mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-08-07 14:04:11 -06:00
New BuildVolume class was created, which detects build volume type (rectangular,
circular, convex, concave) and performs efficient collision detection agains these build volumes. As of now, collision detection is performed against a convex hull of a concave build volume for efficency. GCodeProcessor::Result renamed out of GCodeProcessor to GCodeProcessorResult, so it could be forward declared. Plater newly exports BuildVolume, not Bed3D. Bed3D is a rendering class, while BuildVolume is a purely geometric class. Reduced usage of global wxGetApp, the Bed3D is passed as a parameter to View3D/Preview/GLCanvas. Convex hull code was extracted from Geometry.cpp/hpp to Geometry/ConvexHulll.cpp,hpp. New test inside_convex_polygon(). New efficent point inside polygon test: Decompose convex hull to bottom / top parts and use the decomposition to detect point inside a convex polygon in O(log n). decompose_convex_polygon_top_bottom(), inside_convex_polygon(). New Circle constructing functions: circle_ransac() and circle_taubin_newton(). New polygon_is_convex() test with unit tests.
This commit is contained in:
parent
b431fd1f7e
commit
cc44089440
51 changed files with 1544 additions and 1594 deletions
398
src/libslic3r/Geometry/ConvexHull.cpp
Normal file
398
src/libslic3r/Geometry/ConvexHull.cpp
Normal file
|
@ -0,0 +1,398 @@
|
|||
#include "libslic3r.h"
|
||||
#include "ConvexHull.hpp"
|
||||
|
||||
#include <boost/multiprecision/integer.hpp>
|
||||
|
||||
namespace Slic3r { namespace Geometry {
|
||||
|
||||
// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
|
||||
Polygon convex_hull(Points pts)
|
||||
{
|
||||
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
|
||||
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() == b.x() && a.y() == b.y(); }), pts.end());
|
||||
|
||||
Polygon hull;
|
||||
int n = (int)pts.size();
|
||||
if (n >= 3) {
|
||||
int k = 0;
|
||||
hull.points.resize(2 * n);
|
||||
// Build lower hull
|
||||
for (int i = 0; i < n; ++ i) {
|
||||
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
// Build upper hull
|
||||
for (int i = n-2, t = k+1; i >= 0; i--) {
|
||||
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
||||
-- k;
|
||||
hull[k ++] = pts[i];
|
||||
}
|
||||
hull.points.resize(k);
|
||||
assert(hull.points.front() == hull.points.back());
|
||||
hull.points.pop_back();
|
||||
}
|
||||
return hull;
|
||||
}
|
||||
|
||||
Pointf3s convex_hull(Pointf3s points)
|
||||
{
|
||||
assert(points.size() >= 3);
|
||||
// sort input points
|
||||
std::sort(points.begin(), points.end(), [](const Vec3d &a, const Vec3d &b){ return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
|
||||
|
||||
int n = points.size(), k = 0;
|
||||
Pointf3s hull;
|
||||
|
||||
if (n >= 3)
|
||||
{
|
||||
hull.resize(2 * n);
|
||||
|
||||
// Build lower hull
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
Point p = Point::new_scale(points[i](0), points[i](1));
|
||||
while (k >= 2)
|
||||
{
|
||||
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
|
||||
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
|
||||
|
||||
if (p.ccw(k2, k1) <= 0)
|
||||
--k;
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
hull[k++] = points[i];
|
||||
}
|
||||
|
||||
// Build upper hull
|
||||
for (int i = n - 2, t = k + 1; i >= 0; --i)
|
||||
{
|
||||
Point p = Point::new_scale(points[i](0), points[i](1));
|
||||
while (k >= t)
|
||||
{
|
||||
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
|
||||
