mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-14 10:17:55 -06:00
ENH: new seam strategy from prusa2.5
As title. Thanks @Prusa Signed-off-by: salt.wei <salt.wei@bambulab.com> Change-Id: I2fa177e27ac53211952ea9b6c62e98182b8f05ce
This commit is contained in:
parent
ce082f6e2a
commit
d73142c2f9
23 changed files with 3105 additions and 1323 deletions
|
@ -446,6 +446,57 @@ namespace detail {
|
|||
}
|
||||
}
|
||||
|
||||
// Real-time collision detection, Ericson, Chapter 5
|
||||
template<typename Vector>
|
||||
static inline Vector closest_point_to_triangle(const Vector &p, const Vector &a, const Vector &b, const Vector &c)
|
||||
{
|
||||
using Scalar = typename Vector::Scalar;
|
||||
// Check if P in vertex region outside A
|
||||
Vector ab = b - a;
|
||||
Vector ac = c - a;
|
||||
Vector ap = p - a;
|
||||
Scalar d1 = ab.dot(ap);
|
||||
Scalar d2 = ac.dot(ap);
|
||||
if (d1 <= 0 && d2 <= 0)
|
||||
return a;
|
||||
// Check if P in vertex region outside B
|
||||
Vector bp = p - b;
|
||||
Scalar d3 = ab.dot(bp);
|
||||
Scalar d4 = ac.dot(bp);
|
||||
if (d3 >= 0 && d4 <= d3)
|
||||
return b;
|
||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||
Scalar vc = d1*d4 - d3*d2;
|
||||
if (a != b && vc <= 0 && d1 >= 0 && d3 <= 0) {
|
||||
Scalar v = d1 / (d1 - d3);
|
||||
return a + v * ab;
|
||||
}
|
||||
// Check if P in vertex region outside C
|
||||
Vector cp = p - c;
|
||||
Scalar d5 = ab.dot(cp);
|
||||
Scalar d6 = ac.dot(cp);
|
||||
if (d6 >= 0 && d5 <= d6)
|
||||
return c;
|
||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||
Scalar vb = d5*d2 - d1*d6;
|
||||
if (vb <= 0 && d2 >= 0 && d6 <= 0) {
|
||||
Scalar w = d2 / (d2 - d6);
|
||||
return a + w * ac;
|
||||
}
|
||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||
Scalar va = d3*d6 - d5*d4;
|
||||
if (va <= 0 && (d4 - d3) >= 0 && (d5 - d6) >= 0) {
|
||||
Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
||||
return b + w * (c - b);
|
||||
}
|
||||
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
||||
Scalar denom = Scalar(1.0) / (va + vb + vc);
|
||||
Scalar v = vb * denom;
|
||||
Scalar w = vc * denom;
|
||||
return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = 1.0-v-w
|
||||
};
|
||||
|
||||
|
||||
// Nothing to do with COVID-19 social distancing.
|
||||
template<typename AVertexType, typename AIndexedFaceType, typename ATreeType, typename AVectorType>
|
||||
struct IndexedTriangleSetDistancer {
|
||||
|
@ -453,74 +504,36 @@ namespace detail {
|
|||
using IndexedFaceType = AIndexedFaceType;
|
||||
using TreeType = ATreeType;
|
||||
using VectorType = AVectorType;
|
||||
using ScalarType = typename VectorType::Scalar;
|
||||
|
||||
const std::vector<VertexType> &vertices;
|
||||
const std::vector<IndexedFaceType> &faces;
|
||||
const TreeType &tree;
|
||||
|
||||
const VectorType origin;
|
||||
|
||||
inline VectorType closest_point_to_origin(size_t primitive_index,
|
||||
ScalarType& squared_distance){
|
||||
const auto &triangle = this->faces[primitive_index];
|
||||
VectorType closest_point = closest_point_to_triangle<VectorType>(origin,
|
||||
this->vertices[triangle(0)].template cast<ScalarType>(),
|
||||
this->vertices[triangle(1)].template cast<ScalarType>(),
|
||||
this->vertices[triangle(2)].template cast<ScalarType>());
|
||||
squared_distance = (origin - closest_point).squaredNorm();
|
||||
return closest_point;
|
||||
}
|
||||
};
|
||||
|
||||
// Real-time collision detection, Ericson, Chapter 5
|
||||
template<typename Vector>
|
||||
static inline Vector closest_point_to_triangle(const Vector &p, const Vector &a, const Vector &b, const Vector &c)
|
||||
{
|
||||
using Scalar = typename Vector::Scalar;
|
||||
// Check if P in vertex region outside A
|
||||
Vector ab = b - a;
|
||||
Vector ac = c - a;
|
||||
Vector ap = p - a;
|
||||
Scalar d1 = ab.dot(ap);
|
||||
Scalar d2 = ac.dot(ap);
|
||||
if (d1 <= 0 && d2 <= 0)
|
||||
return a;
|
||||
// Check if P in vertex region outside B
|
||||
Vector bp = p - b;
|
||||
Scalar d3 = ab.dot(bp);
|
||||
Scalar d4 = ac.dot(bp);
|
||||
if (d3 >= 0 && d4 <= d3)
|
||||
return b;
|
||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||
Scalar vc = d1*d4 - d3*d2;
|
||||
if (a != b && vc <= 0 && d1 >= 0 && d3 <= 0) {
|
||||
Scalar v = d1 / (d1 - d3);
|
||||
return a + v * ab;
|
||||
}
|
||||
// Check if P in vertex region outside C
|
||||
Vector cp = p - c;
|
||||
Scalar d5 = ab.dot(cp);
|
||||
Scalar d6 = ac.dot(cp);
|
||||
if (d6 >= 0 && d5 <= d6)
|
||||
return c;
|
||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||
Scalar vb = d5*d2 - d1*d6;
|
||||
if (vb <= 0 && d2 >= 0 && d6 <= 0) {
|
||||
Scalar w = d2 / (d2 - d6);
|
||||
return a + w * ac;
|
||||
}
|
||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||
Scalar va = d3*d6 - d5*d4;
|
||||
if (va <= 0 && (d4 - d3) >= 0 && (d5 - d6) >= 0) {
|
||||
Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
||||
return b + w * (c - b);
|
||||
}
|
||||
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
||||
Scalar denom = Scalar(1.0) / (va + vb + vc);
|
||||
Scalar v = vb * denom;
|
||||
Scalar w = vc * denom;
|
||||
return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = 1.0-v-w
|
||||
};
|
||||
|
||||
template<typename IndexedTriangleSetDistancerType, typename Scalar>
|
||||
static inline Scalar squared_distance_to_indexed_triangle_set_recursive(
|
||||
IndexedTriangleSetDistancerType &distancer,
|
||||
template<typename IndexedPrimitivesDistancerType, typename Scalar>
|
||||
static inline Scalar squared_distance_to_indexed_primitives_recursive(
|
||||
IndexedPrimitivesDistancerType &distancer,
|
||||
size_t node_idx,
|
||||
Scalar low_sqr_d,
|
||||
Scalar up_sqr_d,
|
||||
size_t &i,
|
||||
Eigen::PlainObjectBase<typename IndexedTriangleSetDistancerType::VectorType> &c)
|
||||
Eigen::PlainObjectBase<typename IndexedPrimitivesDistancerType::VectorType> &c)
|
||||
{
|
||||
using Vector = typename IndexedTriangleSetDistancerType::VectorType;
|
||||
using Vector = typename IndexedPrimitivesDistancerType::VectorType;
|
||||
|
||||
if (low_sqr_d > up_sqr_d)
|
||||
return low_sqr_d;
|
||||
|
@ -538,13 +551,9 @@ namespace detail {
|
|||
assert(node.is_valid());
|
||||
if (node.is_leaf())
|
||||
{
|
||||
const auto &triangle = distancer.faces[node.idx];
|
||||
Vector c_candidate = closest_point_to_triangle<Vector>(
|
||||
distancer.origin,
|
||||
distancer.vertices[triangle(0)].template cast<Scalar>(),
|
||||
distancer.vertices[triangle(1)].template cast<Scalar>(),
|
||||
distancer.vertices[triangle(2)].template cast<Scalar>());
|
||||
set_min((c_candidate - distancer.origin).squaredNorm(), node.idx, c_candidate);
|
||||
Scalar sqr_dist;
|
||||
Vector c_candidate = distancer.closest_point_to_origin(node.idx, sqr_dist);
|
||||
set_min(sqr_dist, node.idx, c_candidate);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -561,7 +570,7 @@ namespace detail {
|
|||
{
|
||||
size_t i_left;
|
||||
Vector c_left = c;
|
||||
Scalar sqr_d_left = squared_distance_to_indexed_triangle_set_recursive(distancer, left_node_idx, low_sqr_d, up_sqr_d, i_left, c_left);
|
||||
Scalar sqr_d_left = squared_distance_to_indexed_primitives_recursive(distancer, left_node_idx, low_sqr_d, up_sqr_d, i_left, c_left);
|
||||
set_min(sqr_d_left, i_left, c_left);
|
||||
looked_left = true;
|
||||
};
|
||||
|
@ -569,13 +578,13 @@ namespace detail {
|
|||
{
|
||||
size_t i_right;
|
||||
Vector c_right = c;
|
||||
Scalar sqr_d_right = squared_distance_to_indexed_triangle_set_recursive(distancer, right_node_idx, low_sqr_d, up_sqr_d, i_right, c_right);
|
||||
Scalar sqr_d_right = squared_distance_to_indexed_primitives_recursive(distancer, right_node_idx, low_sqr_d, up_sqr_d, i_right, c_right);
|
||||
set_min(sqr_d_right, i_right, c_right);
|
||||
looked_right = true;
|
||||
};
|
||||
|
||||
// must look left or right if in box
|
||||
using BBoxScalar = typename IndexedTriangleSetDistancerType::TreeType::BoundingBox::Scalar;
|
||||
using BBoxScalar = typename IndexedPrimitivesDistancerType::TreeType::BoundingBox::Scalar;
|
||||
if (node_left.bbox.contains(distancer.origin.template cast<BBoxScalar>()))
|
||||
look_left();
|
||||
if (node_right.bbox.contains(distancer.origin.template cast<BBoxScalar>()))
|
||||
|
@ -709,10 +718,15 @@ inline bool intersect_ray_all_hits(
|
|||
origin, dir, VectorType(dir.cwiseInverse()),
|
||||
eps }
|
||||
};
|
||||
if (! tree.empty()) {
|
||||
if (tree.empty()) {
|
||||
hits.clear();
|
||||
} else {
|
||||
// Reusing the output memory if there is some memory already pre-allocated.
|
||||
ray_intersector.hits = std::move(hits);
|
||||
ray_intersector.hits.clear();
|
||||
ray_intersector.hits.reserve(8);
|
||||
detail::intersect_ray_recursive_all_hits(ray_intersector, 0);
|
||||
std::swap(hits, ray_intersector.hits);
|
||||
hits = std::move(ray_intersector.hits);
|
||||
std::sort(hits.begin(), hits.end(), [](const auto &l, const auto &r) { return l.t < r.t; });
|
||||
}
|
||||
return ! hits.empty();
|
||||
|
@ -742,7 +756,7 @@ inline typename VectorType::Scalar squared_distance_to_indexed_triangle_set(
|
|||
auto distancer = detail::IndexedTriangleSetDistancer<VertexType, IndexedFaceType, TreeType, VectorType>
|
||||
{ vertices, faces, tree, point };
|
||||
return tree.empty() ? Scalar(-1) :
|
||||
detail::squared_distance_to_indexed_triangle_set_recursive(distancer, size_t(0), Scalar(0), std::numeric_limits<Scalar>::infinity(), hit_idx_out, hit_point_out);
|
||||
detail::squared_distance_to_indexed_primitives_recursive(distancer, size_t(0), Scalar(0), std::numeric_limits<Scalar>::infinity(), hit_idx_out, hit_point_out);
|
||||
}
|
||||
|
||||
// Decides if exists some triangle in defined radius on a 3D indexed triangle set using a pre-built AABBTreeIndirect::Tree.
|
||||
|
@ -759,22 +773,22 @@ inline bool is_any_triangle_in_radius(
|
|||
const TreeType &tree,
|
||||
// Point to which the closest point on the indexed triangle set is searched for.
|
||||
const VectorType &point,
|
||||
// Maximum distance in which triangle is search for
|
||||
typename VectorType::Scalar &max_distance)
|
||||
//Square of maximum distance in which triangle is searched for
|
||||
typename VectorType::Scalar &max_distance_squared)
|
||||
{
|
||||
using Scalar = typename VectorType::Scalar;
|
||||
auto distancer = detail::IndexedTriangleSetDistancer<VertexType, IndexedFaceType, TreeType, VectorType>
|
||||
{ vertices, faces, tree, point };
|
||||
|
||||
size_t hit_idx;
|
||||
VectorType hit_point = VectorType::Ones() * (std::nan(""));
|
||||
size_t hit_idx;
|
||||
VectorType hit_point = VectorType::Ones() * (NaN<typename VectorType::Scalar>);
|
||||
|
||||
if(tree.empty())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
detail::squared_distance_to_indexed_triangle_set_recursive(distancer, size_t(0), Scalar(0), max_distance, hit_idx, hit_point);
|
||||
detail::squared_distance_to_indexed_primitives_recursive(distancer, size_t(0), Scalar(0), max_distance_squared, hit_idx, hit_point);
|
||||
|
||||
return hit_point.allFinite();
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue