mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-08-10 23:35:13 -06:00
Merge branch 'master' of https://github.com/prusa3d/PrusaSlicer into et_custom_bed
This commit is contained in:
commit
c1dee0e87d
28 changed files with 2042 additions and 2063 deletions
642
src/libslic3r/Arrange.cpp
Normal file
642
src/libslic3r/Arrange.cpp
Normal file
|
@ -0,0 +1,642 @@
|
|||
#include "Arrange.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "SVG.hpp"
|
||||
#include "MTUtils.hpp"
|
||||
|
||||
#include <libnest2d/backends/clipper/geometries.hpp>
|
||||
#include <libnest2d/optimizers/nlopt/subplex.hpp>
|
||||
#include <libnest2d/placers/nfpplacer.hpp>
|
||||
#include <libnest2d/selections/firstfit.hpp>
|
||||
|
||||
#include <numeric>
|
||||
#include <ClipperUtils.hpp>
|
||||
|
||||
#include <boost/geometry/index/rtree.hpp>
|
||||
#include <boost/multiprecision/integer.hpp>
|
||||
#include <boost/rational.hpp>
|
||||
|
||||
namespace libnest2d {
|
||||
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
|
||||
using LargeInt = __int128;
|
||||
#else
|
||||
using LargeInt = boost::multiprecision::int128_t;
|
||||
template<> struct _NumTag<LargeInt>
|
||||
{
|
||||
using Type = ScalarTag;
|
||||
};
|
||||
#endif
|
||||
|
||||
template<class T> struct _NumTag<boost::rational<T>>
|
||||
{
|
||||
using Type = RationalTag;
|
||||
};
|
||||
|
||||
namespace nfp {
|
||||
|
||||
template<class S> struct NfpImpl<S, NfpLevel::CONVEX_ONLY>
|
||||
{
|
||||
NfpResult<S> operator()(const S &sh, const S &other)
|
||||
{
|
||||
return nfpConvexOnly<S, boost::rational<LargeInt>>(sh, other);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace nfp
|
||||
} // namespace libnest2d
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
template<class Tout = double, class = FloatingOnly<Tout>, int...EigenArgs>
|
||||
inline SLIC3R_CONSTEXPR Eigen::Matrix<Tout, 2, EigenArgs...> unscaled(
|
||||
const ClipperLib::IntPoint &v) SLIC3R_NOEXCEPT
|
||||
{
|
||||
return Eigen::Matrix<Tout, 2, EigenArgs...>{unscaled<Tout>(v.X),
|
||||
unscaled<Tout>(v.Y)};
|
||||
}
|
||||
|
||||
namespace arrangement {
|
||||
|
||||
using namespace libnest2d;
|
||||
namespace clppr = ClipperLib;
|
||||
|
||||
// Get the libnest2d types for clipper backend
|
||||
using Item = _Item<clppr::Polygon>;
|
||||
using Box = _Box<clppr::IntPoint>;
|
||||
using Circle = _Circle<clppr::IntPoint>;
|
||||
using Segment = _Segment<clppr::IntPoint>;
|
||||
using MultiPolygon = TMultiShape<clppr::Polygon>;
|
||||
|
||||
// Summon the spatial indexing facilities from boost
|
||||
namespace bgi = boost::geometry::index;
|
||||
using SpatElement = std::pair<Box, unsigned>;
|
||||
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
|
||||
|
||||
// A coefficient used in separating bigger items and smaller items.
|
||||
const double BIG_ITEM_TRESHOLD = 0.02;
|
||||
|
||||
// Fill in the placer algorithm configuration with values carefully chosen for
|
||||
// Slic3r.
|
||||
template<class PConf>
|
||||
void fillConfig(PConf& pcfg) {
|
||||
|
||||
// Align the arranged pile into the center of the bin
|
||||
pcfg.alignment = PConf::Alignment::CENTER;
|
||||
|
||||
// Start placing the items from the center of the print bed
|
||||
pcfg.starting_point = PConf::Alignment::CENTER;
|
||||
|
||||
// TODO cannot use rotations until multiple objects of same geometry can
|
||||
// handle different rotations.
|
||||
pcfg.rotations = { 0.0 };
|
||||
|
||||
// The accuracy of optimization.
|
||||
// Goes from 0.0 to 1.0 and scales performance as well
|
||||
pcfg.accuracy = 0.65f;
|
||||
|
||||
// Allow parallel execution.
|
||||
pcfg.parallel = true;
|
||||
}
|
||||
|
||||
// Apply penalty to object function result. This is used only when alignment
|
||||
// after arrange is explicitly disabled (PConfig::Alignment::DONT_ALIGN)
|
||||
double fixed_overfit(const std::tuple<double, Box>& result, const Box &binbb)
|
||||
{
|
||||
double score = std::get<0>(result);
|
||||
Box pilebb = std::get<1>(result);
|
||||
Box fullbb = sl::boundingBox(pilebb, binbb);
|
||||
auto diff = double(fullbb.area()) - binbb.area();
|
||||
if(diff > 0) score += diff;
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
// A class encapsulating the libnest2d Nester class and extending it with other
|
||||
// management and spatial index structures for acceleration.
|
||||
template<class TBin>
|
||||
class AutoArranger {
|
||||
public:
|
||||
// Useful type shortcuts...
|
||||
using Placer = typename placers::_NofitPolyPlacer<clppr::Polygon, TBin>;
|
||||
using Selector = selections::_FirstFitSelection<clppr::Polygon>;
|
||||
using Packer = _Nester<Placer, Selector>;
|
||||
using PConfig = typename Packer::PlacementConfig;
|
||||
using Distance = TCoord<PointImpl>;
|
||||
|
||||
protected:
|
||||
Packer m_pck;
|
||||
PConfig m_pconf; // Placement configuration
|
||||
TBin m_bin;
|
||||
double m_bin_area;
|
||||
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
|
||||
SpatIndex m_smallsrtree; // spatial index for only the smaller items
|
||||
double m_norm; // A coefficient to scale distances
|
||||
MultiPolygon m_merged_pile; // The already merged pile (vector of items)
|
||||
Box m_pilebb; // The bounding box of the merged pile.
|
||||
ItemGroup m_remaining; // Remaining items (m_items at the beginning)
|
||||
ItemGroup m_items; // The items to be packed
|
||||
|
||||
template<class T> ArithmeticOnly<T, double> norm(T val)
|
||||
{
|
||||
return double(val) / m_norm;
|
||||
}
|
||||
|
||||
// This is "the" object function which is evaluated many times for each
|
||||
// vertex (decimated with the accuracy parameter) of each object.
|
||||
// Therefore it is upmost crucial for this function to be as efficient
|
||||
// as it possibly can be but at the same time, it has to provide
|
||||
// reasonable results.
