Port overhang extra perimeters from PrusaSlicer (#1939)

* Port overhang extra perimeters from PrusaSlicer

* Reduce duplicated code

* Add credits

---------

Co-authored-by: SoftFever <softfeverever@gmail.com>
Co-authored-by: PavelMikus <pavel.mikus.mail@seznam.cz>
This commit is contained in:
Noisyfox 2023-08-28 19:56:09 +08:00 committed by GitHub
parent 6710d1845d
commit b9ca1c8720
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 475 additions and 4 deletions

View file

@ -1,4 +1,6 @@
#include "PerimeterGenerator.hpp"
#include "AABBTreeLines.hpp"
#include "BridgeDetector.hpp"
#include "ClipperUtils.hpp"
#include "ExtrusionEntity.hpp"
#include "ExtrusionEntityCollection.hpp"
@ -7,6 +9,7 @@
#include "CurveAnalyzer.hpp"
#include "Clipper2Utils.hpp"
#include "Arachne/WallToolPaths.hpp"
#include "Geometry/ConvexHull.hpp"
#include <cmath>
#include <cassert>
@ -854,6 +857,447 @@ void PerimeterGenerator::split_top_surfaces(const ExPolygons &orig_polygons, ExP
//}
}
// Port "extra perimeters on overhangs" from PrusaSlicer. Original author: PavelMikus pavel.mikus.mail@seznam.cz
// Based on: https://github.com/prusa3d/PrusaSlicer/blob/c05542590d7c2d73eb69bbf7a82a482a075815c1/src/libslic3r/PerimeterGenerator.cpp#L667-L1071
// find out if paths touch - at least one point of one path is within limit distance of second path
bool paths_touch(const ExtrusionPath &path_one, const ExtrusionPath &path_two, double limit_distance)
{
AABBTreeLines::LinesDistancer<Line> lines_two{path_two.as_polyline().lines()};
for (size_t pt_idx = 0; pt_idx < path_one.polyline.size(); pt_idx++) {
if (lines_two.distance_from_lines<false>(path_one.polyline.points[pt_idx]) < limit_distance) { return true; }
}
AABBTreeLines::LinesDistancer<Line> lines_one{path_one.as_polyline().lines()};
for (size_t pt_idx = 0; pt_idx < path_two.polyline.size(); pt_idx++) {
if (lines_one.distance_from_lines<false>(path_two.polyline.points[pt_idx]) < limit_distance) { return true; }
}
return false;
}
Polylines reconnect_polylines(const Polylines &polylines, double limit_distance)
{
if (polylines.empty())
return polylines;
std::unordered_map<size_t, Polyline> connected;
connected.reserve(polylines.size());
for (size_t i = 0; i < polylines.size(); i++) {
if (!polylines[i].empty()) {
connected.emplace(i, polylines[i]);
}
}
for (size_t a = 0; a < polylines.size(); a++) {
if (connected.find(a) == connected.end()) {
continue;
}
Polyline &base = connected.at(a);
for (size_t b = a + 1; b < polylines.size(); b++) {
if (connected.find(b) == connected.end()) {
continue;
}
Polyline &next = connected.at(b);
if ((base.last_point() - next.first_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
base.append(std::move(next));
connected.erase(b);
} else if ((base.last_point() - next.last_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
base.points.insert(base.points.end(), next.points.rbegin(), next.points.rend());
connected.erase(b);
} else if ((base.first_point() - next.last_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
next.append(std::move(base));
base = std::move(next);
base.reverse();
connected.erase(b);
} else if ((base.first_point() - next.first_point()).cast<double>().squaredNorm() < limit_distance * limit_distance) {
base.reverse();
base.append(std::move(next));
base.reverse();
connected.erase(b);
}
}
}
Polylines result;
for (auto &ext : connected) {
result.push_back(std::move(ext.second));
}
return result;
}
ExtrusionPaths sort_extra_perimeters(const ExtrusionPaths& extra_perims, int index_of_first_unanchored, double extrusion_spacing)
{
if (extra_perims.empty()) return {};
std::vector<std::unordered_set<size_t>> dependencies(extra_perims.size());
for (size_t path_idx = 0; path_idx < extra_perims.size(); path_idx++) {
for (size_t prev_path_idx = 0; prev_path_idx < path_idx; prev_path_idx++) {
if (paths_touch(extra_perims[path_idx], extra_perims[prev_path_idx], extrusion_spacing * 1.5f)) {
dependencies[path_idx].insert(prev_path_idx);
}
}
}
std::vector<bool> processed(extra_perims.size(), false);
for (int path_idx = 0; path_idx < index_of_first_unanchored; path_idx++) {
processed[path_idx] = true;
}
for (size_t i = index_of_first_unanchored; i < extra_perims.size(); i++) {
bool change = false;
for (size_t path_idx = index_of_first_unanchored; path_idx < extra_perims.size(); path_idx++) {
if (processed[path_idx])
continue;
auto processed_dep = std::find_if(dependencies[path_idx].begin(), dependencies[path_idx].end(),
[&](size_t dep) { return processed[dep]; });
if (processed_dep != dependencies[path_idx].end()) {
for (auto it = dependencies[path_idx].begin(); it != dependencies[path_idx].end();) {
if (!processed[*it]) {
dependencies[*it].insert(path_idx);
dependencies[path_idx].erase(it++);
} else {
++it;
}
}
processed[path_idx] = true;
change = true;
}
}
if (!change) {
break;
}
}
Point current_point = extra_perims.begin()->first_point();
ExtrusionPaths sorted_paths{};
size_t null_idx = size_t(-1);
size_t next_idx = null_idx;
bool reverse = false;
while (true) {
if (next_idx == null_idx) { // find next pidx to print
double dist = std::numeric_limits<double>::max();
for (size_t path_idx = 0; path_idx < extra_perims.size(); path_idx++) {
if (!dependencies[path_idx].empty())
continue;
const auto &path = extra_perims[path_idx];
double dist_a = (path.first_point() - current_point).cast<double>().squaredNorm();
if (dist_a < dist) {
dist = dist_a;
next_idx = path_idx;
reverse = false;
}
double dist_b = (path.last_point() - current_point).cast<double>().squaredNorm();
if (dist_b < dist) {
dist = dist_b;
next_idx = path_idx;
reverse = true;
}
}
if (next_idx == null_idx) {
break;
}
} else {
// we have valid next_idx, add it to the sorted paths, update dependencies, update current point and potentialy set new next_idx
ExtrusionPath path = extra_perims[next_idx];
if (reverse) {
path.reverse();
}
sorted_paths.push_back(path);
assert(dependencies[next_idx].empty());
dependencies[next_idx].insert(null_idx);
current_point = sorted_paths.back().last_point();
for (size_t path_idx = 0; path_idx < extra_perims.size(); path_idx++) {
dependencies[path_idx].erase(next_idx);
}
double dist = std::numeric_limits<double>::max();
next_idx = null_idx;
for (size_t path_idx = next_idx + 1; path_idx < extra_perims.size(); path_idx++) {
if (!dependencies[path_idx].empty()) {
continue;
}
const ExtrusionPath &next_path = extra_perims[path_idx];
double dist_a = (next_path.first_point() - current_point).cast<double>().squaredNorm();
if (dist_a < dist) {
dist = dist_a;
next_idx = path_idx;
reverse = false;
}
double dist_b = (next_path.last_point() - current_point).cast<double>().squaredNorm();
if (dist_b < dist) {
dist = dist_b;
next_idx = path_idx;
reverse = true;
}
}
if (dist > scaled(5.0)) {
next_idx = null_idx;
}
}
}
ExtrusionPaths reconnected;
reconnected.reserve(sorted_paths.size());
for (const ExtrusionPath &path : sorted_paths) {
if (!reconnected.empty() && (reconnected.back().last_point() - path.first_point()).cast<double>().squaredNorm() <
extrusion_spacing * extrusion_spacing * 4.0) {
reconnected.back().polyline.points.insert(reconnected.back().polyline.points.end(), path.polyline.points.begin(),
path.polyline.points.end());
} else {
reconnected.push_back(path);
}
}
ExtrusionPaths filtered;
filtered.reserve(reconnected.size());
for (ExtrusionPath &p : reconnected) {
if (p.length() > 3 * extrusion_spacing) {
filtered.push_back(p);
}
}
return filtered;
}
#define EXTRA_PERIMETER_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
// #define EXTRA_PERIM_DEBUG_FILES
// Function will generate extra perimeters clipped over nonbridgeable areas of the provided surface and returns both the new perimeters and
// Polygons filled by those clipped perimeters
std::tuple<std::vector<ExtrusionPaths>, Polygons> generate_extra_perimeters_over_overhangs(ExPolygons infill_area,
const Polygons &lower_slices_polygons,
int perimeter_count,
const Flow &overhang_flow,
double scaled_resolution,
const PrintObjectConfig &object_config,
const PrintConfig &print_config)
{
coord_t anchors_size = std::min(coord_t(scale_(EXTERNAL_INFILL_MARGIN)), overhang_flow.scaled_spacing() * (perimeter_count + 1));
BoundingBox infill_area_bb = get_extents(infill_area).inflated(SCALED_EPSILON);
Polygons optimized_lower_slices = ClipperUtils::clip_clipper_polygons_with_subject_bbox(lower_slices_polygons, infill_area_bb);
Polygons overhangs = diff(infill_area, optimized_lower_slices);
if (overhangs.empty()) { return {}; }
AABBTreeLines::LinesDistancer<Line> lower_layer_aabb_tree{to_lines(optimized_lower_slices)};
Polygons anchors = intersection(infill_area, optimized_lower_slices);
Polygons inset_anchors = diff(anchors,
expand(overhangs, anchors_size + 0.1 * overhang_flow.scaled_width(), EXTRA_PERIMETER_OFFSET_PARAMETERS));
Polygons inset_overhang_area = diff(infill_area, inset_anchors);
#ifdef EXTRA_PERIM_DEBUG_FILES
{
BoundingBox bbox = get_extents(inset_overhang_area);
bbox.offset(scale_(1.));
::Slic3r::SVG svg(debug_out_path("inset_overhang_area").c_str(), bbox);
for (const Line &line : to_lines(inset_anchors)) svg.draw(line, "purple", scale_(0.25));
for (const Line &line : to_lines(inset_overhang_area)) svg.draw(line, "red", scale_(0.15));
svg.Close();
}
#endif
Polygons inset_overhang_area_left_unfilled;
std::vector<ExtrusionPaths> extra_perims; // overhang region -> extrusion paths
for (const ExPolygon &overhang : union_ex(to_expolygons(inset_overhang_area))) {
Polygons overhang_to_cover = to_polygons(overhang);
Polygons expanded_overhang_to_cover = expand(overhang_to_cover, 1.1 * overhang_flow.scaled_spacing());
Polygons shrinked_overhang_to_cover = shrink(overhang_to_cover, 0.1 * overhang_flow.scaled_spacing());
Polygons real_overhang = intersection(overhang_to_cover, overhangs);
if (real_overhang.empty()) {
inset_overhang_area_left_unfilled.insert(inset_overhang_area_left_unfilled.end(), overhang_to_cover.begin(),
overhang_to_cover.end());
continue;
}
ExtrusionPaths &overhang_region = extra_perims.emplace_back();
Polygons anchoring = intersection(expanded_overhang_to_cover, inset_anchors);
Polygons perimeter_polygon = offset(union_(expand(overhang_to_cover, 0.1 * overhang_flow.scaled_spacing()), anchoring),
-overhang_flow.scaled_spacing() * 0.6);
Polygon anchoring_convex_hull = Geometry::convex_hull(anchoring);
double unbridgeable_area = area(diff(real_overhang, {anchoring_convex_hull}));
auto [dir, unsupp_dist] = detect_bridging_direction(real_overhang, anchors);
#ifdef EXTRA_PERIM_DEBUG_FILES
{
BoundingBox bbox = get_extents(anchoring_convex_hull);
bbox.offset(scale_(1.));
::Slic3r::SVG svg(debug_out_path("bridge_check").c_str(), bbox);
for (const Line &line : to_lines(perimeter_polygon)) svg.draw(line, "purple", scale_(0.25));
for (const Line &line : to_lines(real_overhang)) svg.draw(line, "red", scale_(0.20));
for (const Line &line : to_lines(anchoring_convex_hull)) svg.draw(line, "green", scale_(0.15));
for (const Line &line : to_lines(anchoring)) svg.draw(line, "yellow", scale_(0.10));
for (const Line &line : to_lines(diff_ex(perimeter_polygon, {anchoring_convex_hull}))) svg.draw(line, "black", scale_(0.10));
for (const Line &line : to_lines(diff_pl(to_polylines(diff(real_overhang, anchors)), expand(anchors, float(SCALED_EPSILON)))))
svg.draw(line, "blue", scale_(0.30));
svg.Close();
}
#endif
if (unbridgeable_area < 0.2 * area(real_overhang) && unsupp_dist < total_length(real_overhang) * 0.2) {
inset_overhang_area_left_unfilled.insert(inset_overhang_area_left_unfilled.end(),overhang_to_cover.begin(),overhang_to_cover.end());
perimeter_polygon.clear();
} else {
// fill the overhang with perimeters
int continuation_loops = 2;
while (continuation_loops >= 0) {
auto prev = perimeter_polygon;
// prepare next perimeter lines
Polylines perimeter = intersection_pl(to_polylines(perimeter_polygon), shrinked_overhang_to_cover);
// do not add the perimeter to result yet, first check if perimeter_polygon is not empty after shrinking - this would mean
// that the polygon was possibly too small for full perimeter loop and in that case try gap fill first
perimeter_polygon = union_(perimeter_polygon, anchoring);
perimeter_polygon = intersection(offset(perimeter_polygon, -overhang_flow.scaled_spacing()), expanded_overhang_to_cover);
if (perimeter_polygon.empty()) { // fill possible gaps of single extrusion width
Polygons shrinked = intersection(offset(prev, -0.3 * overhang_flow.scaled_spacing()), expanded_overhang_to_cover);
if (!shrinked.empty()) {
extrusion_paths_append(overhang_region, reconnect_polylines(perimeter, overhang_flow.scaled_spacing()),
ExtrusionRole::erOverhangPerimeter, overhang_flow.mm3_per_mm(), overhang_flow.width(),
overhang_flow.height());
}
Polylines fills;
ExPolygons gap = shrinked.empty() ? offset_ex(prev, overhang_flow.scaled_spacing() * 0.5) : to_expolygons(shrinked);
for (const ExPolygon &ep : gap) {
ep.medial_axis(0.75 * overhang_flow.scaled_width(), 3.0 * overhang_flow.scaled_spacing(), &fills);
}
if (!fills.empty()) {
fills = intersection_pl(fills, shrinked_overhang_to_cover);
extrusion_paths_append(overhang_region, reconnect_polylines(fills, overhang_flow.scaled_spacing()),
ExtrusionRole::erOverhangPerimeter, overhang_flow.mm3_per_mm(), overhang_flow.width(),
overhang_flow.height());
}
break;
} else {
extrusion_paths_append(overhang_region, reconnect_polylines(perimeter, overhang_flow.scaled_spacing()),
ExtrusionRole::erOverhangPerimeter, overhang_flow.mm3_per_mm(), overhang_flow.width(),
overhang_flow.height());
}
if (intersection(perimeter_polygon, real_overhang).empty()) { continuation_loops--; }
if (prev == perimeter_polygon) {
#ifdef EXTRA_PERIM_DEBUG_FILES
BoundingBox bbox = get_extents(perimeter_polygon);
bbox.offset(scale_(5.));
::Slic3r::SVG svg(debug_out_path("perimeter_polygon").c_str(), bbox);
for (const Line &line : to_lines(perimeter_polygon)) svg.draw(line, "blue", scale_(0.25));
for (const Line &line : to_lines(overhang_to_cover)) svg.draw(line, "red", scale_(0.20));
for (const Line &line : to_lines(real_overhang)) svg.draw(line, "green", scale_(0.15));
for (const Line &line : to_lines(anchoring)) svg.draw(line, "yellow", scale_(0.10));
svg.Close();
#endif
break;
}
}
perimeter_polygon = expand(perimeter_polygon, 0.5 * overhang_flow.scaled_spacing());
perimeter_polygon = union_(perimeter_polygon, anchoring);
inset_overhang_area_left_unfilled.insert(inset_overhang_area_left_unfilled.end(), perimeter_polygon.begin(),perimeter_polygon.end());
#ifdef EXTRA_PERIM_DEBUG_FILES
BoundingBox bbox = get_extents(inset_overhang_area);
bbox.offset(scale_(2.));
::Slic3r::SVG svg(debug_out_path("pre_final").c_str(), bbox);
for (const Line &line : to_lines(perimeter_polygon)) svg.draw(line, "blue", scale_(0.05));
for (const Line &line : to_lines(anchoring)) svg.draw(line, "green", scale_(0.05));
for (const Line &line : to_lines(overhang_to_cover)) svg.draw(line, "yellow", scale_(0.05));
for (const Line &line : to_lines(inset_overhang_area_left_unfilled)) svg.draw(line, "red", scale_(0.05));
svg.Close();
#endif
overhang_region.erase(std::remove_if(overhang_region.begin(), overhang_region.end(),
[](const ExtrusionPath &p) { return p.empty(); }),
overhang_region.end());
if (!overhang_region.empty()) {
// there is a special case, where the first (or last) generated overhang perimeter eats all anchor space.
// When this happens, the first overhang perimeter is also a closed loop, and needs special check
// instead of the following simple is_anchored lambda, which checks only the first and last point (not very useful on closed
// polyline)
bool first_overhang_is_closed_and_anchored =
(overhang_region.front().first_point() == overhang_region.front().last_point() &&
!intersection_pl(overhang_region.front().polyline, optimized_lower_slices).empty());
auto is_anchored = [&lower_layer_aabb_tree](const ExtrusionPath &path) {
return lower_layer_aabb_tree.distance_from_lines<true>(path.first_point()) <= 0 ||
lower_layer_aabb_tree.distance_from_lines<true>(path.last_point()) <= 0;
};
if (!first_overhang_is_closed_and_anchored) {
std::reverse(overhang_region.begin(), overhang_region.end());
} else {
size_t min_dist_idx = 0;
double min_dist = std::numeric_limits<double>::max();
for (size_t i = 0; i < overhang_region.front().polyline.size(); i++) {
Point p = overhang_region.front().polyline[i];
if (double d = lower_layer_aabb_tree.distance_from_lines<true>(p) < min_dist) {
min_dist = d;
min_dist_idx = i;
}
}
std::rotate(overhang_region.front().polyline.begin(), overhang_region.front().polyline.begin() + min_dist_idx,
overhang_region.front().polyline.end());
}
auto first_unanchored = std::stable_partition(overhang_region.begin(), overhang_region.end(), is_anchored);
int index_of_first_unanchored = first_unanchored - overhang_region.begin();
overhang_region = sort_extra_perimeters(overhang_region, index_of_first_unanchored, overhang_flow.scaled_spacing());
}
}
}
#ifdef EXTRA_PERIM_DEBUG_FILES
BoundingBox bbox = get_extents(inset_overhang_area);
bbox.offset(scale_(2.));
::Slic3r::SVG svg(debug_out_path(("final" + std::to_string(rand())).c_str()).c_str(), bbox);
for (const Line &line : to_lines(inset_overhang_area_left_unfilled)) svg.draw(line, "blue", scale_(0.05));
for (const Line &line : to_lines(inset_overhang_area)) svg.draw(line, "green", scale_(0.05));
for (const Line &line : to_lines(diff(inset_overhang_area, inset_overhang_area_left_unfilled))) svg.draw(line, "yellow", scale_(0.05));
svg.Close();
#endif
inset_overhang_area_left_unfilled = union_(inset_overhang_area_left_unfilled);
return {extra_perims, diff(inset_overhang_area, inset_overhang_area_left_unfilled)};
}
void PerimeterGenerator::apply_extra_perimeters()
{
if (this->lower_slices != nullptr && this->config->detect_overhang_wall && this->config->extra_perimeters_on_overhangs &&
this->config->wall_loops > 0 && this->layer_id > this->object_config->raft_layers) {
// Generate extra perimeters on overhang areas, and cut them to these parts only, to save print time and material
ExPolygons infill_area;
for (const auto &internal_surface : this->fill_surfaces->surfaces) {
infill_area.push_back(internal_surface.expolygon);
}
auto [extra_perimeters, filled_area] = generate_extra_perimeters_over_overhangs(infill_area, this->lower_slices_polygons(),
this->config->wall_loops, this->overhang_flow,
this->m_scaled_resolution, *this->object_config,
*this->print_config);
if (!extra_perimeters.empty()) {
ExtrusionEntityCollection *this_islands_perimeters = static_cast<ExtrusionEntityCollection *>(this->loops->entities.back());
ExtrusionEntityCollection new_perimeters{};
new_perimeters.no_sort = this_islands_perimeters->no_sort;
for (const ExtrusionPaths &paths : extra_perimeters) {
new_perimeters.append(paths);
}
new_perimeters.append(this_islands_perimeters->entities);
this_islands_perimeters->swap(new_perimeters);
SurfaceCollection orig_surfaces = *this->fill_surfaces;
this->fill_surfaces->clear();
for (const auto &surface : orig_surfaces.surfaces) {
auto new_surfaces = diff_ex({surface.expolygon}, filled_area);
this->fill_surfaces->append(new_surfaces, surface);
}
}
}
}
void PerimeterGenerator::process_classic()
{
// other perimeters
@ -878,6 +1322,15 @@ void PerimeterGenerator::process_classic()
// solid infill
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
// prepare grown lower layer slices for overhang detection
if (this->lower_slices != nullptr && this->config->detect_overhang_wall) {
// We consider overhang any part where the entire nozzle diameter is not supported by the
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
// in the current layer
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->wall_filament - 1);
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter / 2)));
}
// Calculate the minimum required spacing between two adjacent traces.
// This should be equal to the nominal flow spacing but we experiment
// with some tolerance in order to avoid triggering medial axis when
@ -1255,6 +1708,8 @@ void PerimeterGenerator::process_classic()
}
this->fill_surfaces->append(infill_exp, stInternal);
apply_extra_perimeters();
// BBS: get the no-overlap infill expolygons
{
ExPolygons polyWithoutOverlap;
@ -1639,6 +2094,8 @@ void PerimeterGenerator::process_arachne()
}
this->fill_surfaces->append(infill_exp, stInternal);
apply_extra_perimeters();
// BBS: get the no-overlap infill expolygons
{
ExPolygons polyWithoutOverlap;

View file

@ -79,6 +79,7 @@ public:
private:
std::map<int, Polygons> generate_lower_polygons_series(float width);
void split_top_surfaces(const ExPolygons &orig_polygons, ExPolygons &top_fills, ExPolygons &non_top_polygons, ExPolygons &fill_clip) const;
void apply_extra_perimeters();
private:
bool m_spiral_vase;

View file

@ -102,6 +102,9 @@ public:
void append(const Polyline& src);
void append(Polyline&& src);
Point& operator[](Points::size_type idx) { return this->points[idx]; }
const Point& operator[](Points::size_type idx) const { return this->points[idx]; }
const Point& last_point() const override { return this->points.back(); }
const Point& leftmost_point() const;
Lines lines() const override;

View file

@ -718,7 +718,7 @@ bool Preset::has_cali_lines(PresetBundle* preset_bundle)
static std::vector<std::string> s_Preset_print_options {
"layer_height", "initial_layer_print_height", "wall_loops", "slice_closing_radius", "spiral_mode", "slicing_mode",
"top_shell_layers", "top_shell_thickness", "bottom_shell_layers", "bottom_shell_thickness",
"ensure_vertical_shell_thickness", "reduce_crossing_wall", "detect_thin_wall", "detect_overhang_wall",
"extra_perimeters_on_overhangs", "ensure_vertical_shell_thickness", "reduce_crossing_wall", "detect_thin_wall", "detect_overhang_wall",
"seam_position", "staggered_inner_seams", "wall_infill_order", "sparse_infill_density", "sparse_infill_pattern", "top_surface_pattern", "bottom_surface_pattern",
"infill_direction",
"minimum_sparse_infill_area", "reduce_infill_retraction","internal_solid_infill_pattern",

View file

@ -779,6 +779,13 @@ void PrintConfigDef::init_fff_params()
def->tooltip = L("Use only one wall on first layer, to give more space to the bottom infill pattern");
def->set_default_value(new ConfigOptionBool(false));
def = this->add("extra_perimeters_on_overhangs", coBool);
def->label = L("Extra perimeters on overhangs");
def->category = L("Quality");
def->tooltip = L("Create additional perimeter paths over steep overhangs and areas where bridges cannot be anchored. ");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionBool(false));
def = this->add("overhang_speed_classic", coBool);
def->label = L("Classic mode");
def->category = L("Speed");

View file

@ -805,6 +805,7 @@ PRINT_CONFIG_CLASS_DEFINE(
// Orca
((ConfigOptionBool, make_overhang_printable))
((ConfigOptionBool, extra_perimeters_on_overhangs))
)
PRINT_CONFIG_CLASS_DEFINE(

View file

@ -719,6 +719,7 @@ bool PrintObject::invalidate_state_by_config_options(
opt_key == "wall_loops"
|| opt_key == "only_one_wall_top"
|| opt_key == "only_one_wall_first_layer"
|| opt_key == "extra_perimeters_on_overhangs"
|| opt_key == "initial_layer_line_width"
|| opt_key == "inner_wall_line_width"
|| opt_key == "infill_wall_overlap"

View file

@ -1446,7 +1446,7 @@ namespace SupportMaterialInternal {
// remove the entire bridges and only support the unsupported edges
//FIXME the brided regions are already collected as layerm.bridged. Use it?
for (const Surface &surface : layerm.fill_surfaces.surfaces)
if (surface.surface_type == stBottomBridge && surface.bridge_angle != -1)
if (surface.surface_type == stBottomBridge && surface.bridge_angle >= 0.0)
polygons_append(bridges, surface.expolygon);
//FIXME add the gap filled areas. Extrude the gaps with a bridge flow?
// Remove the unsupported ends of the bridges from the bridged areas.

View file

@ -508,7 +508,7 @@ void ConfigManipulation::toggle_print_fff_options(DynamicPrintConfig *config, co
auto gcflavor = preset_bundle->printers.get_edited_preset().config.option<ConfigOptionEnum<GCodeFlavor>>("gcode_flavor")->value;
bool have_perimeters = config->opt_int("wall_loops") > 0;
for (auto el : { "ensure_vertical_shell_thickness", "detect_thin_wall", "detect_overhang_wall",
for (auto el : { "extra_perimeters_on_overhangs", "ensure_vertical_shell_thickness", "detect_thin_wall", "detect_overhang_wall",
"seam_position", "staggered_inner_seams", "wall_infill_order", "outer_wall_line_width",
"inner_wall_speed", "outer_wall_speed", "small_perimeter_speed", "small_perimeter_threshold" })
toggle_field(el, have_perimeters);

View file

@ -1899,6 +1899,7 @@ void TabPrint::build()
optgroup->append_single_option_line("make_overhang_printable_hole_size");
optgroup->append_single_option_line("reduce_crossing_wall");
optgroup->append_single_option_line("max_travel_detour_distance");
optgroup->append_single_option_line("extra_perimeters_on_overhangs");
page = add_options_page(L("Strength"), "empty");
optgroup = page->new_optgroup(L("Walls"), L"param_wall");