Initial integration of the Prusa MultiMatrial Wipe Tower.

This commit is contained in:
bubnikv 2017-05-16 13:45:28 +02:00
parent 74346efccb
commit c22b6edeeb
11 changed files with 922 additions and 439 deletions

View file

@ -0,0 +1,194 @@
#include "ToolOrdering.hpp"
namespace Slic3r {
namespace ToolOrdering {
// Collect extruders reuqired to print layers.
static void collect_extruders(const PrintObject &object, std::vector<LayerTools> &layers)
{
// Collect the support extruders.
for (auto support_layer : object.support_layers) {
auto it_layer = std::find(layers.begin(), layers.end(), LayerTools(support_layer->print_z));
assert(it_layer != layers.end());
ExtrusionRole role = support_layer->support_fills.role();
bool has_support = role == erMixed || role == erSupportMaterial;
bool has_interface = role == erMixed || role == erSupportMaterialInterface;
unsigned int extruder_support = object.config.support_material_extruder.value;
unsigned int extruder_interface = object.config.support_material_interface_extruder.value;
if (has_support && has_interface) {
// If both base and interface supports are to be extruded and one of them will be extruded with a "don't care" extruder,
// print both with the same extruder to minimize extruder switches.
if (extruder_support == 0)
extruder_support = extruder_interface;
else if (extruder_interface == 0)
extruder_interface = extruder_support;
}
if (has_support)
it_layer->extruders.push_back(extruder_support);
if (has_interface)
it_layer->extruders.push_back(extruder_interface);
}
// Collect the object extruders.
for (auto layer : object.layers) {
auto it_layer = std::find(layers.begin(), layers.end(), LayerTools(layer->print_z));
assert(it_layer != layers.end());
// What extruders are required to print this object layer?
for (size_t region_id = 0; region_id < object.print()->regions.size(); ++ region_id) {
const LayerRegion *layerm = layer->regions[region_id];
if (layerm == nullptr)
continue;
const PrintRegion &region = *object.print()->regions[region_id];
if (! layerm->perimeters.entities.empty())
it_layer->extruders.push_back(region.config.perimeter_extruder.value);
bool has_infill = false;
bool has_solid_infill = false;
for (const ExtrusionEntity *ee : layerm->fills.entities) {
// fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
ExtrusionRole role = fill->entities.empty() ? erNone : fill->entities.front()->role();
if (is_solid_infill(role))
has_solid_infill = true;
else if (role != erNone)
has_infill = true;
}
if (has_solid_infill)
it_layer->extruders.push_back(region.config.solid_infill_extruder);
if (has_infill)
it_layer->extruders.push_back(region.config.infill_extruder);
}
}
// Sort and remove duplicates
for (LayerTools &lt : layers)
sort_remove_duplicates(lt.extruders);
}
// Reorder extruders to minimize layer changes.
static void reorder_extruders(std::vector<LayerTools> &layers)
{
if (layers.empty())
return;
// Initialize the last_extruder_id with the first non-zero extruder id used for the print.
unsigned int last_extruder_id = 0;
for (size_t i = 0; i < layers.size() && last_extruder_id == 0; ++ i) {
const LayerTools &lt = layers[i];
for (unsigned int extruder_id : lt.extruders)
if (extruder_id > 0) {
last_extruder_id = extruder_id;
break;
}
}
if (last_extruder_id == 0)
last_extruder_id = 1;
for (LayerTools &lt : layers) {
if (lt.extruders.empty())
continue;
if (lt.extruders.size() == 1 && lt.extruders.front() == 0)
lt.extruders.front() = last_extruder_id;
else {
if (lt.extruders.front() == 0)
// Pop the "don't care" extruder, the "don't care" region will be merged with the next one.
lt.extruders.erase(lt.extruders.begin());
// Reorder the extruders to start with the last one.
for (size_t i = 1; i < lt.extruders.size(); ++ i)
if (lt.extruders[i] == last_extruder_id) {
// Move the last extruder to the front.
memmove(lt.extruders.data() + 1, lt.extruders.data(), i * sizeof(unsigned int));
lt.extruders.front() = last_extruder_id;
break;
}
}
last_extruder_id = lt.extruders.back();
}
// Reindex the extruders, so they are zero based, not 1 based.
for (LayerTools &lt : layers)
for (unsigned int &extruder_id : lt.extruders) {
assert(extruder_id > 0);
-- extruder_id;
}
}
static void fill_wipe_tower_partitions(std::vector<LayerTools> &layers)
{
if (layers.empty())
return;
// Count the minimum number of tool changes per layer.
for (LayerTools &lt : layers)
lt.wipe_tower_partitions = std::max<int>(0, int(layers.front().extruders.size()) - 1);
// In case a distinct set of tools are used between two layers, there will be an additional tool change at the start of a layer.
//FIXME this does not minimize the number of tool changes in worst case.
for (size_t i = 1; i < layers.size(); ++ i)
if (layers[i-1].extruders.back() != layers[i].extruders.front())
++ layers[i].wipe_tower_partitions;
// Propagate the wipe tower partitions down to support the upper partitions by the lower partitions.
for (int i = int(layers.size()) - 2; i >= 0; -- i)
layers[i].wipe_tower_partitions = std::max(layers[i + 1].wipe_tower_partitions, layers[i].wipe_tower_partitions);
}
// For the use case when each object is printed separately
// (print.config.complete_objects is true).
std::vector<LayerTools> tool_ordering(PrintObject &object)
{
// Initialize the print layers for just a single object.
std::vector<LayerTools> layers;
{
std::vector<coordf_t> zs;
zs.reserve(zs.size() + object.layers.size() + object.support_layers.size());
for (auto layer : object.layers)
zs.emplace_back(layer->print_z);
for (auto layer : object.support_layers)
zs.emplace_back(layer->print_z);
sort_remove_duplicates(zs);
for (coordf_t z : zs)
layers.emplace_back(LayerTools(z));
}
// Collect extruders reuqired to print the layers.
collect_extruders(object, layers);
// Reorder the extruders to minimize tool switches.
reorder_extruders(layers);
fill_wipe_tower_partitions(layers);
return layers;
}
// For the use case when all objects are printed at once.
// (print.config.complete_objects is false).
std::vector<LayerTools> tool_ordering(const Print &print)
{
// Initialize the print layers for all objects and all layers.
std::vector<LayerTools> layers;
{
std::vector<coordf_t> zs;
for (auto object : print.objects) {
zs.reserve(zs.size() + object->layers.size() + object->support_layers.size());
for (auto layer : object->layers)
zs.emplace_back(layer->print_z);
for (auto layer : object->support_layers)
zs.emplace_back(layer->print_z);
}
sort_remove_duplicates(zs);
for (coordf_t z : zs)
layers.emplace_back(LayerTools(z));
}
// Collect extruders reuqired to print the layers.
for (auto object : print.objects)
collect_extruders(*object, layers);
// Reorder the extruders to minimize tool switches.
reorder_extruders(layers);
fill_wipe_tower_partitions(layers);
return layers;
}
} // namespace ToolOrdering
} // namespace Slic3r

View file

@ -0,0 +1,38 @@
// Ordering of the tools to minimize tool switches.
#ifndef slic3r_ToolOrdering_hpp_
#define slic3r_ToolOrdering_hpp_
#include "libslic3r.h"
#include "Print.hpp"
namespace Slic3r {
namespace ToolOrdering {
struct LayerTools
{
LayerTools(const coordf_t z) : print_z(z), wipe_tower_partitions(0) {}
bool operator< (const LayerTools &rhs) const { return print_z < rhs.print_z; }
bool operator==(const LayerTools &rhs) const { return print_z == rhs.print_z; }
coordf_t print_z;
// Zero based extruder IDs, ordered to minimize tool switches.
std::vector<unsigned int> extruders;
// Number of wipe tower partitions to support the required number of tool switches
// and to support the wipe tower partitions above this one.
size_t wipe_tower_partitions;
};
// For the use case when each object is printed separately
// (print.config.complete_objects is true).
extern std::vector<LayerTools> tool_ordering(PrintObject &object);
// For the use case when all objects are printed at once.
// (print.config.complete_objects is false).
extern std::vector<LayerTools> tool_ordering(const Print &print);
} // namespace ToolOrdering
} // namespace SLic3r
#endif /* slic3r_ToolOrdering_hpp_ */

View file

@ -0,0 +1,59 @@
#ifndef slic3r_WipeTower_hpp_
#define slic3r_WipeTower_hpp_
#include <utility>
#include <string>
namespace Slic3r
{
// A pure virtual WipeTower definition.
class WipeTower
{
public:
// Internal point class, to make the wipe tower independent from other slic3r modules.
// This is important for Prusa Research as we want to build the wipe tower post-processor independently from slic3r.
struct xy
{
xy(float x = 0.f, float y = 0.f) : x(x), y(y) {}
xy operator+(const xy &rhs) const { xy out(*this); out.x += rhs.x; out.y += rhs.y; return out; }
xy operator-(const xy &rhs) const { xy out(*this); out.x -= rhs.x; out.y -= rhs.y; return out; }
xy& operator+=(const xy &rhs) { x += rhs.x; y += rhs.y; return *this; }
xy& operator-=(const xy &rhs) { x -= rhs.x; y -= rhs.y; return *this; }
float x;
float y;
};
WipeTower() {}
virtual ~WipeTower() {}
// Return the wipe tower position.
virtual const xy& position() const = 0;
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
virtual bool finished() const = 0;
// Switch to a next layer.
virtual void set_layer(
// Print height of this layer.
float print_z,
// Layer height, used to calculate extrusion the rate.
float layer_height,
// Maximum number of tool changes on this layer or the layers below.
size_t max_tool_changes,
// Is this the first layer of the print? In that case print the brim first.
bool is_first_layer,
// Is this the last layer of the wipe tower?
bool is_last_layer) = 0;
// Returns gcode for toolchange and the end position.
// if new_tool == -1, just unload the current filament over the wipe tower.
virtual std::pair<std::string, xy> tool_change(int new_tool) = 0;
// Close the current wipe tower layer with a perimeter and possibly fill the unfilled space with a zig-zag.
virtual std::pair<std::string, xy> close_layer() = 0;
};
}; // namespace Slic3r
#endif /* slic3r_WipeTower_hpp_ */

View file

@ -0,0 +1,661 @@
#include "WipeTowerPrusaMM.hpp"
#include <assert.h>
#include <math.h>
#include <fstream>
#include <iostream>
#ifdef __linux
#include <strings.h>
#endif /* __linux */
#ifdef _MSC_VER
#define strcasecmp _stricmp
#endif
namespace Slic3r
{
namespace PrusaMultiMaterial {
class Writer
{
public:
Writer() :
m_current_pos(std::numeric_limits<float>::max(), std::numeric_limits<float>::max()),
m_current_z(0.f),
m_current_feedrate(0.f),
m_extrusion_flow(0.f) {}
Writer& set_z(float z)
{ m_current_z = z; return *this; }
Writer& set_extrusion_flow(float flow)
{ m_extrusion_flow = flow; return *this; }
Writer& feedrate(float f)
{
if (f != m_current_feedrate)
m_gcode += "G1" + set_format_F(f) + "\n";
return *this;
}
const std::string& gcode() const { return m_gcode; }
float x() const { return m_current_pos.x; }
float y() const { return m_current_pos.y; }
const WipeTower::xy& pos() const { return m_current_pos; }
Writer& extrude_explicit(float x, float y, float e, float f = 0.f)
{
if (x == m_current_pos.x && y == m_current_pos.y && e == 0.f && (f == 0.f || f == m_current_feedrate))
return *this;
m_gcode += "G1 ";
if (x != m_current_pos.x)
m_gcode += set_format_X(x);
if (y != m_current_pos.y)
m_gcode += set_format_Y(y);
if (e != 0)
m_gcode += set_format_E(e);
if (f != 0 && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
Writer& extrude_explicit(const WipeTower::xy &dest, float e, float f = 0.f)
{ return extrude_explicit(dest.x, dest.y, e, f); }
// Travel to a new XY position. f=0 means use the current value.
Writer& travel(float x, float y, float f = 0.f)
{ return extrude_explicit(x, y, 0, f); }
Writer& travel(const WipeTower::xy &dest, float f = 0.f)
{ return extrude_explicit(dest.x, dest.y, 0.f, f); }
Writer& extrude(float x, float y, float f = 0.f) {
float dx = x - m_current_pos.x;
float dy = y - m_current_pos.y;
return extrude_explicit(x, y, sqrt(dx*dx+dy*dy) * m_extrusion_flow, f);
}
Writer& extrude(const WipeTower::xy &dest, const float f = 0.f)
{ return extrude(dest.x, dest.y, f); }
Writer& deretract(float e, float f = 0.f)
{
if (e == 0 && (f == 0 || f == m_current_feedrate))
return *this;
m_gcode += "G1 ";
if (e != 0)
m_gcode += set_format_E(e);
if (f != 0 && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
Writer& deretract_move_x(float x, float e, float f = 0.f)
{ return extrude_explicit(x, m_current_pos.y, e, f); }
Writer& retract(float e, float f = 0.f)
{ return retract(-e, f); }
Writer& z_hop(float hop, float f = 0.f) {
m_gcode += std::string("G1") + set_format_Z(m_current_z + hop);
if (f != 0 && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
// Move to x1, +y_increment,
// extrude quickly amount e to x2 with feed f.
Writer& ram(float x1, float x2, float dy, float e, float f) {
return travel(x1, m_current_pos.y + dy, f)
.extrude_explicit(x2, m_current_pos.y, e);
}
Writer& cool(float x1, float x2, float e1, float e2, float f) {
return extrude_explicit(x1, m_current_pos.y, e1, f)
.extrude_explicit(x2, m_current_pos.y, e2);
}
Writer& set_tool(int tool)
{
char buf[64];
sprintf(buf, "T%d\n", tool);
m_gcode += buf;
return *this;
}
// Set extruder temperature, don't wait.
Writer& set_extruder_temp(int temperature, bool wait = false)
{
char buf[128];
sprintf(buf, "M%d S%d\n", wait ? 109 : 104, temperature);
m_gcode += buf;
return *this;
};
// Set speed factor override percentage
Writer& speed_override(int speed) {
char buf[128];
sprintf(buf, "M220 S%d\n", speed);
m_gcode += buf;
return *this;
};
// Set digital trimpot motor
Writer& set_extruder_trimpot(int current)
{
char buf[128];
sprintf(buf, "M907 E%d\n", current);
m_gcode += buf;
return *this;
};
Writer& flush_planner_queue() {
m_gcode += "G4 S0\n";
return *this;
}
// Reset internal extruder counter.