|
||||
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
||||
objfunc(const Item &item, const clppr::IntPoint &bincenter)
|
||||
{
|
||||
const double bin_area = m_bin_area;
|
||||
const SpatIndex& spatindex = m_rtree;
|
||||
const SpatIndex& smalls_spatindex = m_smallsrtree;
|
||||
const ItemGroup& remaining = m_remaining;
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto isBig = [bin_area](double a) {
|
||||
return a/bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
// Candidate item bounding box
|
||||
auto ibb = item.boundingBox();
|
||||
|
||||
// Calculate the full bounding box of the pile with the candidate item
|
||||
auto fullbb = sl::boundingBox(m_pilebb, ibb);
|
||||
|
||||
// The bounding box of the big items (they will accumulate in the center
|
||||
// of the pile
|
||||
Box bigbb;
|
||||
if(spatindex.empty()) bigbb = fullbb;
|
||||
else {
|
||||
auto boostbb = spatindex.bounds();
|
||||
boost::geometry::convert(boostbb, bigbb);
|
||||
}
|
||||
|
||||
// Will hold the resulting score
|
||||
double score = 0;
|
||||
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
double density = 0;
|
||||
|
||||
// Distinction of cases for the arrangement scene
|
||||
enum e_cases {
|
||||
// This branch is for big items in a mixed (big and small) scene
|
||||
// OR for all items in a small-only scene.
|
||||
BIG_ITEM,
|
||||
|
||||
// This branch is for the last big item in a mixed scene
|
||||
LAST_BIG_ITEM,
|
||||
|
||||
// For small items in a mixed scene.
|
||||
SMALL_ITEM
|
||||
} compute_case;
|
||||
|
||||
bool bigitems = isBig(item.area()) || spatindex.empty();
|
||||
if(bigitems && !remaining.empty()) compute_case = BIG_ITEM;
|
||||
else if (bigitems && remaining.empty()) compute_case = LAST_BIG_ITEM;
|
||||
else compute_case = SMALL_ITEM;
|
||||
|
||||
switch (compute_case) {
|
||||
case BIG_ITEM: {
|
||||
const clppr::IntPoint& minc = ibb.minCorner(); // bottom left corner
|
||||
const clppr::IntPoint& maxc = ibb.maxCorner(); // top right corner
|
||||
|
||||
// top left and bottom right corners
|
||||
clppr::IntPoint top_left{getX(minc), getY(maxc)};
|
||||
clppr::IntPoint bottom_right{getX(maxc), getY(minc)};
|
||||
|
||||
// Now the distance of the gravity center will be calculated to the
|
||||
// five anchor points and the smallest will be chosen.
|
||||
std::array<double, 5> dists;
|
||||
auto cc = fullbb.center(); // The gravity center
|
||||
dists[0] = pl::distance(minc, cc);
|
||||
dists[1] = pl::distance(maxc, cc);
|
||||
dists[2] = pl::distance(ibb.center(), cc);
|
||||
dists[3] = pl::distance(top_left, cc);
|
||||
dists[4] = pl::distance(bottom_right, cc);
|
||||
|
||||
// The smalles distance from the arranged pile center:
|
||||
double dist = norm(*(std::min_element(dists.begin(), dists.end())));
|
||||
double bindist = norm(pl::distance(ibb.center(), bincenter));
|
||||
dist = 0.8 * dist + 0.2*bindist;
|
||||
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item
|
||||
// aligned with its neighbors. We will check the alignment
|
||||
// with all neighbors and return the score for the best
|
||||
// alignment. So it is enough for the candidate to be
|
||||
// aligned with only one item.
|
||||
auto alignment_score = 1.0;
|
||||
|
||||
auto query = bgi::intersects(ibb);
|
||||
auto& index = isBig(item.area()) ? spatindex : smalls_spatindex;
|
||||
|
||||
// Query the spatial index for the neighbors
|
||||
std::vector<SpatElement> result;
|
||||
result.reserve(index.size());
|
||||
|
||||
index.query(query, std::back_inserter(result));
|
||||
|
||||
// now get the score for the best alignment
|
||||
for(auto& e : result) {
|
||||
auto idx = e.second;
|
||||
Item& p = m_items[idx];
|
||||
auto parea = p.area();
|
||||
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
|
||||
auto bb = sl::boundingBox(p.boundingBox(), ibb);
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
|
||||
if(ascore < alignment_score) alignment_score = ascore;
|
||||
}
|
||||
}
|
||||
|
||||
density = std::sqrt(norm(fullbb.width()) * norm(fullbb.height()));
|
||||
|
||||
// The final mix of the score is the balance between the
|
||||
// distance from the full pile center, the pack density and
|
||||
// the alignment with the neighbors
|
||||
if (result.empty())
|
||||
score = 0.5 * dist + 0.5 * density;
|
||||
else
|
||||
score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
|
||||
|
||||
break;
|
||||
}
|
||||
case LAST_BIG_ITEM: {
|
||||
auto mp = m_merged_pile;
|
||||
mp.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
|
||||
placers::EdgeCache<clppr::Polygon> ec(chull);
|
||||
|
||||
double circ = norm(ec.circumference());
|
||||
double bcirc = 2.0 * norm(fullbb.width() + fullbb.height());
|
||||
score = 0.5 * circ + 0.5 * bcirc;
|
||||
break;
|
||||
}
|
||||
case SMALL_ITEM: {
|
||||
// Here there are the small items that should be placed around the
|
||||
// already processed bigger items.
|
||||
// No need to play around with the anchor points, the center will be
|
||||
// just fine for small items
|
||||
score = norm(pl::distance(ibb.center(), bigbb.center()));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_tuple(score, fullbb);
|
||||
}
|
||||
|
||||
std::function<double(const Item&)> get_objfn();
|
||||
|
||||
public:
|
||||
AutoArranger(const TBin & bin,
|
||||
Distance dist,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcond)
|
||||
: m_pck(bin, dist)
|
||||
, m_bin(bin)
|
||||
, m_bin_area(sl::area(bin))
|
||||
, m_norm(std::sqrt(m_bin_area))
|
||||
{
|
||||
fillConfig(m_pconf);
|
||||
|
||||
// Set up a callback that is called just before arranging starts
|
||||
// This functionality is provided by the Nester class (m_pack).
|
||||
m_pconf.before_packing =
|
||||
[this](const MultiPolygon& merged_pile, // merged pile
|
||||
const ItemGroup& items, // packed items
|
||||
const ItemGroup& remaining) // future items to be packed
|
||||
{
|
||||
m_items = items;
|
||||
m_merged_pile = merged_pile;
|
||||
m_remaining = remaining;
|
||||
|
||||
m_pilebb = sl::boundingBox(merged_pile);
|
||||
|
||||
m_rtree.clear();
|
||||
m_smallsrtree.clear();
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto isBig = [this](double a) {
|
||||
return a / m_bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
for(unsigned idx = 0; idx < items.size(); ++idx) {
|
||||
Item& itm = items[idx];
|
||||
if(isBig(itm.area())) m_rtree.insert({itm.boundingBox(), idx});
|
||||
m_smallsrtree.insert({itm.boundingBox(), idx});
|
||||
}
|
||||
};
|
||||
|
||||
m_pconf.object_function = get_objfn();
|
||||
|
||||
if (progressind) m_pck.progressIndicator(progressind);
|
||||
if (stopcond) m_pck.stopCondition(stopcond);
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
}
|
||||
|
||||
template<class...Args> inline void operator()(Args&&...args) {
|
||||
m_rtree.clear(); /*m_preload_idx.clear();*/
|
||||
m_pck.execute(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
inline void preload(std::vector<Item>& fixeditems) {
|
||||
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
|
||||
auto bb = sl::boundingBox(m_bin);
|
||||
auto bbcenter = bb.center();
|
||||
m_pconf.object_function = [this, bb, bbcenter](const Item &item) {
|
||||
return fixed_overfit(objfunc(item, bbcenter), bb);
|
||||
};
|
||||
|
||||
// Build the rtree for queries to work
|
||||
|
||||
for(unsigned idx = 0; idx < fixeditems.size(); ++idx) {
|
||||
Item& itm = fixeditems[idx];
|
||||
itm.markAsFixed();
|
||||
}
|
||||
|
||||
m_pck.configure(m_pconf);
|
||||
}
|
||||
};
|
||||
|
||||
template<> std::function<double(const Item&)> AutoArranger<Box>::get_objfn()
|
||||
{
|
||||
auto bincenter = m_bin.center();
|
||||
|
||||
return [this, bincenter](const Item &itm) {
|
||||
auto result = objfunc(itm, bincenter);
|
||||
|
||||
double score = std::get<0>(result);
|
||||
auto& fullbb = std::get<1>(result);
|
||||
|
||||
double miss = Placer::overfit(fullbb, m_bin);
|
||||
miss = miss > 0? miss : 0;
|
||||
score += miss*miss;
|
||||
|
||||
return score;
|
||||
};
|
||||
}
|
||||
|
||||
template<> std::function<double(const Item&)> AutoArranger<Circle>::get_objfn()
|
||||
{
|
||||
auto bincenter = m_bin.center();
|
||||
return [this, bincenter](const Item &item) {
|
||||
|
||||
auto result = objfunc(item, bincenter);
|
||||
|
||||
double score = std::get<0>(result);
|
||||
|
||||
auto isBig = [this](const Item& itm) {
|
||||
return itm.area() / m_bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
if(isBig(item)) {
|
||||
auto mp = m_merged_pile;
|
||||
mp.push_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
double miss = Placer::overfit(chull, m_bin);
|
||||
if(miss < 0) miss = 0;
|
||||
score += miss*miss;
|
||||
}
|
||||
|
||||
return score;
|
||||
};
|
||||
}
|
||||
|
||||
// Specialization for a generalized polygon.
|
||||
// Warning: this is unfinished business. It may or may not work.
|
||||
template<>
|
||||
std::function<double(const Item &)> AutoArranger<clppr::Polygon>::get_objfn()
|
||||
{
|
||||
auto bincenter = sl::boundingBox(m_bin).center();
|
||||
return [this, bincenter](const Item &item) {
|
||||
return std::get<0>(objfunc(item, bincenter));
|
||||
};
|
||||
}
|
||||
|
||||
inline Circle to_lnCircle(const CircleBed& circ) {
|
||||
return Circle({circ.center()(0), circ.center()(1)}, circ.radius());
|
||||
}
|
||||
|
||||
// Get the type of bed geometry from a simple vector of points.
|
||||
BedShapeHint::BedShapeHint(const Polyline &bed) {
|
||||
auto x = [](const Point& p) { return p(X); };
|
||||
auto y = [](const Point& p) { return p(Y); };
|
||||
|
||||
auto width = [x](const BoundingBox& box) {
|
||||
return x(box.max) - x(box.min);
|
||||
};
|
||||
|
||||
auto height = [y](const BoundingBox& box) {
|
||||
return y(box.max) - y(box.min);
|
||||
};
|
||||
|
||||
auto area = [&width, &height](const BoundingBox& box) {
|
||||
double w = width(box);
|
||||
double h = height(box);
|
||||
return w * h;
|
||||
};
|
||||
|
||||
auto poly_area = [](Polyline p) {
|
||||
Polygon pp; pp.points.reserve(p.points.size() + 1);
|
||||
pp.points = std::move(p.points);
|
||||
pp.points.emplace_back(pp.points.front());
|
||||
return std::abs(pp.area());
|
||||
};
|
||||
|
||||
auto distance_to = [x, y](const Point& p1, const Point& p2) {
|
||||
double dx = x(p2) - x(p1);
|
||||
double dy = y(p2) - y(p1);
|
||||
return std::sqrt(dx*dx + dy*dy);
|
||||
};
|
||||
|
||||
auto bb = bed.bounding_box();
|
||||
|
||||
auto isCircle = [bb, distance_to](const Polyline& polygon) {
|
||||
auto center = bb.center();
|
||||
std::vector<double> vertex_distances;
|
||||
double avg_dist = 0;
|
||||
for (auto pt: polygon.points)
|
||||
{
|
||||
double distance = distance_to(center, pt);
|
||||
vertex_distances.push_back(distance);
|
||||
avg_dist += distance;
|
||||
}
|
||||
|
||||
avg_dist /= vertex_distances.size();
|
||||
|
||||
CircleBed ret(center, avg_dist);
|
||||
for(auto el : vertex_distances)
|
||||
{
|
||||
if (std::abs(el - avg_dist) > 10 * SCALED_EPSILON) {
|
||||
ret = CircleBed();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
};
|
||||
|
||||
auto parea = poly_area(bed);
|
||||
|
||||
if( (1.0 - parea/area(bb)) < 1e-3 ) {
|
||||
m_type = BedShapes::bsBox;
|
||||
m_bed.box = bb;
|
||||
}
|
||||
else if(auto c = isCircle(bed)) {
|
||||
m_type = BedShapes::bsCircle;
|
||||
m_bed.circ = c;
|
||||
} else {
|
||||
m_type = BedShapes::bsIrregular;
|
||||
m_bed.polygon = bed;
|
||||
}
|
||||
}
|
||||
|
||||
template<class BinT> // Arrange for arbitrary bin type
|
||||
void _arrange(
|
||||
std::vector<Item> & shapes,
|
||||
std::vector<Item> & excludes,
|
||||
const BinT & bin,
|
||||
coord_t minobjd,
|
||||
std::function<void(unsigned)> prind,
|
||||
std::function<bool()> stopfn)
|
||||
{
|
||||
// Integer ceiling the min distance from the bed perimeters
|
||||
coord_t md = minobjd - 2 * scaled(0.1 + EPSILON);
|
||||
md = (md % 2) ? md / 2 + 1 : md / 2;
|
||||
|
||||
auto corrected_bin = bin;
|
||||
sl::offset(corrected_bin, md);
|
||||
|
||||
AutoArranger<BinT> arranger{corrected_bin, 0, prind, stopfn};
|
||||
|
||||
auto infl = coord_t(std::ceil(minobjd / 2.0));
|
||||
for (Item& itm : shapes) itm.inflate(infl);
|
||||
for (Item& itm : excludes) itm.inflate(infl);
|
||||
|
||||
auto it = excludes.begin();
|
||||
while (it != excludes.end())
|
||||
sl::isInside(it->transformedShape(), corrected_bin) ?
|
||||
++it : it = excludes.erase(it);
|
||||
|
||||
// If there is something on the plate
|
||||
if (!excludes.empty()) arranger.preload(excludes);
|
||||
|
||||
std::vector<std::reference_wrapper<Item>> inp;
|
||||
inp.reserve(shapes.size() + excludes.size());
|
||||
for (auto &itm : shapes ) inp.emplace_back(itm);
|
||||
for (auto &itm : excludes) inp.emplace_back(itm);
|
||||
|
||||
arranger(inp.begin(), inp.end());
|
||||
for (Item &itm : inp) itm.inflate(-infl);
|
||||
}
|
||||
|
||||
// The final client function for arrangement. A progress indicator and
|
||||
// a stop predicate can be also be passed to control the process.
|
||||
void arrange(ArrangePolygons & arrangables,
|
||||
const ArrangePolygons & excludes,
|
||||
coord_t min_obj_dist,
|
||||
const BedShapeHint & bedhint,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool()> stopcondition)
|
||||
{
|
||||
namespace clppr = ClipperLib;
|
||||
|
||||
std::vector<Item> items, fixeditems;
|
||||
items.reserve(arrangables.size());
|
||||
|
||||
// Create Item from Arrangeable
|
||||
auto process_arrangeable =
|
||||
[](const ArrangePolygon &arrpoly, std::vector<Item> &outp)
|
||||
{
|
||||
Polygon p = arrpoly.poly.contour;
|
||||
const Vec2crd & offs = arrpoly.translation;
|
||||
double rotation = arrpoly.rotation;
|
||||
|
||||
if (p.is_counter_clockwise()) p.reverse();
|
||||
|
||||
clppr::Polygon clpath(Slic3rMultiPoint_to_ClipperPath(p));
|
||||
|
||||
auto firstp = clpath.Contour.front();
|
||||
clpath.Contour.emplace_back(firstp);
|
||||
|
||||
outp.emplace_back(std::move(clpath));
|
||||
outp.back().rotation(rotation);
|
||||
outp.back().translation({offs.x(), offs.y()});
|
||||
outp.back().binId(arrpoly.bed_idx);
|
||||
outp.back().priority(arrpoly.priority);
|
||||
};
|
||||
|
||||
for (ArrangePolygon &arrangeable : arrangables)
|
||||
process_arrangeable(arrangeable, items);
|
||||
|
||||
for (const ArrangePolygon &fixed: excludes)
|
||||
process_arrangeable(fixed, fixeditems);
|
||||
|
||||
for (Item &itm : fixeditems) itm.inflate(scaled(-2. * EPSILON));
|
||||
|
||||
auto &cfn = stopcondition;
|
||||
auto &pri = progressind;
|
||||
|
||||
switch (bedhint.get_type()) {
|
||||
case bsBox: {
|
||||
// Create the arranger for the box shaped bed
|
||||
BoundingBox bbb = bedhint.get_box();
|
||||
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
|
||||
|
||||
_arrange(items, fixeditems, binbb, min_obj_dist, pri, cfn);
|
||||
break;
|
||||
}
|
||||
case bsCircle: {
|
||||
auto cc = to_lnCircle(bedhint.get_circle());
|
||||
|
||||
_arrange(items, fixeditems, cc, min_obj_dist, pri, cfn);
|
||||
break;
|
||||
}
|
||||
case bsIrregular: {
|
||||
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.get_irregular());
|
||||
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
|
||||
BoundingBox polybb(bedhint.get_irregular());
|
||||
|
||||
_arrange(items, fixeditems, irrbed, min_obj_dist, pri, cfn);
|
||||
break;
|
||||
}
|
||||
case bsInfinite: {
|
||||
const InfiniteBed& nobin = bedhint.get_infinite();
|
||||
auto infbb = Box::infinite({nobin.center.x(), nobin.center.y()});
|
||||
|
||||
_arrange(items, fixeditems, infbb, min_obj_dist, pri, cfn);
|
||||
break;
|
||||
}
|
||||
case bsUnknown: {
|
||||
// We know nothing about the bed, let it be infinite and zero centered
|
||||
_arrange(items, fixeditems, Box::infinite(), min_obj_dist, pri, cfn);
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
for(size_t i = 0; i < items.size(); ++i) {
|
||||
clppr::IntPoint tr = items[i].translation();
|
||||
arrangables[i].translation = {coord_t(tr.X), coord_t(tr.Y)};
|
||||
arrangables[i].rotation = items[i].rotation();
|
||||
arrangables[i].bed_idx = items[i].binId();
|
||||
}
|
||||
}
|
||||
|
||||
// Arrange, without the fixed items (excludes)
|
||||
void arrange(ArrangePolygons & inp,
|
||||
coord_t min_d,
|
||||
const BedShapeHint & bedhint,
|
||||
std::function<void(unsigned)> prfn,
|
||||
std::function<bool()> stopfn)
|
||||
{
|
||||
arrange(inp, {}, min_d, bedhint, prfn, stopfn);
|
||||
}
|
||||
|
||||
} // namespace arr
|
||||
} // namespace Slic3r
|
201
src/libslic3r/Arrange.hpp
Normal file
201
src/libslic3r/Arrange.hpp
Normal file
|
@ -0,0 +1,201 @@
|
|||
#ifndef MODELARRANGE_HPP
|
||||
#define MODELARRANGE_HPP
|
||||
|
||||
#include "ExPolygon.hpp"
|
||||
#include "BoundingBox.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
namespace arrangement {
|
||||
|
||||
/// A geometry abstraction for a circular print bed. Similarly to BoundingBox.
|
||||
class CircleBed {
|
||||
Point center_;
|
||||
double radius_;
|
||||
public:
|
||||
|
||||
inline CircleBed(): center_(0, 0), radius_(std::nan("")) {}
|
||||
inline CircleBed(const Point& c, double r): center_(c), radius_(r) {}
|
||||
|
||||
inline double radius() const { return radius_; }
|
||||
inline const Point& center() const { return center_; }
|
||||
inline operator bool() { return !std::isnan(radius_); }
|
||||
};
|
||||
|
||||
/// Representing an unbounded bed.
|
||||
struct InfiniteBed { Point center; };
|
||||
|
||||
/// Types of print bed shapes.
|
||||
enum BedShapes {
|
||||
bsBox,
|
||||
bsCircle,
|
||||
bsIrregular,
|
||||
bsInfinite,
|
||||
bsUnknown
|
||||
};
|
||||
|
||||
/// Info about the print bed for the arrange() function. This is a variant
|
||||
/// holding one of the four shapes a bed can be.
|
||||
class BedShapeHint {
|
||||
BedShapes m_type = BedShapes::bsInfinite;
|
||||
|
||||
union BedShape_u { // TODO: use variant from cpp17?
|
||||
CircleBed circ;
|
||||
BoundingBox box;
|
||||
Polyline polygon;
|
||||
InfiniteBed infbed{};
|
||||
~BedShape_u() {}
|
||||
BedShape_u() {};
|
||||
} m_bed;
|
||||
|
||||
public:
|
||||
|
||||
BedShapeHint(){};
|
||||
|
||||
/// Get a bed shape hint for arrange() from a naked Polyline.