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
|
||||
|
||||
if (p.ccw(k2, k1) <= 0)
|
||||
--k;
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
hull[k++] = points[i];
|
||||
}
|
||||
|
||||
hull.resize(k);
|
||||
|
||||
assert(hull.front() == hull.back());
|
||||
hull.pop_back();
|
||||
}
|
||||
|
||||
return hull;
|
||||
}
|
||||
|
||||
Polygon convex_hull(const Polygons &polygons)
|
||||
{
|
||||
Points pp;
|
||||
for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
|
||||
pp.insert(pp.end(), p->points.begin(), p->points.end());
|
||||
}
|
||||
return convex_hull(std::move(pp));
|
||||
}
|
||||
|
||||
|
||||
namespace rotcalip {
|
||||
|
||||
using int256_t = boost::multiprecision::int256_t;
|
||||
using int128_t = boost::multiprecision::int128_t;
|
||||
|
||||
template<class Scalar = int64_t>
|
||||
inline Scalar magnsq(const Point &p)
|
||||
{
|
||||
return Scalar(p.x()) * p.x() + Scalar(p.y()) * p.y();
|
||||
}
|
||||
|
||||
template<class Scalar = int64_t>
|
||||
inline Scalar dot(const Point &a, const Point &b)
|
||||
{
|
||||
return Scalar(a.x()) * b.x() + Scalar(a.y()) * b.y();
|
||||
}
|
||||
|
||||
template<class Scalar = int64_t>
|
||||
inline Scalar dotperp(const Point &a, const Point &b)
|
||||
{
|
||||
return Scalar(a.x()) * b.y() - Scalar(a.y()) * b.x();
|
||||
}
|
||||
|
||||
using boost::multiprecision::abs;
|
||||
|
||||
// Compares the angle enclosed by vectors dir and dirA (alpha) with the angle
|
||||
// enclosed by -dir and dirB (beta). Returns -1 if alpha is less than beta, 0
|
||||
// if they are equal and 1 if alpha is greater than beta. Note that dir is
|
||||
// reversed for beta, because it represents the opposite side of a caliper.
|
||||
int cmp_angles(const Point &dir, const Point &dirA, const Point &dirB) {
|
||||
int128_t dotA = dot(dir, dirA);
|
||||
int128_t dotB = dot(-dir, dirB);
|
||||
int256_t dcosa = int256_t(magnsq(dirB)) * int256_t(abs(dotA)) * dotA;
|
||||
int256_t dcosb = int256_t(magnsq(dirA)) * int256_t(abs(dotB)) * dotB;
|
||||
int256_t diff = dcosa - dcosb;
|
||||
|
||||
return diff > 0? -1 : (diff < 0 ? 1 : 0);
|
||||
}
|
||||
|
||||
// A helper class to navigate on a polygon. Given a vertex index, one can
|
||||
// get the edge belonging to that vertex, the coordinates of the vertex, the
|
||||
// next and previous edges. Stuff that is needed in the rotating calipers algo.
|
||||
class Idx
|
||||
{
|
||||
size_t m_idx;
|
||||
const Polygon *m_poly;
|
||||
public:
|
||||
explicit Idx(const Polygon &p): m_idx{0}, m_poly{&p} {}
|
||||
explicit Idx(size_t idx, const Polygon &p): m_idx{idx}, m_poly{&p} {}
|
||||
|
||||
size_t idx() const { return m_idx; }
|
||||
void set_idx(size_t i) { m_idx = i; }
|
||||
size_t next() const { return (m_idx + 1) % m_poly->size(); }
|
||||
size_t inc() { return m_idx = (m_idx + 1) % m_poly->size(); }
|
||||
Point prev_dir() const {
|
||||
return pt() - (*m_poly)[(m_idx + m_poly->size() - 1) % m_poly->size()];
|
||||
}
|
||||
|
||||
const Point &pt() const { return (*m_poly)[m_idx]; }
|
||||
const Point dir() const { return (*m_poly)[next()] - pt(); }
|
||||
const Point next_dir() const
|
||||
{
|
||||
return (*m_poly)[(m_idx + 2) % m_poly->size()] - (*m_poly)[next()];
|
||||
}
|
||||
const Polygon &poly() const { return *m_poly; }
|
||||
};
|
||||
|
||||
enum class AntipodalVisitMode { Full, EdgesOnly };
|
||||
|
||||
// Visit all antipodal pairs starting from the initial ia, ib pair which
|
||||
// has to be a valid antipodal pair (not checked). fn is called for every
|
||||
// antipodal pair encountered including the initial one.
|
||||
// The callback Fn has a signiture of bool(size_t i, size_t j, const Point &dir)
|
||||
// where i,j are the vertex indices of the antipodal pair and dir is the
|
||||
// direction of the calipers touching the i vertex.
|
||||
template<AntipodalVisitMode mode = AntipodalVisitMode::Full, class Fn>
|
||||
void visit_antipodals (Idx& ia, Idx &ib, Fn &&fn)
|
||||
{
|
||||
// Set current caliper direction to be the lower edge angle from X axis
|
||||
int cmp = cmp_angles(ia.prev_dir(), ia.dir(), ib.dir());
|
||||
Idx *current = cmp <= 0 ? &ia : &ib, *other = cmp <= 0 ? &ib : &ia;
|
||||
Idx *initial = current;
|
||||
bool visitor_continue = true;
|
||||
|
||||
size_t start = initial->idx();
|
||||
bool finished = false;
|
||||
|
||||
while (visitor_continue && !finished) {
|
||||
Point current_dir_a = current == &ia ? current->dir() : -current->dir();
|
||||
visitor_continue = fn(ia.idx(), ib.idx(), current_dir_a);
|
||||
|
||||
// Parallel edges encountered. An additional pair of antipodals
|
||||
// can be yielded.
|
||||
if constexpr (mode == AntipodalVisitMode::Full)
|
||||
if (cmp == 0 && visitor_continue) {
|
||||
visitor_continue = fn(current == &ia ? ia.idx() : ia.next(),
|
||||
current == &ib ? ib.idx() : ib.next(),
|
||||
current_dir_a);
|
||||
}
|
||||
|
||||
cmp = cmp_angles(current->dir(), current->next_dir(), other->dir());
|
||||
|
||||
current->inc();
|
||||
if (cmp > 0) {
|
||||
std::swap(current, other);
|
||||
}
|
||||
|
||||
if (initial->idx() == start) finished = true;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace rotcalip
|
||||
|
||||
bool convex_polygons_intersect(const Polygon &A, const Polygon &B)
|
||||
{
|
||||
using namespace rotcalip;
|
||||
|
||||
// Establish starting antipodals as extremes in XY plane. Use the
|
||||
// easily obtainable bounding boxes to check if A and B is disjoint
|
||||
// and return false if the are.
|
||||
struct BB
|
||||
{
|
||||
size_t xmin = 0, xmax = 0, ymin = 0, ymax = 0;
|
||||
const Polygon &P;
|
||||
static bool cmpy(const Point &l, const Point &u)
|
||||
{
|
||||
return l.y() < u.y() || (l.y() == u.y() && l.x() < u.x());
|
||||
}
|
||||
|
||||
BB(const Polygon &poly): P{poly}
|
||||
{
|
||||
for (size_t i = 0; i < P.size(); ++i) {
|
||||
if (P[i] < P[xmin]) xmin = i;
|
||||
if (P[xmax] < P[i]) xmax = i;
|
||||
if (cmpy(P[i], P[ymin])) ymin = i;
|
||||
if (cmpy(P[ymax], P[i])) ymax = i;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
BB bA{A}, bB{B};
|
||||
BoundingBox bbA{{A[bA.xmin].x(), A[bA.ymin].y()}, {A[bA.xmax].x(), A[bA.ymax].y()}};
|
||||
BoundingBox bbB{{B[bB.xmin].x(), B[bB.ymin].y()}, {B[bB.xmax].x(), B[bB.ymax].y()}};
|
||||
|
||||
// if (!bbA.overlap(bbB))
|
||||
// return false;
|
||||
|
||||
// Establish starting antipodals as extreme vertex pairs in X or Y direction
|
||||
// which reside on different polygons. If no such pair is found, the two
|
||||
// polygons are certainly not disjoint.
|
||||
Idx imin{bA.xmin, A}, imax{bB.xmax, B};
|
||||
if (B[bB.xmin] < imin.pt()) imin = Idx{bB.xmin, B};
|
||||
if (imax.pt() < A[bA.xmax]) imax = Idx{bA.xmax, A};
|
||||
if (&imin.poly() == &imax.poly()) {
|
||||
imin = Idx{bA.ymin, A};
|
||||
imax = Idx{bB.ymax, B};
|
||||
if (B[bB.ymin] < imin.pt()) imin = Idx{bB.ymin, B};
|
||||
if (imax.pt() < A[bA.ymax]) imax = Idx{bA.ymax, A};
|
||||
}
|
||||
|
||||
if (&imin.poly() == &imax.poly())
|
||||
return true;
|
||||
|
||||
bool found_divisor = false;
|
||||
visit_antipodals<AntipodalVisitMode::EdgesOnly>(
|
||||
imin, imax,
|
||||
[&imin, &imax, &found_divisor](size_t ia, size_t ib, const Point &dir) {
|
||||
// std::cout << "A" << ia << " B" << ib << " dir " <<
|
||||
// dir.x() << " " << dir.y() << std::endl;
|
||||
const Polygon &A = imin.poly(), &B = imax.poly();
|
||||
|
||||
Point ref_a = A[(ia + 2) % A.size()], ref_b = B[(ib + 2) % B.size()];
|
||||
|
||||
bool is_left_a = dotperp( dir, ref_a - A[ia]) > 0;
|
||||
bool is_left_b = dotperp(-dir, ref_b - B[ib]) > 0;
|
||||
|
||||
// If both reference points are on the left (or right) of their
|
||||
// respective support lines and the opposite support line is to
|
||||
// the right (or left), the divisor line is found. We only test
|
||||
// the reference point, as by definition, if that is on one side,
|
||||
// all the other points must be on the same side of a support
|
||||
// line. If the support lines are collinear, the polygons must be
|
||||
// on the same side of their respective support lines.
|
||||
|
||||
auto d = dotperp(dir, B[ib] - A[ia]);
|
||||
if (d == 0) {
|
||||
// The caliper lines are collinear, not just parallel
|
||||
found_divisor = (is_left_a && is_left_b) || (!is_left_a && !is_left_b);
|
||||
} else if (d > 0) { // B is to the left of (A, A+1)
|
||||
found_divisor = !is_left_a && !is_left_b;
|
||||
} else { // B is to the right of (A, A+1)
|
||||
found_divisor = is_left_a && is_left_b;
|
||||
}
|
||||
|
||||
return !found_divisor;
|
||||
});
|
||||
|
||||
// Intersects if the divisor was not found
|
||||
return !found_divisor;
|
||||
}
|
||||
|
||||
// Decompose source convex hull points into a top / bottom chains with monotonically increasing x,
|
||||
// creating an implicit trapezoidal decomposition of the source convex polygon.
|
||||
// The source convex polygon has to be CCW oriented. O(n) time complexity.
|
||||
std::pair<std::vector<Vec2d>, std::vector<Vec2d>> decompose_convex_polygon_top_bottom(const std::vector<Vec2d> &src)
|
||||
{
|
||||
std::pair<std::vector<Vec2d>, std::vector<Vec2d>> out;
|
||||
std::vector<Vec2d> &bottom = out.first;
|
||||
std::vector<Vec2d> &top = out.second;
|
||||
|
||||
// Find the minimum point.
|
||||
auto left_bottom = std::min_element(src.begin(), src.end(), [](const auto &l, const auto &r) { return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y()); });
|
||||
auto right_top = std::max_element(src.begin(), src.end(), [](const auto &l, const auto &r) { return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y()); });
|
||||
if (left_bottom != src.end() && left_bottom != right_top) {
|
||||
// Produce the bottom and bottom chains.
|
||||
if (left_bottom < right_top) {
|
||||
bottom.assign(left_bottom, right_top + 1);
|
||||
size_t cnt = (src.end() - right_top) + (left_bottom + 1 - src.begin());
|
||||
top.reserve(cnt);
|
||||
top.assign(right_top, src.end());
|
||||
top.insert(top.end(), src.begin(), left_bottom + 1);
|
||||
} else {
|
||||
size_t cnt = (src.end() - left_bottom) + (right_top + 1 - src.begin());
|
||||
bottom.reserve(cnt);
|
||||
bottom.assign(left_bottom, src.end());
|
||||
bottom.insert(bottom.end(), src.begin(), right_top + 1);
|
||||
top.assign(right_top, left_bottom + 1);
|
||||
}
|
||||
// Remove strictly vertical segments at the end.
|
||||
if (bottom.size() > 1) {
|
||||
auto it = bottom.end();
|
||||
for (-- it; it != bottom.begin() && (it - 1)->x() == bottom.back().x(); -- it) ;
|
||||
bottom.erase(it + 1, bottom.end());
|
||||
}
|
||||
if (top.size() > 1) {
|
||||
auto it = top.end();
|
||||
for (-- it; it != top.begin() && (it - 1)->x() == top.back().x(); -- it) ;
|
||||
top.erase(it + 1, top.end());
|
||||
}
|
||||
std::reverse(top.begin(), top.end());
|
||||
}
|
||||
|
||||
if (top.size() < 2 || bottom.size() < 2) {
|
||||
// invalid
|
||||
top.clear();
|
||||
bottom.clear();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// Convex polygon check using a top / bottom chain decomposition with O(log n) time complexity.
|
||||
bool inside_convex_polygon(const std::pair<std::vector<Vec2d>, std::vector<Vec2d>> &top_bottom_decomposition, const Vec2d &pt)
|
||||
{
|
||||
auto it_bottom = std::lower_bound(top_bottom_decomposition.first.begin(), top_bottom_decomposition.first.end(), pt, [](const auto &l, const auto &r){ return l.x() < r.x(); });
|
||||
auto it_top = std::lower_bound(top_bottom_decomposition.second.begin(), top_bottom_decomposition.second.end(), pt, [](const auto &l, const auto &r){ return l.x() < r.x(); });
|
||||
if (it_bottom == top_bottom_decomposition.first.end()) {
|
||||
// Above max x.
|
||||
assert(it_top == top_bottom_decomposition.second.end());
|
||||
return false;
|
||||
}
|
||||
if (it_bottom == top_bottom_decomposition.first.begin()) {
|
||||
// Below or at min x.
|
||||
if (pt.x() < it_bottom->x()) {
|
||||
// Below min x.
|
||||
assert(pt.x() < it_top->x());
|
||||
return false;
|
||||
}
|
||||
// At min x.
|
||||
assert(pt.x() == it_bottom->x());
|
||||
assert(pt.x() == it_top->x());
|
||||
assert(it_bottom->y() <= pt.y() <= it_top->y());
|
||||
return pt.y() >= it_bottom->y() && pt.y() <= it_top->y();
|
||||
}
|
||||
|
||||
// Trapezoid or a triangle.
|
||||
assert(it_bottom != top_bottom_decomposition.first .begin() && it_bottom != top_bottom_decomposition.first .end());
|
||||
assert(it_top != top_bottom_decomposition.second.begin() && it_top != top_bottom_decomposition.second.end());
|
||||
assert(pt.x() <= it_bottom->x());
|
||||
assert(pt.x() <= it_top->x());
|
||||
auto it_top_prev = it_top - 1;
|
||||
auto it_bottom_prev = it_bottom - 1;
|
||||
assert(pt.x() >= it_top_prev->x());
|
||||
assert(pt.x() >= it_bottom_prev->x());
|
||||
double det = cross2(*it_bottom - *it_bottom_prev, pt - *it_bottom_prev);
|
||||
if (det < 0)
|
||||
return false;
|
||||
det = cross2(*it_top - *it_top_prev, pt - *it_top_prev);
|
||||
return det <= 0;
|
||||
}
|
||||
|
||||
} // namespace Geometry
|
||||
} // namespace Slic3r
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue