Update anti-vibration algorithm from PrusaSlicer (#7818)

* SPE-1950: Reimplement algorithm for filtering vibrating extractions inside the ensuring infill to make it less computation complex.

Cherry-picked from prusa3d/PrusaSlicer@b3510ac808

Co-authored-by: Lukáš Hejl <hejl.lukas@gmail.com>

* Remove unused file

---------

Co-authored-by: Lukáš Hejl <hejl.lukas@gmail.com>
This commit is contained in:
Noisyfox 2024-12-24 22:05:22 +08:00 committed by GitHub
parent 8ff64f3751
commit b9432f4247
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 254 additions and 223 deletions

View file

@ -1,128 +0,0 @@
#ifndef SRC_LIBSLIC3R_PATH_SORTING_HPP_
#define SRC_LIBSLIC3R_PATH_SORTING_HPP_
#include "AABBTreeLines.hpp"
#include "BoundingBox.hpp"
#include "Line.hpp"
#include "ankerl/unordered_dense.h"
#include <algorithm>
#include <iterator>
#include <libslic3r/Point.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/ExPolygon.hpp>
#include <limits>
#include <type_traits>
#include <unordered_set>
namespace Slic3r {
namespace Algorithm {
//Sorts the paths such that all paths between begin and last_seed are printed first, in some order. The rest of the paths is sorted
// such that the paths that are touching some of the already printed are printed first, sorted secondary by the distance to the last point of the last
// printed path.
// begin, end, and last_seed are random access iterators. touch_limit_distance is used to check if the paths are touching - if any part of the path gets this close
// to the second, then they touch.
// convert_to_lines is a lambda that should accept the path as argument and return it as Lines vector, in correct order.
template<typename RandomAccessIterator, typename ToLines>
void sort_paths(RandomAccessIterator begin, RandomAccessIterator end, Point start, double touch_limit_distance, ToLines convert_to_lines)
{
size_t paths_count = std::distance(begin, end);
if (paths_count <= 1)
return;
auto paths_touch = [touch_limit_distance](const AABBTreeLines::LinesDistancer<Line> &left,
const AABBTreeLines::LinesDistancer<Line> &right) {
for (const Line &l : left.get_lines()) {
if (right.distance_from_lines<false>(l.a) < touch_limit_distance) {
return true;
}
}
if (right.distance_from_lines<false>(left.get_lines().back().b) < touch_limit_distance) {
return true;
}
for (const Line &l : right.get_lines()) {
if (left.distance_from_lines<false>(l.a) < touch_limit_distance) {
return true;
}
}
if (left.distance_from_lines<false>(right.get_lines().back().b) < touch_limit_distance) {
return true;
}
return false;
};
std::vector<AABBTreeLines::LinesDistancer<Line>> distancers(paths_count);
for (size_t path_idx = 0; path_idx < paths_count; path_idx++) {
distancers[path_idx] = AABBTreeLines::LinesDistancer<Line>{convert_to_lines(*std::next(begin, path_idx))};
}
std::vector<std::unordered_set<size_t>> dependencies(paths_count);
for (size_t path_idx = 0; path_idx < paths_count; path_idx++) {
for (size_t next_path_idx = path_idx + 1; next_path_idx < paths_count; next_path_idx++) {
if (paths_touch(distancers[path_idx], distancers[next_path_idx])) {
dependencies[next_path_idx].insert(path_idx);
}
}
}
Point current_point = start;
std::vector<std::pair<size_t, bool>> correct_order_and_direction(paths_count);
size_t unsorted_idx = 0;
size_t null_idx = size_t(-1);
size_t next_idx = null_idx;
bool reverse = false;
while (unsorted_idx < paths_count) {
next_idx = null_idx;
double lines_dist = std::numeric_limits<double>::max();
for (size_t path_idx = 0; path_idx < paths_count; path_idx++) {
if (!dependencies[path_idx].empty())
continue;
double ldist = distancers[path_idx].distance_from_lines<false>(current_point);
if (ldist < lines_dist) {
const auto &lines = distancers[path_idx].get_lines();
double dist_a = (lines.front().a - current_point).cast<double>().squaredNorm();
double dist_b = (lines.back().b - current_point).cast<double>().squaredNorm();
next_idx = path_idx;
reverse = dist_b < dist_a;
lines_dist = ldist;
}
}
// we have valid next_idx, sort it, update dependencies, update current point
correct_order_and_direction[next_idx] = {unsorted_idx, reverse};
unsorted_idx++;
current_point = reverse ? distancers[next_idx].get_lines().front().a : distancers[next_idx].get_lines().back().b;
dependencies[next_idx].insert(null_idx); // prevent it from being selected again
for (size_t path_idx = 0; path_idx < paths_count; path_idx++) {
dependencies[path_idx].erase(next_idx);
}
}
for (size_t path_idx = 0; path_idx < paths_count; path_idx++) {
if (correct_order_and_direction[path_idx].second) {
std::next(begin, path_idx)->reverse();
}
}
for (size_t i = 0; i < correct_order_and_direction.size() - 1; i++) {
bool swapped = false;
for (size_t j = 0; j < correct_order_and_direction.size() - i - 1; j++) {
if (correct_order_and_direction[j].first > correct_order_and_direction[j + 1].first) {
std::swap(correct_order_and_direction[j], correct_order_and_direction[j + 1]);
std::iter_swap(std::next(begin, j), std::next(begin, j + 1));
swapped = true;
}
}
if (swapped == false) {
break;
}
}
}
}} // namespace Slic3r::Algorithm
#endif /*SRC_LIBSLIC3R_PATH_SORTING_HPP_*/