dt><a href="#FV">FV</a>
|
||||
<dd>print average vertex (interior point for '<A
|
||||
href="qhalf.htm">qhalf</a>')
|
||||
<dt><a href="#FQ">FQ</a>
|
||||
<dd>print command for qhull and input
|
||||
<dt><a href="#FO">FO</a>
|
||||
<dd>print options to stderr or stdout
|
||||
<dt><a href="#FS">FS</a>
|
||||
<dd>print sizes: total area and volume
|
||||
<dt><a href="#Fs">Fs</a>
|
||||
<dd>print summary: dim, #points, total vertices and
|
||||
facets, #vertices, #facets, max outer and inner plane
|
||||
<dt><a href="#Fd">Fd</a>
|
||||
<dd>use format for input (offset first)
|
||||
<dt><a href="#FD">FD</a>
|
||||
<dd>use cdd format for normals (offset first)
|
||||
<dt><a href="#FM">FM</a>
|
||||
<dd>print Maple output (2-d and 3-d)
|
||||
<dt>
|
||||
<dt>
|
||||
<dd><b>Facets, points, and vertices</b>
|
||||
<dt><a href="#Fa">Fa</a>
|
||||
<dd>print area for each facet
|
||||
<dt><a href="#FC">FC</a>
|
||||
<dd>print centrum for each facet
|
||||
<dt><a href="#Fc">Fc</a>
|
||||
<dd>print coplanar points for each facet
|
||||
<dt><a href="#Fx">Fx</a>
|
||||
<dd>print extreme points (i.e., vertices) of convex hull.
|
||||
|
||||
<dt><a href="#FF">FF</a>
|
||||
<dd>print facets w/o ridges
|
||||
<dt><a href="#FI">FI</a>
|
||||
<dd>print ID for each facet
|
||||
<dt><a href="#Fi">Fi</a>
|
||||
<dd>print inner planes for each facet
|
||||
<dt><a href="#Fm">Fm</a>
|
||||
<dd>print merge count for each facet (511 max)
|
||||
<dt><a href="#FP">FP</a>
|
||||
<dd>print nearest vertex for coplanar points
|
||||
<dt><a href="#Fn">Fn</a>
|
||||
<dd>print neighboring facets for each facet
|
||||
<dt><a href="#FN">FN</a>
|
||||
<dd>print neighboring facets for each point
|
||||
<dt><a href="#Fo">Fo</a>
|
||||
<dd>print outer planes for each facet
|
||||
<dt><a href="#Ft">Ft</a>
|
||||
<dd>print triangulation with added points
|
||||
<dt><a href="#Fv">Fv</a>
|
||||
<dd>print vertices for each facet
|
||||
<dt>
|
||||
<dt>
|
||||
<dd><b>Delaunay, Voronoi, and halfspace</b>
|
||||
<dt><a href="#Fx">Fx</a>
|
||||
<dd>print extreme input sites of Delaunay triangulation
|
||||
or Voronoi diagram.
|
||||
<dt><a href="#Fp">Fp</a>
|
||||
<dd>print points at halfspace intersections
|
||||
<dt><a href="#Fi2">Fi</a>
|
||||
<dd>print separating hyperplanes for inner, bounded
|
||||
Voronoi regions
|
||||
<dt><a href="#Fo2">Fo</a>
|
||||
<dd>print separating hyperplanes for outer, unbounded
|
||||
Voronoi regions
|
||||
<dt><a href="#Fv2">Fv</a>
|
||||
<dd>print Voronoi diagram as ridges for each input pair
|
||||
<dt><a href="#FC">FC</a>
|
||||
<dd>print Voronoi vertex ("center") for each facet</dd>
|
||||
</dl>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fa">Fa - print area for each
|
||||
facet </a></h3>
|
||||
|
||||
<p>The first line is the number of facets. The remaining lines
|
||||
are the area for each facet, one facet per line. See '<A
|
||||
href="#FA" >FA</a>' and '<a href="#FS">FS</a>' for computing the total area and volume.</p>
|
||||
|
||||
<p>Use '<a href="qh-optp.htm#PAn">PAn</a>' for printing the n
|
||||
largest facets. Use option '<a href="qh-optp.htm#PFn">PFn</a>'
|
||||
for printing facets larger than <i>n</i>.</p>
|
||||
|
||||
<p>For Delaunay triangulations, the area is the area of each
|
||||
Delaunay triangle. For Voronoi vertices, the area is the area of
|
||||
the dual facet to each vertex. </p>
|
||||
|
||||
<p>Qhull uses the centrum and ridges to triangulate
|
||||
non-simplicial facets. The area for non-simplicial facets is the
|
||||
sum of the areas for each triangle. It is an approximation of the
|
||||
actual area. The ridge's vertices are projected to the facet's
|
||||
hyperplane. If a vertex is far below a facet (qh_WIDEcoplanar in <tt>user.h</tt>),
|
||||
the corresponding triangles are ignored.</p>
|
||||
|
||||
<p>For non-simplicial facets, vertices are often below the
|
||||
facet's hyperplane. If so, the approximation is less than the
|
||||
actual value and it may be significantly less. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FA">FA - compute total area
|
||||
and volume for option 's' </a></h3>
|
||||
|
||||
<p>With option 'FA', Qhull includes the total area and volume in
|
||||
the summary ('<a href="qh-opto.htm#s">s</a>'). Option '<a href="#FS">FS</a>' also includes the total area and volume.
|
||||
If facets are
|
||||
merged, the area and volume are approximations. Option 'FA' is
|
||||
automatically set for options '<a href="#Fa">Fa</a>', '<A
|
||||
href="qh-optp.htm#PAn" >PAn</a>', and '<a href="qh-optp.htm#PFn">PFn</a>'.
|
||||
</p>
|
||||
|
||||
<p>With '<a href="qdelaun.htm">qdelaunay</a> <A
|
||||
href="qh-opto.htm#s" >s</a> FA', Qhull computes the total area of
|
||||
the Delaunay triangulation. This equals the volume of the convex
|
||||
hull of the data points. With options '<a href="qdelau_f.htm">qdelaunay Qu</a>
|
||||
<a href="qh-opto.htm#s">s</a> FA', Qhull computes the
|
||||
total area of the furthest-site Delaunay triangulation. This
|
||||
equals of the total area of the Delaunay triangulation. </p>
|
||||
|
||||
<p>See '<a href="#Fa">Fa</a>' for further details. Option '<a href="#FS">FS</a>' also computes the total area and volume.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fc">Fc - print coplanar
|
||||
points for each facet </a></h3>
|
||||
|
||||
<p>The output starts with the number of facets. Then each facet
|
||||
is printed one per line. Each line is the number of coplanar
|
||||
points followed by the point ids. </p>
|
||||
|
||||
<p>By default, option 'Fc' reports coplanar points
|
||||
('<a href="qh-optq.htm#Qc">Qc</a>'). You may also use
|
||||
option '<a href="qh-optq.htm#Qi">Qi</a>'. Options 'Qi Fc' prints
|
||||
interior points while 'Qci Fc' prints both coplanar and interior
|
||||
points.
|
||||
|
||||
<p>Each coplanar point or interior point is assigned to the
|
||||
facet it is furthest above (resp., least below). </p>
|
||||
|
||||
<p>Use 'Qc <a href="qh-opto.htm#p">p</a>' to print vertex and
|
||||
coplanar point coordinates. Use '<a href="qh-optf.htm#Fv">Fv</a>'
|
||||
to print vertices. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FC">FC - print centrum or
|
||||
Voronoi vertex for each facet </a></h3>
|
||||
|
||||
<p>The output starts with the dimension followed by the number of
|
||||
facets. Then each facet centrum is printed, one per line. For
|
||||
<a href="qvoronoi.htm">qvoronoi</a>, Voronoi vertices are
|
||||
printed instead. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fd">Fd - use cdd format for
|
||||
input </a></h3>
|
||||
|
||||
<p>The input starts with comments. The first comment is reported
|
||||
in the summary. Data starts after a "begin" line. The
|
||||
next line is the number of points followed by the dimension plus
|
||||
one and "real" or "integer". Then the points
|
||||
are listed with a leading "1" or "1.0". The
|
||||
data ends with an "end" line.</p>
|
||||
|
||||
<p>For halfspaces ('<a href="qhalf.htm">qhalf</a> Fd'),
|
||||
the input format is the same. Each halfspace starts with its
|
||||
offset. The signs of the offset and coefficients are the
|
||||
opposite of Qhull's
|
||||
convention. The first two lines of the input may be an interior
|
||||
point in '<a href="#FV">FV</a>' format.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FD">FD - use cdd format for
|
||||
normals </a></h3>
|
||||
|
||||
<p>Option 'FD' prints normals ('<a href="qh-opto.htm#n">n</a>', '<A
|
||||
href="#Fo" >Fo</a>', '<a href="#Fi">Fi</a>') or points ('<A
|
||||
href="qh-opto.htm#p" >p</a>') in cdd format. The first line is the
|
||||
command line that invoked Qhull. Data starts with a
|
||||
"begin" line. The next line is the number of normals or
|
||||
points followed by the dimension plus one and "real".
|
||||
Then the normals or points are listed with the offset before the
|
||||
coefficients. The offset for points is 1.0. For normals,
|
||||
the offset and coefficients use the opposite sign from Qhull.
|
||||
The data ends with an "end" line.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FF">FF - print facets w/o
|
||||
ridges </a></h3>
|
||||
|
||||
<p>Option 'FF' prints all fields of all facets (as in '<A
|
||||
href="qh-opto.htm#f" >f</a>') without printing the ridges. This is
|
||||
useful in higher dimensions where a facet may have many ridges.
|
||||
For simplicial facets, options 'FF' and '<a href="qh-opto.htm#f">f
|
||||
</a>' are equivalent.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fi">Fi - print inner planes
|
||||
for each facet </a></h3>
|
||||
|
||||
<p>The first line is the dimension plus one. The second line is
|
||||
the number of facets. The remainder is one inner plane per line.
|
||||
The format is the same as option '<a href="qh-opto.htm#n">n</a>'.</p>
|
||||
|
||||
<p>The inner plane is a plane that is below the facet's vertices.
|
||||
It is an offset from the facet's hyperplane. It includes a
|
||||
roundoff error for computing the vertex distance.</p>
|
||||
|
||||
<p>Note that the inner planes for Geomview output ('<A
|
||||
href="qh-optg.htm#Gi" >Gi</a>') include an additional offset for
|
||||
vertex visualization and roundoff error. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fi2">Fi - print separating
|
||||
hyperplanes for inner, bounded Voronoi regions</a></h3>
|
||||
|
||||
<p>With <a href="qvoronoi.htm" >qvoronoi</a>, 'Fi' prints the
|
||||
separating hyperplanes for inner, bounded regions of the Voronoi
|
||||
diagram. The first line is the number of ridges. Then each
|
||||
hyperplane is printed, one per line. A line starts with the
|
||||
number of indices and floats. The first pair of indices indicates
|
||||
an adjacent pair of input sites. The next <i>d</i> floats are the
|
||||
normalized coefficients for the hyperplane, and the last float is
|
||||
the offset. The hyperplane is oriented toward '<A
|
||||
href="qh-optq.htm#QVn" >QVn</a>' (if defined), or the first input
|
||||
site of the pair. </p>
|
||||
|
||||
<p>Use '<a href="qh-optf.htm#Fo2">Fo</a>' for unbounded regions,
|
||||
and '<a href="qh-optf.htm#Fv2">Fv</a>' for the corresponding
|
||||
Voronoi vertices. </p>
|
||||
|
||||
<p>Use '<a href="qh-optt.htm#Tv">Tv</a>' to verify that the
|
||||
hyperplanes are perpendicular bisectors. It will list relevant
|
||||
statistics to stderr. The hyperplane is a perpendicular bisector
|
||||
if the midpoint of the input sites lies on the plane, all Voronoi
|
||||
vertices in the ridge lie on the plane, and the angle between the
|
||||
input sites and the plane is ninety degrees. This is true if all
|
||||
statistics are zero. Roundoff and computation errors make these
|
||||
non-zero. The deviations appear to be largest when the
|
||||
corresponding Delaunay triangles are large and thin; for example,
|
||||
the Voronoi diagram of nearly cospherical points. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FI">FI - print ID for each
|
||||
facet </a></h3>
|
||||
|
||||
<p>Print facet identifiers. These are used internally and listed
|
||||
with options '<a href="qh-opto.htm#f">f</a>' and '<a href="#FF">FF</a>'.
|
||||
Options '<a href="#Fn">Fn </a>' and '<a href="#FN">FN</a>' use
|
||||
facet identifiers for negative indices. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fm">Fm - print merge count
|
||||
for each facet </a></h3>
|
||||
|
||||
<p>The first line is the number of facets. The remainder is the
|
||||
number of merges for each facet, one per line. At most 511 merges
|
||||
are reported for a facet. See '<a href="qh-optp.htm#PMn">PMn</a>'
|
||||
for printing the facets with the most merges. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FM">FM - print Maple
|
||||
output </a></h3>
|
||||
|
||||
<p>Qhull writes a Maple file for 2-d and 3-d convex hulls,
|
||||
2-d and 3-d halfspace intersections,
|
||||
and 2-d Delaunay triangulations. Qhull produces a 2-d
|
||||
or 3-d plot.
|
||||
|
||||
<p><i>Warning</i>: This option has not been tested in Maple.
|
||||
|
||||
<p>[From T. K. Abraham with help from M. R. Feinberg and N. Platinova.]
|
||||
The following steps apply while working within the
|
||||
Maple worksheet environment :
|
||||
<ol>
|
||||
<li>Generate the data and store it as an array . For example, in 3-d, data generated
|
||||
in Maple is of the form : x[i],y[i],z[i]
|
||||
<p>
|
||||
<li>Create a single variable and assign the entire array of data points to this variable.
|
||||
Use the "seq" command within square brackets as shown in the following example.
|
||||
(The square brackets are essential for the rest of the steps to work.)
|
||||
<p>
|
||||
>data:=[seq([x[i],y[i],z[i]],i=1..n)]:# here n is the number of data points
|
||||
|
||||
<li>Next we need to write the data to a file to be read by qhull. Before
|
||||
writing the data to a file, make sure that the qhull executable files and
|
||||
the data file lie in the same subdirectory. If the executable files are
|
||||
stored in the "C:\qhull3.1\" subdirectory, then save the file in the same
|
||||
subdirectory, say "C:\qhull3.1\datafile.txt". For the sake of integrity of
|
||||
the data file , it is best to first ensure that the data file does not
|
||||
exist before writing into the data file. This can be done by running a
|
||||
delete command first . To write the data to the file, use the "writedata"
|
||||
and the "writedata[APPEND]" commands as illustrated in the following example :
|
||||
<p>
|
||||
>system("del c:\\qhull3.1\\datafile.txt");#To erase any previous versions of the file
|
||||
<br>>writedata("c:\\qhull3.1\\datafile.txt ",[3, nops(data)]);#writing in qhull format
|
||||
<br>>writedata[APPEND]("c:\\ qhull3.1\\datafile.txt ", data);#writing the data points
|
||||
<li>
|
||||
Use the 'FM' option to produce Maple output. Store the output as a ".mpl" file.
|
||||
For example, using the file we created above, we type the following (in DOS environment)
|
||||
<p>
|
||||
qconvex s FM <datafile.txt >dataplot.mpl
|
||||
|
||||
<li>
|
||||
To read 3-d output in Maple, we use the 'read' command followed by
|
||||
a 'display3d' command. For example (in Maple environment):
|
||||
<p>
|
||||
>with (plots):
|
||||
<br>>read `c:\\qhull3.1\\dataplot.mpl`:#IMPORTANT - Note that the punctuation mark used is ' and NOT '. The correct punctuation mark is the one next to the key for "1" (not the punctuation mark near the enter key)
|
||||
<br>> qhullplot:=%:
|
||||
<br>> display3d(qhullplot);
|
||||
</ol>
|
||||
|
||||
<p>For Delaunay triangulation orthogonal projection is better.
|
||||
|
||||
<p>For halfspace intersections, Qhull produces the dual
|
||||
convex hull.
|
||||
|
||||
<p>See <a href="qh-faq.htm#math">Is Qhull available for Maple?</a>
|
||||
for other URLs.
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fn">Fn - print neighboring
|
||||
facets for each facet </a></h3>
|
||||
|
||||
<p>The output starts with the number of facets. Then each facet
|
||||
is printed one per line. Each line is the number of neighbors
|
||||
followed by an index for each neighbor. The indices match the
|
||||
other facet output formats.</p>
|
||||
|
||||
<p>For simplicial facets, each neighbor is opposite
|
||||
the corresponding vertex (option '<a href="#Fv">Fv</a>').
|
||||
Do not compare to option '<a href="qh-opto.htm#i">i</a>'. Option 'i'
|
||||
orients facets by reversing the order of two vertices. For non-simplicial facets,
|
||||
the neighbors are unordered.
|
||||
|
||||
<p>A negative index indicates an unprinted facet due to printing
|
||||
only good facets ('<a href="qh-optp.htm#Pg">Pg</a>', <a href="qdelaun.htm" >qdelaunay</a>,
|
||||
<a href="qvoronoi.htm" >qvoronoi</a>). It
|
||||
is the negation of the facet's ID (option '<a href="#FI">FI</a>').
|
||||
For example, negative indices are used for facets "at
|
||||
infinity" in the Delaunay triangulation.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FN">FN - print neighboring
|
||||
facets for each point </a></h3>
|
||||
|
||||
<p>The first line is the number of points. Then each point is
|
||||
printed, one per line. For unassigned points (either interior or
|
||||
coplanar), the line is "0". For assigned coplanar
|
||||
points ('<a href="qh-optq.htm#Qc">Qc</a>'), the line is
|
||||
"1" followed by the index of the facet that is furthest
|
||||
below the point. For assigned interior points ('<A
|
||||
href="qh-optq.htm#Qi" >Qi</a>'), the line is "1"
|
||||
followed by the index of the facet that is least above the point.
|
||||
For vertices that do not belong to good facet, the line is
|
||||
"0"</p>
|
||||
|
||||
<p>For vertices of good facets, the line is the number of
|
||||
neighboring facets followed by the facet indices. The indices
|
||||
correspond to the other '<a href="#format">F</a>' formats. In 4-d
|
||||
and higher, the facets are sorted by index. In 3-d, the facets
|
||||
are in adjacency order (not oriented).</p>
|
||||
|
||||
<p>A negative index indicates an unprinted facet due to printing
|
||||
only good facets (<a href="qdelaun.htm" >qdelaunay</a>,
|
||||
<a href="qvoronoi.htm" >qvoronoi</a>, '<a href="qh-optp.htm#Pdk">Pdk</a>',
|
||||
'<a href="qh-optp.htm#Pg">Pg</a>'). It is the negation of the
|
||||
facet's ID ('<a href="#FI"> FI</a>'). For example, negative
|
||||
indices are used for facets "at infinity" in the
|
||||
Delaunay triangulation.</p>
|
||||
|
||||
<p>For Voronoi vertices, option 'FN' lists the vertices of the
|
||||
Voronoi region for each input site. Option 'FN' lists the regions
|
||||
in site ID order. Option 'FN' corresponds to the second half of
|
||||
option '<a href="qh-opto.htm#o">o</a>'. To convert from 'FN' to '<A
|
||||
href="qh-opto.htm#o" >o</a>', replace negative indices with zero
|
||||
and increment non-negative indices by one. </p>
|
||||
|
||||
<p>If you are using the <a href="qh-code.htm#library">Qhull
|
||||
library</a> or <a href="qh-code.htm#cpp">C++ interface</a>, option 'FN' has the side effect of reordering the
|
||||
neighbors for a vertex </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fo">Fo - print outer planes
|
||||
for each facet </a></h3>
|
||||
|
||||
<p>The first line is the dimension plus one. The second line is
|
||||
the number of facets. The remainder is one outer plane per line.
|
||||
The format is the same as option '<a href="qh-opto.htm#n">n</a>'.</p>
|
||||
|
||||
<p>The outer plane is a plane that is above all points. It is an
|
||||
offset from the facet's hyperplane. It includes a roundoff error
|
||||
for computing the point distance. When testing the outer plane
|
||||
(e.g., '<a href="qh-optt.htm#Tv">Tv</a>'), another roundoff error
|
||||
should be added for the tested point.</p>
|
||||
|
||||
<p>If outer planes are not checked ('<a href="qh-optq.htm#Q5">Q5</a>')
|
||||
or not computed (!qh_MAXoutside), the maximum, computed outside
|
||||
distance is used instead. This can be much larger than the actual
|
||||
outer planes.</p>
|
||||
|
||||
<p>Note that the outer planes for Geomview output ('<A
|
||||
href="qh-optg.htm#G" >G</a>') include an additional offset for
|
||||
vertex/point visualization, 'lines closer,' and roundoff error.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fo2">Fo - print separating
|
||||
hyperplanes for outer, unbounded Voronoi regions</a></h3>
|
||||
|
||||
<p>With <a href="qvoronoi.htm" >qvoronoi</a>, 'Fo' prints the
|
||||
separating hyperplanes for outer, unbounded regions of the
|
||||
Voronoi diagram. The first line is the number of ridges. Then
|
||||
each hyperplane is printed, one per line. A line starts with the
|
||||
number of indices and floats. The first pair of indices indicates
|
||||
an adjacent pair of input sites. The next <i>d</i> floats are the
|
||||
normalized coefficients for the hyperplane, and the last float is
|
||||
the offset. The hyperplane is oriented toward '<A
|
||||
href="qh-optq.htm#QVn" >QVn</a>' (if defined), or the first input
|
||||
site of the pair. </p>
|
||||
|
||||
<p>Option 'Fo' gives the hyperplanes for the unbounded rays of
|
||||
the unbounded regions of the Voronoi diagram. Each hyperplane
|
||||
goes through the midpoint of the corresponding input sites. The
|
||||
rays are directed away from the input sites. </p>
|
||||
|
||||
<p>Use '<a href="qh-optf.htm#Fi2">Fi</a>' for bounded regions,
|
||||
and '<a href="qh-optf.htm#Fv2">Fv</a>' for the corresponding
|
||||
Voronoi vertices. Use '<a href="qh-optt.htm#Tv">Tv</a>' to verify
|
||||
that the corresponding Voronoi vertices lie on the hyperplane. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FO">FO - print list of
|
||||
selected options </a></h3>
|
||||
|
||||
<p>Lists selected options and default values to stderr.
|
||||
Additional 'FO's are printed to stdout. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fp">Fp - print points at
|
||||
halfspace intersections</a></h3>
|
||||
|
||||
<p>The first line is the number of intersection points. The
|
||||
remainder is one intersection point per line. A intersection
|
||||
point is the intersection of <i>d</i> or more halfspaces from
|
||||
'<a href="qhalf.htm">qhalf</a>'. It corresponds to a
|
||||
facet of the dual polytope. The "infinity" point
|
||||
[-10.101,-10.101,...] indicates an unbounded intersection.</p>
|
||||
|
||||
<p>If [x,y,z] are the dual facet's normal coefficients and <i>b<0</i>
|
||||
is its offset, the halfspace intersection occurs at
|
||||
[x/-b,y/-b,z/-b] plus the interior point. If <i>b>=0</i>, the
|
||||
halfspace intersection is unbounded. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FP">FP - print nearest
|
||||
vertex for coplanar points </a></h3>
|
||||
|
||||
<p>The output starts with the number of coplanar points. Then
|
||||
each coplanar point is printed one per line. Each line is the
|
||||
point ID of the closest vertex, the point ID of the coplanar
|
||||
point, the corresponding facet ID, and the distance. Sort the
|
||||
lines to list the coplanar points nearest to each vertex. </p>
|
||||
|
||||
<p>Use options '<a href="qh-optq.htm#Qc">Qc</a>' and/or '<A
|
||||
href="qh-optq.htm#Qi" >Qi</a>' with 'FP'. Options 'Qc FP' prints
|
||||
coplanar points while 'Qci FP' prints coplanar and interior
|
||||
points. Option 'Qc' is automatically selected if 'Qi' is not
|
||||
selected.
|
||||
|
||||
<p>For Delaunay triangulations (<a href="qdelaun.htm" >qdelaunay</a>
|
||||
or <a href="qvoronoi.htm" >qvoronoi</a>), a coplanar point is nearly
|
||||
incident to a vertex. The distance is the distance in the
|
||||
original point set.</p>
|
||||
|
||||
<p>If imprecision problems are severe, Qhull will delete input
|
||||
sites when constructing the Delaunay triangulation. Option 'FP' will
|
||||
list these points along with coincident points.</p>
|
||||
|
||||
<p>If there are many coplanar or coincident points and non-simplicial
|
||||
facets are triangulated ('<a href="qh-optq.htm#Qt">Qt</a>'), option
|
||||
'FP' may be inefficient. It redetermines the original vertex set
|
||||
for each coplanar point.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FQ">FQ - print command for
|
||||
qhull and input </a></h3>
|
||||
|
||||
<p>Prints qhull and input command, e.g., "rbox 10 s | qhull
|
||||
FQ". Option 'FQ' may be repeated multiple times.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fs">Fs - print summary</a></h3>
|
||||
|
||||
<p>The first line consists of number of integers ("10")
|
||||
followed by the:
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>number of points
|
||||
<li>number of vertices
|
||||
<li>number of facets
|
||||
<li>number of vertices selected for output
|
||||
<li>number of facets selected for output
|
||||
<li>number of coplanar points for selected facets
|
||||
<li>number of nonsimplicial or merged facets selected for
|
||||
output
|
||||
<LI>number of deleted vertices</LI>
|
||||
<LI>number of triangulated facets ('<a href="qh-optq.htm#Qt">Qt</a>')</LI>
|
||||
</ul>
|
||||
|
||||
<p>The second line consists of the number of reals
|
||||
("2") followed by the:
|
||||
<ul>
|
||||
<li>maximum offset to an outer plane
|
||||
<li>minimum offset to an inner plane.</li>
|
||||
</ul>
|
||||
Roundoff and joggle are included.
|
||||
<P></P>
|
||||
|
||||
<p>For Delaunay triangulations and Voronoi diagrams, the
|
||||
number of deleted vertices should be zero. If greater than zero, then the
|
||||
input is highly degenerate and coplanar points are not necessarily coincident
|
||||
points. For example, <tt>'RBOX 1000 s W1e-13 t995138628 | QHULL d Qbb'</tt> reports
|
||||
deleted vertices; the input is nearly cospherical.</p>
|
||||
|
||||
<P>Later versions of Qhull may produce additional integers or reals.</P>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FS">FS - print sizes</a></h3>
|
||||
|
||||
<p>The first line consists of the number of integers
|
||||
("0"). The second line consists of the number of reals
|
||||
("2"), followed by the total facet area, and the total
|
||||
volume. Later versions of Qhull may produce additional integers
|
||||
or reals.</p>
|
||||
|
||||
<p>The total volume measures the volume of the intersection of
|
||||
the halfspaces defined by each facet. It is computed from the
|
||||
facet area. Both area and volume are approximations for
|
||||
non-simplicial facets. See option '<a href="#Fa">Fa </a>' for
|
||||
further notes. Option '<a href="#FA">FA </a>' also computes the total area and volume. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Ft">Ft - print triangulation</a></h3>
|
||||
|
||||
<p>Prints a triangulation with added points for non-simplicial
|
||||
facets. The output is </p>
|
||||
|
||||
<ul>
|
||||
<li>The first line is the dimension
|
||||
<li>The second line is the number of points, the number
|
||||
of facets, and the number of ridges.
|
||||
<li>All of the input points follow, one per line.
|
||||
<li>The centrums follow, one per non-simplicial facet
|
||||
<li>Then the facets follow as a list of point indices
|
||||
preceded by the number of points. The simplices are
|
||||
oriented. </li>
|
||||
</ul>
|
||||
|
||||
<p>For convex hulls with simplicial facets, the output is the
|
||||
same as option '<a href="qh-opto.htm#o">o</a>'.</p>
|
||||
|
||||
<p>The added points are the centrums of the non-simplicial
|
||||
facets. Except for large facets, the centrum is the average
|
||||
vertex coordinate projected to the facet's hyperplane. Large
|
||||
facets may use an old centrum to avoid recomputing the centrum
|
||||
after each merge. In either case, the centrum is clearly below
|
||||
neighboring facets. See <a href="qh-impre.htm">Precision issues</a>.
|
||||
</p>
|
||||
|
||||
<p>The new simplices will not be clearly convex with their
|
||||
neighbors and they will not satisfy the Delaunay property. They
|
||||
may even have a flipped orientation. Use triangulated input ('<A
|
||||
href="qh-optq.htm#Qt">Qt</a>') for Delaunay triangulations.
|
||||
|
||||
<p>For Delaunay triangulations with simplicial facets, the output is the
|
||||
same as option '<a href="qh-opto.htm#o">o</a>' without the lifted
|
||||
coordinate. Since 'Ft' is invalid for merged Delaunay facets, option
|
||||
'Ft' is not available for qdelaunay or qvoronoi. It may be used with
|
||||
joggled input ('<a href="qh-optq.htm#QJn" >QJ</a>') or triangulated output ('<A
|
||||
href="qh-optq.htm#Qt" >Qt</a>'), for example, rbox 10 c G 0.01 | qhull d QJ Ft</p>
|
||||
|
||||
<p>If you add a point-at-infinity with '<a href="qh-optq.htm#Qz">Qz</a>',
|
||||
it is printed after the input sites and before any centrums. It
|
||||
will not be used in a Delaunay facet.</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fv">Fv - print vertices for
|
||||
each facet</a></h3>
|
||||
|
||||
<p>The first line is the number of facets. Then each facet is
|
||||
printed, one per line. Each line is the number of vertices
|
||||
followed by the corresponding point ids. Vertices are listed in
|
||||
the order they were added to the hull (the last one added is the
|
||||
first listed).
|
||||
</p>
|
||||
<p>Option '<a href="qh-opto.htm#i">i</a>' also lists the vertices,
|
||||
but it orients facets by reversing the order of two
|
||||
vertices. Option 'i' triangulates non-simplicial, 4-d and higher facets by
|
||||
adding vertices for the centrums.
|
||||
</p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fv2">Fv - print Voronoi
|
||||
diagram</a></h3>
|
||||
|
||||
<p>With <a href="qvoronoi.htm" >qvoronoi</a>, 'Fv' prints the
|
||||
Voronoi diagram or furthest-site Voronoi diagram. The first line
|
||||
is the number of ridges. Then each ridge is printed, one per
|
||||
line. The first number is the count of indices. The second pair
|
||||
of indices indicates a pair of input sites. The remaining indices
|
||||
list the corresponding ridge of Voronoi vertices. Vertex 0 is the
|
||||
vertex-at-infinity. It indicates an unbounded ray. </p>
|
||||
|
||||
<p>All vertices of a ridge are coplanar. If the ridge is
|
||||
unbounded, add the midpoint of the pair of input sites. The
|
||||
unbounded ray is directed from the Voronoi vertices to infinity. </p>
|
||||
|
||||
<p>Use '<a href="qh-optf.htm#Fo2">Fo</a>' for separating
|
||||
hyperplanes of outer, unbounded regions. Use '<A
|
||||
href="qh-optf.htm#Fi2" >Fi</a>' for separating hyperplanes of
|
||||
inner, bounded regions. </p>
|
||||
|
||||
<p>Option 'Fv' does not list ridges that require more than one
|
||||
midpoint. For example, the Voronoi diagram of cospherical points
|
||||
lists zero ridges (e.g., 'rbox 10 s | qvoronoi Fv Qz').
|
||||
Other examples are the Voronoi diagrams of a rectangular mesh
|
||||
(e.g., 'rbox 27 M1,0 | qvoronoi Fv') or a point set with
|
||||
a rectangular corner (e.g.,
|
||||
'rbox P4,4,4 P4,2,4 P2,4,4 P4,4,2 10 | qvoronoi Fv').
|
||||
Both cases miss unbounded rays at the corners.
|
||||
To determine these ridges, surround the points with a
|
||||
large cube (e.g., 'rbox 10 s c G2.0 | qvoronoi Fv Qz').
|
||||
The cube needs to be large enough to bound all Voronoi regions of the original point set.
|
||||
Please report any other cases that are missed. If you
|
||||
can formally describe these cases or
|
||||
write code to handle them, please send email to <A
|
||||
href="mailto:qhull@qhull.org" >qhull@qhull.org</a>. </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="FV">FV - print average
|
||||
vertex </a></h3>
|
||||
|
||||
<p>The average vertex is the average of all vertex coordinates.
|
||||
It is an interior point for halfspace intersection. The first
|
||||
line is the dimension and "1"; the second line is the
|
||||
coordinates. For example,</p>
|
||||
|
||||
<blockquote>
|
||||
<p>qconvex FV <A
|
||||
href="qh-opto.htm#n">n</a> | qhalf <a href="#Fp">Fp</a></p>
|
||||
</blockquote>
|
||||
|
||||
<p>prints the extreme points of the original point set (roundoff
|
||||
included). </p>
|
||||
|
||||
<h3><a href="#format">»</a><a name="Fx">Fx - print extreme
|
||||
points (vertices) of convex hulls and Delaunay triangulations</a></h3>
|
||||
|
||||
<p>The first line is the number of points. The following lines
|
||||
give the index of the corresponding points. The first point is
|
||||
'0'. </p>
|
||||
|
||||
<p>In 2-d, the extreme points (vertices) are listed in
|
||||
counterclockwise order (by qh_ORIENTclock in user.h). </p>
|
||||
|
||||
<p>In 3-d and higher convex hulls, the extreme points (vertices)
|
||||
are sorted by index. This is the same order as option '<A
|
||||
href="qh-opto.htm#p" >p</a>' when it doesn't include coplanar or
|
||||
interior points. </p>
|
||||
|
||||
<p>For Delaunay triangulations, 'Fx' lists the extreme
|
||||
points of the input sites (i.e., the vertices of their convex hull). The points
|
||||
are unordered. <!-- Navigation links --> </p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p><!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><IMG align=middle
|
||||
height=40 src="qh--geom.gif" width=40 ></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created:
|
||||
Sept. 25, 1995 --- <!-- hhmts start -->Last modified: see top
|
||||
<!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
274
xs/src/qhull/html/qh-optg.htm
Normal file
|
|
@ -0,0 +1,274 @@
|
|||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull Geomview options (G)</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a> Qhull Geomview options (G)</h1>
|
||||
|
||||
This section lists the Geomview options for Qhull. These options are
|
||||
indicated by 'G' followed by a letter. See
|
||||
<a href="qh-opto.htm#output">Output</a>, <a href="qh-optp.htm#print">Print</a>,
|
||||
and <a href="qh-optf.htm#format">Format</a> for other output options.
|
||||
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="index.htm#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
<a name="geomview">•</a> <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<h2>Geomview output options</h2>
|
||||
|
||||
<p><a href="http://www.geomview.org">Geomview</a> is the graphical
|
||||
viewer for visualizing Qhull output in 2-d, 3-d and 4-d.</p>
|
||||
|
||||
<p>Geomview displays each facet of the convex hull. The color of
|
||||
a facet is determined by the coefficients of the facet's normal
|
||||
equation. For imprecise hulls, Geomview displays the inner and
|
||||
outer hull. Geomview can also display points, ridges, vertices,
|
||||
coplanar points, and facet intersections. </p>
|
||||
|
||||
<p>For 2-d Delaunay triangulations, Geomview displays the
|
||||
corresponding paraboloid. Geomview displays the 2-d Voronoi
|
||||
diagram. For halfspace intersections, it displays the
|
||||
dual convex hull. </p>
|
||||
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="#G">G</a></dt>
|
||||
<dd>display Geomview output</dd>
|
||||
<dt><a href="#Gt">Gt</a></dt>
|
||||
<dd>display transparent 3-d Delaunay triangulation</dd>
|
||||
<dt><a href="#GDn">GDn</a></dt>
|
||||
<dd>drop dimension n in 3-d and 4-d output </dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Specific</b></dd>
|
||||
<dt><a href="#Ga">Ga</a></dt>
|
||||
<dd>display all points as dots</dd>
|
||||
<dt><a href="#Gc">Gc</a></dt>
|
||||
<dd>display centrums (2-d, 3-d)</dd>
|
||||
<dt><a href="#Gp">Gp</a></dt>
|
||||
<dd>display coplanar points and vertices as radii</dd>
|
||||
<dt><a href="#Gh">Gh</a></dt>
|
||||
<dd>display hyperplane intersections</dd>
|
||||
<dt><a href="#Gi">Gi</a></dt>
|
||||
<dd>display inner planes only (2-d, 3-d)</dd>
|
||||
<dt><a href="#Go">Go</a></dt>
|
||||
<dd>display outer planes only (2-d, 3-d)</dd>
|
||||
<dt><a href="#Gr">Gr</a></dt>
|
||||
<dd>display ridges (3-d)</dd>
|
||||
<dt><a href="#Gv">Gv</a></dt>
|
||||
<dd>display vertices as spheres</dd>
|
||||
<dt><a href="#Gn">Gn</a></dt>
|
||||
<dd>do not display planes</dd>
|
||||
|
||||
</dl>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="G">G - produce output for
|
||||
viewing with Geomview</a></h3>
|
||||
|
||||
<p>By default, option 'G' displays edges in 2-d, outer planes in
|
||||
3-d, and ridges in 4-d.</p>
|
||||
|
||||
<p>A ridge can be explicit or implicit. An explicit ridge is a <i>(d-1)</i>-dimensional
|
||||
simplex between two facets. In 4-d, the explicit ridges are
|
||||
triangles. An implicit ridge is the topological intersection of
|
||||
two neighboring facets. It is the union of explicit ridges.</p>
|
||||
|
||||
<p>For non-simplicial 4-d facets, the explicit ridges can be
|
||||
quite complex. When displaying a ridge in 4-d, Qhull projects the
|
||||
ridge's vertices to one of its facets' hyperplanes. Use '<a
|
||||
href="#Gh">Gh</a>' to project ridges to the intersection of both
|
||||
hyperplanes. This usually results in a cleaner display. </p>
|
||||
|
||||
<p>For 2-d Delaunay triangulations, Geomview displays the
|
||||
corresponding paraboloid. Geomview displays the 2-d Voronoi
|
||||
diagram. For halfspace intersections, it displays the
|
||||
dual convex hull.
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Ga">Ga - display all
|
||||
points as dots </a></h3>
|
||||
|
||||
<p>Each input point is displayed as a green dot.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gc">Gc - display centrums
|
||||
(3-d) </a></h3>
|
||||
|
||||
<p>The centrum is defined by a green radius sitting on a blue
|
||||
plane. The plane corresponds to the facet's hyperplane. If you
|
||||
sight along a facet's hyperplane, you will see that all
|
||||
neighboring centrums are below the facet. The radius is defined
|
||||
by '<a href="qh-optc.htm#Cn">C-n</a>' or '<a
|
||||
href="qh-optc.htm#Cn2">Cn</a>'.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="GDn">GDn - drop dimension
|
||||
n in 3-d and 4-d output </a></h3>
|
||||
|
||||
<p>The result is a 2-d or 3-d object. In 4-d, this corresponds to
|
||||
viewing the 4-d object from the nth axis without perspective.
|
||||
It's best to view 4-d objects in pieces. Use the '<a
|
||||
href="qh-optp.htm#Pdk">Pdk</a>' '<a href="qh-optp.htm#Pg">Pg</a>'
|
||||
'<a href="qh-optp.htm#PG">PG</a>' '<a href="qh-optq.htm#QGn">QGn</a>'
|
||||
and '<a href="qh-optq.htm#QVn">QVn</a>' options to select a few
|
||||
facets. If one of the facets is perpendicular to an axis, then
|
||||
projecting along that axis will show the facet exactly as it is
|
||||
in 4-d. If you generate many facets, use Geomview's <tt>ginsu</tt>
|
||||
module to view the interior</p>
|
||||
|
||||
<p>To view multiple 4-d dimensions at once, output the object
|
||||
without 'GDn' and read it with Geomview's <tt>ndview</tt>. As you
|
||||
rotate the object in one set of dimensions, you can see how it
|
||||
changes in other sets of dimensions.</p>
|
||||
|
||||
<p>For additional control over 4-d objects, output the object
|
||||
without 'GDn' and read it with Geomview's <tt>4dview</tt>. You
|
||||
can slice the object along any 4-d plane. You can also flip the
|
||||
halfspace that's deleted when slicing. By combining these
|
||||
features, you can get some interesting cross sections.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gh">Gh - display
|
||||
hyperplane intersections (3-d, 4-d)</a></h3>
|
||||
|
||||
<p>In 3-d, the intersection is a black line. It lies on two
|
||||
neighboring hyperplanes, c.f., the blue squares associated with
|
||||
centrums ('<a href="#Gc">Gc </a>'). In 4-d, the ridges are
|
||||
projected to the intersection of both hyperplanes. If you turn on
|
||||
edges (Geomview's 'appearances' menu), each triangle corresponds
|
||||
to one ridge. The ridges may overlap each other.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gi">Gi - display inner
|
||||
planes only (2-d, 3-d)</a></h3>
|
||||
|
||||
<p>The inner plane of a facet is below all of its vertices. It is
|
||||
parallel to the facet's hyperplane. The inner plane's color is
|
||||
the opposite of the outer plane's color, i.e., <i>[1-r,1-g,1-b] </i>.
|
||||
Its edges are determined by the vertices.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gn">Gn - do not display
|
||||
planes </a></h3>
|
||||
|
||||
<p>By default, Geomview displays the precise plane (no merging)
|
||||
or both inner and output planes (if merging). If merging,
|
||||
Geomview does not display the inner plane if the the difference
|
||||
between inner and outer is too small.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Go">Go - display outer
|
||||
planes only (2-d, 3-d)</a></h3>
|
||||
|
||||
<p>The outer plane of a facet is above all input points. It is
|
||||
parallel to the facet's hyperplane. Its color is determined by
|
||||
the facet's normal, and its edges are determined by the vertices.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gp">Gp - display coplanar
|
||||
points and vertices as radii </a></h3>
|
||||
|
||||
<p>Coplanar points ('<a href="qh-optq.htm#Qc">Qc</a>'), interior
|
||||
points ('<a href="qh-optq.htm#Qi">Qi</a>'), outside points ('<a
|
||||
href="qh-optt.htm#TCn">TCn</a>' or '<a href="qh-optt.htm#TVn">TVn</a>'),
|
||||
and vertices are displayed as red and yellow radii. The radii are
|
||||
perpendicular to the corresponding facet. Vertices are aligned
|
||||
with an interior point. The radii define a ball which corresponds
|
||||
to the imprecision of the point. The imprecision is the maximum
|
||||
of the roundoff error, the centrum radius, and <i>maxcoord * (1 -
|
||||
</i><a href="qh-optc.htm#An"><i>A-n</i></a><i>)</i>. It is at
|
||||
least 1/20'th of the maximum coordinate, and ignores post merging
|
||||
if pre-merging is done.</p>
|
||||
|
||||
<p>If '<a href="qh-optg.htm#Gv">Gv</a>' (print vertices as
|
||||
spheres) is also selected, option 'Gp' displays coplanar
|
||||
points as radii. Select options <a href="qh-optq.htm#Qc">Qc</a>'
|
||||
and/or '<a href="qh-optq.htm#Qi">Qi</a>'. Options 'Qc Gpv' displays
|
||||
coplanar points while 'Qci Gpv' displays coplanar and interior
|
||||
points. Option 'Qc' is automatically selected if 'Qi' is not
|
||||
selected with options 'Gpv'.
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gr">Gr - display ridges
|
||||
(3-d) </a></h3>
|
||||
|
||||
<p>A ridge connects the two vertices that are shared by
|
||||
neighboring facets. It is displayed in green. A ridge is the
|
||||
topological edge between two facets while the hyperplane
|
||||
intersection is the geometric edge between two facets. Ridges are
|
||||
always displayed in 4-d.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gt">Gt - transparent 3-d
|
||||
Delaunay </a></h3>
|
||||
|
||||
<p>A 3-d Delaunay triangulation looks like a convex hull with
|
||||
interior facets. Option 'Gt' removes the outside ridges to reveal
|
||||
the outermost facets. It automatically sets options '<a
|
||||
href="#Gr">Gr</a>' and '<a href="#GDn">GDn</a>'. See example <a
|
||||
href="qh-eg.htm#17f">eg.17f.delaunay.3</a>.</p>
|
||||
|
||||
<h3><a href="#geomview">»</a><a name="Gv">Gv - display vertices
|
||||
as spheres (2-d, 3-d)</a></h3>
|
||||
|
||||
<p>The radius of the sphere corresponds to the imprecision of the
|
||||
data. See '<a href="#Gp">Gp</a>' for determining the radius.</p>
|
||||
|
||||
<!-- Navigation links -->
|
||||
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
<!-- GC common information -->
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
353
xs/src/qhull/html/qh-opto.htm
Normal file
|
|
@ -0,0 +1,353 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull output options</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a> Qhull output options</h1>
|
||||
|
||||
<p>This section lists the output options for Qhull. These options
|
||||
are indicated by lower case characters. See <a
|
||||
href="qh-optf.htm#format">Formats</a>, <a
|
||||
href="qh-optp.htm#print">Print</a>, and <a
|
||||
href="qh-optg.htm#geomview">Geomview</a> for other output
|
||||
options. </p>
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="index.htm#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
<a name="output">•</a> <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<h2>Output options</h2>
|
||||
|
||||
<p>Qhull prints its output to standard out. All output is printed
|
||||
text. The default output is a summary (option '<a href="#s">s</a>').
|
||||
Other outputs may be specified as follows. </p>
|
||||
|
||||
<dl compact>
|
||||
<dt><a href="#f">f</a></dt>
|
||||
<dd>print all fields of all facets</dd>
|
||||
<dt><a href="#n">n</a></dt>
|
||||
<dd>print hyperplane normals with offsets</dd>
|
||||
<dt><a href="#m">m</a></dt>
|
||||
<dd>print Mathematica output (2-d and 3-d)</dd>
|
||||
<dt><a href="#o">o</a></dt>
|
||||
<dd>print OFF file format (dim, points and facets)</dd>
|
||||
<dt><a href="#s">s</a></dt>
|
||||
<dd>print summary to stderr</dd>
|
||||
<dt><a href="#p">p</a></dt>
|
||||
<dd>print vertex and point coordinates</dd>
|
||||
<dt><a href="#i">i</a></dt>
|
||||
<dd>print vertices incident to each facet </dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Related options</b></dd>
|
||||
<dt><a href="qh-optf.htm#format">F</a></dt>
|
||||
<dd>additional input/output formats</dd>
|
||||
<dt><a href="qh-optg.htm#geomview">G</a></dt>
|
||||
<dd>Geomview output</dd>
|
||||
<dt><a href="qh-optp.htm#print">P</a></dt>
|
||||
<dd>Print options</dd>
|
||||
<dt><a href="qh-optf.htm#Ft">Ft</a></dt>
|
||||
<dd>print triangulation with added points</dd>
|
||||
<dt> </dt>
|
||||
</dl>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#output">»</a><a name="f">f - print all fields of
|
||||
all facets </a></h3>
|
||||
|
||||
<p>Print <a href=../src/libqhull.h#facetT>all fields</a> of all facets.
|
||||
The facet is the primary <a href=index.htm#structure>data structure</a> for
|
||||
Qhull.
|
||||
|
||||
<p>Option 'f' is for
|
||||
debugging. Most of the fields are available via the '<a
|
||||
href="qh-optf.htm#format">F</a>' options. If you need specialized
|
||||
information from Qhull, you can use the <a
|
||||
href="qh-code.htm#library">Qhull library</a> or <a
|
||||
href="qh-code.htm#cpp">C++ interface</a>.</p>
|
||||
|
||||
<p>Use the '<a href="qh-optf.htm#FF">FF</a>' option to print the
|
||||
facets but not the ridges. </p>
|
||||
|
||||
<h3><a href="#output">»</a><a name="i">i - print vertices
|
||||
incident to each facet </a></h3>
|
||||
|
||||
<p>The first line is the number of facets. The remaining lines
|
||||
list the vertices for each facet, one facet per line. The indices
|
||||
are 0-relative indices of the corresponding input points. The
|
||||
facets are oriented. Option '<a href="qh-optf.htm#Fv">Fv</a>'
|
||||
displays an unoriented list of vertices with a vertex count per
|
||||
line. Options '<a href="qh-opto.htm#o">o</a>' and '<a
|
||||
href="qh-optf.htm#Ft">Ft</a>' displays coordinates for each
|
||||
vertex prior to the vertices for each facet. </p>
|
||||
|
||||
<p>Simplicial facets (e.g., triangles in 3-d) consist of <i>d</i>
|
||||
vertices. Non-simplicial facets in 3-d consist of 4 or more
|
||||
vertices. For example, a facet of a cube consists of 4 vertices.
|
||||
Use option '<a href="qh-optq.htm#Qt">Qt</a>' to triangulate non-simplicial facets.</p>
|
||||
|
||||
<p>For 4-d and higher convex hulls and 3-d and higher Delaunay
|
||||
triangulations, <i>d</i> vertices are listed for all facets. A
|
||||
non-simplicial facet is triangulated with its centrum and each
|
||||
ridge. The index of the centrum is higher than any input point.
|
||||
Use option '<a href="qh-optf.htm#Fv">Fv</a>' to list the vertices
|
||||
of non-simplicial facets as is. Use option '<a
|
||||
href="qh-optf.htm#Ft">Ft</a>' to print the coordinates of the
|
||||
centrums as well as those of the input points. </p>
|
||||
|
||||
<h3><a href="#output">»</a><a name="m">m - print Mathematica
|
||||
output </a></h3>
|
||||
|
||||
<p>Qhull writes a Mathematica file for 2-d and 3-d convex hulls,
|
||||
2-d and 3-d halfspace intersections,
|
||||
and 2-d Delaunay triangulations. Qhull produces a list of
|
||||
objects that you can assign to a variable in Mathematica, for
|
||||
example: "<tt>list= << <outputfilename> </tt>".
|
||||
If the object is 2-d, it can be visualized by "<tt>Show[Graphics[list]]
|
||||
</tt>". For 3-d objects the command is "<tt>Show[Graphics3D[list]]
|
||||
</tt>". Now the object can be manipulated by commands of the
|
||||
form <tt>"Show[%, <parametername> ->
|
||||
<newvalue>]</tt>". </p>
|
||||
|
||||
<p>For Delaunay triangulation orthogonal projection is better.
|
||||
This can be specified, for example, by "<tt>BoxRatios:
|
||||
Show[%, BoxRatios -> {1, 1, 1e-8}]</tt>". To see the
|
||||
meaningful side of the 3-d object used to visualize 2-d Delaunay,
|
||||
you need to change the viewpoint: "<tt>Show[%, ViewPoint
|
||||
-> {0, 0, -1}]</tt>". By specifying different viewpoints
|
||||
you can slowly rotate objects. </p>
|
||||
|
||||
<p>For halfspace intersections, Qhull produces the dual
|
||||
convex hull.
|
||||
|
||||
<p>See <a href="qh-faq.htm#math">Is Qhull available for Mathematica?</a>
|
||||
for URLs.
|
||||
|
||||
<h3><a href="#output">»</a><a name="n">n - print hyperplane
|
||||
normals with offsets </a></h3>
|
||||
|
||||
<p>The first line is the dimension plus one. The second line is
|
||||
the number of facets. The remaining lines are the normals for
|
||||
each facet, one normal per line. The facet's offset follows its
|
||||
normal coefficients.</p>
|
||||
|
||||
<p>The normals point outward, i.e., the convex hull satisfies <i>Ax
|
||||
<= -b </i>where <i>A</i> is the matrix of coefficients and <i>b</i>
|
||||
is the vector of offsets.</p>
|
||||
|
||||
<p>A point is <i>inside</i> or <i>below</i> a hyperplane if its distance
|
||||
to the hyperplane is negative. A point is <i>outside</i> or <i>above</i> a hyperplane
|
||||
if its distance to the hyperplane is positive. Otherwise a point is <i>on</i> or
|
||||
<i>coplanar to</i> the hyperplane.
|
||||
|
||||
<p>If cdd output is specified ('<a href="qh-optf.htm#FD">FD</a>'),
|
||||
Qhull prints the command line, the keyword "begin", the
|
||||
number of facets, the dimension (plus one), the keyword
|
||||
"real", and the normals for each facet. The facet's
|
||||
negative offset precedes its normal coefficients (i.e., if the
|
||||
origin is an interior point, the offset is positive). Qhull ends
|
||||
the output with the keyword "end". </p>
|
||||
|
||||
<h3><a href="#output">»</a><a name="o">o - print OFF file format
|
||||
</a></h3>
|
||||
|
||||
<p>The output is: </p>
|
||||
|
||||
<ul>
|
||||
<li>The first line is the dimension </li>
|
||||
<li>The second line is the number of points, the number of
|
||||
facets, and the number of ridges. </li>
|
||||
<li>All of the input points follow, one per line. </li>
|
||||
<li>Then Qhull prints the vertices for each facet. Each facet
|
||||
is on a separate line. The first number is the number of
|
||||
vertices. The remainder is the indices of the
|
||||
corresponding points. The vertices are oriented in 2-d,
|
||||
3-d, and in simplicial facets. </li>
|
||||
</ul>
|
||||
|
||||
<p>Option '<a href="qh-optf.htm#Ft">Ft</a>' prints the same
|
||||
information with added points for non-simplicial facets.</p>
|
||||
|
||||
<p>Option '<a href="qh-opto.htm#i">i</a>' displays vertices
|
||||
without the point coordinates. Option '<a href="qh-opto.htm#p">p</a>'
|
||||
displays the point coordinates without vertex and facet information.</p>
|
||||
|
||||
<p>In 3-d, Geomview can load the file directly if you delete the
|
||||
first line (e.g., by piping through '<tt>tail +2</tt>').</p>
|
||||
|
||||
<p>For Voronoi diagrams (<a href=qvoronoi.htm>qvoronoi</a>), option
|
||||
'o' prints Voronoi vertices and Voronoi regions instead of input
|
||||
points and facets. The first vertex is the infinity vertex
|
||||
[-10.101, -10.101, ...]. Then, option 'o' lists the vertices in
|
||||
the Voronoi region for each input site. The regions appear in
|
||||
site ID order. In 2-d, the vertices of a Voronoi region are
|
||||
sorted by adjacency (non-oriented). In 3-d and higher, the
|
||||
Voronoi vertices are sorted by index. See the '<a
|
||||
href="qh-optf.htm#FN">FN</a>' option for listing Voronoi regions
|
||||
without listing Voronoi vertices.</p>
|
||||
|
||||
<p>If you are using the Qhull library, options 'v o' have the
|
||||
side effect of reordering the neighbors for a vertex.</p>
|
||||
|
||||
<h3><a href="#output">»</a><a name="p">p - print vertex and
|
||||
point coordinates </a></h3>
|
||||
|
||||
<p>The first line is the dimension. The second line is the number
|
||||
of vertices. The remaining lines are the vertices, one vertex per
|
||||
line. A vertex consists of its point coordinates</p>
|
||||
|
||||
<p>With the '<a href="qh-optg.htm#Gc">Gc</a>' and '<a
|
||||
href="qh-optg.htm#Gi">Gi</a>' options, option 'p' also prints
|
||||
coplanar and interior points respectively.</p>
|
||||
|
||||
<p>For <a href=qvoronoi.htm>qvoronoi</a>, it prints the
|
||||
coordinates of each Voronoi vertex.</p>
|
||||
|
||||
<p>For <a href=qdelaun.htm>qdelaunay</a>, it prints the
|
||||
input sites as lifted to a paraboloid. For <a href=qhalf.htm>qhalf</a>
|
||||
it prints the dual points. For both, option 'p' is the same as the first
|
||||
section of option '<a href="qh-opto.htm#o">o</a>'.</p>
|
||||
|
||||
<p>Use '<a href="qh-optf.htm#Fx">Fx</a>' to list the point ids of
|
||||
the extreme points (i.e., vertices). </p>
|
||||
|
||||
<p>If a subset of the facets is selected ('<a
|
||||
href="qh-optp.htm#Pdk">Pdk</a>', '<a href="qh-optp.htm#PDk">PDk</a>',
|
||||
'<a href="qh-optp.htm#Pg">Pg</a>' options), option 'p' only
|
||||
prints vertices and points associated with those facets.</p>
|
||||
|
||||
<p>If cdd-output format is selected ('<a href="qh-optf.htm#FD">FD</a>'),
|
||||
the first line is "begin". The second line is the
|
||||
number of vertices, the dimension plus one, and "real".
|
||||
The vertices follow with a leading "1". Output ends
|
||||
with "end". </p>
|
||||
|
||||
<h3><a href="#output">»</a><a name="s">s - print summary to
|
||||
stderr </a></h3>
|
||||
|
||||
<p>The default output of Qhull is a summary to stderr. Options '<a
|
||||
href="qh-optf.htm#FS">FS</a>' and '<a href="qh-optf.htm#Fs">Fs</a>'
|
||||
produce the same information for programs. <b>Note</b>: Windows 95 and 98
|
||||
treats stderr the same as stdout. Use option '<a href="qh-optt.htm#TO">TO file</a>' to separate
|
||||
stderr and stdout.</p>
|
||||
|
||||
<p>The summary lists the number of input points, the dimension,
|
||||
the number of vertices in the convex hull, and the number of
|
||||
facets in the convex hull. It lists the number of selected
|
||||
("good") facets for options '<a href="qh-optp.htm#Pg">Pg</a>',
|
||||
'<a href="qh-optp.htm#Pdk">Pdk</a>', <a href=qdelaun.htm>qdelaunay</a>,
|
||||
or <a href=qvoronoi.htm>qvoronoi</a> (Delaunay triangulations only
|
||||
use the lower half of a convex hull). It lists the number of
|
||||
coplanar points. For Delaunay triangulations without '<a
|
||||
href="qh-optq.htm#Qc">Qc</a>', it lists the total number of
|
||||
coplanar points. It lists the number of simplicial facets in
|
||||
the output.</p>
|
||||
|
||||
<p>The terminology depends on the output structure. </p>
|
||||
|
||||
<p>The summary lists these statistics:</p>
|
||||
|
||||
<ul>
|
||||
<li>number of points processed by Qhull </li>
|
||||
<li>number of hyperplanes created</li>
|
||||
<li>number of distance tests (not counting statistics,
|
||||
summary, and checking) </li>
|
||||
<li>number of merged facets (if any)</li>
|
||||
<li>number of distance tests for merging (if any)</li>
|
||||
<li>CPU seconds to compute the hull</li>
|
||||
<li>the maximum joggle for '<a href="qh-optq.htm#QJn">QJ</a>'<br>
|
||||
or, the probability of precision errors for '<a
|
||||
href="qh-optq.htm#QJn">QJ</a> <a href="qh-optt.htm#TRn">TRn</a>'
|
||||
</li>
|
||||
<li>total area and volume (if computed, see '<a
|
||||
href="qh-optf.htm#FS">FS</a>' '<a href="qh-optf.htm#FA">FA</a>'
|
||||
'<a href="qh-optf.htm#Fa">Fa</a>' '<a
|
||||
href="qh-optp.htm#PAn">PAn</a>')</li>
|
||||
<li>max. distance of a point above a facet (if non-zero)</li>
|
||||
<li>max. distance of a vertex below a facet (if non-zero)</li>
|
||||
</ul>
|
||||
|
||||
<p>The statistics include intermediate hulls. For example 'rbox d
|
||||
D4 | qhull' reports merged facets even though the final hull is
|
||||
simplicial. </p>
|
||||
|
||||
<p>Qhull starts counting CPU seconds after it has read and
|
||||
projected the input points. It stops counting before producing
|
||||
output. In the code, CPU seconds measures the execution time of
|
||||
function qhull() in <tt>libqhull.c</tt>. If the number of CPU
|
||||
seconds is clearly wrong, check qh_SECticks in <tt>user.h</tt>. </p>
|
||||
|
||||
<p>The last two figures measure the maximum distance from a point
|
||||
or vertex to a facet. They are not printed if less than roundoff
|
||||
or if not merging. They account for roundoff error in computing
|
||||
the distance (c.f., option '<a href="qh-optc.htm#Rn">Rn</a>').
|
||||
Use '<a href="qh-optf.htm#Fs">Fs</a>' to report the maximum outer
|
||||
and inner plane. </p>
|
||||
|
||||
<p>A number may appear in parentheses after the maximum distance
|
||||
(e.g., 2.1x). It is the ratio between the maximum distance and
|
||||
the worst-case distance due to merging two simplicial facets. It
|
||||
should be small for 2-d, 3-d, and 4-d, and for higher dimensions
|
||||
with '<a href="qh-optq.htm#Qx">Qx</a>'. It is not printed if less
|
||||
than 0.05. </p>
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
253
xs/src/qhull/html/qh-optp.htm
Normal file
|
|
@ -0,0 +1,253 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull print options (P)</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a> Qhull print options (P)</h1>
|
||||
|
||||
This section lists the print options for Qhull. These options are
|
||||
indicated by 'P' followed by a letter. See
|
||||
<a href="qh-opto.htm#output">Output</a>, <a href="qh-optg.htm#geomview">Geomview</a>,
|
||||
and <a href="qh-optf.htm#format">Format</a> for other output options.
|
||||
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="index.htm#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
<a name="format">•</a> <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<h2>Print options</h2>
|
||||
<blockquote>
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="#Pp">Pp</a></dt>
|
||||
<dd>do not report precision problems </dd>
|
||||
<dt><a href="#Po">Po</a></dt>
|
||||
<dd>force output despite precision problems</dd>
|
||||
<dt><a href="#Po2">Po</a></dt>
|
||||
<dd>if error, output neighborhood of facet</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Select</b></dd>
|
||||
<dt><a href="#Pdk">Pdk:n</a></dt>
|
||||
<dd>print facets with normal[k] >= n (default 0.0)</dd>
|
||||
<dt><a href="#PDk">PDk:n</a></dt>
|
||||
<dd>print facets with normal[k] <= n </dd>
|
||||
<dt><a href="#PFn">PFn</a></dt>
|
||||
<dd>print facets whose area is at least n</dd>
|
||||
<dt><a href="#Pg">Pg</a></dt>
|
||||
<dd>print good facets only (needs '<a href="qh-optq.htm#QGn">QGn</a>'
|
||||
or '<a href="qh-optq.htm#QVn">QVn </a>')</dd>
|
||||
<dt><a href="#PMn">PMn</a></dt>
|
||||
<dd>print n facets with most merges</dd>
|
||||
<dt><a href="#PAn">PAn</a></dt>
|
||||
<dd>print n largest facets by area</dd>
|
||||
<dt><a href="#PG">PG</a></dt>
|
||||
<dd>print neighbors of good facets</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
<hr>
|
||||
|
||||
<h3><a href="#print">»</a><a name="PAn">PAn - keep n largest
|
||||
facets by area</a></h3>
|
||||
|
||||
<p>The <i>n</i> largest facets are marked good for printing. This
|
||||
may be useful for <a href="qh-impre.htm#approximate">approximating
|
||||
a hull</a>. Unless '<a href="#PG">PG</a>' is set, '<a href="#Pg">Pg</a>'
|
||||
is automatically set. </p>
|
||||
|
||||
<h3><a href="#print">»</a><a name="Pdk">Pdk:n - print facet if
|
||||
normal[k] >= n </a></h3>
|
||||
|
||||
<p>For a given output, print only those facets with <i>normal[k] >= n</i>
|
||||
and <i>drop</i> the others. For example, 'Pd0:0.5' prints facets with <i>normal[0]
|
||||
>= 0.5 </i>. The default value of <i>n</i> is zero. For
|
||||
example in 3-d, 'Pd0d1d2' prints facets in the positive octant.
|
||||
<p>
|
||||
If no facets match, the closest facet is returned.</p>
|
||||
<p>
|
||||
On Windows 95, do not combine multiple options. A 'd' is considered
|
||||
part of a number. For example, use 'Pd0:0.5 Pd1:0.5' instead of
|
||||
'Pd0:0.5d1:0.5'.
|
||||
|
||||
<h3><a href="#print">»</a><a name="PDk">PDk:n - print facet if
|
||||
normal[k] <= n</a></h3>
|
||||
|
||||
<p>For a given output, print only those facets with <i>normal[k] <= n</i>
|
||||
and <i>drop</i> the others.
|
||||
For example, 'PD0:0.5' prints facets with <i>normal[0]
|
||||
<= 0.5 </i>. The default value of <i>n</i> is zero. For
|
||||
example in 3-d, 'PD0D1D2' displays facets in the negative octant.
|
||||
<p>
|
||||
If no facets match, the closest facet is returned.</p>
|
||||
|
||||
<p>In 2-d, 'd G PD2' displays the Delaunay triangulation instead
|
||||
of the corresponding paraboloid. </p>
|
||||
|
||||
<p>Be careful of placing 'Dk' or 'dk' immediately after a real
|
||||
number. Some compilers treat the 'D' as a double precision
|
||||
exponent. </p>
|
||||
|
||||
<h3><a href="#print">»</a><a name="PFn">PFn - keep facets whose
|
||||
area is at least n</a></h3>
|
||||
|
||||
<p>The facets with area at least <i>n</i> are marked good for
|
||||
printing. This may be useful for <a
|
||||
href="qh-impre.htm#approximate">approximating a hull</a>. Unless
|
||||
'<a href="#PG">PG</a>' is set, '<a href="#Pg">Pg</a>' is
|
||||
automatically set. </p>
|
||||
|
||||
<h3><a href="#print">»</a><a name="Pg">Pg - print good facets </a></h3>
|
||||
|
||||
<p>Qhull can mark facets as "good". This is used to</p>
|
||||
|
||||
<ul>
|
||||
<li>mark the lower convex hull for Delaunay triangulations
|
||||
and Voronoi diagrams</li>
|
||||
<li>mark the facets that are visible from a point (the '<a
|
||||
href="qh-optq.htm#QGn">QGn </a>' option)</li>
|
||||
<li>mark the facets that contain a point (the '<a
|
||||
href="qh-optq.htm#QVn">QVn</a>' option).</li>
|
||||
<li>indicate facets with a large enough area (options '<a
|
||||
href="#PAn">PAn</a>' and '<a href="#PFn">PFn</a>')</li>
|
||||
</ul>
|
||||
|
||||
<p>Option '<a href="#Pg">Pg</a>' only prints good facets that
|
||||
also meet '<a href="#Pdk">Pdk</a>' and '<a href="#PDk">PDk</a>'
|
||||
options. It is automatically set for options '<a href="#PAn">PAn</a>',
|
||||
'<a href="#PFn">PFn </a>', '<a href="qh-optq.htm#QGn">QGn</a>',
|
||||
and '<a href="qh-optq.htm#QVn">QVn</a>'.</p>
|
||||
|
||||
<h3><a href="#print">»</a><a name="PG">PG - print neighbors of
|
||||
good facets</a></h3>
|
||||
|
||||
<p>Option 'PG' can be used with or without option '<a href="#Pg">Pg</a>'
|
||||
to print the neighbors of good facets. For example, options '<a
|
||||
href="qh-optq.htm#QGn">QGn</a>' and '<a href="qh-optq.htm#QVn">QVn</a>'
|
||||
print the horizon facets for point <i>n. </i></p>
|
||||
|
||||
<h3><a href="#print">»</a><a name="PMn">PMn - keep n facets with
|
||||
most merges</a></h3>
|
||||
|
||||
<p>The n facets with the most merges are marked good for
|
||||
printing. This may be useful for <a
|
||||
href="qh-impre.htm#approximate">approximating a hull</a>. Unless
|
||||
'<a href="#PG">PG</a>' is set, '<a href="#Pg">Pg</a>' is
|
||||
automatically set. </p>
|
||||
|
||||
<p>Use option '<a href="qh-optf.htm#Fm">Fm</a>' to print merges
|
||||
per facet.
|
||||
|
||||
<h3><a href="#print">»</a><a name="Po">Po - force output despite
|
||||
precision problems</a></h3>
|
||||
|
||||
<p>Use options 'Po' and '<a href="qh-optq.htm#Q0">Q0</a>' if you
|
||||
can not merge facets, triangulate the output ('<a href="qh-optq.htm#Qt">Qt</a>'),
|
||||
or joggle the input (<a href="qh-optq.htm#QJn">QJ</a>).
|
||||
|
||||
<p>Option 'Po' can not force output when
|
||||
duplicate ridges or duplicate facets occur. It may produce
|
||||
erroneous results. For these reasons, merged facets, joggled input, or <a
|
||||
href="qh-impre.htm#exact">exact arithmetic</a> are better.</p>
|
||||
|
||||
<p>If you need a simplicial Delaunay triangulation, use
|
||||
joggled input '<a href="qh-optq.htm#QJn">QJ</a>' or triangulated
|
||||
output '<a
|
||||
href="qh-optf.htm#Ft">Ft</a>'.
|
||||
|
||||
<p>Option 'Po' may be used without '<a href="qh-optq.htm#Q0">Q0</a>'
|
||||
to remove some steps from Qhull or to output the neighborhood of
|
||||
an error.</p>
|
||||
|
||||
<p>Option 'Po' may be used with option '<a href="qh-optq.htm#Q5">Q5</a>')
|
||||
to skip qh_check_maxout (i.e., do not determine the maximum outside distance).
|
||||
This can save a significant amount of time.
|
||||
|
||||
<p>If option 'Po' is used,</p>
|
||||
|
||||
<ul>
|
||||
<li>most precision errors allow Qhull to continue. </li>
|
||||
<li>verify ('<a href="qh-optt.htm#Tv">Tv</a>') does not check
|
||||
coplanar points.</li>
|
||||
<li>points are not partitioned into flipped facets and a
|
||||
flipped facet is always visible to a point. This may
|
||||
delete flipped facets from the output. </li>
|
||||
</ul>
|
||||
|
||||
<h3><a href="#print">»</a><a name="Po2">Po - if error, output
|
||||
neighborhood of facet</a></h3>
|
||||
|
||||
<p>If an error occurs before the completion of Qhull and tracing
|
||||
is not active, 'Po' outputs a neighborhood of the erroneous
|
||||
facets (if any). It uses the current output options.</p>
|
||||
|
||||
<p>See '<a href="qh-optp.htm#Po">Po</a>' - force output despite
|
||||
precision problems.
|
||||
|
||||
<h3><a href="#print">»</a><a name="Pp">Pp - do not report
|
||||
precision problems </a></h3>
|
||||
|
||||
<p>With option 'Pp', Qhull does not print statistics about
|
||||
precision problems, and it removes some of the warnings. It
|
||||
removes the narrow hull warning.</p>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
731
xs/src/qhull/html/qh-optq.htm
Normal file
|
|
@ -0,0 +1,731 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull control options (Q)</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a> Qhull control options (Q)</h1>
|
||||
|
||||
<p>This section lists the control options for Qhull. These
|
||||
options are indicated by 'Q' followed by a letter. </p>
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="index.htm#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
<a name="qhull">•</a> <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<h2>Qhull control options</h2>
|
||||
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="#Qu">Qu</a></dt>
|
||||
<dd>compute upper hull for furthest-site Delaunay
|
||||
triangulation </dd>
|
||||
<dt><a href="#Qc">Qc</a></dt>
|
||||
<dd>keep coplanar points with nearest facet</dd>
|
||||
<dt><a href="#Qi">Qi</a></dt>
|
||||
<dd>keep interior points with nearest facet</dd>
|
||||
<dt><a href="#QJn">QJ</a></dt>
|
||||
<dd>joggled input to avoid precision problems</dd>
|
||||
<dt><a href="#Qt">Qt</a></dt>
|
||||
<dd>triangulated output</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Precision handling</b></dd>
|
||||
<dt><a href="#Qz">Qz</a></dt>
|
||||
<dd>add a point-at-infinity for Delaunay triangulations</dd>
|
||||
<dt><a href="#Qx">Qx</a></dt>
|
||||
<dd>exact pre-merges (allows coplanar facets)</dd>
|
||||
<dt><a href="#Qs">Qs</a></dt>
|
||||
<dd>search all points for the initial simplex</dd>
|
||||
<dt><a href="#Qbb">Qbb</a></dt>
|
||||
<dd>scale last coordinate to [0,m] for Delaunay</dd>
|
||||
<dt><a href="#Qv">Qv</a></dt>
|
||||
<dd>test vertex neighbors for convexity</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Transform input</b></dd>
|
||||
<dt><a href="#Qb0">Qbk:0Bk:0</a></dt>
|
||||
<dd>drop dimension k from input</dd>
|
||||
<dt><a href="#QRn">QRn</a></dt>
|
||||
<dd>random rotation (n=seed, n=0 time, n=-1 time/no rotate)</dd>
|
||||
<dt><a href="#Qbk">Qbk:n</a></dt>
|
||||
<dd>scale coord[k] to low bound of n (default -0.5)</dd>
|
||||
<dt><a href="#QBk">QBk:n</a></dt>
|
||||
<dd>scale coord[k] to upper bound of n (default 0.5)</dd>
|
||||
<dt><a href="#QbB">QbB</a></dt>
|
||||
<dd>scale input to fit the unit cube</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Select facets</b></dd>
|
||||
<dt><a href="#QVn">QVn</a></dt>
|
||||
<dd>good facet if it includes point n, -n if not</dd>
|
||||
<dt><a href="#QGn">QGn</a></dt>
|
||||
<dd>good facet if visible from point n, -n for not visible</dd>
|
||||
<dt><a href="#Qg">Qg</a></dt>
|
||||
<dd>only build good facets (needs '<a href="#QGn">QGn</a>', '<a
|
||||
href="#QVn">QVn </a>', or '<a href="qh-optp.htm#Pdk">Pdk</a>')</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Experimental</b></dd>
|
||||
<dt><a href="#Q4">Q4</a></dt>
|
||||
<dd>avoid merging old facets into new facets</dd>
|
||||
<dt><a href="#Q5">Q5</a></dt>
|
||||
<dd>do not correct outer planes at end of qhull</dd>
|
||||
<dt><a href="#Q3">Q3</a></dt>
|
||||
<dd>do not merge redundant vertices</dd>
|
||||
<dt><a href="#Q6">Q6</a></dt>
|
||||
<dd>do not pre-merge concave or coplanar facets</dd>
|
||||
<dt><a href="#Q0">Q0</a></dt>
|
||||
<dd>do not pre-merge facets with 'C-0' or 'Qx'</dd>
|
||||
<dt><a href="#Q8">Q8</a></dt>
|
||||
<dd>ignore near-interior points</dd>
|
||||
<dt><a href="#Q2">Q2</a></dt>
|
||||
<dd>merge all non-convex at once instead of independent sets</dd>
|
||||
<dt><a href="#Qf">Qf</a></dt>
|
||||
<dd>partition point to furthest outside facet</dd>
|
||||
<dt><a href="#Q7">Q7</a></dt>
|
||||
<dd>process facets depth-first instead of breadth-first</dd>
|
||||
<dt><a href="#Q9">Q9</a></dt>
|
||||
<dd>process furthest of furthest points</dd>
|
||||
<dt><a href="#Q10">Q10</a></dt>
|
||||
<dd>no special processing for narrow distributions</dd>
|
||||
<dt><a href="#Q11">Q11</a></dt>
|
||||
<dd>copy normals and recompute centrums for tricoplanar facets</dd>
|
||||
<dt><a href="#Q12">Q12</a></dt>
|
||||
<dd>do not error on wide merge due to duplicate ridge and nearly coincident points</dd>
|
||||
<dt><a href="#Qm">Qm</a></dt>
|
||||
<dd>process points only if they would increase the max. outer
|
||||
plane </dd>
|
||||
<dt><a href="#Qr">Qr</a></dt>
|
||||
<dd>process random outside points instead of furthest one</dd>
|
||||
<dt><a href="#Q1">Q1</a></dt>
|
||||
<dd>sort merges by type instead of angle</dd>
|
||||
</dl>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qbb">Qbb - scale the last
|
||||
coordinate to [0,m] for Delaunay</a></h3>
|
||||
|
||||
<p>After scaling with option 'Qbb', the lower bound of the last
|
||||
coordinate will be 0 and the upper bound will be the maximum
|
||||
width of the other coordinates. Scaling happens after projecting
|
||||
the points to a paraboloid and scaling other coordinates. </p>
|
||||
|
||||
<p>Option 'Qbb' is automatically set for <a href=qdelaun.htm>qdelaunay</a>
|
||||
and <a href=qvoronoi.htm>qvoronoi</a>. Option 'Qbb' is automatically set for joggled input '<a
|
||||
href="qh-optq.htm#QJn">QJ</a>'. </p>
|
||||
|
||||
<p>Option 'Qbb' should be used for Delaunay triangulations with
|
||||
integer coordinates. Since the last coordinate is the sum of
|
||||
squares, it may be much larger than the other coordinates. For
|
||||
example, <tt>rbox 10000 D2 B1e8 | qhull d</tt> has precision
|
||||
problems while <tt>rbox 10000 D2 B1e8 | qhull d Qbb</tt> is OK. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="QbB">QbB - scale the input to
|
||||
fit the unit cube</a></h3>
|
||||
|
||||
<p>After scaling with option 'QbB', the lower bound will be -0.5
|
||||
and the upper bound +0.5 in all dimensions. For different bounds
|
||||
change qh_DEFAULTbox in <tt>user.h</tt> (0.5 is best for <a
|
||||
href="index.htm#geomview">Geomview</a>).</p>
|
||||
|
||||
<p>For Delaunay and Voronoi diagrams, scaling happens after
|
||||
projection to the paraboloid. Under precise arithmetic, scaling
|
||||
does not change the topology of the convex hull. Scaling may
|
||||
reduce precision errors if coordinate values vary widely.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qbk">Qbk:n - scale coord[k]
|
||||
to low bound</a></h3>
|
||||
|
||||
<p>After scaling, the lower bound for dimension k of the input
|
||||
points will be n. 'Qbk' scales coord[k] to -0.5. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="QBk">QBk:n - scale coord[k]
|
||||
to upper bound </a></h3>
|
||||
|
||||
<p>After scaling, the upper bound for dimension k of the input
|
||||
points will be n. 'QBk' scales coord[k] to 0.5. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qb0">Qbk:0Bk:0 - drop
|
||||
dimension k from the input points</a></h3>
|
||||
|
||||
<p>Drop dimension<em> k </em>from the input points. For example,
|
||||
'Qb1:0B1:0' deletes the y-coordinate from all input points. This
|
||||
allows the user to take convex hulls of sub-dimensional objects.
|
||||
It happens before the Delaunay and Voronoi transformation.
|
||||
It happens after the halfspace transformation for both the data
|
||||
and the feasible point.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qc">Qc - keep coplanar points
|
||||
with nearest facet </a></h3>
|
||||
|
||||
<p>During construction of the hull, a point is coplanar if it is
|
||||
between '<a href="qh-optc.htm#Wn">Wn</a>' above and '<a
|
||||
href="qh-optc.htm#Un">Un</a>' below a facet's hyperplane. A
|
||||
different definition is used for output from Qhull. </p>
|
||||
|
||||
<p>For output, a coplanar point is above the minimum vertex
|
||||
(i.e., above the inner plane). With joggle ('<a
|
||||
href="qh-optq.htm#QJn">QJ</a>'), a coplanar point includes points
|
||||
within one joggle of the inner plane. </p>
|
||||
|
||||
<p>With option 'Qc', output formats '<a href="qh-opto.htm#p">p </a>',
|
||||
'<a href="qh-opto.htm#f">f</a>', '<a href="qh-optg.htm#Gp">Gp</a>',
|
||||
'<a href="qh-optf.htm#Fc">Fc</a>', '<a href="qh-optf.htm#FN">FN</a>',
|
||||
and '<a href="qh-optf.htm#FP">FP</a>' will print the coplanar
|
||||
points. With options 'Qc <a href="#Qi">Qi</a>' these outputs
|
||||
include the interior points.</p>
|
||||
|
||||
<p>For Delaunay triangulations (<a href=qdelaun.htm>qdelaunay</a>
|
||||
or <a href=qvoronoi.htm>qvoronoi</a>), a coplanar point is a point
|
||||
that is nearly incident to a vertex. All input points are either
|
||||
vertices of the triangulation or coplanar.</p>
|
||||
|
||||
<p>Qhull stores coplanar points with a facet. While constructing
|
||||
the hull, it retains all points within qh_RATIOnearInside
|
||||
(user.h) of a facet. In qh_check_maxout(), it uses these points
|
||||
to determine the outer plane for each facet. With option 'Qc',
|
||||
qh_check_maxout() retains points above the minimum vertex for the
|
||||
hull. Other points are removed. If qh_RATIOnearInside is wrong or
|
||||
if options '<a href="#Q5">Q5</a> <a href="#Q8">Q8</a>' are set, a
|
||||
coplanar point may be missed in the output (see <a
|
||||
href="qh-impre.htm#limit">Qhull limitations</a>).</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qf">Qf - partition point to
|
||||
furthest outside facet </a></h3>
|
||||
|
||||
<p>After adding a new point to the convex hull, Qhull partitions
|
||||
the outside points and coplanar points of the old, visible
|
||||
facets. Without the '<a href="qh-opto.htm#f">f </a>' option and
|
||||
merging, it assigns a point to the first facet that it is outside
|
||||
('<a href="qh-optc.htm#Wn">Wn</a>'). When merging, it assigns a
|
||||
point to the first facet that is more than several times outside
|
||||
(see qh_DISToutside in user.h).</p>
|
||||
|
||||
<p>If option 'Qf' is selected, Qhull performs a directed search
|
||||
(no merging) or an exhaustive search (merging) of new facets.
|
||||
Option 'Qf' may reduce precision errors if pre-merging does not
|
||||
occur.</p>
|
||||
|
||||
<p>Option '<a href="#Q9">Q9</a>' processes the furthest of all
|
||||
furthest points.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qg">Qg - only build good
|
||||
facets (needs 'QGn' 'QVn' or 'Pdk') </a></h3>
|
||||
|
||||
<p>Qhull has several options for defining and printing good
|
||||
facets. With the '<a href="#Qg">Qg</a>' option, Qhull will only
|
||||
build those facets that it needs to determine the good facets in
|
||||
the output. This may speed up Qhull in 2-d and 3-d. It is
|
||||
useful for furthest-site Delaunay
|
||||
triangulations (<a href=qdelau_f.htm>qdelaunay Qu</a>,
|
||||
invoke with 'qhull d Qbb <a href="#Qu">Qu</a> Qg').
|
||||
It is not effective in higher
|
||||
dimensions because many facets see a given point and contain a
|
||||
given vertex. It is not guaranteed to work for all combinations.</p>
|
||||
|
||||
<p>See '<a href="#QGn">QGn</a>', '<a href="#QVn">QVn</a>', and '<a
|
||||
href="qh-optp.htm#Pdk">Pdk</a>' for defining good facets, and '<a
|
||||
href="qh-optp.htm#Pg">Pg</a>' and '<a href="qh-optp.htm#PG">PG</a>'
|
||||
for printing good facets and their neighbors. If pre-merging ('<a
|
||||
href="qh-optc.htm#Cn">C-n</a>') is not used and there are
|
||||
coplanar facets, then 'Qg Pg' may produce a different result than
|
||||
'<a href="qh-optp.htm#Pg">Pg</a>'. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="QGn">QGn - good facet if
|
||||
visible from point n, -n for not visible </a></h3>
|
||||
|
||||
<p>With option 'QGn', a facet is good (see '<a href="#Qg">Qg</a>'
|
||||
and '<a href="qh-optp.htm#Pg">Pg</a>') if it is visible from
|
||||
point n. If <i>n < 0</i>, a facet is good if it is not visible
|
||||
from point n. Point n is not added to the hull (unless '<a
|
||||
href="qh-optt.htm#TCn">TCn</a>' or '<a href="qh-optt.htm#TPn">TPn</a>').</p>
|
||||
|
||||
<p>With <a href="rbox.htm">rbox</a>, use the 'Pn,m,r' option
|
||||
to define your point; it will be point 0 ('QG0'). </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qi">Qi - keep interior points
|
||||
with nearest facet </a></h3>
|
||||
|
||||
<p>Normally Qhull ignores points that are clearly interior to the
|
||||
convex hull. With option 'Qi', Qhull treats interior points the
|
||||
same as coplanar points. Option 'Qi' does not retain coplanar
|
||||
points. You will probably want '<a href="#Qc">Qc </a>' as well. </p>
|
||||
|
||||
<p>Option 'Qi' is automatically set for '<a href=qdelaun.htm>qdelaunay</a>
|
||||
<a href="#Qc">Qc</a>' and '<a href=qvoronoi.htm>qvoronoi</a>
|
||||
<a href="#Qc">Qc</a>'. If you use
|
||||
'<a href=qdelaun.htm>qdelaunay</a> Qi' or '<a href=qvoronoi.htm>qvoronoi</a>
|
||||
Qi', option '<a href="qh-opto.htm#s">s</a>' reports all nearly
|
||||
incident points while option '<a href="qh-optf.htm#Fs">Fs</a>'
|
||||
reports the number of interior points (should always be zero).</p>
|
||||
|
||||
<p>With option 'Qi', output formats '<a href="qh-opto.htm#p">p</a>',
|
||||
'<a href="qh-opto.htm#f">f</a>','<a href="qh-optg.htm#Gp">Gp</a>',
|
||||
'<a href="qh-optf.htm#Fc">Fc</a>', '<a href="qh-optf.htm#FN">FN</a>',
|
||||
and '<a href="qh-optf.htm#FP">FP</a>' include interior points. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="QJ">QJ</a> or <a name="QJn">QJn</a> - joggled
|
||||
input to avoid precision errors</a></h3>
|
||||
|
||||
<p>Option 'QJ' or 'QJn' joggles each input coordinate by adding a
|
||||
random number in the range [-n,n]. If a precision error occurs,
|
||||
It tries again. If precision errors still occur, Qhull increases <i>n</i>
|
||||
ten-fold and tries again. The maximum value for increasing <i>n</i>
|
||||
is 0.01 times the maximum width of the input. Option 'QJ' selects
|
||||
a default value for <i>n</i>. <a href="../src/user.h#JOGGLEdefault">User.h</a>
|
||||
defines these parameters and a maximum number of retries. See <a
|
||||
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
|
||||
|
||||
<p>Users of joggled input should consider converting to
|
||||
triangulated output ('<a href="../html/qh-optq.htm#Qt">Qt</a>'). Triangulated output is
|
||||
approximately 1000 times more accurate than joggled input.
|
||||
|
||||
<p>Option 'QJ' also sets '<a href="qh-optq.htm#Qbb">Qbb</a>' for
|
||||
Delaunay triangulations and Voronoi diagrams. It does not set
|
||||
'Qbb' if '<a href="qh-optq.htm#Qbk">Qbk:n</a>' or '<a
|
||||
href="qh-optq.htm#QBk">QBk:n</a>' are set. </p>
|
||||
|
||||
<p>If 'QJn' is set, Qhull does not merge facets unless requested
|
||||
to. All facets are simplicial (triangular in 2-d). This may be
|
||||
important for your application. You may also use triangulated output
|
||||
('<a href="qh-optq.htm#Qt">Qt</a>') or Option '<a href="qh-optf.htm#Ft">Ft</a>'.
|
||||
|
||||
<p>Qhull adjusts the outer and inner planes for 'QJn' ('<a
|
||||
href="qh-optf.htm#Fs">Fs</a>'). They are increased by <i>sqrt(d)*n</i>
|
||||
to account for the maximum distance between a joggled point and
|
||||
the corresponding input point. Coplanar points ('<a
|
||||
href="qh-optq.htm#Qc">Qc</a>') require an additional <i>sqrt(d)*n</i>
|
||||
since vertices and coplanar points may be joggled in opposite
|
||||
directions. </p>
|
||||
|
||||
<p>For Delaunay triangulations (<a href=qdelaun.htm>qdelaunay</a>), joggle
|
||||
happens before lifting the input sites to a paraboloid. Instead of
|
||||
'QJ', you may use triangulated output ('<a
|
||||
href="qh-optq.htm#Qt">Qt</a>')</p>
|
||||
|
||||
<p>This option is deprecated for Voronoi diagrams (<a href=qvoronoi.htm>qvoronoi</a>).
|
||||
It triangulates cospherical points, leading to duplicated Voronoi vertices.</p>
|
||||
|
||||
<p>By default, 'QJn' uses a fixed random number seed. To use time
|
||||
as the random number seed, select '<a href="qh-optq.htm#QRn">QR-1</a>'.
|
||||
The summary ('<a href="qh-opto.htm#s">s</a>') will show the
|
||||
selected seed as 'QR-n'.
|
||||
|
||||
<p>With 'QJn', Qhull does not error on degenerate hyperplane
|
||||
computations. Except for Delaunay and Voronoi computations, Qhull
|
||||
does not error on coplanar points. </p>
|
||||
|
||||
<p>Use option '<a href="qh-optf.htm#FO">FO</a>' to display the
|
||||
selected options. Option 'FO' displays the joggle and the joggle
|
||||
seed. If Qhull restarts, it will redisplay the options. </p>
|
||||
|
||||
<p>Use option '<a href="qh-optt.htm#TRn">TRn</a>' to estimate the
|
||||
probability that Qhull will fail for a given 'QJn'.
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qm">Qm - only process points
|
||||
that increase the maximum outer plane </a></h3>
|
||||
|
||||
<p>Qhull reports the maximum outer plane in its summary ('<a
|
||||
href="qh-opto.htm#s">s</a>'). With option 'Qm', Qhull does not
|
||||
process points that are below the current, maximum outer plane.
|
||||
This is equivalent to always adjusting '<a href="qh-optc.htm#Wn">Wn
|
||||
</a>' to the maximum distance of a coplanar point to a facet. It
|
||||
is ignored for points above the upper convex hull of a Delaunay
|
||||
triangulation. Option 'Qm' is no longer important for merging.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qr">Qr - process random
|
||||
outside points instead of furthest ones </a></h3>
|
||||
|
||||
<p>Normally, Qhull processes the furthest point of a facet's
|
||||
outside points. Option 'Qr' instead selects a random outside
|
||||
point for processing. This makes Qhull equivalent to the
|
||||
randomized incremental algorithms.</p>
|
||||
|
||||
<p>The original randomization algorithm by Clarkson and Shor [<a
|
||||
href="index.htm#cla-sho89">'89</a>] used a conflict list which
|
||||
is equivalent to Qhull's outside set. Later randomized algorithms
|
||||
retained the previously constructed facets. </p>
|
||||
|
||||
<p>To compare Qhull to the randomized algorithms with option
|
||||
'Qr', compare "hyperplanes constructed" and
|
||||
"distance tests". Qhull does not report CPU time
|
||||
because the randomization is inefficient. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="QRn">QRn - random rotation </a></h3>
|
||||
|
||||
<p>Option 'QRn' randomly rotates the input. For Delaunay
|
||||
triangulations (<a href=qdelaun.htm>qdelaunay</a> or <a href=qvoronoi.htm>qvoronoi</a>),
|
||||
it rotates the lifted points about
|
||||
the last axis. </p>
|
||||
|
||||
<p>If <em>n=0</em>, use time as the random number seed. If <em>n>0</em>,
|
||||
use n as the random number seed. If <em>n=-1</em>, don't rotate
|
||||
but use time as the random number seed. If <em>n<-1</em>,
|
||||
don't rotate but use <em>n</em> as the random number seed. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qs">Qs - search all points
|
||||
for the initial simplex </a></h3>
|
||||
|
||||
<p>Qhull constructs an initial simplex from <i>d+1</i> points. It
|
||||
selects points with the maximum and minimum coordinates and
|
||||
non-zero determinants. If this fails, it searches all other
|
||||
points. In 8-d and higher, Qhull selects points with the minimum
|
||||
x or maximum coordinate (see qh_initialvertices in <tt>poly2.c </tt>).
|
||||
It rejects points with nearly zero determinants. This should work
|
||||
for almost all input sets.</p>
|
||||
|
||||
<p>If Qhull can not construct an initial simplex, it reports a
|
||||
descriptive message. Usually, the point set is degenerate and one
|
||||
or more dimensions should be removed ('<a href="#Qb0">Qbk:0Bk:0</a>').
|
||||
If not, use option 'Qs'. It performs an exhaustive search for the
|
||||
best initial simplex. This is expensive is high dimensions. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qt">Qt - triangulated output</a></h3>
|
||||
|
||||
<p>By default, qhull merges facets to handle precision errors. This
|
||||
produces non-simplicial facets (e.g., the convex hull of a cube has 6 square
|
||||
facets). Each facet is non-simplicial because it has four vertices.
|
||||
|
||||
<p>Use option 'Qt' to triangulate all non-simplicial facets before generating
|
||||
results. Alternatively, use joggled input ('<a href="#QJn">QJ</a>') to
|
||||
prevent non-simplical facets. Unless '<a href="qh-optp.htm#Pp">Pp</a>' is set,
|
||||
qhull produces a warning if 'QJ' and 'Qt' are used together.
|
||||
|
||||
<p>For Delaunay triangulations (<a href=qdelaun.htm>qdelaunay</a>), triangulation
|
||||
occurs after lifting the input sites to a paraboloid and computing the convex hull.
|
||||
</p>
|
||||
|
||||
<p>Option 'Qt' is deprecated for Voronoi diagrams (<a href=qvoronoi.htm>qvoronoi</a>).
|
||||
It triangulates cospherical points, leading to duplicated Voronoi vertices.</p>
|
||||
|
||||
<p>Option 'Qt' may produce degenerate facets with zero area.</p>
|
||||
|
||||
<p>Facet area and hull volumes may differ with and without
|
||||
'Qt'. The triangulations are different and different triangles
|
||||
may be ignored due to precision errors.
|
||||
|
||||
<p>With sufficient merging, the ridges of a non-simplicial facet may share more than two neighboring facets. If so, their triangulation ('<a href="#Qt">Qt</a>') will fail since two facets have the same vertex set. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qu">Qu - compute upper hull
|
||||
for furthest-site Delaunay triangulation </a></h3>
|
||||
|
||||
<p>When computing a Delaunay triangulation (<a href=qdelaun.htm>qdelaunay</a>
|
||||
or <a href=qvoronoi.htm>qvoronoi</a>),
|
||||
Qhull computes both the the convex hull of points on a
|
||||
paraboloid. It normally prints facets of the lower hull. These
|
||||
correspond to the Delaunay triangulation. With option 'Qu', Qhull
|
||||
prints facets of the upper hull. These correspond to the <a
|
||||
href="qdelau_f.htm">furthest-site Delaunay triangulation</a>
|
||||
and the <a href="qvoron_f.htm">furthest-site Voronoi diagram</a>.</p>
|
||||
|
||||
<p>Option 'qhull d Qbb Qu <a href="#Qg">Qg</a>' may improve the speed of option
|
||||
'Qu'. If you use the Qhull library, a faster method is 1) use
|
||||
Qhull to compute the convex hull of the input sites; 2) take the
|
||||
extreme points (vertices) of the convex hull; 3) add one interior
|
||||
point (e.g.,
|
||||
'<a href="qh-optf.htm#FV">FV</a>', the average of <em>d</em> extreme points); 4) run
|
||||
'qhull d Qbb Qu' or 'qhull v Qbb Qu' on these points.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qv">Qv - test vertex
|
||||
neighbors for convexity </a></h3>
|
||||
|
||||
<p>Normally, Qhull tests all facet neighbors for convexity.
|
||||
Non-neighboring facets which share a vertex may not satisfy the
|
||||
convexity constraint. This occurs when a facet undercuts the
|
||||
centrum of another facet. They should still be convex. Option
|
||||
'Qv' extends Qhull's convexity testing to all neighboring facets
|
||||
of each vertex. The extra testing occurs after the hull is
|
||||
constructed.. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="QVn">QVn - good facet if it
|
||||
includes point n, -n if not </a></h3>
|
||||
|
||||
<p>With option 'QVn', a facet is good ('<a href="#Qg">Qg</a>',
|
||||
'<a href="qh-optp.htm#Pg">Pg</a>') if one of its vertices is
|
||||
point n. If <i>n<0</i>, a good facet does not include point n.
|
||||
|
||||
<p>If options '<a href="qh-optp.htm#PG">PG</a>'
|
||||
and '<a href="#Qg">Qg</a>' are not set, option '<a href="qh-optp.htm#Pg">Pg</a>'
|
||||
(print only good)
|
||||
is automatically set.
|
||||
</p>
|
||||
|
||||
<p>Option 'QVn' behaves oddly with options '<a href="qh-optf.htm#Fx">Fx</a>'
|
||||
and '<a href=qvoronoi.htm>qvoronoi</a> <a href="qh-optf.htm#Fv2">Fv</a>'.
|
||||
|
||||
<p>If used with option '<a href="#Qg">Qg</a>' (only process good facets), point n is
|
||||
either in the initial simplex or it is the first
|
||||
point added to the hull. Options 'QVn Qg' require either '<a href="#QJn">QJ</a>' or
|
||||
'<a href="#Q0">Q0</a>' (no merging).</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qx">Qx - exact pre-merges
|
||||
(allows coplanar facets) </a></h3>
|
||||
|
||||
<p>Option 'Qx' performs exact merges while building the hull.
|
||||
Option 'Qx' is set by default in 5-d and higher. Use option '<a
|
||||
href="#Q0">Q0</a>' to not use 'Qx' by default. Unless otherwise
|
||||
specified, option 'Qx' sets option '<a href="qh-optc.htm#C0">C-0</a>'.
|
||||
</p>
|
||||
|
||||
<p>The "exact" merges are merging a point into a
|
||||
coplanar facet (defined by '<a href="qh-optc.htm#Vn">Vn </a>', '<a
|
||||
href="qh-optc.htm#Un">Un</a>', and '<a href="qh-optc.htm#Cn">C-n</a>'),
|
||||
merging concave facets, merging duplicate ridges, and merging
|
||||
flipped facets. Coplanar merges and angle coplanar merges ('<a
|
||||
href="qh-optc.htm#An">A-n</a>') are not performed. Concavity
|
||||
testing is delayed until a merge occurs.</p>
|
||||
|
||||
<p>After the hull is built, all coplanar merges are performed
|
||||
(defined by '<a href="qh-optc.htm#Cn">C-n</a>' and '<a
|
||||
href="qh-optc.htm#An">A-n</a>'), then post-merges are performed
|
||||
(defined by '<a href="qh-optc.htm#Cn2">Cn</a>' and '<a
|
||||
href="qh-optc.htm#An2">An</a>'). If facet progress is logged ('<a
|
||||
href="qh-optt.htm#TFn">TFn</a>'), Qhull reports each phase and
|
||||
prints intermediate summaries and statistics ('<a
|
||||
href="qh-optt.htm#Ts">Ts</a>'). </p>
|
||||
|
||||
<p>Without 'Qx' in 5-d and higher, options '<a
|
||||
href="qh-optc.htm#Cn">C-n</a>' and '<a href="qh-optc.htm#An">A-n</a>'
|
||||
may merge too many facets. Since redundant vertices are not
|
||||
removed effectively, facets become increasingly wide. </p>
|
||||
|
||||
<p>Option 'Qx' may report a wide facet. With 'Qx', coplanar
|
||||
facets are not merged. This can produce a "dent" in an
|
||||
intermediate hull. If a point is partitioned into a dent and it
|
||||
is below the surrounding facets but above other facets, one or
|
||||
more wide facets will occur. In practice, this is unlikely. To
|
||||
observe this effect, run Qhull with option '<a href="#Q6">Q6</a>'
|
||||
which doesn't pre-merge concave facets. A concave facet makes a
|
||||
large dent in the intermediate hull.</p>
|
||||
|
||||
<p>Option 'Qx' may set an outer plane below one of the input
|
||||
points. A coplanar point may be assigned to the wrong facet
|
||||
because of a "dent" in an intermediate hull. After
|
||||
constructing the hull, Qhull double checks all outer planes with
|
||||
qh_check_maxout in <tt>poly2.c </tt>. If a coplanar point is
|
||||
assigned to the wrong facet, qh_check_maxout may reach a local
|
||||
maximum instead of locating all coplanar facets. This appears to
|
||||
be unlikely.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Qz">Qz - add a
|
||||
point-at-infinity for Delaunay triangulations</a></h3>
|
||||
|
||||
<p>Option 'Qz' adds a point above the paraboloid of lifted sites
|
||||
for a Delaunay triangulation. It allows the Delaunay
|
||||
triangulation of cospherical sites. It reduces precision errors
|
||||
for nearly cospherical sites.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q0">Q0 - no merging with C-0
|
||||
and Qx</a></h3>
|
||||
|
||||
<p>Turn off default merge options '<a href="qh-optc.htm#C0">C-0</a>'
|
||||
and '<a href="#Qx">Qx</a>'. </p>
|
||||
|
||||
<p>With 'Q0' and without other pre-merge options, Qhull ignores
|
||||
precision issues while constructing the convex hull. This may
|
||||
lead to precision errors. If so, a descriptive warning is
|
||||
generated. See <a href="qh-impre.htm">Precision issues</a>.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q1">Q1 - sort merges by type
|
||||
instead of angle </a></h3>
|
||||
|
||||
<p>Qhull sorts the coplanar facets before picking a subset of the
|
||||
facets to merge. It merges concave and flipped facets first. Then
|
||||
it merges facets that meet at a steep angle. With 'Q1', Qhull
|
||||
sorts merges by type (coplanar, angle coplanar, concave) instead
|
||||
of by angle. This may make the facets wider. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q2">Q2 - merge all non-convex
|
||||
at once instead of independent sets </a></h3>
|
||||
|
||||
<p>With 'Q2', Qhull merges all facets at once instead of
|
||||
performing merges in independent sets. This may make the facets
|
||||
wider. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q3">Q3 - do not merge
|
||||
redundant vertices </a></h3>
|
||||
|
||||
<p>With 'Q3', Qhull does not remove redundant vertices. In 6-d
|
||||
and higher, Qhull never removes redundant vertices (since
|
||||
vertices are highly interconnected). Option 'Q3' may be faster,
|
||||
but it may result in wider facets. Its effect is easiest to see
|
||||
in 3-d and 4-d.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q4">Q4 - avoid merging </a>old
|
||||
facets into new facets</h3>
|
||||
|
||||
<p>With 'Q4', Qhull avoids merges of an old facet into a new
|
||||
facet. This sometimes improves facet width and sometimes makes it
|
||||
worse. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q5">Q5 - do not correct outer
|
||||
planes at end of qhull </a></h3>
|
||||
|
||||
<p>When merging facets or approximating a hull, Qhull tests
|
||||
coplanar points and outer planes after constructing the hull. It
|
||||
does this by performing a directed search (qh_findbest in <tt>geom.c</tt>).
|
||||
It includes points that are just inside the hull. </p>
|
||||
|
||||
<p>With options 'Q5' or '<a href="qh-optp.htm#Po">Po</a>', Qhull
|
||||
does not test outer planes. The maximum outer plane is used
|
||||
instead. Coplanar points ('<a href="#Qc">Qc</a>') are defined by
|
||||
'<a href="qh-optc.htm#Un">Un</a>'. An input point may be outside
|
||||
of the maximum outer plane (this appears to be unlikely). An
|
||||
interior point may be above '<a href="qh-optc.htm#Un">Un</a>'
|
||||
from a hyperplane.</p>
|
||||
|
||||
<p>Option 'Q5' may be used if outer planes are not needed. Outer
|
||||
planes are needed for options '<a href="qh-opto.htm#s">s</a>', '<a
|
||||
href="qh-optg.htm#G">G</a>', '<a href="qh-optg.htm#Go">Go </a>',
|
||||
'<a href="qh-optf.htm#Fs">Fs</a>', '<a href="qh-optf.htm#Fo">Fo</a>',
|
||||
'<a href="qh-optf.htm#FF">FF</a>', and '<a href="qh-opto.htm#f">f</a>'.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q6">Q6 - do not pre-merge
|
||||
concave or coplanar facets </a></h3>
|
||||
|
||||
<p>With 'Q6', Qhull does not pre-merge concave or coplanar
|
||||
facets. This demonstrates the effect of "dents" when
|
||||
using '<a href="#Qx">Qx</a>'. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q7">Q7 - depth-first
|
||||
processing instead of breadth-first </a></h3>
|
||||
|
||||
<p>With 'Q7', Qhull processes facets in depth-first order instead
|
||||
of breadth-first order. This may increase the locality of
|
||||
reference in low dimensions. If so, Qhull may be able to use
|
||||
virtual memory effectively. </p>
|
||||
|
||||
<p>In 5-d and higher, many facets are visible from each
|
||||
unprocessed point. So each iteration may access a large
|
||||
proportion of allocated memory. This makes virtual memory
|
||||
ineffectual. Once real memory is used up, Qhull will spend most
|
||||
of its time waiting for I/O.</p>
|
||||
|
||||
<p>Under 'Q7', Qhull runs slower and the facets may be wider. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q8">Q8 - ignore near-interior
|
||||
points </a></h3>
|
||||
|
||||
<p>With 'Q8' and merging, Qhull does not process interior points
|
||||
that are near to a facet (as defined by qh_RATIOnearInside in
|
||||
user.h). This avoids partitioning steps. It may miss a coplanar
|
||||
point when adjusting outer hulls in qh_check_maxout(). The best
|
||||
value for qh_RATIOnearInside is not known. Options 'Q8 <a
|
||||
href="#Qc">Qc</a>' may be sufficient. </p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q9">Q9 - process furthest of
|
||||
furthest points </a></h3>
|
||||
|
||||
<p>With 'Q9', Qhull processes the furthest point of all outside
|
||||
sets. This may reduce precision problems. The furthest point of
|
||||
all outside sets is not necessarily the furthest point from the
|
||||
convex hull.</p>
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q10">Q10 - no special processing
|
||||
for narrow distributions</a></h3>
|
||||
|
||||
<p>With 'Q10', Qhull does not special-case narrow distributions.
|
||||
See <a href=qh-impre.htm#limit>Limitations of merged facets</a> for
|
||||
more information.
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q11">Q11 - copy normals and recompute
|
||||
centrums for
|
||||
tricoplanar facets</a></h3>
|
||||
|
||||
Option '<a href="#Qt">Qt</a>' triangulates non-simplicial facets
|
||||
into "tricoplanar" facets.
|
||||
Normally tricoplanar facets share the same normal, centrum, and
|
||||
Voronoi vertex. They can not be merged or replaced. With
|
||||
option 'Q11', Qhull duplicates the normal and Voronoi vertex.
|
||||
It recomputes the centrum.
|
||||
|
||||
<p>Use 'Q11' if you use the Qhull library to add points
|
||||
incrementally and call qh_triangulate() after each point.
|
||||
Otherwise, Qhull will report an error when it tries to
|
||||
merge and replace a tricoplanar facet.
|
||||
|
||||
<p>With sufficient merging and new points, option 'Q11' may
|
||||
lead to precision problems such
|
||||
as duplicate ridges and concave facets. For example, if qh_triangulate()
|
||||
is added to qh_addpoint(), RBOX 1000 s W1e-12 t1001813667 P0 | QHULL d Q11 Tv,
|
||||
reports an error due to a duplicate ridge.
|
||||
|
||||
<h3><a href="#qhull">»</a><a name="Q12">Q12 - do not error
|
||||
on wide merge due to duplicate ridge and nearly coincident points</a></h3>
|
||||
|
||||
<p>In 3-d and higher Delaunay Triangulations or 4-d and higher convex hulls, multiple,
|
||||
nearly coincident points may lead to very wide facets. An error is reported if a
|
||||
merge across a duplicate ridge would increase the facet width by 100x or more.
|
||||
|
||||
<p>Use option 'Q12' to log a warning instead of throwing an error.
|
||||
|
||||
<p>For Delaunay triangulations, a bounding box may alleviate this error (e.g., <tt>rbox 500 C1,1E-13 t c G1 | qhull d</tt>).
|
||||
This avoids the ill-defined edge between upper and lower convex hulls.
|
||||
The problem will be fixed in a future release of Qhull.
|
||||
|
||||
<p>To demonstrate the problem, use rbox option 'Cn,r,m' to generate nearly coincident points.
|
||||
For more information, see "Nearly coincident points on an edge"
|
||||
in <a href="qh-impre.htm#limit"</a>Nearly coincident points on an edge</a>.
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
278
xs/src/qhull/html/qh-optt.htm
Normal file
|
|
@ -0,0 +1,278 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull trace options (T)</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a> Qhull trace options (T)</h1>
|
||||
|
||||
This section lists the trace options for Qhull. These options are
|
||||
indicated by 'T' followed by a letter.
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="index.htm#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
<a name="trace">•</a> <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<h2>Trace options</h2>
|
||||
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="#Tz">Tz</a></dt>
|
||||
<dd>output error information to stdout instead of stderr</dd>
|
||||
<dt><a href="#TI">TI file</a></dt>
|
||||
<dd>input data from a file</dd>
|
||||
<dt><a href="#TO">TO file</a></dt>
|
||||
<dd>output results to a file</dd>
|
||||
<dt><a href="#Ts">Ts</a></dt>
|
||||
<dd>print statistics</dd>
|
||||
<dt><a href="#TFn">TFn</a></dt>
|
||||
<dd>report progress whenever n or more facets created</dd>
|
||||
<dt><a href="#TRn">TRn</a></dt>
|
||||
<dd>rerun qhull n times</dd>
|
||||
<dt><a href="#Tv">Tv</a></dt>
|
||||
<dd>verify result: structure, convexity, and point inclusion</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Debugging</b></dd>
|
||||
<dt><a href="#Tc">Tc</a></dt>
|
||||
<dd>check frequently during execution</dd>
|
||||
<dt><a href="#TVn2">TVn</a></dt>
|
||||
<dd>stop qhull after adding point n </dd>
|
||||
<dt><a href="#TCn">TCn</a></dt>
|
||||
<dd>stop qhull after building cone for point n</dd>
|
||||
<dt><a href="#TVn">TV-n</a></dt>
|
||||
<dd>stop qhull before adding point n</dd>
|
||||
<dt><a href="#Tn">T4</a></dt>
|
||||
<dd>trace at level n, 4=all, 5=mem/gauss, -1= events</dd>
|
||||
<dt><a href="#TWn">TWn</a></dt>
|
||||
<dd>trace merge facets when width > n</dd>
|
||||
<dt><a href="#TMn">TMn</a></dt>
|
||||
<dd>turn on tracing at merge n</dd>
|
||||
<dt><a href="#TPn">TPn</a></dt>
|
||||
<dd>turn on tracing when point n added to hull</dd>
|
||||
</dl>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="Tc">Tc - check frequently
|
||||
during execution </a></h3>
|
||||
|
||||
<p>Qhull includes frequent checks of its data structures. Option
|
||||
'Tc' will catch most inconsistency errors. It is slow and should
|
||||
not be used for production runs. Option '<a href="#Tv">Tv</a>'
|
||||
performs the same checks after the hull is constructed.</p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TCn">TCn - stop qhull after
|
||||
building cone for point n</a></h3>
|
||||
|
||||
<p>Qhull builds a cone from the point to its horizon facets.
|
||||
Option 'TCn' stops Qhull just after building the cone. The output
|
||||
for '<a href="qh-opto.htm#f">f</a>' includes the cone and the old
|
||||
hull.'. </p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TFn">TFn - report summary
|
||||
whenever n or more facets created </a></h3>
|
||||
|
||||
<p>Option 'TFn' reports progress whenever more than n facets are
|
||||
created. The test occurs just before adding a new point to the
|
||||
hull. During post-merging, 'TFn' reports progress after more than
|
||||
<i>n/2</i> merges. </p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TI">TI file - input data from file</a></h3>
|
||||
|
||||
<p>Input data from 'file' instead of stdin. The filename may not
|
||||
contain spaces or use single quotes.
|
||||
You may use I/O redirection
|
||||
instead (e.g., 'rbox 10 | qdelaunay >results').</P>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TMn">TMn - turn on tracing at
|
||||
merge n </a></h3>
|
||||
|
||||
<p>Turn on tracing at n'th merge. </p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="Tn">Tn - trace at level n</a></h3>
|
||||
|
||||
<p>Qhull includes full execution tracing. 'T-1' traces events.
|
||||
'T1' traces the overall execution of the program. 'T2' and 'T3'
|
||||
trace overall execution and geometric and topological events.
|
||||
'T4' traces the algorithm. 'T5' includes information about memory
|
||||
allocation and Gaussian elimination. 'T1' is useful for logging
|
||||
progress of Qhull in high dimensions.</p>
|
||||
|
||||
<p>Option 'Tn' can produce large amounts of output. Use options '<a
|
||||
href="#TPn">TPn</a>', '<a href="#TWn">TWn</a>', and '<a href="#TMn">TMn</a>' to selectively
|
||||
turn on tracing. Since all errors report the last processed
|
||||
point, option '<a href="#TPn">TPn</a>' is particularly useful.</p>
|
||||
|
||||
<p>Different executions of the same program may produce different
|
||||
traces and different results. The reason is that Qhull uses hashing
|
||||
to match ridges of non-simplicial facets. For performance reasons,
|
||||
the hash computation uses
|
||||
memory addresses which may change across executions.
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TO">TO file - output results to file</a></h3>
|
||||
|
||||
<p>Redirect stdout to 'file'. The filename may be enclosed in
|
||||
single quotes. Unix and Windows NT users may use I/O redirection
|
||||
instead (e.g., 'rbox 10 | qdelaunay >results').</P>
|
||||
<p>
|
||||
Windows95 users should always use 'TO file'. If they use I/O redirection,
|
||||
error output is not sent to the console. Qhull uses single quotes instead
|
||||
of double quotes because a missing double quote can
|
||||
freeze Windows95 (e.g., do not run, rbox 10 | qhull TO "x)</p>
|
||||
<p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TPn">TPn - turn on tracing
|
||||
when point n added to hull </a></h3>
|
||||
|
||||
<p>Option 'TPn' turns on tracing when point n is added to
|
||||
the hull. It also traces partitions of point n. This option
|
||||
reduces the output size when tracing. It is the normal
|
||||
method to determine the cause of a Qhull error. All Qhull errors
|
||||
report the last point added.
|
||||
|
||||
<p>Use options 'TPn <a href="qh-optt.htm#TVn">TVn</a>' to
|
||||
trace the addition of point n to the convex hull and stop when done.</p>
|
||||
|
||||
<p>If used with option '<a href="qh-optt.htm#TWn">TWn</a>',
|
||||
'TPn' turns off tracing after adding point n to the hull.
|
||||
Use options 'TPn TWn' to
|
||||
trace the addition of point n to the convex hull, partitions
|
||||
of point n, and wide merges.</p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TRn">TRn - rerun qhull n times</a></h3>
|
||||
|
||||
<p>Option 'TRn' reruns Qhull n times. It is usually used
|
||||
with '<a href="qh-optq.htm#QJn">QJn</a>' to determine the probability
|
||||
that a given joggle will fail. The summary
|
||||
('<a href="qh-opto.htm#s">s</a>') lists the failure
|
||||
rate and the precision errors that occurred.
|
||||
Option '<a href="#Ts">Ts</a>' will report statistics for
|
||||
all of the runs. Trace and output options only apply to the last
|
||||
run. An event trace, '<a href="#Tn">T-1</a>' reports events for all runs.
|
||||
|
||||
<p>Tracing applies to the last run of Qhull. If an error
|
||||
is reported, the options list the run number as "_run".
|
||||
To trace this run, set 'TRn' to the same value.</p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="Ts">Ts - print statistics </a></h3>
|
||||
|
||||
<p>Option 'Ts' collects statistics and prints them to stderr. For
|
||||
Delaunay triangulations, the angle statistics are restricted to
|
||||
the lower or upper envelope.</p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="Tv">Tv - verify result:
|
||||
structure, convexity, and point inclusion </a></h3>
|
||||
|
||||
<p>Option 'Tv' checks the topological structure, convexity, and
|
||||
point inclusion. If precision problems occurred, facet convexity
|
||||
is tested whether or not 'Tv' is selected. Option 'Tv' does not
|
||||
check point inclusion if forcing output with '<a
|
||||
href="qh-optp.htm#Po">Po</a>', or if '<a href="qh-optq.htm#Q5">Q5</a>'
|
||||
is set. </p>
|
||||
|
||||
<p>The convex hull of a set of points is the smallest polytope
|
||||
that includes the points. Option 'Tv' tests point inclusion.
|
||||
Qhull verifies that all points are below all outer planes
|
||||
(facet->maxoutside). Point inclusion is exhaustive if merging
|
||||
or if the facet-point product is small enough; otherwise Qhull
|
||||
verifies each point with a directed search (qh_findbest). To
|
||||
force an exhaustive test when using option '<a
|
||||
href="qh-optc.htm#C0">C-0</a>' (default), use 'C-1e-30' instead. </p>
|
||||
|
||||
<p>Point inclusion testing occurs after producing output. It
|
||||
prints a message to stderr unless option '<a
|
||||
href="qh-optp.htm#Pp">Pp</a>' is used. This allows the user to
|
||||
interrupt Qhull without changing the output. </p>
|
||||
|
||||
<p>With '<a href=qvoronoi.htm>qvoronoi</a> <a href="qh-optf.htm#Fi2">Fi</a>'
|
||||
and '<a href=qvoronoi.htm>qvoronoi</a> <a href="qh-optf.htm#Fo2">Fo</a>',
|
||||
option 'Tv' collects statistics that verify all Voronoi vertices lie
|
||||
on the separating hyperplane, and for bounded regions, all
|
||||
separating hyperplanes are perpendicular bisectors.
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TVn">TV-n - stop qhull before
|
||||
adding point n</a></h3>
|
||||
|
||||
<p>Qhull adds one point at a time to the convex hull. See <a
|
||||
href="qh-eg.htm#how">how Qhull adds a point</a>. Option 'TV-n'
|
||||
stops Qhull just before adding a new point. Output shows the hull
|
||||
at this time.</p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TVn2">TVn - stop qhull after
|
||||
adding point n</a></h3>
|
||||
|
||||
<p>Option 'TVn' stops Qhull after it has added point n. Output
|
||||
shows the hull at this time.</p>
|
||||
|
||||
<h3><a href="#trace">»</a><a name="TWn">TWn - trace merge facets
|
||||
when width > n </a></h3>
|
||||
|
||||
<p>Along with TMn, this option allows the user to determine the
|
||||
cause of a wide merge.</p>
|
||||
<h3><a href="#trace">»</a><a name="Tz">Tz - send all output to
|
||||
stdout </a></h3>
|
||||
|
||||
<p>Redirect stderr to stdout. </p>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
495
xs/src/qhull/html/qh-quick.htm
Normal file
|
|
@ -0,0 +1,495 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull quick reference</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><a name="TOC"><b>Up:</b></a> <a href="http://www.qhull.org">Home
|
||||
page for Qhull</a> <br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a> <br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="qh-code.htm#TOC">Qhull internals</a><br>
|
||||
<b>To:</b> <a href="../src/libqhull/index.htm">Qhull functions</a>, macros, and data structures<br>
|
||||
<b>To:</b> <a href="../src/libqhull/index.htm#TOC">Qhull files</a><br>
|
||||
<b>To:</b> <a href="../src/libqhull/qh-geom.htm">Geom</a> • <a href="../src/libqhull/qh-globa.htm">Global</a>
|
||||
• <a href="../src/libqhull/qh-io.htm">Io</a> • <a href="../src/libqhull/qh-mem.htm">Mem</a>
|
||||
• <a href="../src/libqhull/qh-merge.htm">Merge</a> • <a href="../src/libqhull/qh-poly.htm">Poly</a>
|
||||
• <a href="../src/libqhull/qh-qhull.htm">Qhull</a> • <a href="../src/libqhull/qh-set.htm">Set</a>
|
||||
• <a href="../src/libqhull/qh-stat.htm">Stat</a> • <a href="../src/libqhull/qh-user.htm">User</a>
|
||||
</p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
|
||||
src="qh--cone.gif" alt="[cone]" align="middle" width="100"
|
||||
height="100"></a> Qhull quick reference</h1>
|
||||
|
||||
This section lists all programs and options in Qhull.
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<p>
|
||||
<a name="programs"> </a>
|
||||
<hr>
|
||||
<b>Qhull programs</b>
|
||||
<p><a href="#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<dl>
|
||||
<dt><a href="qconvex.htm">qconvex</a> -- convex hull</dt>
|
||||
<dd><a href="qconvex.htm#synopsis">sy</a>nopsis • <a
|
||||
href="qconvex.htm#input">in</a>put • <a
|
||||
href="qconvex.htm#outputs">ou</a>tputs • <a
|
||||
href="qconvex.htm#controls">co</a>ntrols • <a
|
||||
href="qconvex.htm#graphics">gr</a>aphics • <a
|
||||
href="qconvex.htm#notes">no</a>tes • <a
|
||||
href="qconvex.htm#conventions">co</a>nventions • <a
|
||||
href="qconvex.htm#options">op</a>tions</dd>
|
||||
<dt> </dt>
|
||||
<dt><a href="qdelaun.htm">qdelaunay</a> -- Delaunay triangulation</dt>
|
||||
<dd><a href="qdelaun.htm#synopsis">sy</a>nopsis • <a
|
||||
href="qdelaun.htm#input">in</a>put • <a
|
||||
href="qdelaun.htm#outputs">ou</a>tputs • <a
|
||||
href="qdelaun.htm#controls">co</a>ntrols • <a
|
||||
href="qdelaun.htm#graphics">gr</a>aphics • <a
|
||||
href="qdelaun.htm#notes">no</a>tes • <a
|
||||
href="qdelaun.htm#conventions">co</a>nventions • <a
|
||||
href="qdelaun.htm#options">op</a>tions</dd>
|
||||
<dt> </dt>
|
||||
<dt><a href="qdelau_f.htm">qdelaunay Qu</a> -- furthest-site Delaunay triangulation</dt>
|
||||
<dd><a href="qdelau_f.htm#synopsis">sy</a>nopsis • <a
|
||||
href="qdelau_f.htm#input">in</a>put • <a
|
||||
href="qdelau_f.htm#outputs">ou</a>tputs • <a
|
||||
href="qdelau_f.htm#controls">co</a>ntrols • <a
|
||||
href="qdelau_f.htm#graphics">gr</a>aphics • <a
|
||||
href="qdelau_f.htm#notes">no</a>tes • <a
|
||||
href="qdelau_f.htm#conventions">co</a>nventions • <a
|
||||
href="qdelau_f.htm#options">op</a>tions</dd>
|
||||
<dt> </dt>
|
||||
<dt><a href="qhalf.htm">qhalf</a> -- halfspace intersection about a point</dt>
|
||||
<dd><a href="qhalf.htm#synopsis">sy</a>nopsis • <a
|
||||
href="qhalf.htm#input">in</a>put • <a
|
||||
href="qhalf.htm#outputs">ou</a>tputs • <a
|
||||
href="qhalf.htm#controls">co</a>ntrols • <a
|
||||
href="qhalf.htm#graphics">gr</a>aphics • <a
|
||||
href="qhalf.htm#notes">no</a>tes • <a
|
||||
href="qhalf.htm#conventions">co</a>nventions • <a
|
||||
href="qhalf.htm#options">op</a>tions</dd>
|
||||
<dt> </dt>
|
||||
<dt><a href="qvoronoi.htm">qvoronoi</a> -- Voronoi diagram</dt>
|
||||
<dd><a href="qvoronoi.htm#synopsis">sy</a>nopsis • <a
|
||||
href="qvoronoi.htm#input">in</a>put • <a
|
||||
href="qvoronoi.htm#outputs">ou</a>tputs •
|
||||
<a href="qvoronoi.htm#controls">co</a>ntrols • <a
|
||||
href="qvoronoi.htm#graphics">gr</a>aphics • <a
|
||||
href="qvoronoi.htm#notes">no</a>tes • <a
|
||||
href="qvoronoi.htm#conventions">co</a>nventions • <a
|
||||
href="qvoronoi.htm#options">op</a>tions</dd>
|
||||
<dt> </dt>
|
||||
<dt><a href="qvoron_f.htm">qvoronoi Qu</a> -- furthest-site Voronoi diagram</dt>
|
||||
<dd><a href="qvoron_f.htm#synopsis">sy</a>nopsis • <a
|
||||
href="qvoron_f.htm#input">in</a>put • <a
|
||||
href="qvoron_f.htm#outputs">ou</a>tputs • <a
|
||||
href="qvoron_f.htm#controls">co</a>ntrols • <a
|
||||
href="qvoron_f.htm#graphics">gr</a>aphics • <a
|
||||
href="qvoron_f.htm#notes">no</a>tes • <a
|
||||
href="qvoron_f.htm#conventions">co</a>nventions • <a
|
||||
href="qvoron_f.htm#options">op</a>tions</dd>
|
||||
<dt> </dt>
|
||||
<dt><a href="rbox.htm">rbox</a> -- generate point distributions for qhull</dt>
|
||||
<dd><a href="rbox.htm#synopsis">sy</a>nopsis • <a
|
||||
href="rbox.htm#outputs">ou</a>tputs • <a
|
||||
href="rbox.htm#examples">ex</a>amples • <a
|
||||
href="rbox.htm#notes">no</a>tes • <a
|
||||
href="rbox.htm#options">op</a>tions</dd>
|
||||
<dt> </dt>
|
||||
<dt><a href="qhull.htm">qhull</a> -- convex hull and related structures</dt>
|
||||
<dd><a href="qhull.htm#synopsis">sy</a>nopsis • <a
|
||||
href="qhull.htm#input">in</a>put • <a
|
||||
href="qhull.htm#outputs">ou</a>tputs • <a
|
||||
href="qhull.htm#controls">co</a>ntrols • <a
|
||||
href="qhull.htm#options">op</a>tions</dd>
|
||||
</dl>
|
||||
<a name="options"> </a>
|
||||
<hr>
|
||||
<b>Qhull options</b>
|
||||
|
||||
<p><a href="#TOC">»</a> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a></p>
|
||||
|
||||
<p><table>
|
||||
<!-- Note: keep all lines the same for easy reorganization -->
|
||||
<tr>
|
||||
<td><nobr>'<a href=qh-optf.htm#Fa>Fa</a>'
|
||||
Farea
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fa>FA</a>'
|
||||
FArea-total
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fc>Fc</a>'
|
||||
Fcoplanars
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FC>FC</a>'
|
||||
FCentrums
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optf.htm#Fd>Fd</a>'
|
||||
Fd-cdd-in
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FD>FD</a>'
|
||||
FD-cdd-out
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FF>FF</a>'
|
||||
FF-dump-xridge
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fi>Fi</a>'
|
||||
Finner
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optf.htm#Fi2>Fi</a>'
|
||||
Finner_bounded
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FI>FI</a>'
|
||||
FIDs
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fm>Fm</a>'
|
||||
Fmerges
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FM>FM</a>'
|
||||
FMaple
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optf.htm#Fn>Fn</a>'
|
||||
Fneighbors
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FN>FN</a>'
|
||||
FNeigh-vertex
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fo>Fo</a>'
|
||||
Fouter
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fo2>Fo</a>'
|
||||
Fouter_unbounded
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optf.htm#FO>FO</a>'
|
||||
FOptions
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fp>Fp</a>'
|
||||
Fpoint-intersect
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FP>FP</a>'
|
||||
FPoint_near
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FQ>FQ</a>'
|
||||
FQhull
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optf.htm#Fs>Fs</a>'
|
||||
Fsummary
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FS>FS</a>'
|
||||
FSize
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Ft>Ft</a>'
|
||||
Ftriangles
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fv>Fv</a>'
|
||||
Fvertices
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optf.htm#Fv2>Fv</a>'
|
||||
Fvoronoi
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#FV>FV</a>'
|
||||
FVertex-ave
|
||||
</nobr></td><td><nobr>'<a href=qh-optf.htm#Fx>Fx</a>'
|
||||
Fxtremes
|
||||
</nobr></td><td colspan=2><nobr>
|
||||
<a href=qh-impre.htm#joggle>Merged facets or joggled input</a>
|
||||
|
||||
</nobr></td></tr>
|
||||
<tr><td> </td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optp.htm#PAn>PAn</a>'
|
||||
PArea-keep
|
||||
</nobr></td><td><nobr>'<a href=qh-optp.htm#Pdk>Pdk:n</a>'
|
||||
Pdrop_low
|
||||
</nobr></td><td><nobr>'<a href=qh-optp.htm#PDk>PDk:n</a>'
|
||||
Pdrop_high
|
||||
</nobr></td><td><nobr>'<a href=qh-optp.htm#Pg>Pg</a>'
|
||||
Pgood
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optp.htm#PFn>PFn</a>'
|
||||
PFacet_area_keep
|
||||
</nobr></td><td><nobr>'<a href=qh-optp.htm#PG>PG</a>'
|
||||
PGood_neighbors
|
||||
</nobr></td><td><nobr>'<a href=qh-optp.htm#PMn>PMn</a>'
|
||||
PMerge-keep
|
||||
</nobr></td><td><nobr>'<a href=qh-optp.htm#Po>Po</a>'
|
||||
Poutput_forced
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optp.htm#Po2>Po</a>'
|
||||
Poutput_error
|
||||
</nobr></td><td><nobr>'<a href=qh-optp.htm#Pp>Pp</a>'
|
||||
Pprecision_not
|
||||
|
||||
</nobr></td></tr>
|
||||
<tr><td> </td></tr><tr>
|
||||
<td><nobr>'<a href=qhull.htm#outputs>d</a>'
|
||||
delaunay
|
||||
</nobr></td><td><nobr>'<a href=qhull.htm#outputs>v</a>'
|
||||
voronoi
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm>G</a>'
|
||||
Geomview
|
||||
</nobr></td><td><nobr>'<a href=qhull.htm#outputs>H</a>'
|
||||
Halfspace
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-opto.htm#f>f</a>'
|
||||
facet_dump
|
||||
</nobr></td><td><nobr>'<a href=qh-opto.htm#i>i</a>'
|
||||
incidences
|
||||
</nobr></td><td><nobr>'<a href=qh-opto.htm#m>m</a>'
|
||||
mathematica
|
||||
</nobr></td><td><nobr>'<a href=qh-opto.htm#n>n</a>'
|
||||
normals
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-opto.htm#o>o</a>'
|
||||
OFF_format
|
||||
</nobr></td><td><nobr>'<a href=qh-opto.htm#p>p</a>'
|
||||
points
|
||||
</nobr></td><td><nobr>'<a href=qh-opto.htm#s>s</a>'
|
||||
summary
|
||||
|
||||
</nobr></td></tr>
|
||||
<tr><td> </td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optg.htm#Gv>Gv</a>'
|
||||
Gvertices
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#Gp>Gp</a>'
|
||||
Gpoints
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#Ga>Ga</a>'
|
||||
Gall_points
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#Gn>Gn</a>'
|
||||
Gno_planes
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optg.htm#Gi>Gi</a>'
|
||||
Ginner
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#Gc>Gc</a>'
|
||||
Gcentrums
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#Gh>Gh</a>'
|
||||
Ghyperplanes
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#Gr>Gr</a>'
|
||||
Gridges
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optg.htm#Go>Go</a>'
|
||||
Gouter
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#GDn>GDn</a>'
|
||||
GDrop_dim
|
||||
</nobr></td><td><nobr>'<a href=qh-optg.htm#Gt>Gt</a>'
|
||||
Gtransparent
|
||||
|
||||
</nobr></td></tr>
|
||||
<tr><td> </td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optt.htm#Tn>T4</a>'
|
||||
T4_trace
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#Tc>Tc</a>'
|
||||
Tcheck_often
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#Ts>Ts</a>'
|
||||
Tstatistics
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#Tv>Tv</a>'
|
||||
Tverify
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optt.htm#Tz>Tz</a>'
|
||||
Tz_stdout
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#TFn>TFn</a>'
|
||||
TFacet_log
|
||||
<td><nobr>'<a href=qh-optt.htm#TI>TI file</a>'
|
||||
TInput_file
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#TPn>TPn</a>'
|
||||
TPoint_trace
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optt.htm#TMn>TMn</a>'
|
||||
TMerge_trace
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#TO>TO file</a>'
|
||||
TOutput_file
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#TRn>TRn</a>'
|
||||
TRerun
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#TWn>TWn</a>'
|
||||
TWide_trace
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optt.htm#TVn>TV-n</a>'
|
||||
TVertex_stop_before
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optt.htm#TVn2>TVn</a>'
|
||||
TVertex_stop_after
|
||||
</nobr></td><td><nobr>'<a href=qh-optt.htm#TCn>TCn</a>'
|
||||
TCone_stop_after
|
||||
|
||||
</nobr></td></tr>
|
||||
<tr><td> </td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optc.htm#An>A-n</a>'
|
||||
Angle_max_pre
|
||||
</nobr></td><td><nobr>'<a href=qh-optc.htm#An2>An</a>'
|
||||
Angle_max_post
|
||||
</nobr></td><td><nobr>'<a href=qh-optc.htm#C0>C-0</a>'
|
||||
Centrum_roundoff
|
||||
</nobr></td><td><nobr>'<a href=qh-optc.htm#Cn>C-n</a>'
|
||||
Centrum_size_pre
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optc.htm#Cn2>Cn</a>'
|
||||
Centrum_size_post
|
||||
</nobr></td><td><nobr>'<a href=qh-optc.htm#En>En</a>'
|
||||
Error_round
|
||||
</nobr></td><td><nobr>'<a href=qh-optc.htm#Rn>Rn</a>'
|
||||
Random_dist
|
||||
</nobr></td><td><nobr>'<a href=qh-optc.htm#Vn>Vn</a>'
|
||||
Visible_min
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optc.htm#Un>Un</a>'
|
||||
Ucoplanar_max
|
||||
</nobr></td><td><nobr>'<a href=qh-optc.htm#Wn>Wn</a>'
|
||||
Wide_outside
|
||||
|
||||
</nobr></td></tr>
|
||||
<tr><td> </td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Qbk>Qbk:n</a>'
|
||||
Qbound_low
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#QBk>QBk:n</a>'
|
||||
QBound_high
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qb0>Qbk:0Bk:0</a>'
|
||||
Qbound_drop
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#QbB>QbB</a>'
|
||||
QbB-scale-box
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Qbb>Qbb</a>'
|
||||
Qbb-scale-last
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qc>Qc</a>'
|
||||
Qcoplanar
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qf>Qf</a>'
|
||||
Qfurthest
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qg>Qg</a>'
|
||||
Qgood_only
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#QGn>QGn</a>'
|
||||
QGood_point
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qi>Qi</a>'
|
||||
Qinterior
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qm>Qm</a>'
|
||||
Qmax_out
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#QJn>QJn</a>'
|
||||
QJoggle
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Qr>Qr</a>'
|
||||
Qrandom
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#QRn>QRn</a>'
|
||||
QRotate
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qs>Qs</a>'
|
||||
Qsearch_1st
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qt>Qt</a>'
|
||||
Qtriangulate
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Qu>Qu</a>'
|
||||
QupperDelaunay
|
||||
</nobr><td><nobr>'<a href=qh-optq.htm#QVn>QVn</a>'
|
||||
QVertex_good
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qv>Qv</a>'
|
||||
Qvneighbors
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Qx>Qx</a>'
|
||||
Qxact_merge
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Qz>Qz</a>'
|
||||
Qzinfinite
|
||||
|
||||
</nobr></td></tr>
|
||||
<tr><td> </td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Q0>Q0</a>'
|
||||
Q0_no_premerge
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q1>Q1</a>'
|
||||
Q1_no_angle
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q2>Q2</a>'
|
||||
Q2_no_independ
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q3>Q3</a>'
|
||||
Q3_no_redundant
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Q4>Q4</a>'
|
||||
Q4_no_old
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q5>Q5</a>'
|
||||
Q5_no_check_out
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q6>Q6</a>'
|
||||
Q6_no_concave
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q7>Q7</a>'
|
||||
Q7_depth_first
|
||||
|
||||
</nobr></td></tr><tr>
|
||||
<td><nobr>'<a href=qh-optq.htm#Q8>Q8</a>'
|
||||
Q8_no_near_in
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q9>Q9</a>'
|
||||
Q9_pick_furthest
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q10>Q10</a>'
|
||||
Q10_no_narrow
|
||||
</nobr></td><td><nobr>'<a href=qh-optq.htm#Q11>Q11</a>'
|
||||
Q11_trinormals
|
||||
</td></tr></table>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home
|
||||
page for Qhull</a> <br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a> <br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="qh-code.htm#TOC">Qhull internals</a><br>
|
||||
<b>To:</b> <a href="../src/libqhull/index.htm">Qhull functions</a>, macros, and data structures<br>
|
||||
<b>To:</b> <a href="../src/libqhull/index.htm#TOC">Qhull files</a><br>
|
||||
<b>To:</b> <a href="../src/libqhull/qh-geom.htm">Geom</a> • <a href="../src/libqhull/qh-globa.htm">Global</a>
|
||||
• <a href="../src/libqhull/qh-io.htm">Io</a> • <a href="../src/libqhull/qh-mem.htm">Mem</a>
|
||||
• <a href="../src/libqhull/qh-merge.htm">Merge</a> • <a href="../src/libqhull/qh-poly.htm">Poly</a>
|
||||
• <a href="../src/libqhull/qh-qhull.htm">Qhull</a> • <a href="../src/libqhull/qh-set.htm">Set</a>
|
||||
• <a href="../src/libqhull/qh-stat.htm">Stat</a> • <a href="../src/libqhull/qh-user.htm">User</a><br>
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
626
xs/src/qhull/html/qhalf.htm
Normal file
|
|
@ -0,0 +1,626 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>qhalf -- halfspace intersection about a point</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><a name="TOP"><b>Up</b></a><b>:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/half.html"><img
|
||||
src="qh--half.gif" alt="[halfspace]" align="middle" width="100"
|
||||
height="100"></a>qhalf -- halfspace intersection about a point</h1>
|
||||
|
||||
<p>The intersection of a set of halfspaces is a polytope. The
|
||||
polytope may be unbounded. See Preparata & Shamos [<a
|
||||
href="index.htm#pre-sha85">'85</a>] for a discussion. In low
|
||||
dimensions, halfspace intersection may be used for linear
|
||||
programming.
|
||||
|
||||
<blockquote>
|
||||
<dl compact>
|
||||
<dt><p><b>Example:</b> rbox c | qconvex <a href="qh-optf.htm#FQ">FQ</a> <a href="qh-optf.htm#FV">FV</a>
|
||||
<a href="qh-opto.htm#n">n</a> | qhalf <a
|
||||
href="qh-optf.htm#Fp">Fp</a></dt>
|
||||
<dd>Print the intersection of the facets of a cube. <tt>rbox c</tt>
|
||||
generates the vertices of a cube. <tt>qconvex FV n</tt> returns of average
|
||||
of the cube's vertices (in this case, the origin) and the halfspaces
|
||||
that define the cube. <tt>qhalf Fp</tt> computes the intersection of
|
||||
the halfspaces about the origin. The intersection is the vertices
|
||||
of the original cube.</dd>
|
||||
|
||||
<dt><p><b>Example:</b> rbox c d G0.55 | qconvex <a href="qh-optf.htm#FQ">FQ</a> <a href="qh-optf.htm#FV">FV</a>
|
||||
<a href="qh-opto.htm#n">n</a> | qhalf <a
|
||||
href="qh-optf.htm#Fp">Fp</a></dt>
|
||||
<dd>Print the intersection of the facets of a cube and a diamond. There
|
||||
are 24 facets and 14 intersection points. Four facets define each diamond
|
||||
vertex. Six facets define each cube vertex.
|
||||
</dd>
|
||||
|
||||
<dt><p><b>Example:</b> rbox c d G0.55 | qconvex <a href="qh-optf.htm#FQ">FQ</a> <a href="qh-optf.htm#FV">FV</a>
|
||||
<a href="qh-opto.htm#n">n</a> | qhalf <a
|
||||
href="qh-optf.htm#Fp">Fp</a>
|
||||
<a href="qh-optq.htm#Qt">Qt</a></dt>
|
||||
<dd>Same as above except triangulate before computing
|
||||
the intersection points. Three facets define each intersection
|
||||
point. There are two duplicates of the diamond and four duplicates of the cube.
|
||||
</dd>
|
||||
|
||||
<dt><p><b>Example:</b> rbox 10 s t10 | qconvex <a href="qh-optf.htm#FQ">FQ</a> <a href="qh-optf.htm#FV">FV</a>
|
||||
<a href="qh-opto.htm#n">n</a> | qhalf <a
|
||||
href="qh-optf.htm#Fp">Fp</a> <a
|
||||
href="qh-optf.htm#Fn">Fn</a></dt>
|
||||
<dd>Print the intersection of the facets of the convex hull of 10 cospherical points.
|
||||
Include the intersection points and the neighboring intersections.
|
||||
As in the previous examples, the intersection points are nearly the same as the
|
||||
original input points.
|
||||
</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
<p>In Qhull, a <i>halfspace</i> is defined by the points on or below a hyperplane.
|
||||
The distance of each point to the hyperplane is less than or equal to zero.
|
||||
|
||||
<p>Qhull computes a halfspace intersection by the geometric
|
||||
duality between points and halfspaces.
|
||||
See <a href="qh-eg.htm#half">halfspace examples</a>,
|
||||
<a href="#notes">qhalf notes</a>, and
|
||||
option 'p' of <a href="#outputs">qhalf outputs</a>. </p>
|
||||
|
||||
<p>Qhalf's <a href="#outputs">outputs</a> are the intersection
|
||||
points (<a href="qh-optf.htm#Fp">Fp</a>) and
|
||||
the neighboring intersection points (<a href="qh-optf.htm#Fn">Fn</a>).
|
||||
For random inputs, halfspace
|
||||
intersections are usually defined by more than <i>d</i> halfspaces. See the sphere example.
|
||||
|
||||
<p>You can try triangulated output ('<a href="qh-optq.htm#Qt">Qt</a>') and joggled input ('<a href="qh-optq.htm#QJn">QJ</a>').
|
||||
It demonstrates that triangulated output is more accurate than joggled input.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output), all
|
||||
halfspace intersections are simplicial (e.g., three halfspaces per
|
||||
intersection in 3-d). In 3-d, if more than three halfspaces intersect
|
||||
at the same point, triangulated output will produce
|
||||
duplicate intersections, one for each additional halfspace. See the third example, or
|
||||
add 'Qt' to the sphere example.</p>
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input), all halfspace
|
||||
intersections are simplicial. This may lead to nearly identical
|
||||
intersections. For example, either replace 'Qt' with 'QJ' above, or add
|
||||
'QJ' to the sphere example.
|
||||
See <a
|
||||
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
|
||||
|
||||
<p>The 'qhalf' program is equivalent to
|
||||
'<a href=qhull.htm#outputs>qhull H</a>' in 2-d to 4-d, and
|
||||
'<a href=qhull.htm#outputs>qhull H</a> <a href=qh-optq.htm#Qx>Qx</a>'
|
||||
in 5-d and higher. It disables the following Qhull
|
||||
<a href=qh-quick.htm#options>options</a>: <i>d n v Qbb QbB Qf Qg Qm
|
||||
Qr QR Qv Qx Qz TR E V Fa FA FC FD FS Ft FV Gt Q0,etc</i>.
|
||||
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
<hr>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">qhalf synopsis</a></h3>
|
||||
<pre>
|
||||
qhalf- halfspace intersection about a point.
|
||||
input (stdin): [dim, 1, interior point]
|
||||
dim+1, n
|
||||
halfspace coefficients + offset
|
||||
comments start with a non-numeric character
|
||||
|
||||
options (qhalf.htm):
|
||||
Hn,n - specify coordinates of interior point
|
||||
Qt - triangulated output
|
||||
QJ - joggle input instead of merging facets
|
||||
Tv - verify result: structure, convexity, and redundancy
|
||||
. - concise list of all options
|
||||
- - one-line description of all options
|
||||
|
||||
output options (subset):
|
||||
s - summary of results (default)
|
||||
Fp - intersection coordinates
|
||||
Fv - non-redundant halfspaces incident to each intersection
|
||||
Fx - non-redundant halfspaces
|
||||
o - OFF file format (dual convex hull)
|
||||
G - Geomview output (dual convex hull)
|
||||
m - Mathematica output (dual convex hull)
|
||||
QVn - print intersections for halfspace n, -n if not
|
||||
TO file - output results to file, may be enclosed in single quotes
|
||||
|
||||
examples:
|
||||
rbox d | qconvex n | qhalf s H0,0,0 Fp
|
||||
rbox c | qconvex FV n | qhalf s i
|
||||
rbox c | qconvex FV n | qhalf s o
|
||||
</pre>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="input">qhalf input</a></h3>
|
||||
|
||||
<blockquote>
|
||||
<p>The input data on <tt>stdin</tt> consists of:</p>
|
||||
<ul>
|
||||
<li>[optional] interior point
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>1
|
||||
<li>coordinates of interior point
|
||||
</ul>
|
||||
<li>dimension + 1
|
||||
<li>number of halfspaces</li>
|
||||
<li>halfspace coefficients followed by offset</li>
|
||||
</ul>
|
||||
|
||||
<p>Use I/O redirection (e.g., qhalf < data.txt), a pipe (e.g., rbox c | qconvex FV n | qhalf),
|
||||
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qhalf TI data.txt).
|
||||
|
||||
<p>Qhull needs an interior point to compute the halfspace
|
||||
intersection. An interior point is clearly inside all of the halfspaces.
|
||||
A point is <i>inside</i> a halfspace if its distance to the corresponding hyperplane is negative.
|
||||
|
||||
<p>The interior point may be listed at the beginning of the input (as shown above).
|
||||
If not, option
|
||||
'Hn,n' defines the interior point as
|
||||
[n,n,0,...] where <em>0</em> is the default coordinate (e.g.,
|
||||
'H0' is the origin). Use linear programming if you do not know
|
||||
the interior point (see <a href="#notes">halfspace notes</a>),</p>
|
||||
|
||||
<p>The input to qhalf is a set of halfspaces that are defined by their hyperplanes.
|
||||
Each halfspace is defined by
|
||||
<em>d</em> coefficients followed by a signed offset. This defines
|
||||
a linear inequality. The coefficients define a vector that is
|
||||
normal to the halfspace.
|
||||
The vector may have any length. If it
|
||||
has length one, the offset is the distance from the origin to the
|
||||
halfspace's boundary. Points in the halfspace have a negative distance to the hyperplane.
|
||||
The distance from the interior point to each
|
||||
halfspace is likewise negative.</p>
|
||||
|
||||
<p>The halfspace format is the same as Qhull's output options '<a
|
||||
href="qh-opto.htm#n">n</a>', '<a href="qh-optf.htm#Fo">Fo</a>',
|
||||
and '<a href="qh-optf.htm#Fi">Fi</a>'. Use option '<a
|
||||
href="qh-optf.htm#Fd">Fd</a>' to use cdd format for the
|
||||
halfspaces.</p>
|
||||
|
||||
<p>For example, here is the input for computing the intersection
|
||||
of halfplanes that form a cube.</p>
|
||||
|
||||
<blockquote>
|
||||
<p>rbox c | qconvex FQ FV n TO data </p>
|
||||
<pre>
|
||||
RBOX c | QCONVEX FQ FV n
|
||||
3 1
|
||||
0 0 0
|
||||
4
|
||||
6
|
||||
0 0 -1 -0.5
|
||||
0 -1 0 -0.5
|
||||
1 0 0 -0.5
|
||||
-1 0 0 -0.5
|
||||
0 1 0 -0.5
|
||||
0 0 1 -0.5
|
||||
</pre>
|
||||
<p>qhalf s Fp < data </p>
|
||||
<pre>
|
||||
|
||||
Halfspace intersection by the convex hull of 6 points in 3-d:
|
||||
|
||||
Number of halfspaces: 6
|
||||
Number of non-redundant halfspaces: 6
|
||||
Number of intersection points: 8
|
||||
|
||||
Statistics for: RBOX c | QCONVEX FQ FV n | QHALF s Fp
|
||||
|
||||
Number of points processed: 6
|
||||
Number of hyperplanes created: 11
|
||||
Number of distance tests for qhull: 11
|
||||
Number of merged facets: 1
|
||||
Number of distance tests for merging: 45
|
||||
CPU seconds to compute hull (after input): 0
|
||||
|
||||
3
|
||||
3
|
||||
8
|
||||
-0.5 0.5 0.5
|
||||
0.5 0.5 0.5
|
||||
-0.5 0.5 -0.5
|
||||
0.5 0.5 -0.5
|
||||
0.5 -0.5 0.5
|
||||
-0.5 -0.5 0.5
|
||||
-0.5 -0.5 -0.5
|
||||
0.5 -0.5 -0.5
|
||||
</pre>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="outputs">qhalf outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The following options control the output for halfspace
|
||||
intersection.</p>
|
||||
<blockquote>
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>Intersections</b></dd>
|
||||
<dt><a href="qh-optf.htm#FN">FN</a></dt>
|
||||
<dd>list intersection points for each non-redundant
|
||||
halfspace. The first line
|
||||
is the number of non-redundant halfspaces. Each remaining
|
||||
lines starts with the number of intersection points. For the cube
|
||||
example, each halfspace has four intersection points.</dd>
|
||||
<dt><a href="qh-optf.htm#Fn">Fn</a></dt>
|
||||
<dd>list neighboring intersections for each intersection point. The first line
|
||||
is the number of intersection points. Each remaining line
|
||||
starts with the number of neighboring intersections. For the cube
|
||||
example, each intersection point has three neighboring intersections.
|
||||
<p>
|
||||
In 3-d, a non-simplicial intersection has more than three neighboring
|
||||
intersections. For random data (e.g., the sphere example), non-simplicial intersections are the norm.
|
||||
Option '<a href="qh-optq.htm#Qt">Qt</a>' produces three
|
||||
neighboring intersections per intersection by duplicating the intersection
|
||||
points. Option <a href="qh-optq.htm#QJn">QJ</a>' produces three
|
||||
neighboring intersections per intersection by joggling the hyperplanes and
|
||||
hence their intersections.
|
||||
</dd>
|
||||
<dt><a href="qh-optf.htm#Fp">Fp</a></dt>
|
||||
<dd>print intersection coordinates. The first line is the dimension and the
|
||||
second line is the number of intersection points. The following lines are the
|
||||
coordinates of each intersection.</dd>
|
||||
<dt><a href="qh-optf.htm#FI">FI</a></dt>
|
||||
<dd>list intersection IDs. The first line is the number of
|
||||
intersections. The IDs follow, one per line.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Halfspaces</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fx">Fx</a></dt>
|
||||
<dd>list non-redundant halfspaces. The first line is the number of
|
||||
non-redundant halfspaces. The other lines list one halfspace per line.
|
||||
A halfspace is <i>non-redundant</i> if it
|
||||
defines a facet of the intersection. Redundant halfspaces are ignored. For
|
||||
the cube example, all of the halfspaces are non-redundant.
|
||||
</dd>
|
||||
<dt><a href="qh-optf.htm#Fv">Fv</a></dt>
|
||||
<dd>list non-redundant halfspaces incident to each intersection point.
|
||||
The first line is the number of
|
||||
non-redundant halfspaces. Each remaining line starts with the number
|
||||
of non-redundant halfspaces. For the
|
||||
cube example, each intersection is incident to three halfspaces.</dd>
|
||||
<dt><a href="qh-opto.htm#i">i</a></dt>
|
||||
<dd>list non-redundant halfspaces incident to each intersection point. The first
|
||||
line is the number of intersection points. Each remaining line
|
||||
lists the incident, non-redundant halfspaces. For the
|
||||
cube example, each intersection is incident to three halfspaces.
|
||||
</dd>
|
||||
<dt><a href="qh-optf.htm#Fc">Fc</a></dt>
|
||||
<dd>list coplanar halfspaces for each intersection point. The first line is
|
||||
the number of intersection points. Each remaining line starts with
|
||||
the number of coplanar halfspaces. A coplanar halfspace is listed for
|
||||
one intersection point even though it is coplanar to multiple intersection
|
||||
points.</dd>
|
||||
<dt><a href="qh-optq.htm#Qc">Qi</a> <a href="qh-optf.htm#Fc">Fc</a></dt>
|
||||
<dd>list redundant halfspaces for each intersection point. The first line is
|
||||
the number of intersection points. Each remaining line starts with
|
||||
the number of redundant halfspaces. Use options '<a href="qh-optq.htm#Qc">Qc</a> Qi Fc' to list
|
||||
coplanar and redundant halfspaces.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="qh-opto.htm#s">s</a></dt>
|
||||
<dd>print summary for the halfspace intersection. Use '<a
|
||||
href="qh-optf.htm#Fs">Fs</a>' if you need numeric data.</dd>
|
||||
<dt><a href="qh-opto.htm#o">o</a></dt>
|
||||
<dd>print vertices and facets of the dual convex hull. The
|
||||
first line is the dimension. The second line is the number of
|
||||
vertices, facets, and ridges. The vertex
|
||||
coordinates are next, followed by the facets, one per line.</dd>
|
||||
<dt><a href="qh-opto.htm#p">p</a></dt>
|
||||
<dd>print vertex coordinates of the dual convex hull. Each vertex corresponds
|
||||
to a non-redundant halfspace. Its coordinates are the negative of the hyperplane's coefficients
|
||||
divided by the offset plus the inner product of the coefficients and
|
||||
the interior point (-c/(b+a.p).
|
||||
Options 'p <a href="qh-optq.htm#Qc">Qc</a>' includes coplanar halfspaces.
|
||||
Options 'p <a href="qh-optq.htm#Qi">Qi</a>' includes redundant halfspaces.</dd>
|
||||
<dt><a href="qh-opto.htm#m">m</a></dt>
|
||||
<dd>Mathematica output for the dual convex hull in 2-d or 3-d.</dd>
|
||||
<dt><a href="qh-optf.htm#FM">FM</a></dt>
|
||||
<dd>Maple output for the dual convex hull in 2-d or 3-d.</dd>
|
||||
<dt><a href="qh-optg.htm#G">G</a></dt>
|
||||
<dd>Geomview output for the dual convex hull in 2-d, 3-d, or 4-d.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="controls">qhalf controls</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options provide additional control:</p>
|
||||
|
||||
<blockquote>
|
||||
<dl compact>
|
||||
<dt><a href="qh-optq.htm#Qt">Qt</a></dt>
|
||||
<dd>triangulated output. If a 3-d intersection is defined by more than
|
||||
three hyperplanes, Qhull produces duplicate intersections -- one for
|
||||
each extra hyperplane.</dd>
|
||||
<dt><a href="qh-optq.htm#QJn">QJ</a></dt>
|
||||
<dd>joggle the input instead of merging facets. In 3-d, this guarantees that
|
||||
each intersection is defined by three hyperplanes.</dd>
|
||||
<dt><a href="qh-opto.htm#f">f </a></dt>
|
||||
<dd>facet dump. Print the data structure for each intersection (i.e.,
|
||||
facet)</dd>
|
||||
<dt><a href="qh-optt.htm#TFn">TFn</a></dt>
|
||||
<dd>report summary after constructing <em>n</em>
|
||||
intersections</dd>
|
||||
<dt><a href="qh-optq.htm#QVn">QVn</a></dt>
|
||||
<dd>select intersection points for halfspace <em>n</em>
|
||||
(marked 'good')</dd>
|
||||
<dt><a href="qh-optq.htm#QGn">QGn</a></dt>
|
||||
<dd>select intersection points that are visible to halfspace <em>n</em>
|
||||
(marked 'good'). Use <em>-n</em> for the remainder.</dd>
|
||||
<dt><a href="qh-optq.htm#Qb0">Qbk:0Bk:0</a></dt>
|
||||
<dd>remove the k-th coordinate from the input. This computes the
|
||||
halfspace intersection in one lower dimension.</dd>
|
||||
<dt><a href="qh-optt.htm#Tv">Tv</a></dt>
|
||||
<dd>verify result</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TI file</a></dt>
|
||||
<dd>input data from file. The filename may not use spaces or quotes.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TO file</a></dt>
|
||||
<dd>output results to file. Use single quotes if the filename
|
||||
contains spaces (e.g., <tt>TO 'file with spaces.txt'</tt></dd>
|
||||
<dt><a href="qh-optq.htm#Qs">Qs</a></dt>
|
||||
<dd>search all points for the initial simplex. If Qhull can
|
||||
not construct an initial simplex, it reports a
|
||||
descriptive message. Usually, the point set is degenerate and one
|
||||
or more dimensions should be removed ('<a href="qh-optq.htm#Qb0">Qbk:0Bk:0</a>').
|
||||
If not, use option 'Qs'. It performs an exhaustive search for the
|
||||
best initial simplex. This is expensive is high dimensions.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="graphics">qhalf graphics</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>To view the results with Geomview, compute the convex hull of
|
||||
the intersection points ('qhull FQ H0 Fp | qhull G'). See <a
|
||||
href="qh-eg.htm#half">Halfspace examples</a>.</p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="notes">qhalf notes</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>See <a href="qh-impre.htm#halfspace">halfspace intersection</a> for precision issues related to qhalf.</p>
|
||||
|
||||
<p>If you do not know an interior point for the halfspaces, use
|
||||
linear programming to find one. Assume, <em>n</em> halfspaces
|
||||
defined by: <em>aj*x1+bj*x2+cj*x3+dj<=0, j=1..n</em>. Perform
|
||||
the following linear program: </p>
|
||||
|
||||
<blockquote>
|
||||
<p>max(x5) aj*x1+bj*x2+cj*x3+dj*x4+x5<=0, j=1..n</p>
|
||||
</blockquote>
|
||||
|
||||
<p>Then, if <em>[x1,x2,x3,x4,x5]</em> is an optimal solution with
|
||||
<em>x4>0</em> and <em>x5>0</em> we get: </p>
|
||||
|
||||
<blockquote>
|
||||
<p>aj*(x1/x4)+bj*(x2/x4)+cj*(x3/x4)+dj<=(-x5/x4) j=1..n and (-x5/x4)<0,
|
||||
</p>
|
||||
</blockquote>
|
||||
|
||||
<p>and conclude that the point <em>[x1/x4,x2/x4,x3/x4]</em> is in
|
||||
the interior of all the halfspaces. Since <em>x5</em> is
|
||||
optimal, this point is "way in" the interior (good
|
||||
for precision errors).</p>
|
||||
|
||||
<p>After finding an interior point, the rest of the intersection
|
||||
algorithm is from Preparata & Shamos [<a
|
||||
href="index.htm#pre-sha85">'85</a>, p. 316, "A simple case
|
||||
..."]. Translate the halfspaces so that the interior point
|
||||
is the origin. Calculate the dual polytope. The dual polytope is
|
||||
the convex hull of the vertices dual to the original faces in
|
||||
regard to the unit sphere (i.e., halfspaces at distance <em>d</em>
|
||||
from the origin are dual to vertices at distance <em>1/d</em>).
|
||||
Then calculate the resulting polytope, which is the dual of the
|
||||
dual polytope, and translate the origin back to the interior
|
||||
point [S. Spitz, S. Teller, D. Strawn].</p>
|
||||
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="conventions">qhalf
|
||||
conventions</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The following terminology is used for halfspace intersection
|
||||
in Qhull. This is the hardest structure to understand. The
|
||||
underlying structure is a convex hull with one vertex per
|
||||
non-redundant halfspace. See <a href="#conventions">convex hull
|
||||
conventions</a> and <a href="index.htm#structure">Qhull's data structures</a>.</p>
|
||||
|
||||
<ul>
|
||||
<li><em>interior point</em> - a point in the intersection of
|
||||
the halfspaces. Qhull needs an interior point to compute
|
||||
the intersection. See <a href="#input">halfspace input</a>.</li>
|
||||
<li><em>halfspace</em> - <em>d</em> coordinates for the
|
||||
normal and a signed offset. The distance to an interior
|
||||
point is negative.</li>
|
||||
<li><em>non-redundant halfspace</em> - a halfspace that
|
||||
defines an output facet</li>
|
||||
<li><em>vertex</em> - a dual vertex in the convex hull
|
||||
corresponding to a non-redundant halfspace</li>
|
||||
<li><em>coplanar point</em> - the dual point corresponding to
|
||||
a similar halfspace</li>
|
||||
<li><em>interior point</em> - the dual point corresponding to
|
||||
a redundant halfspace</li>
|
||||
<li><em>intersection point</em>- the intersection of <em>d</em>
|
||||
or more non-redundant halfspaces</li>
|
||||
<li><em>facet</em> - a dual facet in the convex hull
|
||||
corresponding to an intersection point</li>
|
||||
<li><em>non-simplicial facet</em> - more than <em>d</em>
|
||||
halfspaces intersect at a point</li>
|
||||
<li><em>good facet</em> - an intersection point that
|
||||
satisfies restriction '<a href="qh-optq.htm#QVn">QVn</a>',
|
||||
etc.</li>
|
||||
</ul>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">qhalf options</a></h3>
|
||||
|
||||
<pre>
|
||||
qhalf- compute the intersection of halfspaces about a point
|
||||
http://www.qhull.org
|
||||
|
||||
input (stdin):
|
||||
optional interior point: dimension, 1, coordinates
|
||||
first lines: dimension+1 and number of halfspaces
|
||||
other lines: halfspace coefficients followed by offset
|
||||
comments: start with a non-numeric character
|
||||
|
||||
options:
|
||||
Hn,n - specify coordinates of interior point
|
||||
Qt - triangulated ouput
|
||||
QJ - joggle input instead of merging facets
|
||||
Qc - keep coplanar halfspaces
|
||||
Qi - keep other redundant halfspaces
|
||||
|
||||
Qhull control options:
|
||||
QJn - randomly joggle input in range [-n,n]
|
||||
Qbk:0Bk:0 - remove k-th coordinate from input
|
||||
Qs - search all halfspaces for the initial simplex
|
||||
QGn - print intersection if redundant to halfspace n, -n for not
|
||||
QVn - print intersections for halfspace n, -n if not
|
||||
|
||||
Trace options:
|
||||
T4 - trace at level n, 4=all, 5=mem/gauss, -1= events
|
||||
Tc - check frequently during execution
|
||||
Ts - print statistics
|
||||
Tv - verify result: structure, convexity, and redundancy
|
||||
Tz - send all output to stdout
|
||||
TFn - report summary when n or more facets created
|
||||
TI file - input data from file, no spaces or single quotes
|
||||
TO file - output results to file, may be enclosed in single quotes
|
||||
TPn - turn on tracing when halfspace n added to intersection
|
||||
TMn - turn on tracing at merge n
|
||||
TWn - trace merge facets when width > n
|
||||
TVn - stop qhull after adding halfspace n, -n for before (see TCn)
|
||||
TCn - stop qhull after building cone for halfspace n (see TVn)
|
||||
|
||||
Precision options:
|
||||
Cn - radius of centrum (roundoff added). Merge facets if non-convex
|
||||
An - cosine of maximum angle. Merge facets if cosine > n or non-convex
|
||||
C-0 roundoff, A-0.99/C-0.01 pre-merge, A0.99/C0.01 post-merge
|
||||
Rn - randomly perturb computations by a factor of [1-n,1+n]
|
||||
Un - max distance below plane for a new, coplanar halfspace
|
||||
Wn - min facet width for outside halfspace (before roundoff)
|
||||
|
||||
Output formats (may be combined; if none, produces a summary to stdout):
|
||||
f - facet dump
|
||||
G - Geomview output (dual convex hull)
|
||||
i - non-redundant halfspaces incident to each intersection
|
||||
m - Mathematica output (dual convex hull)
|
||||
o - OFF format (dual convex hull: dimension, points, and facets)
|
||||
p - vertex coordinates of dual convex hull (coplanars if 'Qc' or 'Qi')
|
||||
s - summary (stderr)
|
||||
|
||||
More formats:
|
||||
Fc - count plus redundant halfspaces for each intersection
|
||||
- Qc (default) for coplanar and Qi for other redundant
|
||||
Fd - use cdd format for input (homogeneous with offset first)
|
||||
FF - facet dump without ridges
|
||||
FI - ID of each intersection
|
||||
Fm - merge count for each intersection (511 max)
|
||||
FM - Maple output (dual convex hull)
|
||||
Fn - count plus neighboring intersections for each intersection
|
||||
FN - count plus intersections for each non-redundant halfspace
|
||||
FO - options and precision constants
|
||||
Fp - dim, count, and intersection coordinates
|
||||
FP - nearest halfspace and distance for each redundant halfspace
|
||||
FQ - command used for qhalf
|
||||
Fs - summary: #int (8), dim, #halfspaces, #non-redundant, #intersections
|
||||
for output: #non-redundant, #intersections, #coplanar
|
||||
halfspaces, #non-simplicial intersections
|
||||
#real (2), max outer plane, min vertex
|
||||
Fv - count plus non-redundant halfspaces for each intersection
|
||||
Fx - non-redundant halfspaces
|
||||
|
||||
Geomview output (2-d, 3-d and 4-d; dual convex hull)
|
||||
Ga - all points (i.e., transformed halfspaces) as dots
|
||||
Gp - coplanar points and vertices as radii
|
||||
Gv - vertices (i.e., non-redundant halfspaces) as spheres
|
||||
Gi - inner planes (i.e., halfspace intersections) only
|
||||
Gn - no planes
|
||||
Go - outer planes only
|
||||
Gc - centrums
|
||||
Gh - hyperplane intersections
|
||||
Gr - ridges
|
||||
GDn - drop dimension n in 3-d and 4-d output
|
||||
|
||||
Print options:
|
||||
PAn - keep n largest facets (i.e., intersections) by area
|
||||
Pdk:n- drop facet if normal[k] <= n (default 0.0)
|
||||
PDk:n- drop facet if normal[k] >= n
|
||||
Pg - print good facets (needs 'QGn' or 'QVn')
|
||||
PFn - keep facets whose area is at least n
|
||||
PG - print neighbors of good facets
|
||||
PMn - keep n facets with most merges
|
||||
Po - force output. If error, output neighborhood of facet
|
||||
Pp - do not report precision problems
|
||||
|
||||
. - list of all options
|
||||
- - one line descriptions of all options
|
||||
</pre>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
214
xs/src/qhull/html/qhull-cpp.xml
Normal file
|
|
@ -0,0 +1,214 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml-stylesheet type="text/xsl" href="../../road-faq/xsl/road-faq.xsl"?>
|
||||
|
||||
<rf:topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://schemas.roadintranet.org/road-faq-1 /road/road-faq/xsl/road-faq.xsd"
|
||||
xmlns:rf="http://schemas.roadintranet.org/road-faq-1"
|
||||
title=" C++ interface to Qhull"
|
||||
file="qhull-cpp.xml"
|
||||
fileid="$Id: //main/2015/qhull/html/qhull-cpp.xml#2 $$Change: 2027 $"
|
||||
fileChange="$DateTime: 2015/11/09 23:18:11 $$Author: bbarber $">
|
||||
<div><h4>Qhull C++ -- C++ interface to Qhull</h4></div>
|
||||
<rf:copyright>
|
||||
<a href="../cpp/COPYING.txt">Copyright</a> (c) 2009-2015, C.B. Barber
|
||||
</rf:copyright>
|
||||
<rf:section id="cpp-cpp-links" title="Useful Links for Qhull C++">
|
||||
<div>
|
||||
<p> This draft
|
||||
document records some of the design decisions for Qhull C++. Convert it to HTML by road-faq.xsl from <a href="http://www.qhull.org/road/road-faq/road-faq.html">road-faq</a>.
|
||||
|
||||
Please send comments and suggestions to <a
|
||||
href="mailto:bradb@shore.net">bradb@shore.net</a>
|
||||
</p>
|
||||
</div>
|
||||
<div class="twocol">
|
||||
<div class="col leftcol">
|
||||
Help
|
||||
<ul><li>
|
||||
</li><li>
|
||||
</li><li>
|
||||
</li></ul>
|
||||
</div>
|
||||
<div class="col rightcol">
|
||||
<ul><li>
|
||||
</li><li>
|
||||
</li></ul>
|
||||
</div>
|
||||
</div>
|
||||
<div>
|
||||
. <!-- clear the two column display -->
|
||||
</div>
|
||||
|
||||
</rf:section>
|
||||
<rf:section id="qhull-api" title="Qhull's collection classes">
|
||||
|
||||
<rf:item id="collection-api" title="API for Qhull collections" date="Feb 2009" author="bbarber">
|
||||
Qhull's collection APIs are modeled on Qt's collection API (QList, QVector, QHash) w/o QT_STRICT_ITERATORS. They support STL and Qt programming.
|
||||
|
||||
<p>Some of Qhull's collection classes derive from STL classes. If so,
|
||||
please avoid additional STL functions and operators added by inheritance.
|
||||
These collection classes may be rewritten to derive from Qt classes instead.
|
||||
See Road's <rf:iref item="cpp-collection-api"/>.
|
||||
</p>
|
||||
|
||||
|
||||
Qhull's collection API (where applicable). For documentation, see Qt's QList, QMap, QListIterator, QMapIterator, QMutableListIterator, and QMutableMapIterator
|
||||
<ul><li>
|
||||
STL types [list, qlinkedlist, qlist, qvector, vector] -- const_iterator, iterator
|
||||
</li><li>
|
||||
STL types describing iterators [list, qlinkedlist, qlist, qvector, vector] -- const_pointer, const_reference, difference_type,
|
||||
pointer, reference, size_type, value_type.
|
||||
Pointer and reference types not defined if unavailable (not needed for <algorithm>)
|
||||
</li><li>
|
||||
const_iterator, iterator types -- difference_type, iterator_category, pointer, reference, value_type
|
||||
</li><li>
|
||||
Qt types [qlinkedlist, qlist, qvector] -- ConstIterator, Iterator, QhullclassIterator, MutableQhullclassIterator.
|
||||
Qt's foreach requires const_iterator.
|
||||
</li><li>
|
||||
Types for sets/maps [hash_map, QHash] -- key_compare, key_type, mapped_type
|
||||
</li><li>
|
||||
Constructor -- default constructor, copy constructor, assignment operator, destructor
|
||||
</li><li>
|
||||
Conversion -- to/from/as corresponding C, STL, and Qt constructs. Include toQList and toStdVector (may be filtered, e.g., QhullFacetSet).
|
||||
Do not define fromStdList and fromQList if container is not reference counted (i.e., acts like a value)
|
||||
</li><li>
|
||||
Get/set -- configuration options for class
|
||||
</li><li>
|
||||
STL-style iterator - begin, constBegin, constEnd, end, key, value, =, *, [], ->, ++, --, +, -, ==, !=, <,
|
||||
<=, >, >=, const_iterator(iterator), iterator COMPARE const_iterator.
|
||||
An iterator is an abstraction of a pointer. It is not aware of its container.
|
||||
</li><li>
|
||||
Java-style iterator [qiterator.h] - countRemaining, findNext, findPrevious, hasNext, hasPrevious, next, peekNext, peekPrevious, previous, toBack, toFront, = Coordinates
|
||||
</li><li>
|
||||
Mutable Java-style iterator adds - insert, remove, setValue, value
|
||||
</li><li>
|
||||
Element access -- back, first, front, last
|
||||
</li><li>
|
||||
Element access w/ index -- [], at (const& only), constData, data, mid, value
|
||||
</li><li>
|
||||
Read-only - (int)count, empty, isEmpty, (size_t)size. Count() and size() may be filtered. If so, they may be zero when !empty().
|
||||
</li><li>
|
||||
Read-only for sets/maps - capacity, key, keys, reserve, resize, values
|
||||
</li><li>
|
||||
Operator - ==, !=, +, +=, <<
|
||||
</li><li>
|
||||
Read-write -- append, clear, erase, insert, move, prepend, pop_back, pop_front, push_back, push_front, removeAll, removeAt, removeFirst, removeLast, replace,
|
||||
swap, takeAt, takeFirst, takeLast
|
||||
</li><li>
|
||||
Read-write for sets/maps -- insertMulti, squeeze, take, unite
|
||||
</li><li>
|
||||
Search -- contains(const T &), count(const T &), indexOf, lastIndexOf
|
||||
</li><li>
|
||||
Search for sets/maps -- constFind, lowerBound, upperBound
|
||||
</li><li>
|
||||
Stream I/O -- stream <<
|
||||
</li></ul>
|
||||
|
||||
STL list and vector -- For unfiltered access to each element.
|
||||
<ul><li>
|
||||
<a href="http://stdcxx.apache.org/doc/stdlibug/16-3.html">Apache: Creating your own containers</a> -- requirements for STL containers. Iterators should define the types from 'iterator_traits'.
|
||||
</li><li>
|
||||
STL types -- allocator_type, const_iterator, const_pointer, const_reference, const_reverse_iterator, difference_type, iterator, iterator_category, pointer, reference, reverse_iterator, size_type, value_type
|
||||
</li><li>
|
||||
STL constructors -- MyType(), MyType(count), MyType(count, value), MyType(first, last),
|
||||
MyType(MyType&),
|
||||
</li><li>
|
||||
STL getter/setters -- at (random_access only), back, begin, capacity, end, front, rbegin, rend, size, max_size
|
||||
</li><li>
|
||||
STL predicates -- empty
|
||||
</li><li>
|
||||
STL iterator types -- const_pointer, const_reference, difference_type, iterator_category, pointer, reference, value_type
|
||||
</li><li>
|
||||
STL iterator operators -- *, -<, ++, --, +=, -=, +, -, [], ==, !=, <, >, >=, <=
|
||||
</li><li>
|
||||
STL operators -- =, [] (random_access only), ==, !=, <, >, <=, >=
|
||||
</li><li>
|
||||
STL modifiers -- assign, clear, erase, insert, pop_back, push_back, reserve, resize, swap
|
||||
</li><li>
|
||||
</li></ul>
|
||||
|
||||
Qt Qlist -- For unfiltered access to each element
|
||||
<ul><li>
|
||||
</li><li>
|
||||
Additional Qt types -- ConstIterator, Iterator, QListIterator, QMutableListIterator
|
||||
</li><li>
|
||||
Additional Qt get/set -- constBegin, constEnd, count, first, last, value (random_access only)
|
||||
</li><li>
|
||||
Additional Qt predicates -- isEmpty
|
||||
</li><li>
|
||||
Additional Qt -- mid (random_access only)
|
||||
</li><li>
|
||||
Additional Qt search -- contains, count(T&), indexOf (random_access only), lastIndeOf (random_access only)
|
||||
</li><li>
|
||||
Additional Qt modifiers -- append, insert(index,value) (random_access only), move (random_access only), pop_front, prepend, push_front, removeAll, removeAt (random_access only), removeFirst, removeLast, replace, swap by index, takeAt, takeFirst, takeLast
|
||||
</li><li>
|
||||
Additional Qt operators -- +, <<, +=,
|
||||
stream << and >>
|
||||
</li><li>
|
||||
Unsupported types by Qt -- allocator_type, const_reverse_iterator, reverse_iterator
|
||||
</li><li>
|
||||
Unsupported accessors by Qt -- max_size, rbegin, rend
|
||||
</li><li>
|
||||
Unsupported constructors by Qt -- multi-value constructors
|
||||
</li><li>
|
||||
unsupported modifiers by Qt -- assign, muli-value inserts, STL's swaps
|
||||
</li><li>
|
||||
</li></ul>
|
||||
|
||||
STL map and Qt QMap. These use nearly the same API as list and vector classes. They add the following.
|
||||
<ul><li>
|
||||
STL types -- key_compare, key_type, mapped_type
|
||||
</li><li>
|
||||
STL search -- equal_range, find, lower_bound, upper_bound
|
||||
</li><li>
|
||||
Qt removes -- equal_range, key_compare
|
||||
</li><li>
|
||||
Qt renames -- lowerBound, upperBound
|
||||
</li><li>
|
||||
Qt adds -- constFind, insertMulti, key, keys, take, uniqueKeys, unite, values
|
||||
</li><li>
|
||||
Not applicable to map and QMap -- at, back, pop_back, pop_front, push_back, push_front, swap
|
||||
</li><li>
|
||||
Not applicable to QMap -- append, first, last, lastIndexOf, mid, move, prepend, removeAll, removeAt, removeFirst, removeLast, replace, squeeze, takeAt, takeFirst, takeLast
|
||||
</li><li>
|
||||
Not applicable to map -- assign
|
||||
</li></ul>
|
||||
|
||||
Qt QHash. STL extensions provide similar classes, e.g., Microsoft's stdext::hash_set. THey are nearly the same as QMap
|
||||
<ul><li>
|
||||
</li><li>
|
||||
</li><li>
|
||||
Not applicable to Qhash -- lowerBound, unite, upperBound,
|
||||
</li><li>
|
||||
Qt adds -- squeeze
|
||||
</li></ul>
|
||||
</rf:item>
|
||||
<rf:item id="class-api" title="API for Qhull collections" date="Feb 2009" author="bbarber">
|
||||
<ul><li>
|
||||
check... -- Throw error on failure
|
||||
</li><li>
|
||||
try... -- Return false on failure. Do not throw errors.
|
||||
</li><li>
|
||||
...Temporarily -- lifetime depends on source. e.g., toByteArrayTemporarily
|
||||
</li><li>
|
||||
...p -- indicates pointer-to.
|
||||
</li><li>
|
||||
end... -- points to one beyond the last available
|
||||
</li><li>
|
||||
private functions -- No syntactic indication. They may become public later on.
|
||||
</li><li>
|
||||
Error messages -- Preceed error messages with the name of the class throwing the error (e.g. "ClassName: ..."). If this is an internal error, use "ClassName inconsistent: ..."
|
||||
</li><li>
|
||||
parameter order -- qhRunId, dimension, coordinates, count.
|
||||
</li><li>
|
||||
toClass -- Convert into a Class object (makes a deep copy)
|
||||
</li><li>
|
||||
qRunId -- Requires Qh installed. Some routines allow 0 for limited info (e.g., operator<<)
|
||||
</li><li>
|
||||
Disable methods in derived classes -- If the default constructor, copy constructor, or copy assignment is disabled, it should be also disabled in derived classes (better error messages).
|
||||
</li><li>
|
||||
Constructor order -- default constructor, other constructors, copy constructor, copy assignment, destructor
|
||||
</li></ul>
|
||||
</rf:item>
|
||||
</rf:section>
|
||||
</rf:topic>
|
||||
473
xs/src/qhull/html/qhull.htm
Normal file
|
|
@ -0,0 +1,473 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>qhull -- convex hull and related structures</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b><a name="TOP">Up</a></b><b>:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis • <a href="#input">in</a>put
|
||||
• <a href="#outputs">ou</a>tputs • <a href="#controls">co</a>ntrols
|
||||
• <a href="#options">op</a>tions
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
|
||||
src="qh--cone.gif" alt="[cone]" align="middle" width="100"
|
||||
height="100"></a>qhull -- convex hull and related structures</h1>
|
||||
|
||||
<p>The convex hull of a set of points is the smallest convex set
|
||||
containing the points. The Delaunay triangulation and furthest-site
|
||||
Delaunay triangulation are equivalent to a convex hull in one
|
||||
higher dimension. Halfspace intersection about a point is
|
||||
equivalent to a convex hull by polar duality.
|
||||
|
||||
<p>The <tt>qhull</tt> program provides options to build these
|
||||
structures and to experiment with the process. Use the
|
||||
<a href=qconvex.htm>qconvex</a>,
|
||||
<a href=qdelaun.htm>qdelaunay</a>, <a href=qhalf.htm>qhalf</a>,
|
||||
and <a href=qvoronoi.htm>qvoronoi</a> programs
|
||||
to build specific structures. You may use <tt>qhull</tt> instead.
|
||||
It takes the same options and uses the same code.
|
||||
<blockquote>
|
||||
<dl>
|
||||
<dt><b>Example:</b> rbox 1000 D3 | qhull
|
||||
<a href="qh-optc.htm#Cn">C-1e-4</a>
|
||||
<a href="qh-optf.htm#FO">FO</a>
|
||||
<a href="qh-optt.htm#Ts">Ts</a>
|
||||
</dt>
|
||||
<dd>Compute the 3-d convex hull of 1000 random
|
||||
points.
|
||||
Centrums must be 10^-4 below neighboring
|
||||
hyperplanes. Print the options and precision constants.
|
||||
When done, print statistics. These options may be
|
||||
used with any of the Qhull programs.</dd>
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox 1000 D3 | qhull <a href=qhull.htm#outputs>d</a>
|
||||
<a href="qh-optq.htm#Qbb">Qbb</a>
|
||||
<a href="qh-optc.htm#Rn">R1e-4</a>
|
||||
<a href="qh-optq.htm#Q0">Q0</a></dt>
|
||||
<dd>Compute the 3-d Delaunay triangulation of 1000 random
|
||||
points. Randomly perturb all calculations by
|
||||
[0.9999,1.0001]. Do not correct precision problems.
|
||||
This leads to serious precision errors.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
<p>Use the following equivalences when calling <tt>qhull</tt> in 2-d to 4-d (a 3-d
|
||||
Delaunay triangulation is a 4-d convex hull):
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li>
|
||||
<a href="qconvex.htm">qconvex</a> == qhull
|
||||
<li>
|
||||
<a href=qdelaun.htm>qdelaunay</a> == qhull d <a href="qh-optq.htm#Qbb">Qbb</a>
|
||||
<li>
|
||||
<a href=qhalf.htm>qhalf</a> == qhull H
|
||||
<li>
|
||||
<a href=qvoronoi.htm>qvoronoi</a> == qhull v <a href="qh-optq.htm#Qbb">Qbb</a>
|
||||
</ul>
|
||||
</blockquote>
|
||||
|
||||
<p>Use the following equivalences when calling <tt>qhull</tt> in 5-d and higher (a 4-d
|
||||
Delaunay triangulation is a 5-d convex hull):
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li>
|
||||
<a href="qconvex.htm">qconvex</a> == qhull <a href="qh-optq.htm#Qx">Qx</a>
|
||||
<li>
|
||||
<a href=qdelaun.htm>qdelaunay</a> == qhull d <a href="qh-optq.htm#Qbb">Qbb</a> <a href="qh-optq.htm#Qx">Qx</a>
|
||||
<li>
|
||||
<a href=qhalf.htm>qhalf</a> == qhull H <a href="qh-optq.htm#Qx">Qx</a>
|
||||
<li>
|
||||
<a href=qvoronoi.htm>qvoronoi</a> == qhull v <a href="qh-optq.htm#Qbb">Qbb</a> <a href="qh-optq.htm#Qx">Qx</a>
|
||||
</ul>
|
||||
</blockquote>
|
||||
|
||||
|
||||
<p>By default, Qhull merges coplanar facets. For example, the convex
|
||||
hull of a cube's vertices has six facets.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output),
|
||||
all facets will be simplicial (e.g., triangles in 2-d). For the cube
|
||||
example, it will have 12 facets. Some facets may be
|
||||
degenerate and have zero area.
|
||||
|
||||
<p>If you use '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input),
|
||||
all facets will be simplicial. The corresponding vertices will be
|
||||
slightly perturbed. Joggled input is less accurate that triangulated
|
||||
output.See <a
|
||||
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
|
||||
|
||||
<p>The output for 4-d convex hulls may be confusing if the convex
|
||||
hull contains non-simplicial facets (e.g., a hypercube). See
|
||||
<a href=qh-faq.htm#extra>Why
|
||||
are there extra points in a 4-d or higher convex hull?</a><br>
|
||||
</p>
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">qhull synopsis</a></h3>
|
||||
<pre>
|
||||
qhull- compute convex hulls and related structures.
|
||||
input (stdin): dimension, n, point coordinates
|
||||
comments start with a non-numeric character
|
||||
halfspace: use dim+1 and put offsets after coefficients
|
||||
|
||||
options (qh-quick.htm):
|
||||
d - Delaunay triangulation by lifting points to a paraboloid
|
||||
d Qu - furthest-site Delaunay triangulation (upper convex hull)
|
||||
v - Voronoi diagram as the dual of the Delaunay triangulation
|
||||
v Qu - furthest-site Voronoi diagram
|
||||
H1,1 - Halfspace intersection about [1,1,0,...] via polar duality
|
||||
Qt - triangulated output
|
||||
QJ - joggle input instead of merging facets
|
||||
Tv - verify result: structure, convexity, and point inclusion
|
||||
. - concise list of all options
|
||||
- - one-line description of all options
|
||||
|
||||
Output options (subset):
|
||||
s - summary of results (default)
|
||||
i - vertices incident to each facet
|
||||
n - normals with offsets
|
||||
p - vertex coordinates (if 'Qc', includes coplanar points)
|
||||
if 'v', Voronoi vertices
|
||||
Fp - halfspace intersections
|
||||
Fx - extreme points (convex hull vertices)
|
||||
FA - compute total area and volume
|
||||
o - OFF format (if 'v', outputs Voronoi regions)
|
||||
G - Geomview output (2-d, 3-d and 4-d)
|
||||
m - Mathematica output (2-d and 3-d)
|
||||
QVn - print facets that include point n, -n if not
|
||||
TO file- output results to file, may be enclosed in single quotes
|
||||
|
||||
examples:
|
||||
rbox c d D2 | qhull Qc s f Fx | more rbox 1000 s | qhull Tv s FA
|
||||
rbox 10 D2 | qhull d QJ s i TO result rbox 10 D2 | qhull v Qbb Qt p
|
||||
rbox 10 D2 | qhull d Qu QJ m rbox 10 D2 | qhull v Qu QJ o
|
||||
rbox c | qhull n rbox c | qhull FV n | qhull H Fp
|
||||
rbox d D12 | qhull QR0 FA rbox c D7 | qhull FA TF1000
|
||||
rbox y 1000 W0 | qhull rbox 10 | qhull v QJ o Fv
|
||||
</pre>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="input">qhull input</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The input data on <tt>stdin</tt> consists of:</p>
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>number of points</li>
|
||||
<li>point coordinates</li>
|
||||
</ul>
|
||||
|
||||
<p>Use I/O redirection (e.g., qhull < data.txt), a pipe (e.g., rbox 10 | qhull),
|
||||
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qhull TI data.txt).
|
||||
|
||||
<p>Comments start with a non-numeric character. Error reporting is
|
||||
simpler if there is one point per line. Dimension
|
||||
and number of points may be reversed. For halfspace intersection,
|
||||
an interior point may be prepended (see <a href=qhalf.htm#input>qhalf input</a>).
|
||||
|
||||
<p>Here is the input for computing the convex
|
||||
hull of the unit cube. The output is the normals, one
|
||||
per facet.</p>
|
||||
|
||||
<blockquote>
|
||||
<p>rbox c > data </p>
|
||||
<pre>
|
||||
3 RBOX c
|
||||
8
|
||||
-0.5 -0.5 -0.5
|
||||
-0.5 -0.5 0.5
|
||||
-0.5 0.5 -0.5
|
||||
-0.5 0.5 0.5
|
||||
0.5 -0.5 -0.5
|
||||
0.5 -0.5 0.5
|
||||
0.5 0.5 -0.5
|
||||
0.5 0.5 0.5
|
||||
</pre>
|
||||
<p>qhull s n < data</p>
|
||||
<pre>
|
||||
|
||||
Convex hull of 8 points in 3-d:
|
||||
|
||||
Number of vertices: 8
|
||||
Number of facets: 6
|
||||
Number of non-simplicial facets: 6
|
||||
|
||||
Statistics for: RBOX c | QHULL s n
|
||||
|
||||
Number of points processed: 8
|
||||
Number of hyperplanes created: 11
|
||||
Number of distance tests for qhull: 35
|
||||
Number of merged facets: 6
|
||||
Number of distance tests for merging: 84
|
||||
CPU seconds to compute hull (after input): 0.081
|
||||
|
||||
4
|
||||
6
|
||||
0 0 -1 -0.5
|
||||
0 -1 0 -0.5
|
||||
1 0 0 -0.5
|
||||
-1 0 0 -0.5
|
||||
0 1 0 -0.5
|
||||
0 0 1 -0.5
|
||||
</pre>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="outputs">qhull outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options control the output of qhull. They may be used
|
||||
individually or together.</p>
|
||||
<blockquote>
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a>qhull</a></dt>
|
||||
<dd>compute the convex hull of the input points.
|
||||
See <a href=qconvex.htm>qconvex</a>.</dd>
|
||||
<dt><a name="d">qhull d Qbb</a></dt>
|
||||
<dd>compute the Delaunay triangulation by lifting the points
|
||||
to a paraboloid. Use option '<a href="qh-optq.htm#Qbb">Qbb</a>'
|
||||
to scale the paraboloid and improve numeric precision.
|
||||
See <a href=qdelaun.htm>qdelaunay</a>.</dd>
|
||||
<dt><a name="v">qhull v Qbb</a></dt>
|
||||
<dd>compute the Voronoi diagram by computing the Delaunay
|
||||
triangulation. Use option '<a href="qh-optq.htm#Qbb">Qbb</a>'
|
||||
to scale the paraboloid and improve numeric precision.
|
||||
See <a href=qvoronoi.htm>qvoronoi</a>.</dd>
|
||||
<dt><a name="H">qhull H</a></dt>
|
||||
<dd>compute the halfspace intersection about a point via polar
|
||||
duality. The point is below the hyperplane that defines the halfspace.
|
||||
See <a href=qhalf.htm>qhalf</a>.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
<p>For a full list of output options see
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li><a href="qh-opto.htm#output">Output</a> formats</li>
|
||||
<li><a href="qh-optf.htm#format">Additional</a> I/O
|
||||
formats</li>
|
||||
<li><a href="qh-optg.htm#geomview">Geomview</a>
|
||||
output options</li>
|
||||
<li><a href="qh-optp.htm#print">Print</a> options</li>
|
||||
</ul>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="controls">qhull controls</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>For a full list of control options see
|
||||
<blockquote>
|
||||
<ul>
|
||||
<li><a href="qh-optq.htm#qhull">Qhull</a> control
|
||||
options</li>
|
||||
<li><a href="qh-optc.htm#prec">Precision</a> options</li>
|
||||
<li><a href="qh-optt.htm#trace">Trace</a> options</li>
|
||||
</ul>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">qhull options</a></h3>
|
||||
|
||||
<pre>
|
||||
qhull- compute convex hulls and related structures.
|
||||
http://www.qhull.org
|
||||
|
||||
input (stdin):
|
||||
first lines: dimension and number of points (or vice-versa).
|
||||
other lines: point coordinates, best if one point per line
|
||||
comments: start with a non-numeric character
|
||||
halfspaces: use dim plus one and put offset after coefficients.
|
||||
May be preceded by a single interior point ('H').
|
||||
|
||||
options:
|
||||
d - Delaunay triangulation by lifting points to a paraboloid
|
||||
d Qu - furthest-site Delaunay triangulation (upper convex hull)
|
||||
v - Voronoi diagram (dual of the Delaunay triangulation)
|
||||
v Qu - furthest-site Voronoi diagram
|
||||
Hn,n,... - halfspace intersection about point [n,n,0,...]
|
||||
Qt - triangulated output
|
||||
QJ - joggle input instead of merging facets
|
||||
Qc - keep coplanar points with nearest facet
|
||||
Qi - keep interior points with nearest facet
|
||||
|
||||
Qhull control options:
|
||||
Qbk:n - scale coord k so that low bound is n
|
||||
QBk:n - scale coord k so that upper bound is n (QBk is 0.5)
|
||||
QbB - scale input to unit cube centered at the origin
|
||||
Qbb - scale last coordinate to [0,m] for Delaunay triangulations
|
||||
Qbk:0Bk:0 - remove k-th coordinate from input
|
||||
QJn - randomly joggle input in range [-n,n]
|
||||
QRn - random rotation (n=seed, n=0 time, n=-1 time/no rotate)
|
||||
Qf - partition point to furthest outside facet
|
||||
Qg - only build good facets (needs 'QGn', 'QVn', or 'PdD')
|
||||
Qm - only process points that would increase max_outside
|
||||
Qr - process random outside points instead of furthest ones
|
||||
Qs - search all points for the initial simplex
|
||||
Qu - for 'd' or 'v', compute upper hull without point at-infinity
|
||||
returns furthest-site Delaunay triangulation
|
||||
Qv - test vertex neighbors for convexity
|
||||
Qx - exact pre-merges (skips coplanar and anglomaniacs facets)
|
||||
Qz - add point-at-infinity to Delaunay triangulation
|
||||
QGn - good facet if visible from point n, -n for not visible
|
||||
QVn - good facet if it includes point n, -n if not
|
||||
Q0 - turn off default p remerge with 'C-0'/'Qx'
|
||||
Q1 - sort merges by type instead of angle
|
||||
Q2 - merge all non-convex at once instead of independent sets
|
||||
Q3 - do not merge redundant vertices
|
||||
Q4 - avoid old>new merges
|
||||
Q5 - do not correct outer planes at end of qhull
|
||||
Q6 - do not pre-merge concave or coplanar facets
|
||||
Q7 - depth-first processing instead of breadth-first
|
||||
Q8 - do not process near-inside points
|
||||
Q9 - process furthest of furthest points
|
||||
Q10 - no special processing for narrow distributions
|
||||
Q11 - copy normals and recompute centrums for tricoplanar facets
|
||||
Q12 - do not error on wide merge due to duplicate ridge and nearly coincident points
|
||||
|
||||
Towpaths Trace options:
|
||||
T4 - trace at level n, 4=all, 5=mem/gauss, -1= events
|
||||
Tc - check frequently during execution
|
||||
Ts - print statistics
|
||||
Tv - verify result: structure, convexity, and point inclusion
|
||||
Tz - send all output to stdout
|
||||
TFn - report summary when n or more facets created
|
||||
TI file - input data from file, no spaces or single quotes
|
||||
TO file - output results to file, may be enclosed in single quotes
|
||||
TPn - turn on tracing when point n added to hull
|
||||
TMn - turn on tracing at merge n
|
||||
TWn - trace merge facets when width > n
|
||||
TRn - rerun qhull n times. Use with 'QJn'
|
||||
TVn - stop qhull after adding point n, -n for before (see TCn)
|
||||
TCn - stop qhull after building cone for point n (see TVn)
|
||||
|
||||
Precision options:
|
||||
Cn - radius of centrum (roundoff added). Merge facets if non-convex
|
||||
An - cosine of maximum angle. Merge facets if cosine > n or non-convex
|
||||
C-0 roundoff, A-0.99/C-0.01 pre-merge, A0.99/C0.01 post-merge
|
||||
En - max roundoff error for distance computation
|
||||
Rn - randomly perturb computations by a factor of [1-n,1+n]
|
||||
Vn - min distance above plane for a visible facet (default 3C-n or En)
|
||||
Un - max distance below plane for a new, coplanar point (default Vn)
|
||||
Wn - min facet width for outside point (before roundoff, default 2Vn)
|
||||
|
||||
Output formats (may be combined; if none, produces a summary to stdout):
|
||||
f - facet dump
|
||||
G - Geomview output (see below)
|
||||
i - vertices incident to each facet
|
||||
m - Mathematica output (2-d and 3-d)
|
||||
o - OFF format (dim, points and facets; Voronoi regions)
|
||||
n - normals with offsets
|
||||
p - vertex coordinates or Voronoi vertices (coplanar points if 'Qc')
|
||||
s - summary (stderr)
|
||||
|
||||
More formats:
|
||||
Fa - area for each facet
|
||||
FA - compute total area and volume for option 's'
|
||||
Fc - count plus coplanar points for each facet
|
||||
use 'Qc' (default) for coplanar and 'Qi' for interior
|
||||
FC - centrum or Voronoi center for each facet
|
||||
Fd - use cdd format for input (homogeneous with offset first)
|
||||
FD - use cdd format for numeric output (offset first)
|
||||
FF - facet dump without ridges
|
||||
Fi - inner plane for each facet
|
||||
for 'v', separating hyperplanes for bounded Voronoi regions
|
||||
FI - ID of each facet
|
||||
Fm - merge count for each facet (511 max)
|
||||
FM - Maple output (2-d and 3-d)
|
||||
Fn - count plus neighboring facets for each facet
|
||||
FN - count plus neighboring facets for each point
|
||||
Fo - outer plane (or max_outside) for each facet
|
||||
for 'v', separating hyperplanes for unbounded Voronoi regions
|
||||
FO - options and precision constants
|
||||
Fp - dim, count, and intersection coordinates (halfspace only)
|
||||
FP - nearest vertex and distance for each coplanar point
|
||||
FQ - command used for qhull
|
||||
Fs - summary: #int (8), dimension, #points, tot vertices, tot facets,
|
||||
output: #vertices, #facets, #coplanars, #nonsimplicial
|
||||
#real (2), max outer plane, min vertex
|
||||
FS - sizes: #int (0)
|
||||
#real(2) tot area, tot volume
|
||||
Ft - triangulation with centrums for non-simplicial facets (OFF format)
|
||||
Fv - count plus vertices for each facet
|
||||
for 'v', Voronoi diagram as Voronoi vertices for pairs of sites
|
||||
FV - average of vertices (a feasible point for 'H')
|
||||
Fx - extreme points (in order for 2-d)
|
||||
|
||||
Geomview options (2-d, 3-d, and 4-d; 2-d Voronoi)
|
||||
Ga - all points as dots
|
||||
Gp - coplanar points and vertices as radii
|
||||
Gv - vertices as spheres
|
||||
Gi - inner planes only
|
||||
Gn - no planes
|
||||
Go - outer planes only
|
||||
Gc - centrums
|
||||
Gh - hyperplane intersections
|
||||
Gr - ridges
|
||||
GDn - drop dimension n in 3-d and 4-d output
|
||||
Gt - for 3-d 'd', transparent outer ridges
|
||||
|
||||
Print options:
|
||||
PAn - keep n largest facets by area
|
||||
Pdk:n - drop facet if normal[k] <= n (default 0.0)
|
||||
PDk:n - drop facet if normal[k] >= n
|
||||
Pg - print good facets (needs 'QGn' or 'QVn')
|
||||
PFn - keep facets whose area is at least n
|
||||
PG - print neighbors of good facets
|
||||
PMn - keep n facets with most merges
|
||||
Po - force output. If error, output neighborhood of facet
|
||||
Pp - do not report precision problems
|
||||
|
||||
. - list of all options
|
||||
- - one line descriptions of all options
|
||||
</pre>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis • <a href="#input">in</a>put
|
||||
• <a href="#outputs">ou</a>tputs • <a href="#controls">co</a>ntrols
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
1008
xs/src/qhull/html/qhull.man
Normal file
1263
xs/src/qhull/html/qhull.txt
Normal file
396
xs/src/qhull/html/qvoron_f.htm
Normal file
|
|
@ -0,0 +1,396 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>qvoronoi Qu -- furthest-site Voronoi diagram</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<a name="TOP"><b>Up</b></a><b>:</b>
|
||||
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/delaunay.html"><img
|
||||
src="qh--dt.gif" alt="[delaunay]" align="middle" width="100"
|
||||
height="100"></a>qvoronoi Qu -- furthest-site Voronoi diagram</h1>
|
||||
|
||||
<p>The furthest-site Voronoi diagram is the furthest-neighbor map for a set of
|
||||
points. Each region contains those points that are further
|
||||
from one input site than any other input site. See the
|
||||
survey article by Aurenhammer [<a href="index.htm#aure91">'91</a>]
|
||||
and the brief introduction by O'Rourke [<a
|
||||
href="index.htm#orou94">'94</a>]. The furthest-site Voronoi diagram is the dual of the <a
|
||||
href="qdelau_f.htm">furthest-site Delaunay triangulation</a>.
|
||||
</p>
|
||||
|
||||
<blockquote>
|
||||
<dl>
|
||||
<dt><b>Example:</b> rbox 10 D2 | qvoronoi <a
|
||||
href="qh-optq.htm#Qu">Qu</a> <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-opto.htm#o">o</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d, furthest-site Voronoi diagram of 10
|
||||
random points. Write a summary to the console and the Voronoi
|
||||
regions and vertices to 'result'. The first vertex of the
|
||||
result indicates unbounded regions. Almost all regions
|
||||
are unbounded.</dd>
|
||||
</dl>
|
||||
|
||||
<dl>
|
||||
<dt><b>Example:</b> rbox r y c G1 D2 | qvoronoi <a
|
||||
href="qh-optq.htm#Qu">Qu</a>
|
||||
<a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-optf.htm#Fn">Fn</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d furthest-site Voronoi diagram of a square
|
||||
and a small triangle. Write a summary to the console and the Voronoi
|
||||
vertices for each input site to 'result'.
|
||||
The origin is the only furthest-site Voronoi vertex. The
|
||||
negative indices indicate vertices-at-infinity.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
<p>
|
||||
Qhull computes the furthest-site Voronoi diagram via the <a href="qdelau_f.htm">
|
||||
furthest-site Delaunay triangulation</a>.
|
||||
Each furthest-site Voronoi vertex is the circumcenter of an upper
|
||||
facet of the Delaunay triangulation. Each furthest-site Voronoi
|
||||
region corresponds to a vertex of the Delaunay triangulation
|
||||
(i.e., an input site).</p>
|
||||
|
||||
<p>See <a href="http://www.qhull.org/html/qh-faq.htm#TOC">Qhull FAQ</a> - Delaunay and
|
||||
Voronoi diagram questions.</p>
|
||||
|
||||
<p>The 'qvonoroi' program is equivalent to
|
||||
'<a href=qhull.htm#outputs>qhull v</a> <a href=qh-optq.htm#Qbb>Qbb</a>' in 2-d to 3-d, and
|
||||
'<a href=qhull.htm#outputs>qhull v</a> <a href=qh-optq.htm#Qbb>Qbb</a> <a href=qh-optq.htm#Qx>Qx</a>'
|
||||
in 4-d and higher. It disables the following Qhull
|
||||
<a href=qh-quick.htm#options>options</a>: <i>d n m v H U Qb
|
||||
QB Qc Qf Qg Qi Qm Qr QR Qv Qx TR E V Fa FA FC Fp FS Ft FV Gt Q0,etc</i>.
|
||||
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<hr>
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">furthest-site qvoronoi synopsis</a></h3>
|
||||
<blockquote>
|
||||
|
||||
See <a href="qvoronoi.htm#synopsis">qvoronoi synopsis</a>. The same
|
||||
program is used for both constructions. Use option '<a href="qh-optq.htm#Qu">Qu</a>'
|
||||
for furthest-site Voronoi diagrams.
|
||||
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="input">furthest-site qvoronoi
|
||||
input</a></h3>
|
||||
<blockquote>
|
||||
<p>The input data on <tt>stdin</tt> consists of:</p>
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>number of points</li>
|
||||
<li>point coordinates</li>
|
||||
</ul>
|
||||
|
||||
<p>Use I/O redirection (e.g., qvoronoi Qu < data.txt), a pipe (e.g., rbox 10 | qvoronoi Qu),
|
||||
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qvoronoi TI data.txt Qu).
|
||||
|
||||
<p>For example, this is a square containing four random points.
|
||||
Its furthest-site Voronoi diagram has on vertex and four unbounded,
|
||||
separating hyperplanes (i.e., the coordinate axes)
|
||||
<p>
|
||||
<blockquote>
|
||||
<tt>rbox c 4 D2 > data</tt>
|
||||
<blockquote><pre>
|
||||
2 RBOX c 4 D2
|
||||
8
|
||||
-0.4999921736307369 -0.3684622117955817
|
||||
0.2556053225468894 -0.0413498678629751
|
||||
0.0327672376602583 -0.2810408135699488
|
||||
-0.452955383763607 0.17886471718444
|
||||
-0.5 -0.5
|
||||
-0.5 0.5
|
||||
0.5 -0.5
|
||||
0.5 0.5
|
||||
</pre></blockquote>
|
||||
|
||||
<p><tt>qvoronoi Qu s Fo < data</tt>
|
||||
<blockquote><pre>
|
||||
|
||||
Furthest-site Voronoi vertices by the convex hull of 8 points in 3-d:
|
||||
|
||||
Number of Voronoi regions: 8
|
||||
Number of Voronoi vertices: 1
|
||||
Number of non-simplicial Voronoi vertices: 1
|
||||
|
||||
Statistics for: RBOX c 4 D2 | QVORONOI Qu s Fo
|
||||
|
||||
Number of points processed: 8
|
||||
Number of hyperplanes created: 20
|
||||
Number of facets in hull: 11
|
||||
Number of distance tests for qhull: 34
|
||||
Number of merged facets: 1
|
||||
Number of distance tests for merging: 107
|
||||
CPU seconds to compute hull (after input): 0
|
||||
|
||||
4
|
||||
5 4 5 0 1 0
|
||||
5 4 6 1 0 0
|
||||
5 5 7 1 0 0
|
||||
5 6 7 0 1 0
|
||||
</pre></blockquote>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a> <a name="outputs">furthest-site qvoronoi
|
||||
outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options control the output of furthest-site Voronoi diagrams.</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>furthest-site Voronoi vertices</b></dd>
|
||||
<dt><a href="qh-opto.htm#p">p</a></dt>
|
||||
<dd>print the coordinates of the furthest-site Voronoi vertices. The first line
|
||||
is the dimension. The second line is the number of vertices. Each
|
||||
remaining line is a furthest-site Voronoi vertex. The points-in-square example
|
||||
has one furthest-site Voronoi vertex at the origin.</dd>
|
||||
<dt><a href="qh-optf.htm#Fn">Fn</a></dt>
|
||||
<dd>list the neighboring furthest-site Voronoi vertices for each furthest-site Voronoi
|
||||
vertex. The first line is the number of Voronoi vertices. Each
|
||||
remaining line starts with the number of neighboring vertices. Negative indices (e.g., <em>-1</em>) indicate vertices
|
||||
outside of the Voronoi diagram. In the points-in-square example, the
|
||||
Voronoi vertex at the origin has four neighbors-at-infinity.</dd>
|
||||
<dt><a href="qh-optf.htm#FN">FN</a></dt>
|
||||
<dd>list the furthest-site Voronoi vertices for each furthest-site Voronoi region. The first line is
|
||||
the number of Voronoi regions. Each remaining line starts with the
|
||||
number of Voronoi vertices. Negative indices (e.g., <em>-1</em>) indicate vertices
|
||||
outside of the Voronoi diagram.
|
||||
In the points-in-square example, all regions share the Voronoi vertex
|
||||
at the origin.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>furthest-site Voronoi regions</b></dd>
|
||||
<dt><a href="qh-opto.htm#o">o</a></dt>
|
||||
<dd>print the furthest-site Voronoi regions in OFF format. The first line is the
|
||||
dimension. The second line is the number of vertices, the number
|
||||
of input sites, and "1". The third line represents the vertex-at-infinity.
|
||||
Its coordinates are "-10.101". The next lines are the coordinates
|
||||
of the furthest-site Voronoi vertices. Each remaining line starts with the number
|
||||
of Voronoi vertices in a Voronoi region. In 2-d, the vertices are
|
||||
listed in adjacency order (unoriented). In 3-d and higher, the
|
||||
vertices are listed in numeric order. In the points-in-square
|
||||
example, each unbounded region includes the Voronoi vertex at
|
||||
the origin. Lines consisting of <em>0</em> indicate
|
||||
interior input sites. </dd>
|
||||
<dt><a href="qh-optf.htm#Fi2">Fi</a></dt>
|
||||
<dd>print separating hyperplanes for inner, bounded furthest-site Voronoi
|
||||
regions. The first number is the number of separating
|
||||
hyperplanes. Each remaining line starts with <i>3+dim</i>. The
|
||||
next two numbers are adjacent input sites. The next <i>dim</i>
|
||||
numbers are the coefficients of the separating hyperplane. The
|
||||
last number is its offset. The are no bounded, separating hyperplanes
|
||||
for the points-in-square example.</dd>
|
||||
<dt><a href="qh-optf.htm#Fo2">Fo</a></dt>
|
||||
<dd>print separating hyperplanes for outer, unbounded furthest-site Voronoi
|
||||
regions. The first number is the number of separating
|
||||
hyperplanes. Each remaining line starts with <i>3+dim</i>. The
|
||||
next two numbers are adjacent input sites on the convex hull. The
|
||||
next <i>dim</i>
|
||||
numbers are the coefficients of the separating hyperplane. The
|
||||
last number is its offset. The points-in-square example has four
|
||||
unbounded, separating hyperplanes.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Input sites</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fv2">Fv</a></dt>
|
||||
<dd>list ridges of furthest-site Voronoi vertices for pairs of input sites. The
|
||||
first line is the number of ridges. Each remaining line starts with
|
||||
two plus the number of Voronoi vertices in the ridge. The next
|
||||
two numbers are two adjacent input sites. The remaining numbers list
|
||||
the Voronoi vertices. As with option 'o', a <em>0</em> indicates
|
||||
the vertex-at-infinity
|
||||
and an unbounded, separating hyperplane.
|
||||
The perpendicular bisector (separating hyperplane)
|
||||
of the input sites is a flat through these vertices.
|
||||
In the points-in-square example, the ridge for each edge of the square
|
||||
is unbounded.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="qh-opto.htm#s">s</a></dt>
|
||||
<dd>print summary of the furthest-site Voronoi diagram. Use '<a
|
||||
href="qh-optf.htm#Fs">Fs</a>' for numeric data.</dd>
|
||||
<dt><a href="qh-opto.htm#i">i</a></dt>
|
||||
<dd>list input sites for each <a href=qdelau_f.htm>furthest-site Delaunay region</a>. Use option '<a href="qh-optp.htm#Pp">Pp</a>'
|
||||
to avoid the warning. The first line is the number of regions. The
|
||||
remaining lines list the input sites for each region. The regions are
|
||||
oriented. In the points-in-square example, the square region has four
|
||||
input sites. In 3-d and higher, report cospherical sites by adding extra points.
|
||||
</dd>
|
||||
<dt><a href="qh-optg.htm#G">G</a></dt>
|
||||
<dd>Geomview output for 2-d furthest-site Voronoi diagrams.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a> <a name="controls">furthest-site qvoronoi
|
||||
controls</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options provide additional control:</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dt><a href="qh-optq.htm#Qu">Qu</a></dt>
|
||||
<dd>must be used.</dd>
|
||||
<dt><a href="qh-optq.htm#QVn">QVn</a></dt>
|
||||
<dd>select furthest-site Voronoi vertices for input site <em>n</em> </dd>
|
||||
<dt><a href="qh-optt.htm#Tv">Tv</a></dt>
|
||||
<dd>verify result</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TI file</a></dt>
|
||||
<dd>input data from file. The filename may not use spaces or quotes.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TO file</a></dt>
|
||||
<dd>output results to file. Use single quotes if the filename
|
||||
contains spaces (e.g., <tt>TO 'file with spaces.txt'</tt></dd>
|
||||
<dt><a href="qh-optt.htm#TFn">TFn</a></dt>
|
||||
<dd>report progress after constructing <em>n</em> facets</dd>
|
||||
<dt><a href="qh-optp.htm#PDk">PDk:1</a></dt>
|
||||
<dd>include upper and lower facets in the output. Set <em>k</em>
|
||||
to the last dimension (e.g., 'PD2:1' for 2-d inputs). </dd>
|
||||
<dt><a href="qh-opto.htm#f">f </a></dt>
|
||||
<dd>facet dump. Print the data structure for each facet (i.e.,
|
||||
furthest-site Voronoi vertex).</dd>
|
||||
</dl>
|
||||
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a> <a name="graphics">furthest-site qvoronoi
|
||||
graphics</a></h3>
|
||||
<blockquote>
|
||||
<p>In 2-d, Geomview output ('<a href="qh-optg.htm#G">G</a>')
|
||||
displays a furthest-site Voronoi diagram with extra edges to
|
||||
close the unbounded furthest-site Voronoi regions. All regions
|
||||
will be unbounded. Since the points-in-box example has only
|
||||
one furthest-site Voronoi vertex, the Geomview output is one
|
||||
point.</p>
|
||||
|
||||
<p>See the <a href="qh-eg.htm#delaunay">Delaunay and Voronoi
|
||||
examples</a> for a 2-d example. Turn off normalization (on
|
||||
Geomview's 'obscure' menu) when comparing the furthest-site
|
||||
Voronoi diagram with the corresponding Voronoi diagram. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="notes">furthest-site qvoronoi
|
||||
notes</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>See <a href="qvoronoi.htm#notes">Voronoi notes</a>.</p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="conventions">furthest-site qvoronoi conventions</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The following terminology is used for furthest-site Voronoi
|
||||
diagrams in Qhull. The underlying structure is a furthest-site
|
||||
Delaunay triangulation from a convex hull in one higher
|
||||
dimension. Upper facets of the Delaunay triangulation correspond
|
||||
to vertices of the furthest-site Voronoi diagram. Vertices of the
|
||||
furthest-site Delaunay triangulation correspond to input sites.
|
||||
They also define regions of the furthest-site Voronoi diagram.
|
||||
All vertices are extreme points of the input sites. See <a
|
||||
href="qconvex.htm#conventions">qconvex conventions</a>, <a
|
||||
href="qdelau_f.htm#conventions">furthest-site delaunay
|
||||
conventions</a>, and <a href="index.htm#structure">Qhull's data structures</a>.</p>
|
||||
|
||||
<ul>
|
||||
<li><em>input site</em> - a point in the input (one dimension
|
||||
lower than a point on the convex hull)</li>
|
||||
<li><em>point</em> - a point has <i>d+1</i> coordinates. The
|
||||
last coordinate is the sum of the squares of the input
|
||||
site's coordinates</li>
|
||||
<li><em>vertex</em> - a point on the upper facets of the
|
||||
paraboloid. It corresponds to a unique input site. </li>
|
||||
<li><em>furthest-site Delaunay facet</em> - an upper facet of the
|
||||
paraboloid. The last coefficient of its normal is
|
||||
clearly positive.</li>
|
||||
<li><em>furthest-site Voronoi vertex</em> - the circumcenter
|
||||
of a furthest-site Delaunay facet</li>
|
||||
<li><em>furthest-site Voronoi region</em> - the region of
|
||||
Euclidean space further from an input site than any other
|
||||
input site. Qhull lists the furthest-site Voronoi
|
||||
vertices that define each furthest-site Voronoi region.</li>
|
||||
<li><em>furthest-site Voronoi diagram</em> - the graph of the
|
||||
furthest-site Voronoi regions with the ridges (edges)
|
||||
between the regions.</li>
|
||||
<li><em>infinity vertex</em> - the Voronoi vertex for
|
||||
unbounded furthest-site Voronoi regions in '<a
|
||||
href="qh-opto.htm#o">o</a>' output format. Its
|
||||
coordinates are <em>-10.101</em>.</li>
|
||||
<li><em>good facet</em> - an furthest-site Voronoi vertex with
|
||||
optional restrictions by '<a href="qh-optq.htm#QVn">QVn</a>',
|
||||
etc.</li>
|
||||
</ul>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">furthest-site qvoronoi options</a></h3>
|
||||
<blockquote>
|
||||
|
||||
See <a href="qvoronoi.htm#options">qvoronoi options</a>. The same
|
||||
program is used for both constructions. Use option '<a href="qh-optq.htm#Qu">Qu</a>'
|
||||
for furthest-site Voronoi diagrams.
|
||||
</blockquote>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
667
xs/src/qhull/html/qvoronoi.htm
Normal file
|
|
@ -0,0 +1,667 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>qvoronoi -- Voronoi diagram</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<a name="TOP"><b>Up</b></a><b>:</b>
|
||||
<a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.archinect.com/gallery/displayimage.php?pos=-4658"><img
|
||||
src="normal_voronoi_knauss_oesterle.jpg" alt="[voronoi]" align="middle"
|
||||
height="100"></a>qvoronoi -- Voronoi diagram</h1>
|
||||
|
||||
<p>The Voronoi diagram is the nearest-neighbor map for a set of
|
||||
points. Each region contains those points that are nearer
|
||||
one input site than any other input site. It has many useful properties and applications. See the
|
||||
survey article by Aurenhammer [<a href="index.htm#aure91">'91</a>]
|
||||
and the detailed introduction by O'Rourke [<a
|
||||
href="index.htm#orou94">'94</a>]. The Voronoi diagram is the
|
||||
dual of the <a href=qdelaun.htm>Delaunay triangulation</a>. </p>
|
||||
|
||||
<blockquote>
|
||||
<dl>
|
||||
<dt><b>Example:</b> rbox 10 D3 | qvoronoi <a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-opto.htm#o">o</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 3-d Voronoi diagram of 10 random points. Write a
|
||||
summary to the console and the Voronoi vertices and
|
||||
regions to 'result'. The first vertex of the result
|
||||
indicates unbounded regions.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox r y c G0.1 D2 | qvoronoi
|
||||
<a href="qh-opto.htm#s">s</a>
|
||||
<a href="qh-opto.htm#o">o</a> <a href="qh-optt.htm#TO">TO
|
||||
result</a></dt>
|
||||
<dd>Compute the 2-d Voronoi diagram of a triangle and a small
|
||||
square. Write a
|
||||
summary to the console and Voronoi vertices and regions
|
||||
to 'result'. Report a single Voronoi vertex for
|
||||
cocircular input sites. The first vertex of the result
|
||||
indicates unbounded regions. The origin is the Voronoi
|
||||
vertex for the square.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox r y c G0.1 D2 | qvoronoi <a href="qh-optf.htm#Fv2">Fv</a>
|
||||
<a href="qh-optt.htm#TO">TO result</a></dt>
|
||||
<dd>Compute the 2-d Voronoi diagram of a triangle and a small
|
||||
square. Write a
|
||||
summary to the console and the Voronoi ridges to
|
||||
'result'. Each ridge is the perpendicular bisector of a
|
||||
pair of input sites. Vertex "0" indicates
|
||||
unbounded ridges. Vertex "8" is the Voronoi
|
||||
vertex for the square.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt><b>Example:</b> rbox r y c G0.1 D2 | qvoronoi <a href="qh-optf.htm#Fi2">Fi</a></dt>
|
||||
<dd>Print the bounded, separating hyperplanes for the 2-d Voronoi diagram of a
|
||||
triangle and a small
|
||||
square. Note the four hyperplanes (i.e., lines) for Voronoi vertex
|
||||
"8". It is at the origin.
|
||||
</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
|
||||
<p>Qhull computes the Voronoi diagram via the <a href="qdelaun.htm">Delaunay
|
||||
triangulation</a>. Each Voronoi
|
||||
vertex is the circumcenter of a facet of the Delaunay
|
||||
triangulation. Each Voronoi region corresponds to a vertex (i.e., input site) of the
|
||||
Delaunay triangulation. </p>
|
||||
|
||||
<p>Qhull outputs the Voronoi vertices for each Voronoi region. With
|
||||
option '<a href="qh-optf.htm#Fv2">Fv</a>',
|
||||
it lists all ridges of the Voronoi diagram with the corresponding
|
||||
pairs of input sites. With
|
||||
options '<a href="qh-optf.htm#Fi2">Fi</a>' and '<a href="qh-optf.htm#Fo2">Fo</a>',
|
||||
it lists the bounded and unbounded separating hyperplanes.
|
||||
You can also output a single Voronoi region
|
||||
for further processing [see <a href="#graphics">graphics</a>].</p>
|
||||
|
||||
<p>Use option '<a href="qh-optq.htm#Qz">Qz</a>' if the input is circular, cospherical, or
|
||||
nearly so. It improves precision by adding a point "at infinity," above the corresponding paraboloid.
|
||||
|
||||
<p>See <a href="http://www.qhull.org/html/qh-faq.htm#TOC">Qhull FAQ</a> - Delaunay and
|
||||
Voronoi diagram questions.</p>
|
||||
|
||||
<p>The 'qvonoroi' program is equivalent to
|
||||
'<a href=qhull.htm#outputs>qhull v</a> <a href=qh-optq.htm#Qbb>Qbb</a>' in 2-d to 3-d, and
|
||||
'<a href=qhull.htm#outputs>qhull v</a> <a href=qh-optq.htm#Qbb>Qbb</a> <a href=qh-optq.htm#Qx>Qx</a>'
|
||||
in 4-d and higher. It disables the following Qhull
|
||||
<a href=qh-quick.htm#options>options</a>: <i>d n v Qbb QbB Qf Qg Qm
|
||||
Qr QR Qv Qx Qz TR E V Fa FA FC FD FS Ft FV Gt Q0,etc</i>.
|
||||
|
||||
<p><b>Copyright © 1995-2015 C.B. Barber</b></p>
|
||||
|
||||
<p>Voronoi image by KOOK Architecture, Silvan Oesterle and Michael Knauss.
|
||||
|
||||
<hr>
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">qvoronoi synopsis</a></h3>
|
||||
|
||||
<pre>
|
||||
qvoronoi- compute the Voronoi diagram.
|
||||
input (stdin): dimension, number of points, point coordinates
|
||||
comments start with a non-numeric character
|
||||
|
||||
options (qh-voron.htm):
|
||||
Qu - compute furthest-site Voronoi diagram
|
||||
Tv - verify result: structure, convexity, and in-circle test
|
||||
. - concise list of all options
|
||||
- - one-line description of all options
|
||||
|
||||
output options (subset):
|
||||
s - summary of results (default)
|
||||
p - Voronoi vertices
|
||||
o - OFF file format (dim, Voronoi vertices, and Voronoi regions)
|
||||
FN - count and Voronoi vertices for each Voronoi region
|
||||
Fv - Voronoi diagram as Voronoi vertices between adjacent input sites
|
||||
Fi - separating hyperplanes for bounded regions, 'Fo' for unbounded
|
||||
G - Geomview output (2-d only)
|
||||
QVn - Voronoi vertices for input point n, -n if not
|
||||
TO file- output results to file, may be enclosed in single quotes
|
||||
|
||||
examples:
|
||||
rbox c P0 D2 | qvoronoi s o rbox c P0 D2 | qvoronoi Fi
|
||||
rbox c P0 D2 | qvoronoi Fo rbox c P0 D2 | qvoronoi Fv
|
||||
rbox c P0 D2 | qvoronoi s Qu Fv rbox c P0 D2 | qvoronoi Qu Fo
|
||||
rbox c G1 d D2 | qvoronoi s p rbox c P0 D2 | qvoronoi s Fv QV0
|
||||
</pre>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="input">qvoronoi input</a></h3>
|
||||
<blockquote>
|
||||
The input data on <tt>stdin</tt> consists of:
|
||||
<ul>
|
||||
<li>dimension
|
||||
<li>number of points</li>
|
||||
<li>point coordinates</li>
|
||||
</ul>
|
||||
|
||||
<p>Use I/O redirection (e.g., qvoronoi < data.txt), a pipe (e.g., rbox 10 | qvoronoi),
|
||||
or the '<a href=qh-optt.htm#TI>TI</a>' option (e.g., qvoronoi TI data.txt).
|
||||
|
||||
<p>For example, this is four cocircular points inside a square. Their Voronoi
|
||||
diagram has nine vertices and eight regions. Notice the Voronoi vertex
|
||||
at the origin, and the Voronoi vertices (on each axis) for the four
|
||||
sides of the square.
|
||||
<p>
|
||||
<blockquote>
|
||||
<tt>rbox s 4 W0 c G1 D2 > data</tt>
|
||||
<blockquote><pre>
|
||||
2 RBOX s 4 W0 c D2
|
||||
8
|
||||
-0.4941988586954018 -0.07594397977563715
|
||||
-0.06448037284989526 0.4958248496365813
|
||||
0.4911154367094632 0.09383830681375946
|
||||
-0.348353580869097 -0.3586778257652367
|
||||
-1 -1
|
||||
-1 1
|
||||
1 -1
|
||||
1 1
|
||||
</pre></blockquote>
|
||||
|
||||
<p><tt>qvoronoi s p < data</tt>
|
||||
<blockquote><pre>
|
||||
|
||||
Voronoi diagram by the convex hull of 8 points in 3-d:
|
||||
|
||||
Number of Voronoi regions: 8
|
||||
Number of Voronoi vertices: 9
|
||||
Number of non-simplicial Voronoi vertices: 1
|
||||
|
||||
Statistics for: RBOX s 4 W0 c D2 | QVORONOI s p
|
||||
|
||||
Number of points processed: 8
|
||||
Number of hyperplanes created: 18
|
||||
Number of facets in hull: 10
|
||||
Number of distance tests for qhull: 33
|
||||
Number of merged facets: 2
|
||||
Number of distance tests for merging: 102
|
||||
CPU seconds to compute hull (after input): 0.094
|
||||
|
||||
2
|
||||
9
|
||||
4.217546450968612e-17 1.735507986399734
|
||||
-8.402566836762659e-17 -1.364368854147395
|
||||
0.3447488772716865 -0.6395484723719818
|
||||
1.719446929853986 2.136555906154247e-17
|
||||
0.4967882915039657 0.68662371396699
|
||||
-1.729928876283549 1.343733067524222e-17
|
||||
-0.8906163241424728 -0.4594150543829102
|
||||
-0.6656840313875723 0.5003013793414868
|
||||
-7.318364664277155e-19 -1.188217818408333e-16
|
||||
</pre></blockquote>
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a> <a name="outputs">qvoronoi
|
||||
outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options control the output of Voronoi diagrams.</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dt> </dt>
|
||||
<dd><b>Voronoi vertices</b></dd>
|
||||
<dt><a href="qh-opto.htm#p">p</a></dt>
|
||||
<dd>print the coordinates of the Voronoi vertices. The first line
|
||||
is the dimension. The second line is the number of vertices. Each
|
||||
remaining line is a Voronoi vertex.</dd>
|
||||
<dt><a href="qh-optf.htm#Fn">Fn</a></dt>
|
||||
<dd>list the neighboring Voronoi vertices for each Voronoi
|
||||
vertex. The first line is the number of Voronoi vertices. Each
|
||||
remaining line starts with the number of neighboring vertices.
|
||||
Negative vertices (e.g., <em>-1</em>) indicate vertices
|
||||
outside of the Voronoi diagram.
|
||||
In the circle-in-box example, the
|
||||
Voronoi vertex at the origin has four neighbors.</dd>
|
||||
<dt><a href="qh-optf.htm#FN">FN</a></dt>
|
||||
<dd>list the Voronoi vertices for each Voronoi region. The first line is
|
||||
the number of Voronoi regions. Each remaining line starts with the
|
||||
number of Voronoi vertices. Negative indices (e.g., <em>-1</em>) indicate vertices
|
||||
outside of the Voronoi diagram.
|
||||
In the circle-in-box example, the four bounded regions are defined by four
|
||||
Voronoi vertices.</dd>
|
||||
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Voronoi regions</b></dd>
|
||||
<dt><a href="qh-opto.htm#o">o</a></dt>
|
||||
<dd>print the Voronoi regions in OFF format. The first line is the
|
||||
dimension. The second line is the number of vertices, the number
|
||||
of input sites, and "1". The third line represents the vertex-at-infinity.
|
||||
Its coordinates are "-10.101". The next lines are the coordinates
|
||||
of the Voronoi vertices. Each remaining line starts with the number
|
||||
of Voronoi vertices in a Voronoi region. In 2-d, the vertices are
|
||||
listed in adjacency order (unoriented). In 3-d and higher, the
|
||||
vertices are listed in numeric order. In the circle-in-square
|
||||
example, each bounded region includes the Voronoi vertex at
|
||||
the origin. Lines consisting of <em>0</em> indicate
|
||||
coplanar input sites or '<a href="qh-optq.htm#Qz">Qz</a>'. </dd>
|
||||
<dt><a href="qh-optf.htm#Fi2">Fi</a></dt>
|
||||
<dd>print separating hyperplanes for inner, bounded Voronoi
|
||||
regions. The first number is the number of separating
|
||||
hyperplanes. Each remaining line starts with <i>3+dim</i>. The
|
||||
next two numbers are adjacent input sites. The next <i>dim</i>
|
||||
numbers are the coefficients of the separating hyperplane. The
|
||||
last number is its offset. Use '<a href="qh-optt.htm#Tv">Tv</a>' to verify that the
|
||||
hyperplanes are perpendicular bisectors. It will list relevant
|
||||
statistics to stderr. </dd>
|
||||
<dt><a href="qh-optf.htm#Fo2">Fo</a></dt>
|
||||
<dd>print separating hyperplanes for outer, unbounded Voronoi
|
||||
regions. The first number is the number of separating
|
||||
hyperplanes. Each remaining line starts with <i>3+dim</i>. The
|
||||
next two numbers are adjacent input sites on the convex hull. The
|
||||
next <i>dim</i>
|
||||
numbers are the coefficients of the separating hyperplane. The
|
||||
last number is its offset. Use '<a href="qh-optt.htm#Tv">Tv</a>' to verify that the
|
||||
hyperplanes are perpendicular bisectors. It will list relevant
|
||||
statistics to stderr,</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>Input sites</b></dd>
|
||||
<dt><a href="qh-optf.htm#Fv2">Fv</a></dt>
|
||||
<dd>list ridges of Voronoi vertices for pairs of input sites. The
|
||||
first line is the number of ridges. Each remaining line starts with
|
||||
two plus the number of Voronoi vertices in the ridge. The next
|
||||
two numbers are two adjacent input sites. The remaining numbers list
|
||||
the Voronoi vertices. As with option 'o', a <em>0</em> indicates
|
||||
the vertex-at-infinity
|
||||
and an unbounded, separating hyperplane.
|
||||
The perpendicular bisector (separating hyperplane)
|
||||
of the input sites is a flat through these vertices.
|
||||
In the circle-in-square example, the ridge for each edge of the square
|
||||
is unbounded.</dd>
|
||||
<dt><a href="qh-optf.htm#Fc">Fc</a></dt>
|
||||
<dd>list coincident input sites for each Voronoi vertex.
|
||||
The first line is the number of vertices. The remaining lines start with
|
||||
the number of coincident sites and deleted vertices. Deleted vertices
|
||||
indicate highly degenerate input (see'<a href="qh-optf.htm#Fs">Fs</a>').
|
||||
A coincident site is assigned to one Voronoi
|
||||
vertex. Do not use '<a href="qh-optq.htm#QJn">QJ</a>' with 'Fc'; the joggle will separate
|
||||
coincident sites.</dd>
|
||||
<dt><a href="qh-optf.htm#FP">FP</a></dt>
|
||||
<dd>print coincident input sites with distance to
|
||||
nearest site (i.e., vertex). The first line is the
|
||||
number of coincident sites. Each remaining line starts with the point ID of
|
||||
an input site, followed by the point ID of a coincident point, its vertex, and distance.
|
||||
Includes deleted vertices which
|
||||
indicate highly degenerate input (see'<a href="qh-optf.htm#Fs">Fs</a>').
|
||||
Do not use '<a href="qh-optq.htm#QJn">QJ</a>' with 'FP'; the joggle will separate
|
||||
coincident sites.</dd>
|
||||
<dt> </dt>
|
||||
<dt> </dt>
|
||||
<dd><b>General</b></dd>
|
||||
<dt><a href="qh-opto.htm#s">s</a></dt>
|
||||
<dd>print summary of the Voronoi diagram. Use '<a
|
||||
href="qh-optf.htm#Fs">Fs</a>' for numeric data.</dd>
|
||||
<dt><a href="qh-opto.htm#i">i</a></dt>
|
||||
<dd>list input sites for each <a href=qdelaun.htm>Delaunay region</a>. Use option '<a href="qh-optp.htm#Pp">Pp</a>'
|
||||
to avoid the warning. The first line is the number of regions. The
|
||||
remaining lines list the input sites for each region. The regions are
|
||||
oriented. In the circle-in-square example, the cocircular region has four
|
||||
edges. In 3-d and higher, report cospherical sites by adding extra points.
|
||||
</dd>
|
||||
<dt><a href="qh-optg.htm#G">G</a></dt>
|
||||
<dd>Geomview output for 2-d Voronoi diagrams.</dd>
|
||||
</dl>
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a> <a name="controls">qvoronoi
|
||||
controls</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>These options provide additional control:</p>
|
||||
<blockquote>
|
||||
|
||||
<dl compact>
|
||||
<dt><a href="qh-optq.htm#Qu">Qu</a></dt>
|
||||
<dd>compute the <a href="qvoron_f.htm">furthest-site Voronoi diagram</a>.</dd>
|
||||
<dt><a href="qh-optq.htm#QVn">QVn</a></dt>
|
||||
<dd>select Voronoi vertices for input site <em>n</em> </dd>
|
||||
<dt><a href="qh-optq.htm#Qz">Qz</a></dt>
|
||||
<dd>add a point above the paraboloid to reduce precision
|
||||
errors. Use it for nearly cocircular/cospherical input
|
||||
(e.g., 'rbox c | qvoronoi Qz').</dd>
|
||||
<dt><a href="qh-optt.htm#Tv">Tv</a></dt>
|
||||
<dd>verify result</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TI file</a></dt>
|
||||
<dd>input data from file. The filename may not use spaces or quotes.</dd>
|
||||
<dt><a href="qh-optt.htm#TO">TO file</a></dt>
|
||||
<dd>output results to file. Use single quotes if the filename
|
||||
contains spaces (e.g., <tt>TO 'file with spaces.txt'</tt></dd>
|
||||
<dt><a href="qh-optt.htm#TFn">TFn</a></dt>
|
||||
<dd>report progress after constructing <em>n</em> facets</dd>
|
||||
<dt><a href="qh-optp.htm#PDk">PDk:1</a></dt>
|
||||
<dd>include upper and lower facets in the output. Set <em>k</em>
|
||||
to the last dimension (e.g., 'PD2:1' for 2-d inputs). </dd>
|
||||
<dt><a href="qh-opto.htm#f">f </a></dt>
|
||||
<dd>facet dump. Print the data structure for each facet (i.e.,
|
||||
Voronoi vertex).</dd>
|
||||
</dl>
|
||||
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a> <a name="graphics">qvoronoi
|
||||
graphics</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>In 2-d, Geomview output ('<a href="qh-optg.htm#G">G</a>')
|
||||
displays a Voronoi diagram with extra edges to close the
|
||||
unbounded Voronoi regions. To view the unbounded rays, enclose
|
||||
the input points in a square.</p>
|
||||
|
||||
<p>You can also view <i>individual</i> Voronoi regions in 3-d. To
|
||||
view the Voronoi region for site 3 in Geomview, execute</p>
|
||||
|
||||
<blockquote>
|
||||
<p>qvoronoi <data <a href="qh-optq.htm#QVn">QV3</a> <a
|
||||
href="qh-opto.htm#p">p</a> | qconvex s G >output</p>
|
||||
</blockquote>
|
||||
|
||||
<p>The <tt>qvoronoi</tt> command returns the Voronoi vertices
|
||||
for input site 3. The <tt>qconvex</tt> command computes their convex hull.
|
||||
This is the Voronoi region for input site 3. Its
|
||||
hyperplane normals (qconvex 'n') are the same as the separating hyperplanes
|
||||
from options '<a href="qh-optf.htm#Fi">Fi</a>'
|
||||
and '<a href="qh-optf.htm#Fo">Fo</a>' (up to roundoff error).
|
||||
|
||||
<p>See the <a href="qh-eg.htm#delaunay">Delaunay and Voronoi
|
||||
examples</a> for 2-d and 3-d examples. Turn off normalization (on
|
||||
Geomview's 'obscure' menu) when comparing the Voronoi diagram
|
||||
with the corresponding Delaunay triangulation. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="notes">qvoronoi
|
||||
notes</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>You can simplify the Voronoi diagram by enclosing the input
|
||||
sites in a large square or cube. This is particularly recommended
|
||||
for cocircular or cospherical input data.</p>
|
||||
|
||||
<p>See <a href="#graphics">Voronoi graphics</a> for computing
|
||||
the convex hull of a Voronoi region. </p>
|
||||
|
||||
<p>Voronoi diagrams do not include facets that are
|
||||
coplanar with the convex hull of the input sites. A facet is
|
||||
coplanar if the last coefficient of its normal is
|
||||
nearly zero (see <a href="../src/user.h#ZEROdelaunay">qh_ZEROdelaunay</a>).
|
||||
|
||||
<p>Unbounded regions can be confusing. For example, '<tt>rbox c |
|
||||
qvoronoi Qz o</tt>' produces the Voronoi regions for the vertices
|
||||
of a cube centered at the origin. All regions are unbounded. The
|
||||
output is </p>
|
||||
|
||||
<blockquote>
|
||||
<pre>3
|
||||
2 9 1
|
||||
-10.101 -10.101 -10.101
|
||||
0 0 0
|
||||
2 0 1
|
||||
2 0 1
|
||||
2 0 1
|
||||
2 0 1
|
||||
2 0 1
|
||||
2 0 1
|
||||
2 0 1
|
||||
2 0 1
|
||||
0
|
||||
</pre>
|
||||
</blockquote>
|
||||
|
||||
<p>The first line is the dimension. The second line is the number
|
||||
of vertices and the number of regions. There is one region per
|
||||
input point plus a region for the point-at-infinity added by
|
||||
option '<a href="qh-optq.htm#Qz">Qz</a>'. The next two lines
|
||||
lists the Voronoi vertices. The first vertex is the infinity
|
||||
vertex. It is indicate by the coordinates <em>-10.101</em>. The
|
||||
second vertex is the origin. The next nine lines list the
|
||||
regions. Each region lists two vertices -- the infinity vertex
|
||||
and the origin. The last line is "0" because no region
|
||||
is associated with the point-at-infinity. A "0" would
|
||||
also be listed for nearly incident input sites. </p>
|
||||
|
||||
<p>To use option '<a href="qh-optf.htm#Fv">Fv</a>', add an
|
||||
interior point. For example, </p>
|
||||
|
||||
<blockquote>
|
||||
<pre>
|
||||
rbox c P0 | qvoronoi Fv
|
||||
20
|
||||
5 0 7 1 3 5
|
||||
5 0 3 1 4 5
|
||||
5 0 5 1 2 3
|
||||
5 0 1 1 2 4
|
||||
5 0 6 2 3 6
|
||||
5 0 2 2 4 6
|
||||
5 0 4 4 5 6
|
||||
5 0 8 5 3 6
|
||||
5 1 2 0 2 4
|
||||
5 1 3 0 1 4
|
||||
5 1 5 0 1 2
|
||||
5 2 4 0 4 6
|
||||
5 2 6 0 2 6
|
||||
5 3 4 0 4 5
|
||||
5 3 7 0 1 5
|
||||
5 4 8 0 6 5
|
||||
5 5 6 0 2 3
|
||||
5 5 7 0 1 3
|
||||
5 6 8 0 6 3
|
||||
5 7 8 0 3 5
|
||||
</pre>
|
||||
</blockquote>
|
||||
|
||||
<p>The output consists of 20 ridges and each ridge lists a pair
|
||||
of input sites and a triplet of Voronoi vertices. The first eight
|
||||
ridges connect the origin ('P0'). The remainder list the edges of
|
||||
the cube. Each edge generates an unbounded ray through the
|
||||
midpoint. The corresponding separating planes ('Fo') follow each
|
||||
pair of coordinate axes. </p>
|
||||
|
||||
<p>Options '<a href="qh-optq.htm#Qt">Qt</a>' (triangulated output)
|
||||
and '<a href="qh-optq.htm#QJn">QJ</a>' (joggled input) are deprecated. They may produce
|
||||
unexpected results. If you use these options, cocircular and cospherical input sites will
|
||||
produce duplicate or nearly duplicate Voronoi vertices. See also <a
|
||||
href="qh-impre.htm#joggle">Merged facets or joggled input</a>. </p>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="conventions">qvoronoi conventions</a></h3>
|
||||
<blockquote>
|
||||
|
||||
<p>The following terminology is used for Voronoi diagrams in
|
||||
Qhull. The underlying structure is a Delaunay triangulation from
|
||||
a convex hull in one higher dimension. Facets of the Delaunay
|
||||
triangulation correspond to vertices of the Voronoi diagram.
|
||||
Vertices of the Delaunay triangulation correspond to input sites.
|
||||
They also correspond to regions of the Voronoi diagram. See <a
|
||||
href="qconvex.htm#conventions">convex hull conventions</a>, <a
|
||||
href="qdelaun.htm#conventions">Delaunay conventions</a>, and
|
||||
<a href="index.htm#structure">Qhull's data structures</a>.</p>
|
||||
<blockquote>
|
||||
|
||||
<ul>
|
||||
<li><em>input site</em> - a point in the input (one dimension
|
||||
lower than a point on the convex hull)</li>
|
||||
<li><em>point</em> - a point has <i>d+1</i> coordinates. The
|
||||
last coordinate is the sum of the squares of the input
|
||||
site's coordinates</li>
|
||||
<li><em>coplanar point</em> - a <em>nearly incident</em>
|
||||
input site</li>
|
||||
<li><em>vertex</em> - a point on the paraboloid. It
|
||||
corresponds to a unique input site. </li>
|
||||
<li><em>point-at-infinity</em> - a point added above the
|
||||
paraboloid by option '<a href="qh-optq.htm#Qz">Qz</a>'</li>
|
||||
<li><em>Delaunay facet</em> - a lower facet of the
|
||||
paraboloid. The last coefficient of its normal is
|
||||
clearly negative.</li>
|
||||
<li><em>Voronoi vertex</em> - the circumcenter of a Delaunay
|
||||
facet</li>
|
||||
<li><em>Voronoi region</em> - the Voronoi vertices for an
|
||||
input site. The region of Euclidean space nearest to an
|
||||
input site.</li>
|
||||
<li><em>Voronoi diagram</em> - the graph of the Voronoi
|
||||
regions. It includes the ridges (i.e., edges) between the
|
||||
regions.</li>
|
||||
<li><em>vertex-at-infinity</em> - the Voronoi vertex that
|
||||
indicates unbounded Voronoi regions in '<a
|
||||
href="qh-opto.htm#o">o</a>' output format. Its
|
||||
coordinates are <em>-10.101</em>.</li>
|
||||
<li><em>good facet</em> - a Voronoi vertex with optional
|
||||
restrictions by '<a href="qh-optq.htm#QVn">QVn</a>', etc.</li>
|
||||
</ul>
|
||||
|
||||
</blockquote>
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">qvoronoi options</a></h3>
|
||||
|
||||
<pre>
|
||||
qvoronoi- compute the Voronoi diagram
|
||||
http://www.qhull.org
|
||||
|
||||
input (stdin):
|
||||
first lines: dimension and number of points (or vice-versa).
|
||||
other lines: point coordinates, best if one point per line
|
||||
comments: start with a non-numeric character
|
||||
|
||||
options:
|
||||
Qu - compute furthest-site Voronoi diagram
|
||||
|
||||
Qhull control options:
|
||||
QJn - randomly joggle input in range [-n,n]
|
||||
Qs - search all points for the initial simplex
|
||||
Qz - add point-at-infinity to Voronoi diagram
|
||||
QGn - Voronoi vertices if visible from point n, -n if not
|
||||
QVn - Voronoi vertices for input point n, -n if not
|
||||
|
||||
Trace options:
|
||||
T4 - trace at level n, 4=all, 5=mem/gauss, -1= events
|
||||
Tc - check frequently during execution
|
||||
Ts - statistics
|
||||
Tv - verify result: structure, convexity, and in-circle test
|
||||
Tz - send all output to stdout
|
||||
TFn - report summary when n or more facets created
|
||||
TI file - input data from file, no spaces or single quotes
|
||||
TO file - output results to file, may be enclosed in single quotes
|
||||
TPn - turn on tracing when point n added to hull
|
||||
TMn - turn on tracing at merge n
|
||||
TWn - trace merge facets when width > n
|
||||
TVn - stop qhull after adding point n, -n for before (see TCn)
|
||||
TCn - stop qhull after building cone for point n (see TVn)
|
||||
|
||||
Precision options:
|
||||
Cn - radius of centrum (roundoff added). Merge facets if non-convex
|
||||
An - cosine of maximum angle. Merge facets if cosine > n or non-convex
|
||||
C-0 roundoff, A-0.99/C-0.01 pre-merge, A0.99/C0.01 post-merge
|
||||
Rn - randomly perturb computations by a factor of [1-n,1+n]
|
||||
Wn - min facet width for non-coincident point (before roundoff)
|
||||
|
||||
Output formats (may be combined; if none, produces a summary to stdout):
|
||||
s - summary to stderr
|
||||
p - Voronoi vertices
|
||||
o - OFF format (dim, Voronoi vertices, and Voronoi regions)
|
||||
i - Delaunay regions (use 'Pp' to avoid warning)
|
||||
f - facet dump
|
||||
|
||||
More formats:
|
||||
Fc - count plus coincident points (by Voronoi vertex)
|
||||
Fd - use cdd format for input (homogeneous with offset first)
|
||||
FD - use cdd format for output (offset first)
|
||||
FF - facet dump without ridges
|
||||
Fi - separating hyperplanes for bounded Voronoi regions
|
||||
FI - ID for each Voronoi vertex
|
||||
Fm - merge count for each Voronoi vertex (511 max)
|
||||
Fn - count plus neighboring Voronoi vertices for each Voronoi vertex
|
||||
FN - count and Voronoi vertices for each Voronoi region
|
||||
Fo - separating hyperplanes for unbounded Voronoi regions
|
||||
FO - options and precision constants
|
||||
FP - nearest point and distance for each coincident point
|
||||
FQ - command used for qvoronoi
|
||||
Fs - summary: #int (8), dimension, #points, tot vertices, tot facets,
|
||||
for output: #Voronoi regions, #Voronoi vertices,
|
||||
#coincident points, #non-simplicial regions
|
||||
#real (2), max outer plane and min vertex
|
||||
Fv - Voronoi diagram as Voronoi vertices between adjacent input sites
|
||||
Fx - extreme points of Delaunay triangulation (on convex hull)
|
||||
|
||||
Geomview options (2-d only)
|
||||
Ga - all points as dots
|
||||
Gp - coplanar points and vertices as radii
|
||||
Gv - vertices as spheres
|
||||
Gi - inner planes only
|
||||
Gn - no planes
|
||||
Go - outer planes only
|
||||
Gc - centrums
|
||||
Gh - hyperplane intersections
|
||||
Gr - ridges
|
||||
GDn - drop dimension n in 3-d and 4-d output
|
||||
|
||||
Print options:
|
||||
PAn - keep n largest Voronoi vertices by 'area'
|
||||
Pdk:n - drop facet if normal[k] <= n (default 0.0)
|
||||
PDk:n - drop facet if normal[k] >= n
|
||||
Pg - print good Voronoi vertices (needs 'QGn' or 'QVn')
|
||||
PFn - keep Voronoi vertices whose 'area' is at least n
|
||||
PG - print neighbors of good Voronoi vertices
|
||||
PMn - keep n Voronoi vertices with most merges
|
||||
Po - force output. If error, output neighborhood of facet
|
||||
Pp - do not report precision problems
|
||||
|
||||
. - list of all options
|
||||
- - one line descriptions of all options
|
||||
</pre>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis
|
||||
• <a href="#input">in</a>put • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#controls">co</a>ntrols • <a href="#graphics">gr</a>aphics
|
||||
• <a href="#notes">no</a>tes • <a href="#conventions">co</a>nventions
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
</a><br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
277
xs/src/qhull/html/rbox.htm
Normal file
|
|
@ -0,0 +1,277 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>rbox -- generate point distributions</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<p><b><a name="TOP">Up:</a></b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#examples">ex</a>amples • <a href="#notes">no</a>tes
|
||||
• <a href="#options">op</a>tions
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<h1><a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
|
||||
src="qh--cone.gif" alt="[CONE]" align="middle" width="100"
|
||||
height="100"></a>rbox -- generate point distributions</h1>
|
||||
|
||||
<blockquote>
|
||||
rbox generates random or regular points according to the
|
||||
options given, and outputs the points to stdout. The
|
||||
points are generated in a cube, unless 's', 'x', or 'y'
|
||||
are given.
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="synopsis">rbox synopsis</a></h3>
|
||||
<pre>
|
||||
rbox- generate various point distributions. Default is random in cube.
|
||||
|
||||
args (any order, space separated):
|
||||
3000 number of random points in cube, lens, spiral, sphere or grid
|
||||
D3 dimension 3-d
|
||||
c add a unit cube to the output ('c G2.0' sets size)
|
||||
d add a unit diamond to the output ('d G2.0' sets size)
|
||||
l generate a regular 3-d spiral
|
||||
r generate a regular polygon, ('r s Z1 G0.1' makes a cone)
|
||||
s generate cospherical points
|
||||
x generate random points in simplex, may use 'r' or 'Wn'
|
||||
y same as 'x', plus simplex
|
||||
Cn,r,m add n nearly coincident points within radius r of m points
|
||||
Pn,m,r add point [n,m,r] first, pads with 0
|
||||
|
||||
Ln lens distribution of radius n. Also 's', 'r', 'G', 'W'.
|
||||
Mn,m,r lattice (Mesh) rotated by [n,-m,0], [m,n,0], [0,0,r], ...
|
||||
'27 M1,0,1' is {0,1,2} x {0,1,2} x {0,1,2}. Try 'M3,4 z'.
|
||||
W0.1 random distribution within 0.1 of the cube's or sphere's surface
|
||||
Z0.5 s random points in a 0.5 disk projected to a sphere
|
||||
Z0.5 s G0.6 same as Z0.5 within a 0.6 gap
|
||||
|
||||
Bn bounding box coordinates, default 0.5
|
||||
h output as homogeneous coordinates for cdd
|
||||
n remove command line from the first line of output
|
||||
On offset coordinates by n
|
||||
t use time as the random number seed (default is command line)
|
||||
tn use n as the random number seed
|
||||
z print integer coordinates, default 'Bn' is 1e+06
|
||||
</pre>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="outputs">rbox outputs</a></h3>
|
||||
<blockquote>
|
||||
|
||||
The format of the output is the following: first line contains
|
||||
the dimension and a comment, second line contains the
|
||||
number of points, and the following lines contain the points,
|
||||
one point per line. Points are represented by their coordinate values.
|
||||
|
||||
<p>For example, <tt>rbox c 10 D2</tt> generates
|
||||
<blockquote>
|
||||
<pre>
|
||||
2 RBOX c 10 D2
|
||||
14
|
||||
-0.4999921736307369 -0.3684622117955817
|
||||
0.2556053225468894 -0.0413498678629751
|
||||
0.0327672376602583 -0.2810408135699488
|
||||
-0.452955383763607 0.17886471718444
|
||||
0.1792964061529342 0.4346928963760779
|
||||
-0.1164979223315585 0.01941637230982666
|
||||
0.3309653464993139 -0.4654278894564396
|
||||
-0.4465383649305798 0.02970019358182344
|
||||
0.1711493843897706 -0.4923018137852678
|
||||
-0.1165843490665633 -0.433157762450313
|
||||
-0.5 -0.5
|
||||
-0.5 0.5
|
||||
0.5 -0.5
|
||||
0.5 0.5
|
||||
</pre>
|
||||
|
||||
</blockquote>
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="examples">rbox examples</a></h3>
|
||||
|
||||
<pre>
|
||||
rbox 10
|
||||
10 random points in the unit cube centered at the
|
||||
origin.
|
||||
|
||||
rbox 10 s D2
|
||||
10 random points on a 2-d circle.
|
||||
|
||||
rbox 100 W0
|
||||
100 random points on the surface of a cube.
|
||||
|
||||
rbox 1000 s D4
|
||||
1000 random points on a 4-d sphere.
|
||||
|
||||
rbox c D5 O0.5
|
||||
a 5-d hypercube with one corner at the origin.
|
||||
|
||||
rbox d D10
|
||||
a 10-d diamond.
|
||||
|
||||
rbox x 1000 r W0
|
||||
100 random points on the surface of a fixed simplex
|
||||
|
||||
rbox y D12
|
||||
a 12-d simplex.
|
||||
|
||||
rbox l 10
|
||||
10 random points along a spiral
|
||||
|
||||
rbox l 10 r
|
||||
10 regular points along a spiral plus two end
|
||||
points
|
||||
|
||||
rbox 1000 L10000 D4 s
|
||||
1000 random points on the surface of a narrow lens.
|
||||
|
||||
rbox 1000 L100000 s G1e-6
|
||||
1000 random points near the edge of a narrow lens
|
||||
|
||||
rbox c G2 d G3
|
||||
a cube with coordinates +2/-2 and a diamond with
|
||||
coordinates +3/-3.
|
||||
|
||||
rbox 64 M3,4 z
|
||||
a rotated, {0,1,2,3} x {0,1,2,3} x {0,1,2,3} lat-
|
||||
tice (Mesh) of integer points.
|
||||
|
||||
rbox P0 P0 P0 P0 P0
|
||||
5 copies of the origin in 3-d. Try 'rbox P0 P0 P0
|
||||
P0 P0 | qhull QJ'.
|
||||
|
||||
r 100 s Z1 G0.1
|
||||
two cospherical 100-gons plus another cospherical
|
||||
point.
|
||||
|
||||
100 s Z1
|
||||
a cone of points.
|
||||
|
||||
100 s Z1e-7
|
||||
a narrow cone of points with many precision errors.
|
||||
</pre>
|
||||
|
||||
<h3><a href="#TOP">»</a><a name="notes">rbox notes</a></h3>
|
||||
<blockquote>
|
||||
Some combinations of arguments generate odd results.
|
||||
|
||||
</blockquote>
|
||||
<h3><a href="#TOP">»</a><a name="options">rbox options</a></h3>
|
||||
|
||||
<pre>
|
||||
n number of points
|
||||
|
||||
Dn dimension n-d (default 3-d)
|
||||
|
||||
Bn bounding box coordinates (default 0.5)
|
||||
|
||||
l spiral distribution, available only in 3-d
|
||||
|
||||
Ln lens distribution of radius n. May be used with
|
||||
's', 'r', 'G', and 'W'.
|
||||
|
||||
Mn,m,r lattice (Mesh) rotated by {[n,-m,0], [m,n,0],
|
||||
[0,0,r], ...}. Use 'Mm,n' for a rigid rotation
|
||||
with r = sqrt(n^2+m^2). 'M1,0' is an orthogonal
|
||||
lattice. For example, '27 M1,0' is {0,1,2} x
|
||||
{0,1,2} x {0,1,2}.
|
||||
|
||||
s cospherical points randomly generated in a cube and
|
||||
projected to the unit sphere
|
||||
|
||||
x simplicial distribution. It is fixed for option
|
||||
'r'. May be used with 'W'.
|
||||
|
||||
y simplicial distribution plus a simplex. Both 'x'
|
||||
and 'y' generate the same points.
|
||||
|
||||
Wn restrict points to distance n of the surface of a
|
||||
sphere or a cube
|
||||
|
||||
c add a unit cube to the output
|
||||
|
||||
c Gm add a cube with all combinations of +m and -m to
|
||||
the output
|
||||
|
||||
d add a unit diamond to the output.
|
||||
|
||||
d Gm add a diamond made of 0, +m and -m to the output
|
||||
|
||||
Cn,r,m add n nearly coincident points within radius r of m points
|
||||
|
||||
Pn,m,r add point [n,m,r] to the output first. Pad coordi-
|
||||
nates with 0.0.
|
||||
|
||||
n Remove the command line from the first line of out-
|
||||
put.
|
||||
|
||||
On offset the data by adding n to each coordinate.
|
||||
|
||||
t use time in seconds as the random number seed
|
||||
(default is command line).
|
||||
|
||||
tn set the random number seed to n.
|
||||
|
||||
z generate integer coordinates. Use 'Bn' to change
|
||||
the range. The default is 'B1e6' for six-digit
|
||||
coordinates. In R^4, seven-digit coordinates will
|
||||
overflow hyperplane normalization.
|
||||
|
||||
Zn s restrict points to a disk about the z+ axis and the
|
||||
sphere (default Z1.0). Includes the opposite pole.
|
||||
'Z1e-6' generates degenerate points under single
|
||||
precision.
|
||||
|
||||
Zn Gm s
|
||||
same as Zn with an empty center (default G0.5).
|
||||
|
||||
r s D2 generate a regular polygon
|
||||
|
||||
r s Z1 G0.1
|
||||
generate a regular cone
|
||||
</pre>
|
||||
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
|
||||
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
|
||||
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
|
||||
• <a href="qh-quick.htm#options">Options</a>
|
||||
• <a href="qh-opto.htm#output">Output</a>
|
||||
• <a href="qh-optf.htm#format">Formats</a>
|
||||
• <a href="qh-optg.htm#geomview">Geomview</a>
|
||||
• <a href="qh-optp.htm#print">Print</a>
|
||||
• <a href="qh-optq.htm#qhull">Qhull</a>
|
||||
• <a href="qh-optc.htm#prec">Precision</a>
|
||||
• <a href="qh-optt.htm#trace">Trace</a>
|
||||
• <a href="../src/libqhull_r/index.htm">Functions</a><br>
|
||||
<b>To:</b> <a href="#synopsis">sy</a>nopsis • <a href="#outputs">ou</a>tputs
|
||||
• <a href="#examples">ex</a>amples • <a href="#notes">no</a>tes
|
||||
• <a href="#options">op</a>tions
|
||||
<!-- GC common information -->
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
|
||||
align="middle" width="40" height="40"></a><i>The Geometry Center
|
||||
Home Page </i></p>
|
||||
|
||||
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
|
||||
<br>
|
||||
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: August 12, 1998 <!-- hhmts end --> </p>
|
||||
</body>
|
||||
</html>
|
||||
176
xs/src/qhull/html/rbox.man
Normal file
|
|
@ -0,0 +1,176 @@
|
|||
.\" This is the Unix manual page for rbox, written in nroff, the standard
|
||||
.\" manual formatter for Unix systems. To format it, type
|
||||
.\"
|
||||
.\" nroff -man rbox.man
|
||||
.\"
|
||||
.\" This will print a formatted copy to standard output. If you want
|
||||
.\" to ensure that the output is plain ascii, free of any control
|
||||
.\" characters that nroff uses for underlining etc, pipe the output
|
||||
.\" through "col -b":
|
||||
.\"
|
||||
.\" nroff -man rbox.man | col -b
|
||||
.\"
|
||||
.TH rbox 1 "August 10, 1998" "Geometry Center"
|
||||
.SH NAME
|
||||
rbox \- generate point distributions for qhull
|
||||
.SH SYNOPSIS
|
||||
Command "rbox" (w/o arguments) lists the options.
|
||||
.SH DESCRIPTION
|
||||
.PP
|
||||
rbox generates random or regular points according to the options given, and
|
||||
outputs
|
||||
the points to stdout. The points are generated in a cube, unless 's' or 'k'
|
||||
option is
|
||||
given. The format of the output is the following: first line
|
||||
contains the dimension and a comment,
|
||||
second line contains the number of points, and the
|
||||
following lines contain the points, one point per line. Points are represented
|
||||
by their coordinate values.
|
||||
.SH EXAMPLES
|
||||
.TP
|
||||
rbox 10
|
||||
10 random points in the unit cube centered at the origin.
|
||||
.TP
|
||||
rbox 10 s D2
|
||||
10 random points on a 2\[hy]d circle.
|
||||
.TP
|
||||
rbox 100 W0
|
||||
100 random points on the surface of a cube.
|
||||
.TP
|
||||
rbox 1000 s D4
|
||||
1000 random points on a 4\[hy]d sphere.
|
||||
.TP
|
||||
rbox c D5 O0.5
|
||||
a 5\[hy]d hypercube with one corner at the origin.
|
||||
.TP
|
||||
rbox d D10
|
||||
a 10\[hy]d diamond.
|
||||
.TP
|
||||
rbox x 1000 r W0
|
||||
100 random points on the surface of a fixed simplex
|
||||
.TP
|
||||
rbox y D12
|
||||
a 12\[hy]d simplex.
|
||||
.TP
|
||||
rbox l 10
|
||||
10 random points along a spiral
|
||||
.TP
|
||||
rbox l 10 r
|
||||
10 regular points along a spiral plus two end points
|
||||
.TP
|
||||
rbox 1000 L10000 D4 s
|
||||
1000 random points on the surface of a narrow lens.
|
||||
.TP
|
||||
rbox c G2 d G3
|
||||
a cube with coordinates +2/\-2 and a diamond with coordinates +3/\-3.
|
||||
.TP
|
||||
rbox 64 M3,4 z
|
||||
a rotated, {0,1,2,3} x {0,1,2,3} x {0,1,2,3} lattice (Mesh) of integer
|
||||
points. 'rbox 64 M1,0' is orthogonal.
|
||||
.TP
|
||||
rbox P0 P0 P0 P0 P0
|
||||
5 copies of the origin in 3\-d. Try 'rbox P0 P0 P0 P0 P0 | qhull QJ'.
|
||||
.TP
|
||||
r 100 s Z1 G0.1
|
||||
two cospherical 100\-gons plus another cospherical point.
|
||||
.TP
|
||||
100 s Z1
|
||||
a cone of points.
|
||||
.TP
|
||||
100 s Z1e\-7
|
||||
a narrow cone of points with many precision errors.
|
||||
.SH OPTIONS
|
||||
.TP
|
||||
n
|
||||
number of points
|
||||
.TP
|
||||
Dn
|
||||
dimension n\[hy]d (default 3\[hy]d)
|
||||
.TP
|
||||
Bn
|
||||
bounding box coordinates (default 0.5)
|
||||
.TP
|
||||
l
|
||||
spiral distribution, available only in 3\[hy]d
|
||||
.TP
|
||||
Ln
|
||||
lens distribution of radius n. May be used with 's', 'r', 'G', and 'W'.
|
||||
.TP
|
||||
Mn,m,r
|
||||
lattice (Mesh) rotated by {[n,\-m,0], [m,n,0], [0,0,r], ...}.
|
||||
Use 'Mm,n' for a rigid rotation with r = sqrt(n^2+m^2). 'M1,0' is an
|
||||
orthogonal lattice. For example, '27 M1,0' is {0,1,2} x {0,1,2} x
|
||||
{0,1,2}. '27 M3,4 z' is a rotated integer lattice.
|
||||
.TP
|
||||
s
|
||||
cospherical points randomly generated in a cube and projected to the unit sphere
|
||||
.TP
|
||||
x
|
||||
simplicial distribution. It is fixed for option 'r'. May be used with 'W'.
|
||||
.TP
|
||||
y
|
||||
simplicial distribution plus a simplex. Both 'x' and 'y' generate the same points.
|
||||
.TP
|
||||
Wn
|
||||
restrict points to distance n of the surface of a sphere or a cube
|
||||
.TP
|
||||
c
|
||||
add a unit cube to the output
|
||||
.TP
|
||||
c Gm
|
||||
add a cube with all combinations of +m and \-m to the output
|
||||
.TP
|
||||
d
|
||||
add a unit diamond to the output.
|
||||
.TP
|
||||
d Gm
|
||||
add a diamond made of 0, +m and \-m to the output
|
||||
.TP
|
||||
Cn,r,m
|
||||
add n nearly coincident points within radius r of m points
|
||||
.TP
|
||||
Pn,m,r
|
||||
add point [n,m,r] to the output first. Pad coordinates with 0.0.
|
||||
.TP
|
||||
n
|
||||
Remove the command line from the first line of output.
|
||||
.TP
|
||||
On
|
||||
offset the data by adding n to each coordinate.
|
||||
.TP
|
||||
t
|
||||
use time in seconds as the random number seed (default is command line).
|
||||
.TP
|
||||
tn
|
||||
set the random number seed to n.
|
||||
.TP
|
||||
z
|
||||
generate integer coordinates. Use 'Bn' to change the range.
|
||||
The default is 'B1e6' for six\[hy]digit coordinates. In R^4, seven\[hy]digit
|
||||
coordinates will overflow hyperplane normalization.
|
||||
.TP
|
||||
Zn s
|
||||
restrict points to a disk about the z+ axis and the sphere (default Z1.0).
|
||||
Includes the opposite pole. 'Z1e\-6' generates degenerate points under
|
||||
single precision.
|
||||
.TP
|
||||
Zn Gm s
|
||||
same as Zn with an empty center (default G0.5).
|
||||
.TP
|
||||
r s D2
|
||||
generate a regular polygon
|
||||
.TP
|
||||
r s Z1 G0.1
|
||||
generate a regular cone
|
||||
.SH BUGS
|
||||
Some combinations of arguments generate odd results.
|
||||
|
||||
Report bugs to qhull_bug@qhull.org, other correspondence to qhull@qhull.org
|
||||
.SH SEE ALSO
|
||||
qhull(1)
|
||||
.SH AUTHOR
|
||||
.nf
|
||||
C. Bradford Barber
|
||||
bradb@shore.net
|
||||
.fi
|
||||
|
||||
195
xs/src/qhull/html/rbox.txt
Normal file
|
|
@ -0,0 +1,195 @@
|
|||
|
||||
|
||||
|
||||
rbox(1) rbox(1)
|
||||
|
||||
|
||||
NAME
|
||||
rbox - generate point distributions for qhull
|
||||
|
||||
SYNOPSIS
|
||||
Command "rbox" (w/o arguments) lists the options.
|
||||
|
||||
DESCRIPTION
|
||||
rbox generates random or regular points according to the
|
||||
options given, and outputs the points to stdout. The
|
||||
points are generated in a cube, unless 's' or given. The
|
||||
format of the output is the following: first line contains
|
||||
the dimension and a comment, second line contains the num-
|
||||
ber of points, and the following lines contain the points,
|
||||
one point per line. Points are represented by their coor-
|
||||
dinate values.
|
||||
|
||||
EXAMPLES
|
||||
rbox 10
|
||||
10 random points in the unit cube centered at the
|
||||
origin.
|
||||
|
||||
rbox 10 s D2
|
||||
10 random points on a 2-d circle.
|
||||
|
||||
rbox 100 W0
|
||||
100 random points on the surface of a cube.
|
||||
|
||||
rbox 1000 s D4
|
||||
1000 random points on a 4-d sphere.
|
||||
|
||||
rbox c D5 O0.5
|
||||
a 5-d hypercube with one corner at the origin.
|
||||
|
||||
rbox d D10
|
||||
a 10-d diamond.
|
||||
|
||||
rbox x 1000 r W0
|
||||
100 random points on the surface of a fixed simplex
|
||||
|
||||
rbox y D12
|
||||
a 12-d simplex.
|
||||
|
||||
rbox l 10
|
||||
10 random points along a spiral
|
||||
|
||||
rbox l 10 r
|
||||
10 regular points along a spiral plus two end
|
||||
points
|
||||
|
||||
rbox 1000 L10000 D4 s
|
||||
1000 random points on the surface of a narrow lens.
|
||||
|
||||
rbox c G2 d G3
|
||||
a cube with coordinates +2/-2 and a diamond with
|
||||
|
||||
|
||||
|
||||
Geometry Center August 10, 1998 1
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
rbox(1) rbox(1)
|
||||
|
||||
|
||||
coordinates +3/-3.
|
||||
|
||||
rbox 64 M3,4 z
|
||||
a rotated, {0,1,2,3} x {0,1,2,3} x {0,1,2,3} lat-
|
||||
tice (Mesh) of integer points.
|
||||
|
||||
rbox P0 P0 P0 P0 P0
|
||||
5 copies of the origin in 3-d. Try 'rbox P0 P0 P0
|
||||
P0 P0 | qhull QJ'.
|
||||
|
||||
r 100 s Z1 G0.1
|
||||
two cospherical 100-gons plus another cospherical
|
||||
point.
|
||||
|
||||
100 s Z1
|
||||
a cone of points.
|
||||
|
||||
100 s Z1e-7
|
||||
a narrow cone of points with many precision errors.
|
||||
|
||||
OPTIONS
|
||||
n number of points
|
||||
|
||||
Dn dimension n-d (default 3-d)
|
||||
|
||||
Bn bounding box coordinates (default 0.5)
|
||||
|
||||
l spiral distribution, available only in 3-d
|
||||
|
||||
Ln lens distribution of radius n. May be used with
|
||||
's', 'r', 'G', and 'W'.
|
||||
|
||||
Mn,m,r lattice (Mesh) rotated by {[n,-m,0], [m,n,0],
|
||||
[0,0,r], ...}. Use 'Mm,n' for a rigid rotation
|
||||
with r = sqrt(n^2+m^2). 'M1,0' is an orthogonal
|
||||
lattice. For example, '27 M1,0' is {0,1,2} x
|
||||
{0,1,2} x {0,1,2}.
|
||||
|
||||
s cospherical points randomly generated in a cube and
|
||||
projected to the unit sphere
|
||||
|
||||
x simplicial distribution. It is fixed for option
|
||||
'r'. May be used with 'W'.
|
||||
|
||||
y simplicial distribution plus a simplex. Both 'x'
|
||||
and 'y' generate the same points.
|
||||
|
||||
Wn restrict points to distance n of the surface of a
|
||||
sphere or a cube
|
||||
|
||||
c add a unit cube to the output
|
||||
|
||||
c Gm add a cube with all combinations of +m and -m to
|
||||
the output
|
||||
|
||||
|
||||
|
||||
Geometry Center August 10, 1998 2
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
rbox(1) rbox(1)
|
||||
|
||||
|
||||
d add a unit diamond to the output.
|
||||
|
||||
d Gm add a diamond made of 0, +m and -m to the output
|
||||
|
||||
Cn,r,m add n nearly coincident points within radius r of m points
|
||||
|
||||
Pn,m,r add point [n,m,r] to the output first. Pad coordi-
|
||||
nates with 0.0.
|
||||
|
||||
n Remove the command line from the first line of out-
|
||||
put.
|
||||
|
||||
On offset the data by adding n to each coordinate.
|
||||
|
||||
t use time in seconds as the random number seed
|
||||
(default is command line).
|
||||
|
||||
tn set the random number seed to n.
|
||||
|
||||
z generate integer coordinates. Use 'Bn' to change
|
||||
the range. The default is 'B1e6' for six-digit
|
||||
coordinates. In R^4, seven-digit coordinates will
|
||||
overflow hyperplane normalization.
|
||||
|
||||
Zn s restrict points to a disk about the z+ axis and the
|
||||
sphere (default Z1.0). Includes the opposite pole.
|
||||
'Z1e-6' generates degenerate points under single
|
||||
precision.
|
||||
|
||||
Zn Gm s
|
||||
same as Zn with an empty center (default G0.5).
|
||||
|
||||
r s D2 generate a regular polygon
|
||||
|
||||
r s Z1 G0.1
|
||||
generate a regular cone
|
||||
|
||||
BUGS
|
||||
Some combinations of arguments generate odd results.
|
||||
|
||||
Report bugs to qhull_bug@qhull.org, other correspon-
|
||||
dence to qhull@qhull.org
|
||||
|
||||
SEE ALSO
|
||||
qhull(1)
|
||||
|
||||
AUTHOR
|
||||
C. Bradford Barber
|
||||
bradb@shore.net
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Geometry Center August 10, 1998 3
|
||||
|
||||
|
||||
284
xs/src/qhull/index.htm
Normal file
|
|
@ -0,0 +1,284 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>Qhull code for Convex Hull, Delaunay Triangulation, Voronoi Diagram, and Halfspace Intersection about a Point</title>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<!-- Navigation links -->
|
||||
<b>URL:</b> <a href="http://www.qhull.org">http://www.qhull.org</a>
|
||||
<br><b>To:</b>
|
||||
<a href="http://www.qhull.org/news">News</a>
|
||||
• <a href="http://www.qhull.org/download">Download</a>
|
||||
• <a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.405">CiteSeer</a>
|
||||
• <a href=http://images.google.com/images?q=qhull&num=100>Images</a>
|
||||
• <a href="html/index.htm#TOC">Manual</a>
|
||||
• <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a>
|
||||
• <a href="html/qh-quick.htm#programs">Programs</a>
|
||||
• <a href="html/qh-quick.htm#options">Options</a>
|
||||
</p>
|
||||
|
||||
<hr>
|
||||
<!-- Main text of document -->
|
||||
<table>
|
||||
<tr><td valign=top>
|
||||
<h1>Qhull</h1>
|
||||
<a
|
||||
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
|
||||
src="html/qh--cone.gif" alt="[CONE]" align="middle" width="100"
|
||||
height="100"></a>
|
||||
</td><td>
|
||||
Qhull computes the convex hull, Delaunay triangulation, Voronoi diagram,
|
||||
halfspace intersection about a point, furthest-site Delaunay
|
||||
triangulation, and furthest-site Voronoi diagram. The source code runs in
|
||||
2-d, 3-d, 4-d, and higher dimensions. Qhull implements the Quickhull
|
||||
algorithm for computing the convex hull. It handles roundoff
|
||||
errors from floating point arithmetic. It computes volumes,
|
||||
surface areas, and approximations to the convex hull.</p>
|
||||
|
||||
<!-- duplicated in index.htm and html/index.htm -->
|
||||
<p>Qhull does <i>not</i> support triangulation of non-convex surfaces, mesh
|
||||
generation of non-convex objects, medium-sized inputs in 9-D
|
||||
and higher, alpha shapes, weighted Voronoi diagrams, Voronoi volumes, or
|
||||
constrained Delaunay triangulations, </p>
|
||||
|
||||
<p>Qhull 2015.2 introduces reentrant Qhull. It allows concurrent Qhull runs and simplifies the C++ interface to Qhull.
|
||||
If you call Qhull from your program, you should use reentrant Qhull (libqhull_r) instead of qh_QHpointer (libqhull).
|
||||
If you use Qhull 2003.1. please upgrade or apply <a href="http://www.qhull.org/download/poly.c-qh_gethash.patch">poly.c-qh_gethash.patch</a>.
|
||||
</p>
|
||||
</td></tr></table>
|
||||
|
||||
<hr>
|
||||
<form method=get action=http://www.google.com/search>
|
||||
<input type=hidden name=sitesearch value=www.qhull.org>
|
||||
<input type=hidden name=num value=100>
|
||||
<ul>
|
||||
<li><a href="http://www.qhull.org/news">News</a> and
|
||||
<a href="http://www.qhull.org/news/qhull-news.html#bugs">Bugs</a>
|
||||
about Qhull 2015.2 2016/01/18</li>
|
||||
<li><a href="http://www.qhull.org/download">Download</a> Qhull (<a href="http://www.qhull.org/src/Changes.txt">changes</a>)</li>
|
||||
<li><a href=http://github.com/qhull/qhull/wiki>GitHub</a> C++ interface to Qhull
|
||||
<li><a href="html/index.htm">Manual</a> for Qhull and rbox
|
||||
<li><a href="html/index.htm#geomview">Geomview</a> for 3-D and 4-D visualization of Qhull output
|
||||
<li><input name=as_q size=10 value="">
|
||||
<input type="submit" value="Search">
|
||||
www.qhull.org
|
||||
<p>
|
||||
<li><a href="http://www.qhull.org/news/qhull-news.html#users">How</a> is Qhull used?</li>
|
||||
<li><a href="http://scholar.google.com/scholar?cites=13151392091060773178&as_sdt=40000005">Google Scholar</a>,
|
||||
<a href="http://libra.msra.cn/Publication/232063/the-quickhull-algorithm-for-convex-hulls">Microsoft Academic</a>,
|
||||
and <a href="http://citeseerx.ist.psu.edu/showciting?doi=10.1.1.117.405&sort=cite">CiteSeer</a>
|
||||
references to Qhull
|
||||
<li>
|
||||
<a href=http://www.google.com/search?as_q=qhull+-debian+-cvs+-gentoo+-pool+-mirrors&num=100>Google</a> Qhull,
|
||||
<a href="http://images.google.com/images?q=qhull&num=100">Images</a>,
|
||||
<a href="http://www.google.com/#q=qhull&tbm=bks">Books</a>,
|
||||
<a href="http://www.google.com/search?q=qhull&tbm=pts">Patents</a>,
|
||||
<a href="http://groups.google.com/groups?as_q=qhull&num=100&as_scoring=d">Newsgroups</a>,
|
||||
<a href="http://www.google.com/search?q=qhull&tbm=blg">Blogs</a>,
|
||||
and <a href=http://www.googlism.com/who_is/q/qhull/>Who is</a> Qhull?
|
||||
|
||||
|
||||
<p>
|
||||
<li><a href=http://www.mathworks.com/>MATLAB</a> uses Qhull for their n-d computational geometry functions:
|
||||
<a href=http://www.mathworks.com/help/techdoc/ref/convhulln.html>convhulln</a>
|
||||
<a href=http://www.mathworks.com/help/techdoc/ref/delaunayn.html>delaunayn</a>
|
||||
<a href=http://www.mathworks.com/help/techdoc/ref/griddatan.html>griddatan</a>
|
||||
<a href=http://www.mathworks.com/help/techdoc/ref/voronoin.html>voronoin</a>.
|
||||
</li>
|
||||
<li>The <a href="http://cran.r-project.org/web/packages/geometry/geometry.pdf">geometry</a> package of <a href="http://www.r-project.org/">R</a> provides <a href="http://geometry.r-forge.r-project.org/">Qhull in R</a>.
|
||||
<li>The <a href="http://packages.debian.org/sid/octave3.2">Debian build</a> of
|
||||
<a href=http://www.octave.org/>GNU Octave</a> includes Qhull for <a href="http://www.gnu.org/software/octave/doc/interpreter/Geometry.html">computational geometry<a>.
|
||||
<li><a href=http://www.wolfram.com/products/mathematica/>Mathematica</a>'s Delaunay interface <a href=http://library.wolfram.com/infocenter/MathSource/1160/>qh-math</a>
|
||||
and <a href="http://portal.uni-freiburg.de/imteksimulation/downloads/ims">QHullInterface</a>
|
||||
<li>The <a href="http://docs.scipy.org/doc/scipy/reference/tutorial/spatial.html">scipy.spatial</a> of <a href="http://scipy.org/">SciPy</a> is implemented with Qhull. It includes
|
||||
support for Delaunay triangulations,
|
||||
</ul>
|
||||
</form>
|
||||
|
||||
<p><b>Introduction</b>
|
||||
<ul>
|
||||
<li><a
|
||||
href="http://www.cs.mcgill.ca/~fukuda/soft/polyfaq/polyfaq.html"
|
||||
>Fukuda's introduction</a> to convex hulls, Delaunay
|
||||
triangulations, Voronoi diagrams, and linear programming</li>
|
||||
<li><a
|
||||
href="http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html"
|
||||
>Lambert's Java</a> visualization of convex hull algorithms </li>
|
||||
<li><a
|
||||
href="http://www.algorithmic-solutions.info/leda_guide/geometryalgorithms.html"
|
||||
>LEDA Guide</a> to geometry algorithms
|
||||
<li><a
|
||||
href="http://mathworld.wolfram.com/ComputationalGeometry.html"
|
||||
>MathWorld's</a> Computational Geometry from Wolfram Research
|
||||
<li><a
|
||||
href="http://www.cs.sunysb.edu/~algorith/major_section/1.6.shtml"
|
||||
>Skiena's</a> Computational Geometry from his <i>Algorithm Design Manual</i>.
|
||||
<li><a
|
||||
href="http://www.cs.sunysb.edu/~algorith/major_section/1.6.shtml"
|
||||
>Stony Brook</a> Algorithm Repository, computational geometry</li>
|
||||
</ul>
|
||||
|
||||
<p><b>Qhull Documentation and Support</b>
|
||||
<ul>
|
||||
<li><a href="html/index.htm">Manual</a> for Qhull and rbox
|
||||
<table><tr><td>
|
||||
<ul>
|
||||
<li><a href="html/index.htm#description">Description</a> of Qhull
|
||||
<li><a href="html/qh-impre.htm">Imprecision</a> in Qhull
|
||||
<li><a href="html/qh-quick.htm#programs">Programs</a> and <a href="html/qh-quick.htm#options">Options</a>
|
||||
quick reference
|
||||
<li><a href="html/qconvex.htm">qconvex</a> -- convex hull
|
||||
<li><a href="html/qdelaun.htm">qdelaunay</a> -- Delaunay triangulation
|
||||
<li><a href="html/qvoronoi.htm">qvoronoi</a> -- Voronoi diagram
|
||||
<li><a href="html/qhalf.htm">qhalf</a> -- halfspace intersection about a point
|
||||
<li><a href="html/rbox.htm">rbox</a> -- generate point distributions
|
||||
</ul></td><td><ul>
|
||||
<li><a href="http://www.qhull.org/html/qh-faq.htm">Frequently</a> asked
|
||||
questions about Qhull</li>
|
||||
<li><a href="html/index.htm#geomview">Geomview</a> for visualizing Qhull
|
||||
<li><a href="COPYING.txt">COPYING.txt</a> - copyright notice<br>
|
||||
<li><a href="REGISTER.txt">REGISTER.txt</a> - registration<br>
|
||||
<li><a href="README.txt">README.txt</a> - installation
|
||||
instructions<br>
|
||||
<li><a href="src/Changes.txt">Changes.txt</a> - change history <br>
|
||||
<li><a href="html/qh-code.htm">Calling Qhull</a> from your program
|
||||
<li><a href="src/libqhull_r/index.htm">Reentrant</a> Qhull functions, macros, and data structures with source
|
||||
</ul>
|
||||
</td></tr></table>
|
||||
<li>Send e-mail to <a href=mailto:qhull@qhull.org>qhull@qhull.org</a> </li>
|
||||
<li>Report bugs to <a
|
||||
href="mailto:qhull_bug@qhull.org">qhull_bug@qhull.org</a>
|
||||
</ul>
|
||||
|
||||
<p><b>Related URLs</b>
|
||||
<ul>
|
||||
<li><a href="http://www.geom.uiuc.edu/software/cglist">Amenta's directory</a> of
|
||||
computational geometry software </li>
|
||||
|
||||
<li><a href=http://www.boost.org/libs/graph/doc/table_of_contents.html>BGL</a>
|
||||
Boost Graph Library provides C++ classes for graph data structures
|
||||
and algorithms,
|
||||
<li><a
|
||||
href="http://www.netlib.org/voronoi/hull.html">Clarkson's
|
||||
hull </a>program with exact arithmetic for convex hulls, Delaunay triangulations,
|
||||
Voronoi volumes, and alpha shapes. </li>
|
||||
<li><a href="http://compgeom.cs.uiuc.edu/~jeffe/compgeom/compgeom.html">Erickson's
|
||||
Computational</a> Geometry Pages and
|
||||
<a href="http://compgeom.cs.uiuc.edu/~jeffe/compgeom/code.html">Software</a>
|
||||
<li><a
|
||||
href="http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html">Fukuda's
|
||||
cdd</a> program for halfspace intersection and convex hulls (<a
|
||||
href="http://www.csb.ethz.ch/tools/polco">Polco/Java</a>)</li>
|
||||
<li><a href="http://www.inf.ethz.ch/personal/gaertner/miniball.html">Gartner's
|
||||
Miniball</a> for fast and robust smallest enclosing balls (up to 20-d)
|
||||
|
||||
<li><a href=http://www.algorithmic-solutions.com/enleda.htm>Leda</a>
|
||||
and <a href=http://www.cgal.org/>CGAL</a> libraries for writing computational
|
||||
geometry programs and other combinatorial algorithms
|
||||
<li><a href=http://www.mathtools.net/>Mathtools.net</a> of scientific and engineering
|
||||
software
|
||||
<li><a href="http://www.imr.sandia.gov/papers/topics.html">Owen's International Meshing</a> Roundtable
|
||||
<li><a
|
||||
href="http://www.robertschneiders.de/meshgeneration/meshgeneration.html">Schneiders'
|
||||
Finite Element</a> Mesh Generation page</li>
|
||||
<li><a href="http://www.cs.cmu.edu/~quake/triangle.html">Shewchuk's
|
||||
triangle </a>program for 2-d Delaunay</li>
|
||||
<li><a href=http://www.voronoi.com>Voronoi Web Site</a> for all things Voronoi
|
||||
<li>Young's <a href="http://homepage.usask.ca/~ijm451/finite/fe_resources/">Internet Finite Element Resources</a>
|
||||
<li><a href="http://www.uic.nnov.ru/~zny/skeleton/">Zolotykh's Skeleton</a> generates all extreme rays of a polyhedral cone using the Double Description Method</li>
|
||||
<li><a href="https://github.com/tomilov/quickhull/blob/master/include/quickhull.hpp">Tomilov's quickhull.hpp</a> (<a href="http://habrahabr.ru/post/245221/">doc-ru</a>) implements the Quickhull algorithm for points in general position.
|
||||
</ul>
|
||||
|
||||
<p><b>FAQs and Newsgroups</b>
|
||||
<ul>
|
||||
<li><a
|
||||
href="http://www.faqs.org/faqs/graphics/algorithms-faq/">FAQ</a>
|
||||
for computer graphics algorithms
|
||||
(Exaflop.org: <a href="http://exaflop.org/docs/cgafaq/cga6.html">geometric</a> structures)
|
||||
</li>
|
||||
<li><a
|
||||
href="http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html">FAQ
|
||||
</a>for linear programming </li>
|
||||
<li><a href="news:comp.graphics.algorithms">Newsgroup</a>:
|
||||
comp.graphics.algorithms </li>
|
||||
<li><a href="news:comp.soft-sys.matlab">Newsgroup</a>:
|
||||
comp.soft-sys.matlab</li>
|
||||
<li><a href="news:sci.math.num-analysis">Newsgroup</a>:
|
||||
sci.math.num-analysis </li>
|
||||
<li><a href="news:sci.op-research">Newsgroup</a>:
|
||||
sci.op-research </li>
|
||||
</ul>
|
||||
</blockquote>
|
||||
<hr>
|
||||
|
||||
<p>The program includes options for input transformations,
|
||||
randomization, tracing, multiple output formats, and execution
|
||||
statistics. The program can be called from within your
|
||||
application. </p>
|
||||
|
||||
<p>You can view the results in 2-d, 3-d and 4-d with <a
|
||||
href="http://www.geomview.org">Geomview</a>. An alternative
|
||||
is <a href=http://www.vtk.org/>VTK</a>.</p>
|
||||
|
||||
<p>For an article about Qhull, download from
|
||||
<a href="http://dl.acm.org/authorize?89250">ACM</a> or <a
|
||||
href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.405">CiteSeer</a>:
|
||||
</p>
|
||||
|
||||
<blockquote>
|
||||
<p>Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The
|
||||
Quickhull algorithm for convex hulls," <i>ACM Trans. on
|
||||
Mathematical Software</i>, 22(4):469-483, Dec 1996, http://www.qhull.org</p>
|
||||
</blockquote>
|
||||
|
||||
<p>Abstract: </p>
|
||||
|
||||
<blockquote>
|
||||
<p>The convex hull of a set of points is the smallest convex
|
||||
set that contains the points. This article presents a
|
||||
practical convex hull algorithm that combines the
|
||||
two-dimensional Quickhull Algorithm with the general
|
||||
dimension Beneath-Beyond Algorithm. It is similar to the
|
||||
randomized, incremental algorithms for convex hull and
|
||||
Delaunay triangulation. We provide empirical evidence that
|
||||
the algorithm runs faster when the input contains non-extreme
|
||||
points, and that it uses less memory. </p>
|
||||
<p>Computational geometry algorithms have traditionally
|
||||
assumed that input sets are well behaved. When an algorithm
|
||||
is implemented with floating point arithmetic, this
|
||||
assumption can lead to serious errors. We briefly describe a
|
||||
solution to this problem when computing the convex hull in
|
||||
two, three, or four dimensions. The output is a set of
|
||||
"thick" facets that contain all possible exact convex hulls
|
||||
of the input. A variation is effective in five or more
|
||||
dimensions. </p>
|
||||
</blockquote>
|
||||
<!-- Navigation links -->
|
||||
<hr>
|
||||
|
||||
<p><b>Up:</b> <a href="http://www.geom.uiuc.edu/software/past-projects.html"><i>Past Software
|
||||
Projects of the Geometry Center</i></a> <br>
|
||||
<b>URL:</b> <a href="http://www.qhull.org">http://www.qhull.org</a>
|
||||
<br><b>To:</b>
|
||||
<a href="http://www.qhull.org/news">News</a>
|
||||
• <a href="http://www.qhull.org/download">Download</a>
|
||||
• <a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.405">CiteSeer</a>
|
||||
• <a href=http://images.google.com/images?q=qhull&num=100>Images</a>
|
||||
• <a href="html/index.htm#TOC">Manual</a>
|
||||
• <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a>
|
||||
• <a href="html/qh-quick.htm#programs">Programs</a>
|
||||
• <a href="html/qh-quick.htm#options">Options</a>
|
||||
<!-- GC common information --></p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p><a href="http://www.geom.uiuc.edu/"><img src="html/qh--geom.gif" alt="[HOME]"
|
||||
align="middle"></a> <i>The Geometry Center Home Page</i> </p>
|
||||
|
||||
<p>Comments to: <a href="mailto:qhull@qhull.org">qhull@qhull.org</a>
|
||||
<br>
|
||||
Created: May 17 1995 --- <!-- hhmts start -->
|
||||
</body>
|
||||
</html>
|
||||