|
||||
explicit BedShapeHint(const Polyline &polyl);
|
||||
explicit BedShapeHint(const BoundingBox &bb)
|
||||
{
|
||||
m_type = bsBox; m_bed.box = bb;
|
||||
}
|
||||
|
||||
explicit BedShapeHint(const CircleBed &c)
|
||||
{
|
||||
m_type = bsCircle; m_bed.circ = c;
|
||||
}
|
||||
|
||||
explicit BedShapeHint(const InfiniteBed &ibed)
|
||||
{
|
||||
m_type = bsInfinite; m_bed.infbed = ibed;
|
||||
}
|
||||
|
||||
~BedShapeHint()
|
||||
{
|
||||
if (m_type == BedShapes::bsIrregular)
|
||||
m_bed.polygon.Slic3r::Polyline::~Polyline();
|
||||
};
|
||||
|
||||
BedShapeHint(const BedShapeHint &cpy) { *this = cpy; }
|
||||
BedShapeHint(BedShapeHint &&cpy) { *this = std::move(cpy); }
|
||||
|
||||
BedShapeHint &operator=(const BedShapeHint &cpy)
|
||||
{
|
||||
m_type = cpy.m_type;
|
||||
switch(m_type) {
|
||||
case bsBox: m_bed.box = cpy.m_bed.box; break;
|
||||
case bsCircle: m_bed.circ = cpy.m_bed.circ; break;
|
||||
case bsIrregular: m_bed.polygon = cpy.m_bed.polygon; break;
|
||||
case bsInfinite: m_bed.infbed = cpy.m_bed.infbed; break;
|
||||
case bsUnknown: break;
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
BedShapeHint& operator=(BedShapeHint &&cpy)
|
||||
{
|
||||
m_type = cpy.m_type;
|
||||
switch(m_type) {
|
||||
case bsBox: m_bed.box = std::move(cpy.m_bed.box); break;
|
||||
case bsCircle: m_bed.circ = std::move(cpy.m_bed.circ); break;
|
||||
case bsIrregular: m_bed.polygon = std::move(cpy.m_bed.polygon); break;
|
||||
case bsInfinite: m_bed.infbed = std::move(cpy.m_bed.infbed); break;
|
||||
case bsUnknown: break;
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
BedShapes get_type() const { return m_type; }
|
||||
|
||||
const BoundingBox &get_box() const
|
||||
{
|
||||
assert(m_type == bsBox); return m_bed.box;
|
||||
}
|
||||
const CircleBed &get_circle() const
|
||||
{
|
||||
assert(m_type == bsCircle); return m_bed.circ;
|
||||
}
|
||||
const Polyline &get_irregular() const
|
||||
{
|
||||
assert(m_type == bsIrregular); return m_bed.polygon;
|
||||
}
|
||||
const InfiniteBed &get_infinite() const
|
||||
{
|
||||
assert(m_type == bsInfinite); return m_bed.infbed;
|
||||
}
|
||||
};
|
||||
|
||||
/// A logical bed representing an object not being arranged. Either the arrange
|
||||
/// has not yet successfully run on this ArrangePolygon or it could not fit the
|
||||
/// object due to overly large size or invalid geometry.
|
||||
static const constexpr int UNARRANGED = -1;
|
||||
|
||||
/// Input/Output structure for the arrange() function. The poly field will not
|
||||
/// be modified during arrangement. Instead, the translation and rotation fields
|
||||
/// will mark the needed transformation for the polygon to be in the arranged
|
||||
/// position. These can also be set to an initial offset and rotation.
|
||||
///
|
||||
/// The bed_idx field will indicate the logical bed into which the
|
||||
/// polygon belongs: UNARRANGED means no place for the polygon
|
||||
/// (also the initial state before arrange), 0..N means the index of the bed.
|
||||
/// Zero is the physical bed, larger than zero means a virtual bed.
|
||||
struct ArrangePolygon {
|
||||
ExPolygon poly; /// The 2D silhouette to be arranged
|
||||
Vec2crd translation{0, 0}; /// The translation of the poly
|
||||
double rotation{0.0}; /// The rotation of the poly in radians
|
||||
int bed_idx{UNARRANGED}; /// To which logical bed does poly belong...
|
||||
int priority{0};
|
||||
|
||||
/// Optional setter function which can store arbitrary data in its closure
|
||||
std::function<void(const ArrangePolygon&)> setter = nullptr;
|
||||
|
||||
/// Helper function to call the setter with the arrange data arguments
|
||||
void apply() const { if (setter) setter(*this); }
|
||||
|
||||
/// Test if arrange() was called previously and gave a successful result.
|
||||
bool is_arranged() const { return bed_idx != UNARRANGED; }
|
||||
};
|
||||
|
||||
using ArrangePolygons = std::vector<ArrangePolygon>;
|
||||
|
||||
/**
|
||||
* \brief Arranges the input polygons.
|
||||
*
|
||||
* WARNING: Currently, only convex polygons are supported by the libnest2d
|
||||
* library which is used to do the arrangement. This might change in the future
|
||||
* this is why the interface contains a general polygon capable to have holes.
|
||||
*
|
||||
* \param items Input vector of ArrangePolygons. The transformation, rotation
|
||||
* and bin_idx fields will be changed after the call finished and can be used
|
||||
* to apply the result on the input polygon.
|
||||
*
|
||||
* \param min_obj_distance The minimum distance which is allowed for any
|
||||
* pair of items on the print bed in any direction.
|
||||
*
|
||||
* \param bedhint Info about the shape and type of the bed.
|
||||
*
|
||||
* \param progressind Progress indicator callback called when
|
||||
* an object gets packed. The unsigned argument is the number of items
|
||||
* remaining to pack.
|
||||
*
|
||||
* \param stopcondition A predicate returning true if abort is needed.
|
||||
*/
|
||||
void arrange(ArrangePolygons & items,
|
||||
coord_t min_obj_distance,
|
||||
const BedShapeHint & bedhint,
|
||||
std::function<void(unsigned)> progressind = nullptr,
|
||||
std::function<bool(void)> stopcondition = nullptr);
|
||||
|
||||
/// Same as the previous, only that it takes unmovable items as an
|
||||
/// additional argument. Those will be considered as already arranged objects.
|
||||
void arrange(ArrangePolygons & items,
|
||||
const ArrangePolygons & excludes,
|
||||
coord_t min_obj_distance,
|
||||
const BedShapeHint & bedhint,
|
||||
std::function<void(unsigned)> progressind = nullptr,
|
||||
std::function<bool(void)> stopcondition = nullptr);
|
||||
|
||||
} // arr
|
||||
} // Slic3r
|
||||
#endif // MODELARRANGE_HPP
|
|
@ -106,8 +106,8 @@ add_library(libslic3r STATIC
|
|||
Line.hpp
|
||||
Model.cpp
|
||||
Model.hpp
|
||||
ModelArrange.hpp
|
||||
ModelArrange.cpp
|
||||
Arrange.hpp
|
||||
Arrange.cpp
|
||||
MotionPlanner.cpp
|
||||
MotionPlanner.hpp
|
||||
MultiPoint.cpp
|
||||
|
|
|
@ -126,6 +126,7 @@ void GCodeAnalyzer::reset()
|
|||
_set_start_position(DEFAULT_START_POSITION);
|
||||
_set_start_extrusion(DEFAULT_START_EXTRUSION);
|
||||
_reset_axes_position();
|
||||
_reset_cached_position();
|
||||
|
||||
m_moves_map.clear();
|
||||
m_extruder_offsets.clear();
|
||||
|
@ -262,6 +263,16 @@ void GCodeAnalyzer::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLi
|
|||
_processM108orM135(line);
|
||||
break;
|
||||
}
|
||||
case 401: // Repetier: Store x, y and z position
|
||||
{
|
||||
_processM401(line);
|
||||
break;
|
||||
}
|
||||
case 402: // Repetier: Go to stored position
|
||||
{
|
||||
_processM402(line);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
|
@ -433,12 +444,6 @@ void GCodeAnalyzer::_processM83(const GCodeReader::GCodeLine& line)
|
|||
_set_e_local_positioning_type(Relative);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processM600(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
m_state.cur_cp_color_id++;
|
||||
_set_cp_color_id(m_state.cur_cp_color_id);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processM108orM135(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
// These M-codes are used by MakerWare and Sailfish to change active tool.
|
||||
|
@ -447,7 +452,7 @@ void GCodeAnalyzer::_processM108orM135(const GCodeReader::GCodeLine& line)
|
|||
|
||||
size_t code = ::atoi(&(line.cmd()[1]));
|
||||
if ((code == 108 && m_gcode_flavor == gcfSailfish)
|
||||
|| (code == 135 && m_gcode_flavor == gcfMakerWare)) {
|
||||
|| (code == 135 && m_gcode_flavor == gcfMakerWare)) {
|
||||
|
||||
std::string cmd = line.raw();
|
||||
size_t T_pos = cmd.find("T");
|
||||
|
@ -458,6 +463,66 @@ void GCodeAnalyzer::_processM108orM135(const GCodeReader::GCodeLine& line)
|
|||
}
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processM401(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
if (m_gcode_flavor != gcfRepetier)
|
||||
return;
|
||||
|
||||
for (unsigned char a = 0; a <= 3; ++a)
|
||||
{
|
||||
_set_cached_position(a, _get_axis_position((EAxis)a));
|
||||
}
|
||||
_set_cached_position(4, _get_feedrate());
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processM402(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
if (m_gcode_flavor != gcfRepetier)
|
||||
return;
|
||||
|
||||
// see for reference:
|
||||
// https://github.com/repetier/Repetier-Firmware/blob/master/src/ArduinoAVR/Repetier/Printer.cpp
|
||||
// void Printer::GoToMemoryPosition(bool x, bool y, bool z, bool e, float feed)
|
||||
|
||||
bool has_xyz = !(line.has_x() || line.has_y() || line.has_z());
|
||||
|
||||
float p = FLT_MAX;
|
||||
for (unsigned char a = X; a <= Z; ++a)
|
||||
{
|
||||
if (has_xyz || line.has(a))
|
||||
{
|
||||
p = _get_cached_position(a);
|
||||
if (p != FLT_MAX)
|
||||
_set_axis_position((EAxis)a, p);
|
||||
}
|
||||
}
|
||||
|
||||
p = _get_cached_position(E);
|
||||
if (p != FLT_MAX)
|
||||
_set_axis_position(E, p);
|
||||
|
||||
p = FLT_MAX;
|
||||
if (!line.has_value(4, p))
|
||||
p = _get_cached_position(4);
|
||||
|
||||
if (p != FLT_MAX)
|
||||
_set_feedrate(p);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_reset_cached_position()
|
||||
{
|
||||
for (unsigned char a = 0; a <= 4; ++a)
|
||||
{
|
||||
m_state.cached_position[a] = FLT_MAX;
|
||||
}
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processM600(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
m_state.cur_cp_color_id++;
|
||||
_set_cp_color_id(m_state.cur_cp_color_id);
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_processT(const std::string& cmd)
|
||||
{
|
||||
if (cmd.length() > 1)
|
||||
|
@ -668,6 +733,17 @@ const Vec3d& GCodeAnalyzer::_get_start_position() const
|
|||
return m_state.start_position;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_cached_position(unsigned char axis, float position)
|
||||
{
|
||||
if ((0 <= axis) || (axis <= 4))
|
||||
m_state.cached_position[axis] = position;
|
||||
}
|
||||
|
||||
float GCodeAnalyzer::_get_cached_position(unsigned char axis) const
|
||||
{
|
||||
return ((0 <= axis) || (axis <= 4)) ? m_state.cached_position[axis] : FLT_MAX;
|
||||
}
|
||||
|
||||
void GCodeAnalyzer::_set_start_extrusion(float extrusion)
|
||||
{
|
||||
m_state.start_extrusion = extrusion;
|
||||
|
|
|
@ -96,6 +96,7 @@ private:
|
|||
EPositioningType e_local_positioning_type;
|
||||
Metadata data;
|
||||
Vec3d start_position = Vec3d::Zero();
|
||||
float cached_position[5]{ FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };
|
||||
float start_extrusion;
|
||||
float position[Num_Axis];
|
||||
unsigned int cur_cp_color_id = 0;
|
||||
|
@ -170,6 +171,12 @@ private:
|
|||
// Set tool (MakerWare and Sailfish flavor)
|
||||
void _processM108orM135(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Repetier: Store x, y and z position
|
||||
void _processM401(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Repetier: Go to stored position
|
||||
void _processM402(const GCodeReader::GCodeLine& line);
|
||||
|
||||
// Set color change
|
||||
void _processM600(const GCodeReader::GCodeLine& line);
|
||||
|
||||
|
@ -232,6 +239,11 @@ private:
|
|||
void _set_start_position(const Vec3d& position);
|
||||
const Vec3d& _get_start_position() const;
|
||||
|
||||
void _set_cached_position(unsigned char axis, float position);
|
||||
float _get_cached_position(unsigned char axis) const;
|
||||
|
||||
void _reset_cached_position();
|
||||
|
||||
void _set_start_extrusion(float extrusion);
|
||||
float _get_start_extrusion() const;
|
||||
float _get_delta_extrusion() const;
|
||||
|
|
|
@ -314,49 +314,48 @@ template<class I> struct is_scaled_coord
|
|||
};
|
||||
|
||||
// Meta predicates for floating, 'scaled coord' and generic arithmetic types
|
||||
template<class T>
|
||||
using FloatingOnly = enable_if_t<std::is_floating_point<T>::value, T>;
|
||||
template<class T, class O = T>
|
||||
using FloatingOnly = enable_if_t<std::is_floating_point<T>::value, O>;
|
||||
|
||||
template<class T>
|
||||
using ScaledCoordOnly = enable_if_t<is_scaled_coord<T>::value, T>;
|
||||
template<class T, class O = T>
|
||||
using ScaledCoordOnly = enable_if_t<is_scaled_coord<T>::value, O>;
|
||||
|
||||
template<class T>
|
||||
using ArithmeticOnly = enable_if_t<std::is_arithmetic<T>::value, T>;
|
||||
|
||||
// A shorter form for a generic Eigen vector which is widely used in PrusaSlicer
|
||||
template<class T, int N>
|
||||
using EigenVec = Eigen::Matrix<T, N, 1, Eigen::DontAlign>;
|
||||
template<class T, class O = T>
|
||||
using ArithmeticOnly = enable_if_t<std::is_arithmetic<T>::value, O>;
|
||||
|
||||
// Semantics are the following:
|
||||
// Upscaling (scaled()): only from floating point types (or Vec) to either
|
||||
// floating point or integer 'scaled coord' coordinates.
|
||||
// Downscaling (unscaled()): from arithmetic types (or Vec) to either
|
||||
// floating point only
|
||||
// Downscaling (unscaled()): from arithmetic (or Vec) to floating point only
|
||||
|
||||
// Conversion definition from unscaled to floating point scaled
|
||||
template<class Tout,
|
||||
class Tin,
|
||||
class = FloatingOnly<Tin>,
|
||||
class = FloatingOnly<Tout>>
|
||||
inline SLIC3R_CONSTEXPR Tout scaled(const Tin &v) SLIC3R_NOEXCEPT
|
||||
class = FloatingOnly<Tin>>
|
||||
inline constexpr FloatingOnly<Tout> scaled(const Tin &v) noexcept
|
||||
{
|
||||
return static_cast<Tout>(v / static_cast<Tin>(SCALING_FACTOR));
|
||||
return Tout(v / Tin(SCALING_FACTOR));
|
||||
}
|
||||
|
||||
// Conversion definition from unscaled to integer 'scaled coord'.
|
||||
// TODO: is the rounding necessary ? Here it is to show that it can be different
|
||||
// but it does not have to be. Using std::round means loosing noexcept and
|
||||
// constexpr modifiers
|
||||
// TODO: is the rounding necessary? Here it is commented out to show that
|
||||
// it can be different for integers but it does not have to be. Using
|
||||
// std::round means loosing noexcept and constexpr modifiers
|
||||
template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
|
||||
inline SLIC3R_CONSTEXPR ScaledCoordOnly<Tout> scaled(const Tin &v) SLIC3R_NOEXCEPT
|
||||
inline constexpr ScaledCoordOnly<Tout> scaled(const Tin &v) noexcept
|
||||
{
|
||||
//return static_cast<Tout>(std::round(v / SCALING_FACTOR));
|
||||
return static_cast<Tout>(v / static_cast<Tin>(SCALING_FACTOR));
|
||||
return Tout(v / Tin(SCALING_FACTOR));
|
||||
}
|
||||
|
||||
// Conversion for Eigen vectors (N dimensional points)
|
||||
template<class Tout = coord_t, class Tin, int N, class = FloatingOnly<Tin>>
|
||||
inline EigenVec<ArithmeticOnly<Tout>, N> scaled(const EigenVec<Tin, N> &v)
|
||||
template<class Tout = coord_t,
|
||||
class Tin,
|
||||
int N,
|
||||
class = FloatingOnly<Tin>,
|
||||
int...EigenArgs>
|
||||
inline Eigen::Matrix<ArithmeticOnly<Tout>, N, EigenArgs...>
|
||||
scaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v)
|
||||
{
|
||||
return (v / SCALING_FACTOR).template cast<Tout>();
|
||||
}
|
||||
|
@ -366,9 +365,9 @@ template<class Tout = double,
|
|||
class Tin,
|
||||
class = ArithmeticOnly<Tin>,
|
||||
class = FloatingOnly<Tout>>
|
||||
inline SLIC3R_CONSTEXPR Tout unscaled(const Tin &v) SLIC3R_NOEXCEPT
|
||||
inline constexpr Tout unscaled(const Tin &v) noexcept
|
||||
{
|
||||
return static_cast<Tout>(v * static_cast<Tout>(SCALING_FACTOR));
|
||||
return Tout(v * Tout(SCALING_FACTOR));
|
||||
}
|
||||
|
||||
// Unscaling for Eigen vectors. Input base type can be arithmetic, output base
|
||||
|
@ -377,9 +376,10 @@ template<class Tout = double,
|
|||
class Tin,
|
||||
int N,
|
||||
class = ArithmeticOnly<Tin>,
|
||||
class = FloatingOnly<Tout>>
|
||||
inline SLIC3R_CONSTEXPR EigenVec<Tout, N> unscaled(
|
||||
const EigenVec<Tin, N> &v) SLIC3R_NOEXCEPT
|
||||
class = FloatingOnly<Tout>,
|
||||
int...EigenArgs>
|
||||
inline constexpr Eigen::Matrix<Tout, N, EigenArgs...>
|
||||
unscaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v) noexcept
|
||||
{
|
||||
return v.template cast<Tout>() * SCALING_FACTOR;
|
||||
}
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
#include "Model.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "MTUtils.hpp"
|
||||
|
||||
#include "Format/AMF.hpp"
|
||||
#include "Format/OBJ.hpp"
|
||||
|
@ -369,34 +370,44 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
|
|||
/* arrange objects preserving their instance count
|
||||
but altering their instance positions */
|
||||
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
||||
{
|
||||
// get the (transformed) size of each instance so that we take
|
||||
// into account their different transformations when packing
|
||||
Pointfs instance_sizes;
|
||||
Pointfs instance_centers;
|
||||
for (const ModelObject *o : this->objects)
|
||||
for (size_t i = 0; i < o->instances.size(); ++ i) {
|
||||
// an accurate snug bounding box around the transformed mesh.
|
||||
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
|
||||
instance_sizes.emplace_back(to_2d(bbox.size()));
|
||||
instance_centers.emplace_back(to_2d(bbox.center()));
|
||||
{
|
||||
size_t count = 0;
|
||||
for (auto obj : objects) count += obj->instances.size();
|
||||
|
||||
arrangement::ArrangePolygons input;
|
||||
ModelInstancePtrs instances;
|
||||
input.reserve(count);
|
||||
instances.reserve(count);
|
||||
for (ModelObject *mo : objects)
|
||||
for (ModelInstance *minst : mo->instances) {
|
||||
input.emplace_back(minst->get_arrange_polygon());
|
||||
instances.emplace_back(minst);
|
||||
}
|
||||
|
||||
Pointfs positions;
|
||||
if (! _arrange(instance_sizes, dist, bb, positions))
|
||||
return false;
|
||||
|
||||
size_t idx = 0;
|
||||
for (ModelObject *o : this->objects) {
|
||||
for (ModelInstance *i : o->instances) {
|
||||
Vec2d offset_xy = positions[idx] - instance_centers[idx];
|
||||
i->set_offset(Vec3d(offset_xy(0), offset_xy(1), i->get_offset(Z)));
|
||||
++idx;
|
||||
}
|
||||
o->invalidate_bounding_box();
|
||||
|
||||
arrangement::BedShapeHint bedhint;
|
||||
coord_t bedwidth = 0;
|
||||
|
||||
if (bb) {
|
||||
bedwidth = scaled(bb->size().x());
|
||||
bedhint = arrangement::BedShapeHint(
|
||||
BoundingBox(scaled(bb->min), scaled(bb->max)));
|
||||
}
|
||||
|
||||
return true;
|
||||
arrangement::arrange(input, scaled(dist), bedhint);
|
||||
|
||||
bool ret = true;
|
||||
coord_t stride = bedwidth + bedwidth / 5;
|
||||
|
||||
for(size_t i = 0; i < input.size(); ++i) {
|
||||
if (input[i].bed_idx != 0) ret = false;
|
||||
if (input[i].bed_idx >= 0) {
|
||||
input[i].translation += Vec2crd{input[i].bed_idx * stride, 0};
|
||||
instances[i]->apply_arrange_result(input[i].translation,
|
||||
input[i].rotation);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Duplicate the entire model preserving instance relative positions.
|
||||
|
@ -1814,6 +1825,36 @@ void ModelInstance::transform_polygon(Polygon* polygon) const
|
|||
polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin
|
||||
}
|
||||
|
||||
arrangement::ArrangePolygon ModelInstance::get_arrange_polygon() const
|
||||
{
|
||||
static const double SIMPLIFY_TOLERANCE_MM = 0.1;
|
||||
|
||||
Vec3d rotation = get_rotation();
|
||||
rotation.z() = 0.;
|
||||
Transform3d trafo_instance =
|
||||
Geometry::assemble_transform(Vec3d::Zero(), rotation,
|
||||
get_scaling_factor(), get_mirror());
|
||||
|
||||
Polygon p = get_object()->convex_hull_2d(trafo_instance);
|
||||
|
||||
assert(!p.points.empty());
|
||||
|
||||
// this may happen for malformed models, see:
|
||||
// https://github.com/prusa3d/PrusaSlicer/issues/2209
|
||||
if (!p.points.empty()) {
|
||||
Polygons pp{p};
|
||||
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
|
||||
if (!pp.empty()) p = pp.front();
|
||||
}
|
||||
|
||||
arrangement::ArrangePolygon ret;
|
||||
ret.poly.contour = std::move(p);
|
||||
ret.translation = Vec2crd{scaled(get_offset(X)), scaled(get_offset(Y))};
|
||||
ret.rotation = get_rotation(Z);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
|
||||
// ordered in the same order. In that case it is not necessary to kill the background processing.
|
||||
bool model_object_list_equal(const Model &model_old, const Model &model_new)
|
||||
|
|
|
@ -10,6 +10,7 @@
|
|||
#include "Slicing.hpp"
|
||||
#include "SLA/SLACommon.hpp"
|
||||
#include "TriangleMesh.hpp"
|
||||
#include "Arrange.hpp"
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
|
@ -602,7 +603,7 @@ public:
|
|||
|
||||
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
|
||||
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
|
||||
|
||||
|
||||
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
|
||||
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
|
||||
|
||||
|
@ -621,7 +622,7 @@ public:
|
|||
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
|
||||
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
|
||||
bool is_left_handed() const { return m_transformation.is_left_handed(); }
|
||||
|
||||
|
||||
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
|
||||
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
|
||||
|
||||
|
@ -639,6 +640,18 @@ public:
|
|||
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
|
||||
|
||||
bool is_printable() const { return print_volume_state == PVS_Inside; }
|
||||
|
||||
// Getting the input polygon for arrange
|
||||
arrangement::ArrangePolygon get_arrange_polygon() const;
|
||||
|
||||
// Apply the arrange result on the ModelInstance
|
||||
void apply_arrange_result(const Vec2crd& offs, double rotation)
|
||||
{
|
||||
// write the transformation data into the model instance
|
||||
set_rotation(Z, rotation);
|
||||
set_offset(X, unscale<double>(offs(X)));
|
||||
set_offset(Y, unscale<double>(offs(Y)));
|
||||
}
|
||||
|
||||
protected:
|
||||
friend class Print;
|
||||
|
@ -654,10 +667,10 @@ private:
|
|||
ModelObject* object;
|
||||
|
||||
// Constructor, which assigns a new unique ID.
|
||||
explicit ModelInstance(ModelObject *object) : object(object), print_volume_state(PVS_Inside) { assert(this->id().valid()); }
|
||||
explicit ModelInstance(ModelObject *object) : print_volume_state(PVS_Inside), object(object) { assert(this->id().valid()); }
|
||||
// Constructor, which assigns a new unique ID.
|
||||
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
|
||||
m_transformation(other.m_transformation), object(object), print_volume_state(PVS_Inside) { assert(this->id().valid() && this->id() != other.id()); }
|
||||
m_transformation(other.m_transformation), print_volume_state(PVS_Inside), object(object) { assert(this->id().valid() && this->id() != other.id()); }
|
||||
|
||||
explicit ModelInstance(ModelInstance &&rhs) = delete;
|
||||
ModelInstance& operator=(const ModelInstance &rhs) = delete;
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -1,95 +0,0 @@
|
|||
#ifndef MODELARRANGE_HPP
|
||||
#define MODELARRANGE_HPP
|
||||
|
||||
#include "Model.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Model;
|
||||
|
||||
namespace arr {
|
||||
|
||||
class Circle {
|
||||
Point center_;
|
||||
double radius_;
|
||||
public:
|
||||
|
||||
inline Circle(): center_(0, 0), radius_(std::nan("")) {}
|
||||
inline Circle(const Point& c, double r): center_(c), radius_(r) {}
|
||||
|
||||
inline double radius() const { return radius_; }
|
||||
inline const Point& center() const { return center_; }
|
||||
inline operator bool() { return !std::isnan(radius_); }
|
||||
};
|
||||
|
||||
enum class BedShapeType {
|
||||
BOX,
|
||||
CIRCLE,
|
||||
IRREGULAR,
|
||||
WHO_KNOWS
|
||||
};
|
||||
|
||||
struct BedShapeHint {
|
||||
BedShapeType type;
|
||||
/*union*/ struct { // I know but who cares...
|
||||
Circle circ;
|
||||
BoundingBox box;
|
||||
Polyline polygon;
|
||||
} shape;
|
||||
};
|
||||
|
||||
BedShapeHint bedShape(const Polyline& bed);
|
||||
|
||||
struct WipeTowerInfo {
|
||||
bool is_wipe_tower = false;
|
||||
Vec2d pos;
|
||||
Vec2d bb_size;
|
||||
double rotation;
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Arranges the model objects on the screen.
|
||||
*
|
||||
* The arrangement considers multiple bins (aka. print beds) for placing all
|
||||
* the items provided in the model argument. If the items don't fit on one
|
||||
* print bed, the remaining will be placed onto newly created print beds.
|
||||
* The first_bin_only parameter, if set to true, disables this behavior and
|
||||
* makes sure that only one print bed is filled and the remaining items will be
|
||||
* untouched. When set to false, the items which could not fit onto the
|
||||
* print bed will be placed next to the print bed so the user should see a
|
||||
* pile of items on the print bed and some other piles outside the print
|
||||
* area that can be dragged later onto the print bed as a group.
|
||||
*
|
||||
* \param model The model object with the 3D content.
|
||||
* \param dist The minimum distance which is allowed for any pair of items
|
||||
* on the print bed in any direction.
|
||||
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
||||
* for bin packing.
|
||||
* \param first_bin_only This parameter controls whether to place the
|
||||
* remaining items which do not fit onto the print area next to the print
|
||||
* bed or leave them untouched (let the user arrange them by hand or remove
|
||||
* them).
|
||||
* \param progressind Progress indicator callback called when an object gets
|
||||
* packed. The unsigned argument is the number of items remaining to pack.
|
||||
* \param stopcondition A predicate returning true if abort is needed.
|
||||
*/
|
||||
bool arrange(Model &model,
|
||||
WipeTowerInfo& wipe_tower_info,
|
||||
coord_t min_obj_distance,
|
||||
const Slic3r::Polyline& bed,
|
||||
BedShapeHint bedhint,
|
||||
bool first_bin_only,
|
||||
std::function<void(unsigned)> progressind,
|
||||
std::function<bool(void)> stopcondition);
|
||||
|
||||
/// This will find a suitable position for a new object instance and leave the
|
||||
/// old items untouched.
|
||||
void find_new_position(const Model& model,
|
||||
ModelInstancePtrs instances_to_add,
|
||||
coord_t min_obj_distance,
|
||||
const Slic3r::Polyline& bed,
|
||||
WipeTowerInfo& wti);
|
||||
|
||||
} // arr
|
||||
} // Slic3r
|
||||
#endif // MODELARRANGE_HPP
|
Loading…
Add table
Add a link
Reference in a new issue