Writer& reset_extruder() {
m_gcode += "G92 E0.0\n";
return *this;
}
Writer& comment_with_value(const char *comment, int value)
{
char strvalue[15];
sprintf(strvalue, "%d", value);
m_gcode += std::string(";") + comment + strvalue + "\n";
return *this;
};
Writer& comment_material(WipeTowerPrusaMM::material_type material)
{
m_gcode += "; material : ";
switch (material)
{
case WipeTowerPrusaMM::PVA:
m_gcode += "#8 (PVA)";
break;
case WipeTowerPrusaMM::SCAFF:
m_gcode += "#5 (Scaffold)";
break;
case WipeTowerPrusaMM::FLEX:
m_gcode += "#4 (Flex)";
break;
default:
m_gcode += "DEFAULT (PLA)";
break;
}
m_gcode += "\n";
return *this;
};
Writer& append(const char *text) { m_gcode += text; return *this; }
private:
WipeTower::xy m_current_pos;
float m_current_z;
float m_current_feedrate;
float m_extrusion_flow;
std::string m_gcode;
std::string set_format_X(float x) {
char buf[64];
sprintf(buf, " X%.3f", x);
m_current_pos.x = x;
return buf;
}
std::string set_format_Y(float y) {
char buf[64];
sprintf(buf, " Y%.3f", y);
m_current_pos.y = y;
return buf;
}
std::string set_format_Z(float y) {
char buf[64];
sprintf(buf, " Z%.3f", y);
return buf;
}
std::string set_format_E(float e) {
char buf[64];
sprintf(buf, " E%.4f", e);
return buf;
}
std::string set_format_F(float f) {
char buf[64];
sprintf(buf, " F%.0f", f);
m_current_feedrate = f;
return buf;
}
};
} // namespace PrusaMultiMaterial
static inline int randi(int lo, int hi)
{
int n = hi - lo + 1;
int i = rand() % n;
if (i < 0) i = -i;
return lo + i;
}
WipeTowerPrusaMM::material_type WipeTowerPrusaMM::parse_material(const char *name)
{
if (strcasecmp(name, "PLA") == 0)
return PLA;
if (strcasecmp(name, "ABS") == 0)
return ABS;
if (strcasecmp(name, "PET") == 0)
return PET;
if (strcasecmp(name, "HIPS") == 0)
return HIPS;
if (strcasecmp(name, "FLEX") == 0)
return FLEX;
if (strcasecmp(name, "SCAFF") == 0)
return SCAFF;
if (strcasecmp(name, "EDGE") == 0)
return EDGE;
if (strcasecmp(name, "NGEN") == 0)
return NGEN;
if (strcasecmp(name, "PVA") == 0)
return PVA;
return INVALID;
}
std::pair<std::string, WipeTower::xy> WipeTowerPrusaMM::tool_change(int tool)
{
// Either it is the last tool unload,
// or there must be a nonzero wipe tower partitions available.
assert(tool < 0 || it_layer_tools->wipe_tower_partitions > 0);
if (m_layer_change_in_layer == size_t(-1))
// First layer, prime the extruder.
return toolchange_Brim(tool);
box_coordinates cleaning_box(
m_wipe_tower_pos.x,
m_wipe_tower_pos.y + m_current_wipe_start_y,
m_wipe_tower_width,
m_wipe_area - m_perimeter_width / 2);
PrusaMultiMaterial::Writer writer;
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.append(";--------------------\n"
"; CP TOOLCHANGE START\n")
.comment_with_value(" toolchange #", m_layer_change_total)
.comment_material(m_current_material)
.append(";--------------------\n")
.speed_override(100)
// Lift for a Z hop.
.z_hop(m_zhop, 7200)
// additional retract on move to tower
.retract(m_retract/2, 3600)
.travel(((m_current_shape == SHAPE_NORMAL) ? cleaning_box.ld : cleaning_box.rd) + xy(m_perimeter_width, m_current_shape * m_perimeter_width), 7200)
// Unlift for a Z hop.
.z_hop(0, 7200)
// Additional retract on move to tower.
.deretract(m_retract/2, 3600)
.deretract(m_retract, 1500)
// Increase extruder current for ramming.
.set_extruder_trimpot(750)
.flush_planner_queue();
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
toolchange_Unload(writer, cleaning_box, m_current_material, m_current_shape,
m_is_first_layer ? m_first_layer_temperature[tool] : m_temperature[tool]);
if (tool >= 0) {
// This is not the last change.
// Change the tool, set a speed override for solube and flex materials.
toolchange_Change(writer, tool, m_current_material, m_material[tool]);
toolchange_Load(writer, cleaning_box);
// Wipe the newly loaded filament until the end of the assigned wipe area.
toolchange_Wipe(writer, cleaning_box, m_current_material);
// Draw a perimeter around cleaning_box and wipe.
toolchange_Done(writer, cleaning_box);
}
// Reset the extruder current to a normal value.
writer.set_extruder_trimpot(550)
.flush_planner_queue()
.reset_extruder()
.append("; CP TOOLCHANGE END\n"
";------------------\n"
"\n\n");
++ m_layer_change_in_layer;
m_current_wipe_start_y += m_wipe_area;
m_current_material = m_material[tool];
return std::pair<std::string, xy>(writer.gcode(), writer.pos());
}
std::pair<std::string, WipeTower::xy> WipeTowerPrusaMM::toolchange_Brim(size_t tool, bool sideOnly, float y_offset)
{
const box_coordinates wipeTower_box(
m_wipe_tower_pos,
m_wipe_tower_width,
m_wipe_area * float(m_max_color_changes) - m_perimeter_width / 2);
PrusaMultiMaterial::Writer writer;
writer.set_extrusion_flow(m_extrusion_flow * 1.1f)
// Let the writer know the current Z position as a base for Z-hop.
.set_z(m_z_pos)
.append(
";-------------------------------------\n"
"; CP WIPE TOWER FIRST LAYER BRIM START\n");
// Move with Z hop and prime the extruder 10*m_perimeter_width left along the vertical edge of the wipe tower.
writer.z_hop(m_zhop, 7200)
.travel(wipeTower_box.lu - xy(m_perimeter_width * 10.f, 0), 6000)
.z_hop(0, 7200)
.extrude_explicit(wipeTower_box.ld - xy(m_perimeter_width * 10.f, 0), m_retract, 2400)
.feedrate(2100);
toolchange_Change(writer, tool, m_current_material, m_material[tool]);
if (sideOnly) {
float x_offset = 0.f;
for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width)
writer.travel (wipeTower_box.ld + xy(- x_offset, y_offset))
.extrude(wipeTower_box.lu + xy(- x_offset, - y_offset));
writer.travel(wipeTower_box.rd + xy(x_offset, y_offset), 7000)
.feedrate(2100);
x_offset = 0.f;
for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width)
writer.travel (wipeTower_box.rd + xy(x_offset, y_offset))
.extrude(wipeTower_box.ru + xy(x_offset, - y_offset));
} else {
// Extrude 4 rounds of a brim around the future wipe tower.
box_coordinates box(wipeTower_box);
box.ld += xy(- m_perimeter_width / 2, 0);
box.lu += xy(- m_perimeter_width / 2, m_perimeter_width);
box.rd += xy( m_perimeter_width / 2, 0);
box.ru += xy( m_perimeter_width / 2, m_perimeter_width);
for (size_t i = 0; i < 4; ++ i) {
writer.travel(box.ld)
.extrude(box.lu) .extrude(box.ru)
.extrude(box.rd) .extrude(box.ld);
box.expand(m_perimeter_width);
}
}
// Move to the front left corner and wipe along the front edge.
writer.travel(wipeTower_box.ld, 7000)
.travel(wipeTower_box.rd)
.travel(wipeTower_box.ld)
.append("; CP WIPE TOWER FIRST LAYER BRIM END\n"
";-----------------------------------\n");
return std::pair<std::string, xy>(writer.gcode(), writer.pos());
}
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
void WipeTowerPrusaMM::toolchange_Unload(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
const material_type material,
const wipe_shape shape,
const int temperature)
{
float xl = cleaning_box.ld.x + (m_perimeter_width / 2);
float xr = cleaning_box.rd.x - (m_perimeter_width / 2);
float y_step = shape * m_perimeter_width;
writer.append("; CP TOOLCHANGE UNLOAD");
// Ram the hot material out of the extruder melt zone.
switch (material)
{
case PVA:
// ramming start end y increment amount feedrate
writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 1.2f, 3, 4000)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 3, 4500)
.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.5f, 3, 4800)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 3, 5000);
break;
case SCAFF:
writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 3.f, 3, 4000)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 3.f, 4, 4600)
.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 3.f, 4.5, 5200);
break;
default:
writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 1.2f, 1.6f, 4000)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, 1.65f, 4600)
.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, 1.74f, 5200);
}
// Pull the filament end into a cooling tube.
writer.retract(15, 5000).retract(50, 5400).retract(15, 3000).deretract(12, 2000);
if (temperature != 0)
// Set the extruder temperature, but don't wait.
writer.set_extruder_temp(temperature, false);
// Horizontal cooling moves at the following y coordinate:
writer.travel(writer.x(), writer.y() + y_step * 0.8f, 1600);
switch (material)
{
case PVA:
writer.cool(xl, xr, 3, -5, 1600)
.cool(xl, xr, 5, -5, 2000)
.cool(xl, xr, 5, -5, 2200)
.cool(xl, xr, 5, -5, 2400)
.cool(xl, xr, 5, -5, 2400)
.cool(xl, xr, 5, -5, 2400);
break;
case SCAFF:
writer.cool(xl, xr, 3, -5, 1600)
.cool(xl, xr, 5, -5, 2000)
.cool(xl, xr, 5, -5, 2200)
.cool(xl, xr, 5, -5, 2200)
.cool(xl, xr, 5, -5, 2400);
break;
default:
writer.cool(xl, xr, 3, -5, 1600)
.cool(xl, xr, 5, -5, 2000)
.cool(xl, xr, 5, -5, 2400)
.cool(xl, xr, 5, -3, 2400);
}
writer.flush_planner_queue();
}
// Change the tool, set a speed override for solube and flex materials.
void WipeTowerPrusaMM::toolchange_Change(
PrusaMultiMaterial::Writer &writer,
const int tool,
material_type /* current_material */,
material_type new_material)
{
// Speed override for the material. Go slow for flex and soluble materials.
int speed_override;
switch (new_material) {
case PVA: speed_override = 80; break;
case SCAFF: speed_override = 35; break;
case FLEX: speed_override = 35; break;
default: speed_override = 100;
}
writer.set_tool(tool)
.speed_override(speed_override)
.flush_planner_queue();
}
void WipeTowerPrusaMM::toolchange_Load(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box)
{
float xl = cleaning_box.ld.x + m_perimeter_width;
float xr = cleaning_box.rd.x - m_perimeter_width;
writer.append("; CP TOOLCHANGE LOAD\n")
// Load the filament while moving left / right,
// so the excess material will not create a blob at a single position.
.deretract_move_x(xr, 20, 1400)
.deretract_move_x(xl, 40, 3000)
.deretract_move_x(xr, 20, 1600)
.deretract_move_x(xl, 10, 1000);
// Extrude first five lines (just three lines if colorInit is set).
writer.extrude(xr, writer.y(), 1600);
bool colorInit = false;
size_t pass = colorInit ? 1 : 2;
for (int i = 0; i < pass; ++ i)
writer.travel (xr, writer.y() + m_current_shape * m_perimeter_width * 0.85f, 2200)
.extrude(xl, writer.y())
.travel (xl, writer.y() + m_current_shape * m_perimeter_width * 0.85f)
.extrude(xr, writer.y());
// Reset the extruder current to the normal value.
writer.set_extruder_trimpot(550);
}
// Wipe the newly loaded filament until the end of the assigned wipe area.
void WipeTowerPrusaMM::toolchange_Wipe(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
const material_type material)
{
// Increase flow on first layer, slow down print.
writer.set_extrusion_flow(m_extrusion_flow * (m_is_first_layer ? 1.18f : 1.f))
.append("; CP TOOLCHANGE WIPE\n");
float wipe_coeff = m_is_first_layer ? 0.5f : 1.f;
float xl = cleaning_box.ld.x + 2.f * m_perimeter_width;
float xr = cleaning_box.rd.x - 2.f * m_perimeter_width;
// Wipe speed will increase up to 4800.
float wipe_speed = 4200;
// Y increment per wipe line.
float dy = m_current_shape * m_perimeter_width * 0.7f;
for (bool p = true; ; p = ! p) {
writer.feedrate((wipe_speed = std::min(4800.f, wipe_speed + 50.f)) * wipe_coeff);
if (p)
writer.extrude(xl - m_perimeter_width/2, writer.y() + dy)
.extrude(xr + m_perimeter_width, writer.y());
else
writer.extrude(xl - m_perimeter_width, writer.y() + dy)
.extrude(xr + m_perimeter_width*2, writer.y());
writer.feedrate((wipe_speed = std::min(4800.f, wipe_speed + 50.f)) * wipe_coeff)
.extrude(xr + m_perimeter_width, writer.y() + dy)
.extrude(xl - m_perimeter_width, writer.y());
if ((m_current_shape == SHAPE_NORMAL) ?
(writer.y() > cleaning_box.lu.y - m_perimeter_width) :
(writer.y() < cleaning_box.ld.y + m_perimeter_width))
// Next wipe line does not fit the cleaning box.
break;
}
// Reset the extrusion flow.
writer.set_extrusion_flow(m_extrusion_flow);
}
// Draw a perimeter around cleaning_box and wipe.
void WipeTowerPrusaMM::toolchange_Done(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box)
{
box_coordinates box = cleaning_box;
if (m_current_shape == SHAPE_REVERSED) {
std::swap(box.lu, box.ld);
std::swap(box.ru, box.rd);
}
// Draw a perimeter around cleaning_box.
writer.travel(box.lu, 7000)
.extrude(box.ld, 3200).extrude(box.rd)
.extrude(box.ru).extrude(box.lu)
// Wipe the nozzle.
.travel(box.ru, 7200)
.travel(box.lu)
.feedrate(6000);
}
std::pair<std::string, WipeTower::xy> WipeTowerPrusaMM::close_layer()
{
PrusaMultiMaterial::Writer writer;
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.append(";--------------------\n"
"; CP EMPTY GRID START\n")
.comment_with_value(" layer #", m_layer_change_total ++);
// Slow down on the 1st layer.
float speed_factor = m_is_first_layer ? 0.5f : 1.f;
box_coordinates _p = _boxForColor(m_layer_change_in_layer);
{
box_coordinates _to = _boxForColor(m_max_color_changes);
float firstLayerOffset = 0.f;
_p.ld.y += firstLayerOffset;
_p.rd.y += firstLayerOffset;
_p.lu = _to.lu; _p.ru = _to.ru;
}
if (m_layer_change_in_layer == 0)
// There were no tool changes at all in this layer.
// Jump with retract to _p.ld + a random shift in +x.
writer.retract(m_retract * 1.5f, 3600)
.z_hop(m_zhop, 7200)
.travel(_p.ld.x + randi(5, 20), _p.ld.y, 7000)
.z_hop(0, 7200)
.extrude_explicit(_p.ld, m_retract * 1.5f, 3600);
box_coordinates box = _p;
writer.extrude(box.lu, 2400 * speed_factor)
.extrude(box.ru)
.extrude(box.rd)
.extrude(box.ld + xy(m_perimeter_width / 2, 0));
box.expand(- m_perimeter_width / 2);
writer.extrude(box.lu, 3200 * speed_factor)
.extrude(box.ru)
.extrude(box.rd)
.extrude(box.ld + xy(m_perimeter_width / 2, 0))
.extrude(box.ld + xy(m_perimeter_width / 2, m_perimeter_width / 2));
writer.extrude(_p.ld + xy(m_perimeter_width * 3, m_perimeter_width), 2900 * speed_factor)
.extrude(_p.lu + xy(m_perimeter_width * 3, - m_perimeter_width))
.extrude(_p.lu + xy(m_perimeter_width * 6, - m_perimeter_width))
.extrude(_p.ld + xy(m_perimeter_width * 6, m_perimeter_width));
if (_p.lu.y - _p.ld.y > 4) {
// Extrude three zig-zags.
writer.feedrate(3200 * speed_factor);
float step = (m_wipe_tower_width - m_perimeter_width * 12.f) / 12.f;
for (size_t i = 0; i < 3; ++ i) {
writer.extrude(writer.x() + step, _p.ld.y + m_perimeter_width * 8);
writer.extrude(writer.x() , _p.lu.y - m_perimeter_width * 8);
writer.extrude(writer.x() + step, _p.lu.y - m_perimeter_width );
writer.extrude(writer.x() + step, _p.lu.y - m_perimeter_width * 8);
writer.extrude(writer.x() , _p.ld.y + m_perimeter_width * 8);
writer.extrude(writer.x() + step, _p.ld.y + m_perimeter_width );
}
}
// Extrude the perimeter.
writer.extrude(_p.ru + xy(- m_perimeter_width * 6, - m_perimeter_width), 2900 * speed_factor)
.extrude(_p.ru + xy(- m_perimeter_width * 3, - m_perimeter_width))
.extrude(_p.rd + xy(- m_perimeter_width * 3, m_perimeter_width))
.extrude(_p.rd + xy(- m_perimeter_width, m_perimeter_width))
// Wipe along the front side of the current wiping box.
.travel(_p.ld + xy( m_perimeter_width, m_perimeter_width / 2), 7200)
.travel(_p.rd + xy(- m_perimeter_width, m_perimeter_width / 2))
.append("; CP EMPTY GRID END\n"
";------------------\n\n\n\n\n\n\n");
m_current_shape = wipe_shape(- m_current_shape);
return std::pair<std::string, xy>(writer.gcode(), writer.pos());
}
WipeTowerPrusaMM::box_coordinates WipeTowerPrusaMM::_boxForColor(int order) const
{
return box_coordinates(m_wipe_tower_pos.x, m_wipe_tower_pos.y + m_wipe_area * order - m_perimeter_width / 2, m_wipe_tower_width, m_perimeter_width);
}
}; // namespace Slic3r

View file

@ -0,0 +1,217 @@
#ifndef WipeTowerPrusaMM_hpp_
#define WipeTowerPrusaMM_hpp_
#include <algorithm>
#include <string>
#include <utility>
#include "WipeTower.hpp"
namespace Slic3r
{
namespace PrusaMultiMaterial {
class Writer;
};
class WipeTowerPrusaMM : public WipeTower
{
public:
enum material_type
{
INVALID = -1,
PLA = 0, // E:210C B:55C
ABS = 1, // E:255C B:100C
PET = 2, // E:240C B:90C
HIPS = 3, // E:220C B:100C
FLEX = 4, // E:245C B:80C
SCAFF = 5, // E:215C B:55C
EDGE = 6, // E:240C B:80C
NGEN = 7, // E:230C B:80C
PVA = 8 // E:210C B:80C
};
// Parse material name into material_type.
static material_type parse_material(const char *name);
// x -- x coordinates of wipe tower in mm ( left bottom corner )
// y -- y coordinates of wipe tower in mm ( left bottom corner )
// width -- width of wipe tower in mm ( default 60 mm - leave as it is )
// wipe_area -- space available for one toolchange in mm
WipeTowerPrusaMM(float x, float y, float width, float wipe_area) :
m_wipe_tower_pos(x, y),
m_wipe_tower_width(width),
m_wipe_area(wipe_area),
m_z_pos(0.f) {
for (size_t i = 0; i < 4; ++ i) {
// Extruder specific parameters.
m_material[i] = PLA;
m_temperature[i] = 0;
m_first_layer_temperature[i] = 0;
}
}
virtual ~WipeTowerPrusaMM() {}
// _retract - retract value in mm
void set_retract(float retract) { m_retract = retract; }
// _zHop - z hop value in mm
void set_zhop(float zhop) { m_zhop = zhop; }
// Set the extruder properties.
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp)
{
m_material[idx] = material;
m_temperature[idx] = temp;
m_first_layer_temperature[idx] = first_layer_temp;
}
// Switch to a next layer.
virtual void set_layer(
// Print height of this layer.
float print_z,
// Layer height, used to calculate extrusion the rate.
float layer_height,
// Maximum number of tool changes on this layer or the layers below.
size_t max_tool_changes,
// Is this the first layer of the print? In that case print the brim first.
bool is_first_layer,
// Is this the last layer of the waste tower?
bool is_last_layer)
{
m_z_pos = print_z;
m_max_color_changes = max_tool_changes;
m_is_first_layer = is_first_layer;
m_is_last_layer = is_last_layer;
// Start counting the color changes from zero.
m_layer_change_in_layer = is_first_layer ? size_t(-1) : 0;
m_current_wipe_start_y = 0.f;
int layer_idx = int(floor(layer_height * 100) + 0.5f);
switch (layer_idx)
{
case 15:
m_extrusion_flow = (float)0.024;
break;
case 20:
default:
m_extrusion_flow = (float)0.029;
break;
}
}
// Return the wipe tower position.
virtual const xy& position() const { return m_wipe_tower_pos; }
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
virtual bool finished() const { return m_max_color_changes == 0; }
// Returns gcode for toolchange
virtual std::pair<std::string, xy> tool_change(int new_tool);
// Close the current wipe tower layer with a perimeter and possibly fill the unfilled space with a zig-zag.
virtual std::pair<std::string, xy> close_layer();
private:
WipeTowerPrusaMM();
enum wipe_shape
{
SHAPE_NORMAL = 1,
SHAPE_REVERSED = -1
};
// Left front corner of the wipe tower in mm.
xy m_wipe_tower_pos;
// Width of the wipe tower.
float m_wipe_tower_width;
// Per color Y span.
float m_wipe_area;
// Current Z position.
float m_z_pos = 0.f;
// Maximum number of color changes per layer.
size_t m_max_color_changes = 0;
// Is this the 1st layer of the print? If so, print the brim around the waste tower.
bool m_is_first_layer = false;
// Is this the last layer of this waste tower?
bool m_is_last_layer = false;
// G-code generator parameters.
float m_zhop = 0.5f;
float m_retract = 4.f;
float m_perimeter_width = 0.5f;
float m_extrusion_flow = 0.029f;
// Extruder specific parameters.
material_type m_material[4];
int m_temperature[4];
int m_first_layer_temperature[4];
// State of the wiper tower generator.
// Layer change counter for the output statistics.
unsigned int m_layer_change_total = 0;
// Layer change counter in this layer. Counting up to m_max_color_changes.
unsigned int m_layer_change_in_layer = 0;
wipe_shape m_current_shape = SHAPE_NORMAL;
material_type m_current_material = PLA;
// Current y position at the wipe tower.
float m_current_wipe_start_y = 0.f;
struct box_coordinates
{
box_coordinates(float left, float bottom, float width, float height) :
ld(left , bottom ),
lu(left , bottom + height),
rd(left + width, bottom ),
ru(left + width, bottom + height) {}
box_coordinates(const xy &pos, float width, float height) : box_coordinates(pos.x, pos.y, width, height) {}
void expand(const float offset) {
ld += xy(- offset, - offset);
lu += xy(- offset, offset);
rd += xy( offset, - offset);
ru += xy( offset, offset);
}
xy ld; // left down
xy lu; // left upper
xy ru; // right upper
xy rd; // right lower
};
// Returns gcode for wipe tower brim
// sideOnly -- set to false -- experimental, draw brim on sides of wipe tower
// offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower
std::pair<std::string, WipeTower::xy> toolchange_Brim(size_t tool, bool sideOnly = false, float y_offset = 0.f);
void toolchange_Unload(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
const material_type material,
const wipe_shape shape,
const int temperature);
void toolchange_Change(
PrusaMultiMaterial::Writer &writer,
int tool,
material_type current_material,
material_type new_material);
void toolchange_Load(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box);
void toolchange_Wipe(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
const material_type material);
void toolchange_Done(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box);
void toolchange_Perimeter();
box_coordinates _boxForColor(int order) const;
};
}; // namespace Slic3r
#endif /* WipeTowerPrusaMM_hpp_ */