Tech ENABLE_GLINDEXEDVERTEXARRAY_REMOVAL - Replace GLIndexedVertexArray with GLModel: GLVolume geometry + removed class GLIndexedVertexArray from codebase

(cherry picked from commit prusa3d/PrusaSlicer@1eac357739)
This commit is contained in:
enricoturri1966 2023-10-23 17:02:29 +08:00 committed by Noisyfox
parent d85bbcba50
commit d09dc36ff1
16 changed files with 765 additions and 1130 deletions

View file

@ -2353,7 +2353,7 @@ int CLI::run(int argc, char **argv)
// continue;
for (int instance_idx = 0; instance_idx < (int)model_object.instances.size(); ++ instance_idx) {
const ModelInstance &model_instance = *model_object.instances[instance_idx];
glvolume_collection.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, true, false, true);
glvolume_collection.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, false, true);
//glvolume_collection.volumes.back()->geometry_id = key.geometry_id;
std::string color = filament_color?filament_color->get_at(extruder_id - 1):"#00FF00";

View file

@ -93,6 +93,9 @@ public:
// Called on initial G-code preview on OpenGL vertex buffer interleaved normals and vertices.
bool all_paths_inside_vertices_and_normals_interleaved(const std::vector<float>& paths, const Eigen::AlignedBox<float, 3>& bbox, bool ignore_bottom = true) const;
const std::pair<std::vector<Vec2d>, std::vector<Vec2d>>& top_bottom_convex_hull_decomposition_scene() const { return m_top_bottom_convex_hull_decomposition_scene; }
const std::pair<std::vector<Vec2d>, std::vector<Vec2d>>& top_bottom_convex_hull_decomposition_bed() const { return m_top_bottom_convex_hull_decomposition_bed; }
private:
// Source definition of the print bed geometry (PrintConfig::printable_area)
std::vector<Vec2d> m_bed_shape;

View file

@ -131,8 +131,8 @@ set(SLIC3R_GUI_SOURCES
GUI/Gizmos/GLGizmoSimplify.hpp
GUI/Gizmos/GLGizmoMmuSegmentation.cpp
GUI/Gizmos/GLGizmoMmuSegmentation.hpp
GUI/Gizmos/GLGizmoFaceDetector.cpp
GUI/Gizmos/GLGizmoFaceDetector.hpp
#GUI/Gizmos/GLGizmoFaceDetector.cpp
#GUI/Gizmos/GLGizmoFaceDetector.hpp
GUI/Gizmos/GLGizmoSeam.cpp
GUI/Gizmos/GLGizmoSeam.hpp
GUI/Gizmos/GLGizmoText.cpp

File diff suppressed because it is too large Load diff

View file

@ -57,207 +57,6 @@ using ModelObjectPtrs = std::vector<ModelObject*>;
// Return appropriate color based on the ModelVolume.
extern ColorRGBA color_from_model_volume(const ModelVolume& model_volume);
// A container for interleaved arrays of 3D vertices and normals,
// possibly indexed by triangles and / or quads.
class GLIndexedVertexArray {
public:
// Only Eigen types of Nx16 size are vectorized. This bounding box will not be vectorized.
static_assert(sizeof(Eigen::AlignedBox<float, 3>) == 24, "Eigen::AlignedBox<float, 3> is not being vectorized, thus it does not need to be aligned");
using BoundingBox = Eigen::AlignedBox<float, 3>;
GLIndexedVertexArray() { m_bounding_box.setEmpty(); }
GLIndexedVertexArray(const GLIndexedVertexArray &rhs) :
vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved),
triangle_indices(rhs.triangle_indices),
quad_indices(rhs.quad_indices),
m_bounding_box(rhs.m_bounding_box)
{ assert(!rhs.has_VBOs()); m_bounding_box.setEmpty(); }
GLIndexedVertexArray(GLIndexedVertexArray &&rhs) :
vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)),
triangle_indices(std::move(rhs.triangle_indices)),
quad_indices(std::move(rhs.quad_indices)),
m_bounding_box(rhs.m_bounding_box)
{ assert(! rhs.has_VBOs()); }
~GLIndexedVertexArray() { release_geometry(); }
GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(quad_indices_VBO_id == 0);
assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
assert(rhs.triangle_indices_VBO_id == 0);
assert(rhs.quad_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved;
this->triangle_indices = rhs.triangle_indices;
this->quad_indices = rhs.quad_indices;
this->m_bounding_box = rhs.m_bounding_box;
this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size;
this->triangle_indices_size = rhs.triangle_indices_size;
this->quad_indices_size = rhs.quad_indices_size;
return *this;
}
GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs)
{
assert(vertices_and_normals_interleaved_VBO_id == 0);
assert(triangle_indices_VBO_id == 0);
assert(quad_indices_VBO_id == 0);
assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
assert(rhs.triangle_indices_VBO_id == 0);
assert(rhs.quad_indices_VBO_id == 0);
this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved);
this->triangle_indices = std::move(rhs.triangle_indices);
this->quad_indices = std::move(rhs.quad_indices);
this->m_bounding_box = rhs.m_bounding_box;
this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size;
this->triangle_indices_size = rhs.triangle_indices_size;
this->quad_indices_size = rhs.quad_indices_size;
return *this;
}
// Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x)
std::vector<float> vertices_and_normals_interleaved;
std::vector<int> triangle_indices;
std::vector<int> quad_indices;
// When the geometry data is loaded into the graphics card as Vertex Buffer Objects,
// the above mentioned std::vectors are cleared and the following variables keep their original length.
size_t vertices_and_normals_interleaved_size{ 0 };
size_t triangle_indices_size{ 0 };
size_t quad_indices_size{ 0 };
// IDs of the Vertex Array Objects, into which the geometry has been loaded.
// Zero if the VBOs are not sent to GPU yet.
unsigned int vertices_and_normals_interleaved_VBO_id{ 0 };
unsigned int triangle_indices_VBO_id{ 0 };
unsigned int quad_indices_VBO_id{ 0 };
#if ENABLE_SMOOTH_NORMALS
void load_mesh_full_shading(const TriangleMesh& mesh, bool smooth_normals = false);
void load_mesh(const TriangleMesh& mesh, bool smooth_normals = false) { this->load_mesh_full_shading(mesh, smooth_normals); }
#else
void load_mesh_full_shading(const TriangleMesh& mesh);
void load_mesh(const TriangleMesh& mesh) { this->load_mesh_full_shading(mesh); }
#endif // ENABLE_SMOOTH_NORMALS
void load_its_flat_shading(const indexed_triangle_set &its);
inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; }
inline void reserve(size_t sz) {
this->vertices_and_normals_interleaved.reserve(sz * 6);
this->triangle_indices.reserve(sz * 3);
this->quad_indices.reserve(sz * 4);
}
inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) {
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
if (this->vertices_and_normals_interleaved_VBO_id != 0)
return;
if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity())
this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6));
this->vertices_and_normals_interleaved.emplace_back(nx);
this->vertices_and_normals_interleaved.emplace_back(ny);
this->vertices_and_normals_interleaved.emplace_back(nz);
this->vertices_and_normals_interleaved.emplace_back(x);
this->vertices_and_normals_interleaved.emplace_back(y);
this->vertices_and_normals_interleaved.emplace_back(z);
this->vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size();
m_bounding_box.extend(Vec3f(x, y, z));
};
inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) {
push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
}
template<typename Derived, typename Derived2>
inline void push_geometry(const Eigen::MatrixBase<Derived>& p, const Eigen::MatrixBase<Derived2>& n) {
push_geometry(float(p(0)), float(p(1)), float(p(2)), float(n(0)), float(n(1)), float(n(2)));
}
inline void push_triangle(int idx1, int idx2, int idx3) {
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
if (this->vertices_and_normals_interleaved_VBO_id != 0)
return;
if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity())
this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3));
this->triangle_indices.emplace_back(idx1);
this->triangle_indices.emplace_back(idx2);
this->triangle_indices.emplace_back(idx3);
this->triangle_indices_size = this->triangle_indices.size();
};
inline void push_quad(int idx1, int idx2, int idx3, int idx4) {
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
if (this->vertices_and_normals_interleaved_VBO_id != 0)
return;
if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity())
this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4));
this->quad_indices.emplace_back(idx1);
this->quad_indices.emplace_back(idx2);
this->quad_indices.emplace_back(idx3);
this->quad_indices.emplace_back(idx4);
this->quad_indices_size = this->quad_indices.size();
};
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool opengl_initialized);
// Release the geometry data, release OpenGL VBOs.
void release_geometry();
void render() const;
void render(const std::pair<size_t, size_t>& tverts_range, const std::pair<size_t, size_t>& qverts_range) const;
// Is there any geometry data stored?
bool empty() const { return vertices_and_normals_interleaved_size == 0; }
void clear() {
this->vertices_and_normals_interleaved.clear();
this->triangle_indices.clear();
this->quad_indices.clear();
vertices_and_normals_interleaved_size = 0;
triangle_indices_size = 0;
quad_indices_size = 0;
m_bounding_box.setEmpty();
}
// Shrink the internal storage to tighly fit the data stored.
void shrink_to_fit() {
this->vertices_and_normals_interleaved.shrink_to_fit();
this->triangle_indices.shrink_to_fit();
this->quad_indices.shrink_to_fit();
}
const BoundingBox& bounding_box() const { return m_bounding_box; }
// Return an estimate of the memory consumed by this class.
size_t cpu_memory_used() const { return sizeof(*this) + vertices_and_normals_interleaved.capacity() * sizeof(float) + triangle_indices.capacity() * sizeof(int) + quad_indices.capacity() * sizeof(int); }
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const
{
size_t memsize = 0;
if (this->vertices_and_normals_interleaved_VBO_id != 0)
memsize += this->vertices_and_normals_interleaved_size * 4;
if (this->triangle_indices_VBO_id != 0)
memsize += this->triangle_indices_size * 4;
if (this->quad_indices_VBO_id != 0)
memsize += this->quad_indices_size * 4;
return memsize;
}
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
private:
BoundingBox m_bounding_box;
};
class GLVolume {
public:
std::string name;
@ -400,15 +199,13 @@ public:
// Is mouse or rectangle selection over this object to select/deselect it ?
EHoverState hover;
// Interleaved triangles & normals with indexed triangles & quads.
GLIndexedVertexArray indexed_vertex_array;
GUI::GLModel model;
// BBS
mutable std::vector<GLIndexedVertexArray> mmuseg_ivas;
mutable std::vector<GUI::GLModel> mmuseg_models;
mutable ObjectBase::Timestamp mmuseg_ts;
// Ranges of triangle and quad indices to be rendered.
std::pair<size_t, size_t> tverts_range;
std::pair<size_t, size_t> qverts_range;
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
// of the extrusions per layer.
@ -418,13 +215,7 @@ public:
// Bounding box of this volume, in unscaled coordinates.
BoundingBoxf3 bounding_box() const {
BoundingBoxf3 out;
if (! this->indexed_vertex_array.bounding_box().isEmpty()) {
out.min = this->indexed_vertex_array.bounding_box().min().cast<double>();
out.max = this->indexed_vertex_array.bounding_box().max().cast<double>();
out.defined = true;
};
return out;
return this->model.get_bounding_box();
}
void set_color(const ColorRGBA& rgba) { color = rgba; }
@ -517,18 +308,15 @@ public:
// convex hull
const TriangleMesh* convex_hull() const { return m_convex_hull.get(); }
bool empty() const { return this->indexed_vertex_array.empty(); }
bool empty() const { return this->model.is_empty(); }
void set_range(double low, double high);
//BBS: add outline related logic and add virtual specifier
virtual void render(bool with_outline = false) const;
virtual void render(bool with_outline = false);
//BBS: add simple render function for thumbnail
void simple_render(GLShaderProgram* shader, ModelObjectPtrs& model_objects, std::vector<ColorRGBA>& extruder_colors) const;
void finalize_geometry(bool opengl_initialized) { this->indexed_vertex_array.finalize_geometry(opengl_initialized); }
void release_geometry() { this->indexed_vertex_array.release_geometry(); }
void simple_render(GLShaderProgram* shader, ModelObjectPtrs& model_objects, std::vector<ColorRGBA>& extruder_colors);
void set_bounding_boxes_as_dirty() {
m_transformed_bounding_box.reset();
@ -545,11 +333,11 @@ public:
// Return an estimate of the memory consumed by this class.
size_t cpu_memory_used() const {
//FIXME what to do wih m_convex_hull?
return sizeof(*this) - sizeof(this->indexed_vertex_array) + this->indexed_vertex_array.cpu_memory_used() + this->print_zs.capacity() * sizeof(coordf_t) + this->offsets.capacity() * sizeof(size_t);
return sizeof(*this) + this->model.cpu_memory_used() + this->print_zs.capacity() * sizeof(coordf_t) +
this->offsets.capacity() * sizeof(size_t);
}
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const { return this->indexed_vertex_array.gpu_memory_used(); }
size_t gpu_memory_used() const { return this->model.gpu_memory_used(); }
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
};
@ -557,9 +345,9 @@ public:
class GLWipeTowerVolume : public GLVolume {
public:
GLWipeTowerVolume(const std::vector<ColorRGBA>& colors);
virtual void render(bool with_outline = false) const;
virtual void render(bool with_outline = false);
std::vector<GLIndexedVertexArray> iva_per_colors;
std::vector<GUI::GLModel> model_per_colors;
bool IsTransparent();
private:
@ -627,17 +415,15 @@ public:
~GLVolumeCollection() { clear(); }
std::vector<int> load_object(
const ModelObject *model_object,
const ModelObject* model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
bool opengl_initialized);
const std::vector<int>& instance_idxs);
int load_object_volume(
const ModelObject *model_object,
const ModelObject* model_object,
int obj_idx,
int volume_idx,
int instance_idx,
bool opengl_initialized,
bool in_assemble_view = false,
bool use_loaded_id = false);
@ -649,14 +435,13 @@ public:
const std::vector<std::pair<size_t, size_t>>& instances,
SLAPrintObjectStep milestone,
// Timestamp of the last change of the milestone
size_t timestamp,
bool opengl_initialized);
size_t timestamp);
int load_wipe_tower_preview(
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized);
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width);
GLVolume* new_toolpath_volume(const ColorRGBA& rgba, size_t reserve_vbo_floats = 0);
GLVolume* new_nontoolpath_volume(const ColorRGBA& rgba, size_t reserve_vbo_floats = 0);
GLVolume* new_toolpath_volume(const ColorRGBA& rgba);
GLVolume* new_nontoolpath_volume(const ColorRGBA& rgba);
int get_selection_support_threshold_angle(bool&) const;
// Render the volumes by OpenGL.
@ -667,13 +452,6 @@ public:
std::function<bool(const GLVolume &)> filter_func = std::function<bool(const GLVolume &)>(),
bool with_outline = true) const;
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
void finalize_geometry(bool opengl_initialized) { for (auto* v : volumes) v->finalize_geometry(opengl_initialized); }
// Release the geometry data assigned to the volumes.
// If OpenGL VBOs were allocated, an OpenGL context has to be active to release them.
void release_geometry() { for (auto *v : volumes) v->release_geometry(); }
// Clear the geometry
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
@ -724,17 +502,13 @@ GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCo
struct _3DScene
{
static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GLVolume& volume);
static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GLVolume& volume);
static void extrusionentity_to_verts(const Polyline &polyline, float width, float height, float print_z, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume);
static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume);
static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GUI::GLModel::Geometry& geometry);
static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry);
};
}

View file

@ -920,7 +920,7 @@ std::vector<int> GCodeViewer::get_plater_extruder()
//BBS: always load shell at preview
void GCodeViewer::load(const GCodeProcessorResult& gcode_result, const Print& print, const BuildVolume& build_volume,
const std::vector<BoundingBoxf3>& exclude_bounding_box, bool initialized, ConfigOptionMode mode, bool only_gcode)
const std::vector<BoundingBoxf3>& exclude_bounding_box, ConfigOptionMode mode, bool only_gcode)
{
// avoid processing if called with the same gcode_result
if (m_last_result_id == gcode_result.id) {
@ -975,7 +975,7 @@ m_sequential_view.m_show_gcode_window = false;
//BBS: always load shell at preview
/*if (wxGetApp().is_editor())
{
//load_shells(print, initialized);
load_shells(print);
}
else {*/
//BBS: add only gcode mode
@ -3088,9 +3088,9 @@ void GCodeViewer::load_toolpaths(const GCodeProcessorResult& gcode_result, const
}
//BBS: always load shell when preview
void GCodeViewer::load_shells(const Print& print, bool initialized, bool force_previewing)
void GCodeViewer::load_shells(const Print& print, bool force_previewing)
{
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": initialized=%1%, force_previewing=%2%")%initialized %force_previewing;
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << boost::format(": force_previewing=%1%") %force_previewing;
if ((print.id().id == m_shells.print_id)&&(print.get_modified_count() == m_shells.print_modify_count)) {
//BBS: update force previewing logic
if (force_previewing)
@ -3138,7 +3138,7 @@ void GCodeViewer::load_shells(const Print& print, bool initialized, bool force_p
instance_ids.resize(instance_index);
size_t current_volumes_count = m_shells.volumes.volumes.size();
m_shells.volumes.load_object(model_obj, object_idx, instance_ids, initialized);
m_shells.volumes.load_object(model_obj, object_idx, instance_ids);
// adjust shells' z if raft is present
const SlicingParameters& slicing_parameters = obj->slicing_parameters();
@ -4080,14 +4080,6 @@ void GCodeViewer::render_shells()
if (shader == nullptr)
return;
// when the background processing is enabled, it may happen that the shells data have been loaded
// before opengl has been initialized for the preview canvas.
// when this happens, the volumes' data have not been sent to gpu yet.
for (GLVolume* v : m_shells.volumes.volumes) {
if (!v->indexed_vertex_array.has_VBOs())
v->finalize_geometry(true);
}
glsafe(::glEnable(GL_DEPTH_TEST));
// glsafe(::glDepthMask(GL_FALSE));

View file

@ -810,7 +810,7 @@ public:
// extract rendering data from the given parameters
//BBS: add only gcode mode
void load(const GCodeProcessorResult& gcode_result, const Print& print, const BuildVolume& build_volume,
const std::vector<BoundingBoxf3>& exclude_bounding_box, bool initialized, ConfigOptionMode mode, bool only_gcode = false);
const std::vector<BoundingBoxf3>& exclude_bounding_box, ConfigOptionMode mode, bool only_gcode = false);
// recalculate ranges in dependence of what is visible and sets tool/print colors
void refresh(const GCodeProcessorResult& gcode_result, const std::vector<std::string>& str_tool_colors);
void refresh_render_paths();
@ -820,7 +820,7 @@ public:
void reset();
//BBS: always load shell at preview
void reset_shell();
void load_shells(const Print& print, bool initialized, bool force_previewing = false);
void load_shells(const Print& print, bool force_previewing = false);
void set_shells_on_preview(bool is_previewing) { m_shells.previewing = is_previewing; }
//BBS: add all plates filament statistics
void render_all_plates_stats(const std::vector<const GCodeProcessorResult*>& gcode_result_list, bool show = true) const;
@ -900,7 +900,7 @@ public:
private:
void load_toolpaths(const GCodeProcessorResult& gcode_result, const BuildVolume& build_volume, const std::vector<BoundingBoxf3>& exclude_bounding_box);
//BBS: always load shell at preview
//void load_shells(const Print& print, bool initialized);
//void load_shells(const Print& print);
void refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const;
void render_toolpaths();
void render_shells();

View file

@ -97,10 +97,6 @@ void GLCanvas3D::load_render_colors()
// Number of floats
static constexpr const size_t MAX_VERTEX_BUFFER_SIZE = 131072 * 6; // 3.15MB
// Reserve size in number of floats.
static constexpr const size_t VERTEX_BUFFER_RESERVE_SIZE = 131072 * 2; // 1.05MB
// Reserve size in number of floats, maximum sum of all preallocated buffers.
//static constexpr const size_t VERTEX_BUFFER_RESERVE_SIZE_SUM_MAX = 1024 * 1024 * 128 / 4; // 128MB
namespace Slic3r {
namespace GUI {
@ -1175,10 +1171,6 @@ bool GLCanvas3D::init()
if (m_main_toolbar.is_enabled())
m_layers_editing.init();
// on linux the gl context is not valid until the canvas is not shown on screen
// we defer the geometry finalization of volumes until the first call to render()
m_volumes.finalize_geometry(true);
BOOST_LOG_TRIVIAL(info) <<__FUNCTION__<< ": before gizmo init";
if (m_gizmos.is_enabled() && !m_gizmos.init())
std::cout << "Unable to initialize gizmos: please, check that all the required textures are available" << std::endl;
@ -2136,7 +2128,7 @@ std::vector<int> GLCanvas3D::load_object(const ModelObject& model_object, int ob
instance_idxs.emplace_back(i);
}
}
return m_volumes.load_object(&model_object, obj_idx, instance_idxs, m_initialized);
return m_volumes.load_object(&model_object, obj_idx, instance_idxs);
}
std::vector<int> GLCanvas3D::load_object(const Model& model, int obj_idx)
@ -2447,7 +2439,7 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
// Note the index of the loaded volume, so that we can reload the main model GLVolume with the hollowed mesh
// later in this function.
it->volume_idx = m_volumes.volumes.size();
m_volumes.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, m_initialized, m_canvas_type == ECanvasType::CanvasAssembleView);
m_volumes.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, m_canvas_type == ECanvasType::CanvasAssembleView);
m_volumes.volumes.back()->geometry_id = key.geometry_id;
update_object_list = true;
} else {
@ -2504,31 +2496,32 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
GLVolume &volume = *m_volumes.volumes[it->volume_idx];
if (! volume.offsets.empty() && state.step[istep].timestamp != volume.offsets.front()) {
// The backend either produced a new hollowed mesh, or it invalidated the one that the front end has seen.
volume.indexed_vertex_array.release_geometry();
volume.model.reset();
if (state.step[istep].state == PrintStateBase::DONE) {
TriangleMesh mesh = print_object->get_mesh(slaposDrillHoles);
assert(! mesh.empty());
mesh.transform(sla_print->sla_trafo(*m_model->objects[volume.object_idx()]).inverse());
#if ENABLE_SMOOTH_NORMALS
volume.indexed_vertex_array.load_mesh(mesh, true);
volume.model.init_from(mesh, true);
#else
volume.indexed_vertex_array.load_mesh(mesh);
#endif // ENABLE_SMOOTH_NORMALS
} else {
// Reload the original volume.
#if ENABLE_SMOOTH_NORMALS
volume.indexed_vertex_array.load_mesh(m_model->objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh(), true);
#else
volume.indexed_vertex_array.load_mesh(m_model->objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh());
volume.model.init_from(mesh);
#endif // ENABLE_SMOOTH_NORMALS
}
else {
// Reload the original volume.
#if ENABLE_SMOOTH_NORMALS
volume.model.init_from(m_model->objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh(), true);
#else
volume.model.init_from(m_model->objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh());
#endif // ENABLE_SMOOTH_NORMALS
}
volume.finalize_geometry(true);
}
//FIXME it is an ugly hack to write the timestamp into the "offsets" field to not have to add another member variable
// to the GLVolume. We should refactor GLVolume significantly, so that the GLVolume will not contain member variables
// of various concenrs (model vs. 3D print path).
volume.offsets = { state.step[istep].timestamp };
} else if (state.step[istep].state == PrintStateBase::DONE) {
}
else if (state.step[istep].state == PrintStateBase::DONE) {
// Check whether there is an existing auxiliary volume to be updated, or a new auxiliary volume to be created.
ModelVolumeState key(state.step[istep].timestamp, instance.instance_id.id);
auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower);
@ -2540,7 +2533,8 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
instances[istep].emplace_back(std::pair<size_t, size_t>(instance_idx, print_instance_idx));
else
shift_zs[object_idx] = 0.;
} else {
}
else {
// Recycling an old GLVolume. Update the Object/Instance indices into the current Model.
m_volumes.volumes[it->volume_idx]->composite_id = GLVolume::CompositeID(object_idx, m_volumes.volumes[it->volume_idx]->volume_idx(), instance_idx);
m_volumes.volumes[it->volume_idx]->set_instance_transformation(model_object->instances[instance_idx]->get_transformation());
@ -2550,7 +2544,7 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
for (size_t istep = 0; istep < sla_steps.size(); ++istep)
if (!instances[istep].empty())
m_volumes.load_object_auxiliary(print_object, object_idx, instances[istep], sla_steps[istep], state.step[istep].timestamp, m_initialized);
m_volumes.load_object_auxiliary(print_object, object_idx, instances[istep], sla_steps[istep], state.step[istep].timestamp);
}
// Shift-up all volumes of the object so that it has the right elevation with respect to the print bed
@ -2614,7 +2608,7 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
1000 + plate_id, x + plate_origin(0), y + plate_origin(1),
(float)wipe_tower_size(0), (float)wipe_tower_size(1), (float)wipe_tower_size(2), a,
/*!print->is_step_done(psWipeTower)*/ true, brim_width, m_initialized);
/*!print->is_step_done(psWipeTower)*/ true, brim_width);
int volume_idx_wipe_tower_old = volume_idxs_wipe_tower_old[plate_id];
if (volume_idx_wipe_tower_old != -1)
map_glvolume_old_to_new[volume_idx_wipe_tower_old] = volume_idx_wipe_tower_new;
@ -2687,26 +2681,11 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
m_dirty = true;
}
static void reserve_new_volume_finalize_old_volume(GLVolume& vol_new, GLVolume& vol_old, bool gl_initialized, size_t prealloc_size = VERTEX_BUFFER_RESERVE_SIZE)
{
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol_old.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol_old.indexed_vertex_array = vol_new.indexed_vertex_array;
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
// Reserving number of vertices (3x position + 3x color)
vol_new.indexed_vertex_array.reserve(prealloc_size / 6);
// Finalize the old geometry, possibly move data to the graphics card.
vol_old.finalize_geometry(gl_initialized);
}
void GLCanvas3D::load_shells(const Print& print, bool force_previewing)
{
if (m_initialized)
{
m_gcode_viewer.load_shells(print, m_initialized, force_previewing);
m_gcode_viewer.load_shells(print, force_previewing);
m_gcode_viewer.update_shells_color_by_extruder(m_config);
}
}
@ -2726,7 +2705,7 @@ void GLCanvas3D::load_gcode_preview(const GCodeProcessorResult& gcode_result, co
//when load gcode directly, it is too late
m_gcode_viewer.init(wxGetApp().get_mode(), wxGetApp().preset_bundle);
m_gcode_viewer.load(gcode_result, *this->fff_print(), wxGetApp().plater()->build_volume(), exclude_bounding_box,
m_initialized, wxGetApp().get_mode(), only_gcode);
wxGetApp().get_mode(), only_gcode);
if (wxGetApp().is_editor()) {
//BBS: always load shell at preview, do this in load_shells
@ -5637,7 +5616,7 @@ void GLCanvas3D::render_thumbnail_internal(ThumbnailData& thumbnail_data, const
curr_color = vol->color;
ColorRGBA new_color = adjust_color_for_rendering(curr_color);
shader->set_uniform("uniform_color", new_color);
vol->model.set_color(new_color);
shader->set_uniform("volume_world_matrix", vol->world_matrix());
//BBS set all volume to orange
//shader->set_uniform("uniform_color", orange);
@ -7192,6 +7171,10 @@ void GLCanvas3D::_render_style_editor()
void GLCanvas3D::_render_volumes_for_picking() const
{
GLShaderProgram* shader = wxGetApp().get_shader("flat");
if (shader == nullptr)
return;
// do not cull backfaces to show broken geometry, if any
glsafe(::glDisable(GL_CULL_FACE));
@ -7209,8 +7192,10 @@ void GLCanvas3D::_render_volumes_for_picking() const
//BBS: remove the bed picking logic
const unsigned int id = volume.second.first;
//const unsigned int id = 1 + volume.second.first;
glsafe(::glColor4fv(picking_decode(id).data()));
volume.first->model.set_color(picking_decode(id));
shader->start_using();
volume.first->render();
shader->stop_using();
}
}
@ -8384,22 +8369,23 @@ void GLCanvas3D::_load_print_toolpaths(const BuildVolume &build_volume)
skirt_height = std::min(skirt_height, print_zs.size());
print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
GLVolume *volume = m_volumes.new_toolpath_volume(color, VERTEX_BUFFER_RESERVE_SIZE);
GLVolume* volume = m_volumes.new_toolpath_volume(color);
GLModel::Geometry init_data;
init_data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::UINT };
for (size_t i = 0; i < skirt_height; ++ i) {
volume->print_zs.emplace_back(print_zs[i]);
volume->offsets.emplace_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.emplace_back(volume->indexed_vertex_array.triangle_indices.size());
volume->offsets.emplace_back(init_data.indices_count());
//BBS: usage of m_brim are deleted
_3DScene::extrusionentity_to_verts(print->skirt(), print_zs[i], Point(0, 0), *volume);
_3DScene::extrusionentity_to_verts(print->skirt(), print_zs[i], Point(0, 0), init_data);
// Ensure that no volume grows over the limits. If the volume is too large, allocate a new one.
if (volume->indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
if (init_data.vertices_size_bytes() > MAX_VERTEX_BUFFER_SIZE) {
volume->model.init_from(std::move(init_data));
GLVolume &vol = *volume;
volume = m_volumes.new_toolpath_volume(vol.color);
reserve_new_volume_finalize_old_volume(*volume, vol, m_initialized);
}
}
volume->is_outside = ! build_volume.all_paths_inside_vertices_and_normals_interleaved(volume->indexed_vertex_array.vertices_and_normals_interleaved, volume->indexed_vertex_array.bounding_box());
volume->indexed_vertex_array.finalize_geometry(m_initialized);
volume->model.init_from(std::move(init_data));
volume->is_outside = !contains(build_volume, volume->model);
}
void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const BuildVolume& build_volume, const std::vector<std::string>& str_tool_colors, const std::vector<CustomGCode::Item>& color_print_values)
@ -8571,6 +8557,9 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
// Allocate the volume before locking.
GLVolume *volume = new GLVolume(color);
volume->is_extrusion_path = true;
// to prevent sending data to gpu (in the main thread) while
// editing the model geometry
volume->model.disable_render();
tbb::spin_mutex::scoped_lock lock;
// Lock by ROII, so if the emplace_back() fails, the lock will be released.
lock.acquire(new_volume_mutex);
@ -8583,8 +8572,9 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
[&ctxt, &new_volume, is_selected_separate_extruder, this](const tbb::blocked_range<size_t>& range) {
GLVolumePtrs vols;
auto volume = [&ctxt, &vols](size_t layer_idx, int extruder, int feature) -> GLVolume& {
return *vols[ctxt.color_by_color_print()?
std::vector<GLModel::Geometry> geometries;
auto select_geometry = [&ctxt, &geometries](size_t layer_idx, int extruder, int feature) -> GLModel::Geometry& {
return geometries[ctxt.color_by_color_print() ?
ctxt.color_print_color_idx_by_layer_idx_and_extruder(layer_idx, extruder) :
ctxt.color_by_tool() ?
std::min<int>(ctxt.number_tools() - 1, std::max<int>(extruder - 1, 0)) :
@ -8592,22 +8582,26 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
];
};
if (ctxt.color_by_color_print() || ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
for (size_t i = 0; i < ctxt.number_tools(); ++i) {
vols.emplace_back(new_volume(ctxt.color_tool(i)));
geometries.emplace_back(GLModel::Geometry());
}
else
}
else {
vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
for (GLVolume *vol : vols)
// Reserving number of vertices (3x position + 3x color)
vol->indexed_vertex_array.reserve(VERTEX_BUFFER_RESERVE_SIZE / 6);
geometries = { GLModel::Geometry(), GLModel::Geometry(), GLModel::Geometry() };
}
assert(vols.size() == geometries.size());
for (GLModel::Geometry& g : geometries) {
g.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::UINT };
}
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
const Layer *layer = ctxt.layers[idx_layer];
if (is_selected_separate_extruder)
{
if (is_selected_separate_extruder) {
bool at_least_one_has_correct_extruder = false;
for (const LayerRegion* layerm : layer->regions())
{
for (const LayerRegion* layerm : layer->regions()) {
if (layerm->slices.surfaces.empty())
continue;
const PrintRegionConfig& cfg = layerm->region().config();
@ -8622,12 +8616,14 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
continue;
}
for (GLVolume *vol : vols)
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume* vol = vols[i];
if (vol->print_zs.empty() || vol->print_zs.back() != layer->print_z) {
vol->print_zs.emplace_back(layer->print_z);
vol->offsets.emplace_back(vol->indexed_vertex_array.quad_indices.size());
vol->offsets.emplace_back(vol->indexed_vertex_array.triangle_indices.size());
vol->offsets.emplace_back(geometries[i].indices_count());
}
}
for (const PrintInstance &instance : *ctxt.shifted_copies) {
const Point &copy = instance.shift;
for (const LayerRegion *layerm : layer->regions()) {
@ -8641,18 +8637,16 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
}
if (ctxt.has_perimeters)
_3DScene::extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy,
volume(idx_layer, layerm->region().config().wall_filament.value, 0));
select_geometry(idx_layer, layerm->region().config().wall_filament.value, 0));
if (ctxt.has_infill) {
for (const ExtrusionEntity *ee : layerm->fills.entities) {
// fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (! fill->entities.empty())
_3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy,
volume(idx_layer,
is_solid_infill(fill->entities.front()->role()) ?
select_geometry(idx_layer, is_solid_infill(fill->entities.front()->role()) ?
layerm->region().config().solid_infill_filament :
layerm->region().config().sparse_infill_filament,
1));
layerm->region().config().sparse_infill_filament, 1));
}
}
}
@ -8661,28 +8655,25 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
if (support_layer) {
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
_3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy,
volume(idx_layer,
(extrusion_entity->role() == erSupportMaterial ||
extrusion_entity->role() == erSupportTransition) ?
select_geometry(idx_layer, (extrusion_entity->role() == erSupportMaterial || extrusion_entity->role() == erSupportTransition) ?
support_layer->object()->config().support_filament :
support_layer->object()->config().support_interface_filament,
2));
support_layer->object()->config().support_interface_filament, 2));
}
}
}
// Ensure that no volume grows over the limits. If the volume is too large, allocate a new one.
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
if (geometries[i].vertices_size_bytes() > MAX_VERTEX_BUFFER_SIZE) {
vol.model.init_from(std::move(geometries[i]));
vols[i] = new_volume(vol.color);
reserve_new_volume_finalize_old_volume(*vols[i], vol, false);
}
}
}
for (GLVolume *vol : vols)
// Ideally one would call vol->indexed_vertex_array.finalize() here to move the buffers to the OpenGL driver,
// but this code runs in parallel and the OpenGL driver is not thread safe.
vol->indexed_vertex_array.shrink_to_fit();
for (size_t i = 0; i < vols.size(); ++i) {
if (!geometries[i].is_empty())
vols[i]->model.init_from(std::move(geometries[i]));
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results" << m_volumes.log_memory_info() << log_memory_info();
@ -8697,8 +8688,9 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
}
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) {
GLVolume* v = m_volumes.volumes[i];
v->is_outside = ! build_volume.all_paths_inside_vertices_and_normals_interleaved(v->indexed_vertex_array.vertices_and_normals_interleaved, v->indexed_vertex_array.bounding_box());
v->indexed_vertex_array.finalize_geometry(m_initialized);
v->is_outside = !contains(build_volume, v->model);
// We are done editinig the model, now it can be sent to gpu
v->model.enable_render();
}
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info();
@ -8719,7 +8711,7 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const BuildVolume& build_volume, con
struct Ctxt
{
const Print *print;
const std::vector<ColorRGBA>* tool_colors;
const std::vector<ColorRGBA> *tool_colors;
Vec2f wipe_tower_pos;
float wipe_tower_angle;
@ -8771,6 +8763,9 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const BuildVolume& build_volume, con
auto new_volume = [this, &new_volume_mutex](const ColorRGBA& color) {
auto *volume = new GLVolume(color);
volume->is_extrusion_path = true;
// to prevent sending data to gpu (in the main thread) while
// editing the model geometry
volume->model.disable_render();
tbb::spin_mutex::scoped_lock lock;
lock.acquire(new_volume_mutex);
m_volumes.volumes.emplace_back(volume);
@ -8784,23 +8779,29 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const BuildVolume& build_volume, con
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// Bounding box of this slab of a wipe tower.
GLVolumePtrs vols;
std::vector<GLModel::Geometry> geometries;
if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
for (size_t i = 0; i < ctxt.number_tools(); ++i) {
vols.emplace_back(new_volume(ctxt.color_tool(i)));
geometries.emplace_back(GLModel::Geometry());
}
else
}
else {
vols = { new_volume(ctxt.color_support()) };
for (GLVolume *volume : vols)
// Reserving number of vertices (3x position + 3x color)
volume->indexed_vertex_array.reserve(VERTEX_BUFFER_RESERVE_SIZE / 6);
geometries = { GLModel::Geometry() };
}
assert(vols.size() == geometries.size());
for (GLModel::Geometry& g : geometries) {
g.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::UINT };
}
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
const std::vector<WipeTower::ToolChangeResult> &layer = ctxt.tool_change(idx_layer);
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) {
vol.print_zs.emplace_back(layer.front().print_z);
vol.offsets.emplace_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.emplace_back(vol.indexed_vertex_array.triangle_indices.size());
vol.offsets.emplace_back(geometries[i].indices_count());
}
}
for (const WipeTower::ToolChangeResult &extrusions : layer) {
@ -8843,19 +8844,21 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const BuildVolume& build_volume, con
e_prev = e;
}
_3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
*vols[ctxt.volume_idx(e.tool, 0)]);
geometries[ctxt.volume_idx(e.tool, 0)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
if (geometries[i].vertices_size_bytes() > MAX_VERTEX_BUFFER_SIZE) {
vol.model.init_from(std::move(geometries[i]));
vols[i] = new_volume(vol.color);
reserve_new_volume_finalize_old_volume(*vols[i], vol, false);
}
}
for (GLVolume *vol : vols)
vol->indexed_vertex_array.shrink_to_fit();
for (size_t i = 0; i < vols.size(); ++i) {
if (!geometries[i].is_empty())
vols[i]->model.init_from(std::move(geometries[i]));
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results" << m_volumes.log_memory_info() << log_memory_info();
@ -8870,8 +8873,9 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const BuildVolume& build_volume, con
}
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) {
GLVolume* v = m_volumes.volumes[i];
v->is_outside = ! build_volume.all_paths_inside_vertices_and_normals_interleaved(v->indexed_vertex_array.vertices_and_normals_interleaved, v->indexed_vertex_array.bounding_box());
v->indexed_vertex_array.finalize_geometry(m_initialized);
v->is_outside = !contains(build_volume, v->model);
// We are done editinig the model, now it can be sent to gpu
v->model.enable_render();
}
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info();
@ -8895,11 +8899,10 @@ void GLCanvas3D::_load_sla_shells()
m_volumes.volumes.emplace_back(new GLVolume(color));
GLVolume& v = *m_volumes.volumes.back();
#if ENABLE_SMOOTH_NORMALS
v.indexed_vertex_array.load_mesh(mesh, true);
v.model.init_from(mesh, true);
#else
v.indexed_vertex_array.load_mesh(mesh);
v.model.init_from(mesh);
#endif // ENABLE_SMOOTH_NORMALS
v.indexed_vertex_array.finalize_geometry(m_initialized);
v.shader_outside_printer_detection_enabled = outside_printer_detection_enabled;
v.composite_id.volume_id = volume_id;
v.set_instance_offset(unscale(instance.shift.x(), instance.shift.y(), 0.0));

View file

@ -8,15 +8,50 @@
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include <boost/filesystem/operations.hpp>
#include <boost/algorithm/string/predicate.hpp>
#if ENABLE_SMOOTH_NORMALS
#include <igl/per_face_normals.h>
#include <igl/per_corner_normals.h>
#include <igl/per_vertex_normals.h>
#endif // ENABLE_SMOOTH_NORMALS
#include <GL/glew.h>
namespace Slic3r {
namespace GUI {
#if ENABLE_SMOOTH_NORMALS
static void smooth_normals_corner(const TriangleMesh& mesh, std::vector<stl_normal>& normals)
{
using MapMatrixXfUnaligned = Eigen::Map<const Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
using MapMatrixXiUnaligned = Eigen::Map<const Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::DontAlign>>;
std::vector<Vec3f> face_normals = its_face_normals(mesh.its);
Eigen::MatrixXd vertices = MapMatrixXfUnaligned(mesh.its.vertices.front().data(),
Eigen::Index(mesh.its.vertices.size()), 3).cast<double>();
Eigen::MatrixXi indices = MapMatrixXiUnaligned(mesh.its.indices.front().data(),
Eigen::Index(mesh.its.indices.size()), 3);
Eigen::MatrixXd in_normals = MapMatrixXfUnaligned(face_normals.front().data(),
Eigen::Index(face_normals.size()), 3).cast<double>();
Eigen::MatrixXd out_normals;
igl::per_corner_normals(vertices, indices, in_normals, 1.0, out_normals);
normals = std::vector<stl_normal>(mesh.its.vertices.size());
for (size_t i = 0; i < mesh.its.indices.size(); ++i) {
for (size_t j = 0; j < 3; ++j) {
normals[mesh.its.indices[i][j]] = out_normals.row(i * 3 + j).cast<float>();
}
}
}
#endif // ENABLE_SMOOTH_NORMALS
void GLModel::Geometry::reserve_vertices(size_t vertices_count)
{
vertices.reserve(vertices_count * vertex_stride_floats(format));
@ -206,6 +241,35 @@ Vec2f GLModel::Geometry::extract_tex_coord_2(size_t id) const
return { *(start + 0), *(start + 1) };
}
void GLModel::Geometry::set_vertex(size_t id, const Vec3f& position, const Vec3f& normal)
{
assert(format.vertex_layout == EVertexLayout::P3N3);
assert(id < vertices_count());
if (id < vertices_count()) {
float* start = &vertices[id * vertex_stride_floats(format)];
*(start + 0) = position.x();
*(start + 1) = position.y();
*(start + 2) = position.z();
*(start + 3) = normal.x();
*(start + 4) = normal.y();
*(start + 5) = normal.z();
}
}
void GLModel::Geometry::set_ushort_index(size_t id, unsigned short index)
{
assert(id < indices_count());
if (id < indices_count())
::memcpy(indices.data() + id * sizeof(unsigned short), &index, sizeof(unsigned short));
}
void GLModel::Geometry::set_uint_index(size_t id, unsigned int index)
{
assert(id < indices_count());
if (id < indices_count())
::memcpy(indices.data() + id * sizeof(unsigned int), &index, sizeof(unsigned int));
}
unsigned int GLModel::Geometry::extract_uint_index(size_t id) const
{
if (format.index_type != EIndexType::UINT) {
@ -218,7 +282,7 @@ unsigned int GLModel::Geometry::extract_uint_index(size_t id) const
return -1;
}
unsigned int ret = -1;
unsigned int ret = (unsigned int)-1;
::memcpy(&ret, indices.data() + id * index_stride_bytes(format), sizeof(unsigned int));
return ret;
}
@ -235,11 +299,21 @@ unsigned short GLModel::Geometry::extract_ushort_index(size_t id) const
return -1;
}
unsigned short ret = -1;
unsigned short ret = (unsigned short)-1;
::memcpy(&ret, indices.data() + id * index_stride_bytes(format), sizeof(unsigned short));
return ret;
}
void GLModel::Geometry::remove_vertex(size_t id)
{
assert(id < vertices_count());
if (id < vertices_count()) {
size_t stride = vertex_stride_floats(format);
std::vector<float>::iterator it = vertices.begin() + id * stride;
vertices.erase(it, it + stride);
}
}
size_t GLModel::Geometry::vertex_stride_floats(const Format& format)
{
switch (format.vertex_layout)
@ -417,20 +491,23 @@ void GLModel::init_from(const indexed_triangle_set& its)
}
Geometry& data = m_render_data.geometry;
data.format = { Geometry::EPrimitiveType::Triangles, Geometry::EVertexLayout::P3N3, Geometry::EIndexType::UINT };
data.format = { Geometry::EPrimitiveType::Triangles, Geometry::EVertexLayout::P3N3, GLModel::Geometry::index_type(3 * its.indices.size()) };
data.reserve_vertices(3 * its.indices.size());
data.reserve_indices(3 * its.indices.size());
// vertices + indices
unsigned int vertices_counter = 0;
for (uint32_t i = 0; i < its.indices.size(); ++i) {
stl_triangle_vertex_indices face = its.indices[i];
stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] };
stl_vertex n = face_normal_normalized(vertex);
const stl_triangle_vertex_indices face = its.indices[i];
const stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] };
const stl_vertex n = face_normal_normalized(vertex);
for (size_t j = 0; j < 3; ++j) {
data.add_vertex(vertex[j], n);
}
vertices_counter += 3;
if (data.format.index_type == GLModel::Geometry::EIndexType::USHORT)
data.add_ushort_triangle((unsigned short)vertices_counter - 3, (unsigned short)vertices_counter - 2, (unsigned short)vertices_counter - 1);
else
data.add_uint_triangle(vertices_counter - 3, vertices_counter - 2, vertices_counter - 1);
}
@ -553,6 +630,17 @@ static GLenum get_index_type(const GLModel::Geometry::Format& format)
void GLModel::render()
{
render(std::make_pair<size_t, size_t>(0, indices_count()));
}
void GLModel::render(const std::pair<size_t, size_t>& range)
{
if (m_render_disabled)
return;
if (range.second == range.first)
return;
GLShaderProgram* shader = wxGetApp().get_current_shader();
if (shader == nullptr)
@ -592,7 +680,7 @@ void GLModel::render()
shader->set_uniform("uniform_color", data.color);
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_render_data.ibo_id));
glsafe(::glDrawElements(mode, indices_count(), index_type, nullptr));
glsafe(::glDrawElements(mode, range.second - range.first + 1, index_type, (const void*)(range.first * Geometry::index_stride_bytes(data.format))));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
if (tex_coord)
@ -721,6 +809,61 @@ static void append_triangle(GLModel::Geometry& data, unsigned short v1, unsigned
data.add_ushort_index(v2);
data.add_ushort_index(v3);
}
template<typename Fn>
inline bool all_vertices_inside(const GLModel::Geometry& geometry, Fn fn)
{
const size_t position_stride_floats = geometry.position_stride_floats(geometry.format);
const size_t position_offset_floats = geometry.position_offset_floats(geometry.format);
assert(position_stride_floats == 3);
if (geometry.vertices.empty() || position_stride_floats != 3)
return false;
for (auto it = geometry.vertices.begin(); it != geometry.vertices.end(); ) {
it += position_offset_floats;
if (!fn({ *it, *(it + 1), *(it + 2) }))
return false;
it += (geometry.vertex_stride_floats(geometry.format) - position_offset_floats - position_stride_floats);
}
return true;
}
bool contains(const BuildVolume& volume, const GLModel& model, bool ignore_bottom)
{
static constexpr const double epsilon = BuildVolume::BedEpsilon;
switch (volume.type()) {
case BuildVolume_Type::Rectangle:
{
BoundingBox3Base<Vec3d> build_volume = volume.bounding_volume().inflated(epsilon);
if (volume.printable_height() == 0.0)
build_volume.max.z() = std::numeric_limits<double>::max();
if (ignore_bottom)
build_volume.min.z() = -std::numeric_limits<double>::max();
const BoundingBoxf3& model_box = model.get_bounding_box();
return build_volume.contains(model_box.min) && build_volume.contains(model_box.max);
}
case BuildVolume_Type::Circle:
{
const Geometry::Circled& circle = volume.circle();
const Vec2f c = unscaled<float>(circle.center);
const float r = unscaled<double>(circle.radius) + float(epsilon);
const float r2 = sqr(r);
return volume.printable_height() == 0.0 ?
all_vertices_inside(model.get_geometry(), [c, r2](const Vec3f& p) { return (to_2d(p) - c).squaredNorm() <= r2; }) :
all_vertices_inside(model.get_geometry(), [c, r2, z = volume.printable_height() + epsilon](const Vec3f& p) { return (to_2d(p) - c).squaredNorm() <= r2 && p.z() <= z; });
}
case BuildVolume_Type::Convex:
//FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently.
case BuildVolume_Type::Custom:
return volume.printable_height() == 0.0 ?
all_vertices_inside(model.get_geometry(), [&volume](const Vec3f& p) { return Geometry::inside_convex_polygon(volume.top_bottom_convex_hull_decomposition_bed(), to_2d(p).cast<double>()); }) :
all_vertices_inside(model.get_geometry(), [&volume, z = volume.printable_height() + epsilon](const Vec3f& p) { return Geometry::inside_convex_polygon(volume.top_bottom_convex_hull_decomposition_bed(), to_2d(p).cast<double>()) && p.z() <= z; });
default:
return true;
}
}
GLModel::Geometry stilized_arrow(unsigned short resolution, float tip_radius, float tip_height, float stem_radius, float stem_height)
{
resolution = std::max<unsigned short>(4, resolution);

View file

@ -14,6 +14,7 @@ namespace Slic3r {
class TriangleMesh;
class Polygon;
using Polygons = std::vector<Polygon>;
class BuildVolume;
namespace GUI {
@ -69,6 +70,11 @@ namespace GUI {
void add_vertex(const Vec3f& position, const Vec2f& tex_coord); // EVertexLayout::P3T2
void add_vertex(const Vec3f& position, const Vec3f& normal); // EVertexLayout::P3N3
void set_vertex(size_t id, const Vec3f& position, const Vec3f& normal); // EVertexLayout::P3N3
void set_ushort_index(size_t id, unsigned short index);
void set_uint_index(size_t id, unsigned int index);
void add_ushort_index(unsigned short id);
void add_uint_index(unsigned int id);
@ -86,7 +92,9 @@ namespace GUI {
unsigned int extract_uint_index(size_t id) const;
unsigned short extract_ushort_index(size_t id) const;
bool is_empty() const { return vertices.empty() || indices.empty(); }
void remove_vertex(size_t id);
bool is_empty() const { return vertices_count() == 0 || indices_count() == 0; }
size_t vertices_count() const { return vertices.size() / vertex_stride_floats(format); }
size_t indices_count() const { return indices.size() / index_stride_bytes(format); }
@ -133,6 +141,14 @@ namespace GUI {
private:
RenderData m_render_data;
// By default the vertex and index buffers data are sent to gpu at the first call to render() method.
// If you need to initialize a model from outside the main thread, so that a call to render() may happen
// before the initialization is complete, use the methods:
// disable_render()
// ... do your initialization ...
// enable_render()
// to keep the data on cpu side until needed.
bool m_render_disabled{ false };
BoundingBoxf3 m_bounding_box;
std::string m_filename;
@ -150,6 +166,7 @@ namespace GUI {
size_t indices_size_bytes() const { return indices_count() * Geometry::index_stride_bytes(m_render_data.geometry.format); }
const Geometry& get_geometry() const { return m_render_data.geometry; }
void init_from(Geometry&& data);
void init_from(const TriangleMesh& mesh);
void init_from(const indexed_triangle_set& its);
@ -161,16 +178,40 @@ namespace GUI {
void reset();
void render();
void render(const std::pair<size_t, size_t>& range);
void render_instanced(unsigned int instances_vbo, unsigned int instances_count);
bool is_initialized() const { return vertices_count() > 0 && indices_count() > 0; }
bool is_empty() const { return m_render_data.geometry.is_empty(); }
const BoundingBoxf3& get_bounding_box() const { return m_bounding_box; }
const std::string& get_filename() const { return m_filename; }
bool is_render_disabled() const { return m_render_disabled; }
void enable_render() { m_render_disabled = false; }
void disable_render() { m_render_disabled = true; }
size_t cpu_memory_used() const {
size_t ret = 0;
if (!m_render_data.geometry.vertices.empty())
ret += vertices_size_bytes();
if (!m_render_data.geometry.indices.empty())
ret += indices_size_bytes();
return ret;
}
size_t gpu_memory_used() const {
size_t ret = 0;
if (m_render_data.geometry.vertices.empty())
ret += vertices_size_bytes();
if (m_render_data.geometry.indices.empty())
ret += indices_size_bytes();
return ret;
}
private:
bool send_to_gpu();
};
bool contains(const BuildVolume& volume, const GLModel& model, bool ignore_bottom = true);
// create an arrow with cylindrical stem and conical tip, with the given dimensions and resolution
// the origin of the arrow is in the center of the stem cap

View file

@ -32,9 +32,9 @@ std::string GLGizmoFaceDetector::on_get_name() const
void GLGizmoFaceDetector::on_render()
{
if (m_iva.has_VBOs()) {
::glColor4f(0.f, 0.f, 1.f, 0.4f);
m_iva.render();
if (model.is_initialized()) {
model.set_color({0.f, 0.f, 1.f, 0.4f});
model.render();
}
}
@ -72,7 +72,7 @@ void GLGizmoFaceDetector::on_render_input_window(float x, float y, float bottom_
void GLGizmoFaceDetector::on_set_state()
{
if (get_state() == On) {
m_iva.release_geometry();
model.reset();
display_exterior_face();
}
}
@ -94,7 +94,10 @@ void GLGizmoFaceDetector::perform_recognition(const Selection& selection)
void GLGizmoFaceDetector::display_exterior_face()
{
int cnt = 0;
m_iva.release_geometry();
model.reset();
GLModel::Geometry init_data;
init_data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::UINT };
const ModelObjectPtrs& objects = wxGetApp().model().objects;
for (ModelObject* mo : objects) {
@ -110,19 +113,15 @@ void GLGizmoFaceDetector::display_exterior_face()
continue;
for (int i = 0; i < 3; ++i) {
m_iva.push_geometry(double(mv_its.vertices[facet_vert_idxs[i]](0)),
double(mv_its.vertices[facet_vert_idxs[i]](1)),
double(mv_its.vertices[facet_vert_idxs[i]](2)),
0., 0., 1.);
init_data.add_vertex((Vec3f) mv_its.vertices[facet_vert_idxs[i]].cast<float>(), Vec3f{0.0f, 0.0f, 1.0f});
}
m_iva.push_triangle(cnt, cnt + 1, cnt + 2);
init_data.add_uint_triangle(cnt, cnt + 1, cnt + 2);
cnt += 3;
}
}
}
m_iva.finalize_geometry(true);
model.init_from(std::move(init_data));
}
CommonGizmosDataID GLGizmoFaceDetector::on_get_requirements() const

View file

@ -28,7 +28,7 @@ private:
void perform_recognition(const Selection& selection);
void display_exterior_face();
GLIndexedVertexArray m_iva;
GUI::GLModel model;
double m_sample_interval = {0.5};
};

View file

@ -894,13 +894,16 @@ void GLGizmoFdmSupports::run_thread()
print->set_status(100, L("Support Generated"));
goto _finished;
}
GLModel::Geometry init_data;
init_data.format = { GLModel::Geometry::EPrimitiveType::Triangles, GLModel::Geometry::EVertexLayout::P3N3, GLModel::Geometry::EIndexType::UINT };
for (const SupportLayer *support_layer : m_print_instance.print_object->support_layers())
{
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
{
_3DScene::extrusionentity_to_verts(extrusion_entity, float(support_layer->print_z), m_print_instance.shift, *m_support_volume);
_3DScene::extrusionentity_to_verts(extrusion_entity, float(support_layer->print_z), m_print_instance.shift, init_data);
}
}
m_support_volume->model.init_from(std::move(init_data));
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ", finished extrusionentity_to_verts, update status to 100%";
print->set_status(100, L("Support Generated"));
@ -926,7 +929,6 @@ _finished:
void GLGizmoFdmSupports::generate_support_volume()
{
BOOST_LOG_TRIVIAL(info) << __FUNCTION__ << ",before finalize_geometry";
m_support_volume->indexed_vertex_array.finalize_geometry(m_parent.is_initialized());
std::unique_lock<std::mutex> lck(m_mutex);
m_volume_ready = true;

View file

@ -17,7 +17,7 @@
#include "slic3r/GUI/Gizmos/GLGizmoFdmSupports.hpp"
// BBS
#include "slic3r/GUI/Gizmos/GLGizmoAdvancedCut.hpp"
#include "slic3r/GUI/Gizmos/GLGizmoFaceDetector.hpp"
//#include "slic3r/GUI/Gizmos/GLGizmoFaceDetector.hpp"
#include "slic3r/GUI/Gizmos/GLGizmoHollow.hpp"
#include "slic3r/GUI/Gizmos/GLGizmoSeam.hpp"
#include "slic3r/GUI/Gizmos/GLGizmoMmuSegmentation.hpp"

View file

@ -2388,8 +2388,8 @@ void ImGuiWrapper::render_draw_data(ImDrawData *draw_data)
{
// Avoid rendering when minimized, scale coordinates for retina displays (screen coordinates != framebuffer coordinates)
ImGuiIO& io = ImGui::GetIO();
int fb_width = (int)(draw_data->DisplaySize.x * io.DisplayFramebufferScale.x);
int fb_height = (int)(draw_data->DisplaySize.y * io.DisplayFramebufferScale.y);
const int fb_width = (int)(draw_data->DisplaySize.x * io.DisplayFramebufferScale.x);
const int fb_height = (int)(draw_data->DisplaySize.y * io.DisplayFramebufferScale.y);
if (fb_width == 0 || fb_height == 0)
return;
draw_data->ScaleClipRects(io.DisplayFramebufferScale);
@ -2432,8 +2432,7 @@ void ImGuiWrapper::render_draw_data(ImDrawData *draw_data)
// Render command lists
ImVec2 pos = draw_data->DisplayPos;
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
for (int n = 0; n < draw_data->CmdListsCount; ++n) {
const ImDrawList* cmd_list = draw_data->CmdLists[n];
const ImDrawVert* vtx_buffer = cmd_list->VtxBuffer.Data;
const ImDrawIdx* idx_buffer = cmd_list->IdxBuffer.Data;
@ -2441,19 +2440,14 @@ void ImGuiWrapper::render_draw_data(ImDrawData *draw_data)
glsafe(::glTexCoordPointer(2, GL_FLOAT, sizeof(ImDrawVert), (const GLvoid*)((const char*)vtx_buffer + IM_OFFSETOF(ImDrawVert, uv))));
glsafe(::glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(ImDrawVert), (const GLvoid*)((const char*)vtx_buffer + IM_OFFSETOF(ImDrawVert, col))));
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; ++cmd_i) {
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
if (pcmd->UserCallback)
{
// User callback (registered via ImDrawList::AddCallback)
pcmd->UserCallback(cmd_list, pcmd);
}
else
{
else {
ImVec4 clip_rect = ImVec4(pcmd->ClipRect.x - pos.x, pcmd->ClipRect.y - pos.y, pcmd->ClipRect.z - pos.x, pcmd->ClipRect.w - pos.y);
if (clip_rect.x < fb_width && clip_rect.y < fb_height && clip_rect.z >= 0.0f && clip_rect.w >= 0.0f)
{
if (clip_rect.x < fb_width && clip_rect.y < fb_height && clip_rect.z >= 0.0f && clip_rect.w >= 0.0f) {
// Apply scissor/clipping rectangle
glsafe(::glScissor((int)clip_rect.x, (int)(fb_height - clip_rect.w), (int)(clip_rect.z - clip_rect.x), (int)(clip_rect.w - clip_rect.y)));

View file

@ -926,7 +926,7 @@ void CalibUtils::process_and_store_3mf(Model *model, const DynamicPrintConfig &f
const ModelVolume &model_volume = *model_object.volumes[volume_idx];
for (int instance_idx = 0; instance_idx < (int)model_object.instances.size(); ++ instance_idx) {
const ModelInstance &model_instance = *model_object.instances[instance_idx];
glvolume_collection.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, true, false, true);
glvolume_collection.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, false, true);
glvolume_collection.volumes.back()->set_render_color(new_color);
glvolume_collection.volumes.back()->set_color(new_color);
//glvolume_collection.volumes.back()->printable = model_instance.printable;