mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-14 18:27:58 -06:00
Merge branch 'tm_openvdb_integration' into lm_tm_hollowing
* Refactor file names in SLA dir
This commit is contained in:
commit
c22423a219
55 changed files with 1644 additions and 592 deletions
125
src/libslic3r/SLA/Rotfinder.cpp
Normal file
125
src/libslic3r/SLA/Rotfinder.cpp
Normal file
|
@ -0,0 +1,125 @@
|
|||
#include <limits>
|
||||
#include <exception>
|
||||
|
||||
#include <libnest2d/optimizers/nlopt/genetic.hpp>
|
||||
#include <libslic3r/SLA/Common.hpp>
|
||||
#include <libslic3r/SLA/Rotfinder.hpp>
|
||||
#include <libslic3r/SLA/SupportTree.hpp>
|
||||
#include "Model.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
namespace sla {
|
||||
|
||||
std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
||||
float accuracy,
|
||||
std::function<void(unsigned)> statuscb,
|
||||
std::function<bool()> stopcond)
|
||||
{
|
||||
using libnest2d::opt::Method;
|
||||
using libnest2d::opt::bound;
|
||||
using libnest2d::opt::Optimizer;
|
||||
using libnest2d::opt::TOptimizer;
|
||||
using libnest2d::opt::StopCriteria;
|
||||
|
||||
static const unsigned MAX_TRIES = 100000;
|
||||
|
||||
// return value
|
||||
std::array<double, 3> rot;
|
||||
|
||||
// We will use only one instance of this converted mesh to examine different
|
||||
// rotations
|
||||
EigenMesh3D emesh(modelobj.raw_mesh());
|
||||
|
||||
// For current iteration number
|
||||
unsigned status = 0;
|
||||
|
||||
// The maximum number of iterations
|
||||
auto max_tries = unsigned(accuracy * MAX_TRIES);
|
||||
|
||||
// call status callback with zero, because we are at the start
|
||||
statuscb(status);
|
||||
|
||||
// So this is the object function which is called by the solver many times
|
||||
// It has to yield a single value representing the current score. We will
|
||||
// call the status callback in each iteration but the actual value may be
|
||||
// the same for subsequent iterations (status goes from 0 to 100 but
|
||||
// iterations can be many more)
|
||||
auto objfunc = [&emesh, &status, &statuscb, &stopcond, max_tries]
|
||||
(double rx, double ry, double rz)
|
||||
{
|
||||
EigenMesh3D& m = emesh;
|
||||
|
||||
// prepare the rotation transformation
|
||||
Transform3d rt = Transform3d::Identity();
|
||||
|
||||
rt.rotate(Eigen::AngleAxisd(rz, Vec3d::UnitZ()));
|
||||
rt.rotate(Eigen::AngleAxisd(ry, Vec3d::UnitY()));
|
||||
rt.rotate(Eigen::AngleAxisd(rx, Vec3d::UnitX()));
|
||||
|
||||
double score = 0;
|
||||
|
||||
// For all triangles we calculate the normal and sum up the dot product
|
||||
// (a scalar indicating how much are two vectors aligned) with each axis
|
||||
// this will result in a value that is greater if a normal is aligned
|
||||
// with all axes. If the normal is aligned than the triangle itself is
|
||||
// orthogonal to the axes and that is good for print quality.
|
||||
|
||||
// TODO: some applications optimize for minimum z-axis cross section
|
||||
// area. The current function is only an example of how to optimize.
|
||||
|
||||
// Later we can add more criteria like the number of overhangs, etc...
|
||||
for(int i = 0; i < m.F().rows(); i++) {
|
||||
auto idx = m.F().row(i);
|
||||
|
||||
Vec3d p1 = m.V().row(idx(0));
|
||||
Vec3d p2 = m.V().row(idx(1));
|
||||
Vec3d p3 = m.V().row(idx(2));
|
||||
|
||||
Eigen::Vector3d U = p2 - p1;
|
||||
Eigen::Vector3d V = p3 - p1;
|
||||
|
||||
// So this is the normal
|
||||
auto n = U.cross(V).normalized();
|
||||
|
||||
// rotate the normal with the current rotation given by the solver
|
||||
n = rt * n;
|
||||
|
||||
// We should score against the alignment with the reference planes
|
||||
score += std::abs(n.dot(Vec3d::UnitX()));
|
||||
score += std::abs(n.dot(Vec3d::UnitY()));
|
||||
score += std::abs(n.dot(Vec3d::UnitZ()));
|
||||
}
|
||||
|
||||
// report status
|
||||
if(!stopcond()) statuscb( unsigned(++status * 100.0/max_tries) );
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
// Firing up the genetic optimizer. For now it uses the nlopt library.
|
||||
StopCriteria stc;
|
||||
stc.max_iterations = max_tries;
|
||||
stc.relative_score_difference = 1e-3;
|
||||
stc.stop_condition = stopcond; // stop when stopcond returns true
|
||||
TOptimizer<Method::G_GENETIC> solver(stc);
|
||||
|
||||
// We are searching rotations around the three axes x, y, z. Thus the
|
||||
// problem becomes a 3 dimensional optimization task.
|
||||
// We can specify the bounds for a dimension in the following way:
|
||||
auto b = bound(-PI/2, PI/2);
|
||||
|
||||
// Now we start the optimization process with initial angles (0, 0, 0)
|
||||
auto result = solver.optimize_max(objfunc,
|
||||
libnest2d::opt::initvals(0.0, 0.0, 0.0),
|
||||
b, b, b);
|
||||
|
||||
// Save the result and fck off
|
||||
rot[0] = std::get<0>(result.optimum);
|
||||
rot[1] = std::get<1>(result.optimum);
|
||||
rot[2] = std::get<2>(result.optimum);
|
||||
|
||||
return rot;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue