mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	Fixed the "avoid crossing perimeters" bug introduced in Slic3r 1.34.1.24
https://github.com/prusa3d/Slic3r/issues/311 https://github.com/prusa3d/Slic3r/issues/317 https://github.com/prusa3d/Slic3r/issues/323
This commit is contained in:
		
							parent
							
								
									ef73bb404b
								
							
						
					
					
						commit
						b5f38dd23f
					
				
					 7 changed files with 191 additions and 188 deletions
				
			
		|  | @ -170,12 +170,18 @@ intersection_pl(const Slic3r::Polylines &subject, const Slic3r::Polygons &clip, | |||
|     return _clipper_pl(ClipperLib::ctIntersection, subject, clip, safety_offset_); | ||||
| } | ||||
| 
 | ||||
| inline Slic3r::Lines | ||||
| intersection_ln(const Slic3r::Lines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false) | ||||
| inline Slic3r::Lines intersection_ln(const Slic3r::Lines &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false) | ||||
| { | ||||
|     return _clipper_ln(ClipperLib::ctIntersection, subject, clip, safety_offset_); | ||||
| } | ||||
| 
 | ||||
| inline Slic3r::Lines intersection_ln(const Slic3r::Line &subject, const Slic3r::Polygons &clip, bool safety_offset_ = false) | ||||
| { | ||||
|     Slic3r::Lines lines; | ||||
|     lines.emplace_back(subject); | ||||
|     return _clipper_ln(ClipperLib::ctIntersection, lines, clip, safety_offset_); | ||||
| } | ||||
| 
 | ||||
| // union
 | ||||
| inline Slic3r::Polygons | ||||
| union_(const Slic3r::Polygons &subject, bool safety_offset_ = false) | ||||
|  |  | |||
|  | @ -26,13 +26,18 @@ | |||
| 
 | ||||
| namespace Slic3r { | ||||
|      | ||||
| Polyline AvoidCrossingPerimeters::travel_to(GCode &gcodegen, Point point)  | ||||
| // Plan a travel move while minimizing the number of perimeter crossings.
 | ||||
| // point is in unscaled coordinates, in the coordinate system of the current active object
 | ||||
| // (set by gcodegen.set_origin()).
 | ||||
| Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point)  | ||||
| { | ||||
|     // If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
 | ||||
|     // Otherwise perform the path planning in the coordinate system of the active object.
 | ||||
|     bool  use_external  = this->use_external_mp || this->use_external_mp_once; | ||||
|     Point scaled_origin = use_external ? Point(0, 0) : Point::new_scale(gcodegen.origin().x, gcodegen.origin().y); | ||||
|     Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin().x, gcodegen.origin().y) : Point(0, 0); | ||||
|     Polyline result = (use_external ? m_external_mp.get() : m_layer_mp.get())-> | ||||
|         shortest_path(gcodegen.last_pos() + scaled_origin, point + scaled_origin); | ||||
|     if (! use_external) | ||||
|     if (use_external) | ||||
|         result.translate(scaled_origin.negative()); | ||||
|     return result; | ||||
| } | ||||
|  | @ -489,25 +494,18 @@ bool GCode::do_export(FILE *file, Print &print) | |||
|      | ||||
|     // Initialize a motion planner for object-to-object travel moves.
 | ||||
|     if (print.config.avoid_crossing_perimeters.value) { | ||||
|         //coord_t distance_from_objects = coord_t(scale_(1.)); 
 | ||||
|         // Compute the offsetted convex hull for each object and repeat it for each copy.
 | ||||
|         Polygons islands_p; | ||||
|         for (const PrintObject *object : print.objects) { | ||||
|             // Discard objects only containing thin walls (offset would fail on an empty polygon).
 | ||||
|             Polygons polygons; | ||||
|         // Collect outer contours of all objects over all layers.
 | ||||
|         // Discard objects only containing thin walls (offset would fail on an empty polygon).
 | ||||
|         Polygons islands; | ||||
|         for (const PrintObject *object : print.objects) | ||||
|             for (const Layer *layer : object->layers) | ||||
|                 for (const ExPolygon &expoly : layer->slices.expolygons) | ||||
|                     polygons.push_back(expoly.contour); | ||||
|             if (! polygons.empty()) { | ||||
|                 // Translate convex hull for each object copy and append it to the islands array.
 | ||||
|                 for (const Point © : object->_shifted_copies) | ||||
|                     for (Polygon poly : polygons) { | ||||
|                         poly.translate(copy); | ||||
|                         islands_p.emplace_back(std::move(poly)); | ||||
|                     for (const Point © : object->_shifted_copies) { | ||||
|                         islands.emplace_back(expoly.contour); | ||||
|                         islands.back().translate(copy); | ||||
|                     } | ||||
|             } | ||||
|         } | ||||
|         m_avoid_crossing_perimeters.init_external_mp(union_ex(islands_p)); | ||||
|         //FIXME Mege the islands in parallel.
 | ||||
|         m_avoid_crossing_perimeters.init_external_mp(union_ex(islands)); | ||||
|     } | ||||
|      | ||||
|     // Calculate wiping points if needed
 | ||||
|  | @ -1022,7 +1020,7 @@ void GCode::process_layer( | |||
|          | ||||
|         // Extrude brim with the extruder of the 1st region.
 | ||||
|         if (! m_brim_done) { | ||||
|             this->set_origin(0.f, 0.f); | ||||
|             this->set_origin(0., 0.); | ||||
|             m_avoid_crossing_perimeters.use_external_mp = true; | ||||
|             for (const ExtrusionEntity *ee : print.brim.entities) | ||||
|                 gcode += this->extrude_loop(*dynamic_cast<const ExtrusionLoop*>(ee), "brim", m_config.support_material_speed.value); | ||||
|  |  | |||
|  | @ -42,7 +42,7 @@ public: | |||
|     void init_external_mp(const ExPolygons &islands) { m_external_mp = Slic3r::make_unique<MotionPlanner>(islands); } | ||||
|     void init_layer_mp(const ExPolygons &islands) { m_layer_mp = Slic3r::make_unique<MotionPlanner>(islands); } | ||||
| 
 | ||||
|     Polyline travel_to(GCode &gcodegen, Point point); | ||||
|     Polyline travel_to(const GCode &gcodegen, const Point &point); | ||||
| 
 | ||||
| private: | ||||
|     std::unique_ptr<MotionPlanner> m_external_mp; | ||||
|  |  | |||
|  | @ -12,13 +12,13 @@ using boost::polygon::voronoi_diagram; | |||
| 
 | ||||
| namespace Slic3r { | ||||
| 
 | ||||
| MotionPlanner::MotionPlanner(const ExPolygons &islands) : initialized(false) | ||||
| MotionPlanner::MotionPlanner(const ExPolygons &islands) : m_initialized(false) | ||||
| { | ||||
|     ExPolygons expp; | ||||
|     for (const ExPolygon &island : islands) { | ||||
|         island.simplify(SCALED_EPSILON, &expp); | ||||
|         for (ExPolygon &island : expp) | ||||
|             this->islands.push_back(MotionPlannerEnv(island)); | ||||
|             m_islands.emplace_back(MotionPlannerEnv(island)); | ||||
|         expp.clear(); | ||||
|     } | ||||
| } | ||||
|  | @ -26,18 +26,18 @@ MotionPlanner::MotionPlanner(const ExPolygons &islands) : initialized(false) | |||
| void MotionPlanner::initialize() | ||||
| { | ||||
|     // prevent initialization of empty BoundingBox
 | ||||
|     if (this->initialized || this->islands.empty()) | ||||
|     if (m_initialized || m_islands.empty()) | ||||
|         return; | ||||
|      | ||||
|     // loop through islands in order to create inner expolygons and collect their contours
 | ||||
| 
 | ||||
|     // loop through islands in order to create inner expolygons and collect their contours.
 | ||||
|     Polygons outer_holes; | ||||
|     for (MotionPlannerEnv &island : this->islands) { | ||||
|         // generate the internal env boundaries by shrinking the island
 | ||||
|     for (MotionPlannerEnv &island : m_islands) { | ||||
|         // Generate the internal env boundaries by shrinking the island
 | ||||
|         // we'll use these inner rings for motion planning (endpoints of the Voronoi-based
 | ||||
|         // graph, visibility check) in order to avoid moving too close to the boundaries
 | ||||
|         island.env = ExPolygonCollection(offset_ex(island.island, -MP_INNER_MARGIN)); | ||||
|         // island contours are holes of our external environment
 | ||||
|         outer_holes.push_back(island.island.contour); | ||||
|         // graph, visibility check) in order to avoid moving too close to the boundaries.
 | ||||
|         island.m_env = ExPolygonCollection(offset_ex(island.m_island, -MP_INNER_MARGIN)); | ||||
|         // Island contours are holes of our external environment.
 | ||||
|         outer_holes.push_back(island.m_island.contour); | ||||
|     } | ||||
|      | ||||
|     // Generate a box contour around everyting.
 | ||||
|  | @ -46,30 +46,37 @@ void MotionPlanner::initialize() | |||
|     // make expolygon for outer environment
 | ||||
|     ExPolygons outer = diff_ex(contour, outer_holes); | ||||
|     assert(outer.size() == 1); | ||||
|     //FIXME What if some of the islands are nested? Then the front contour may not be the outmost contour!
 | ||||
|     this->outer.island = outer.front(); | ||||
|     this->outer.env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN))); | ||||
|     this->graphs.resize(this->islands.size() + 1); | ||||
|     this->initialized = true; | ||||
|     // If some of the islands are nested, then the 0th contour is the outer contour due to the order of conversion
 | ||||
|     // from Clipper data structure into the Slic3r expolygons inside diff_ex().
 | ||||
|     m_outer = MotionPlannerEnv(outer.front()); | ||||
|     m_outer.m_env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN))); | ||||
|     m_graphs.resize(m_islands.size() + 1); | ||||
|     m_initialized = true; | ||||
| } | ||||
| 
 | ||||
| Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | ||||
| { | ||||
|     // If we have an empty configuration space, return a straight move.
 | ||||
|     if (this->islands.empty()) | ||||
|     if (m_islands.empty()) | ||||
|         return Line(from, to); | ||||
|      | ||||
|     // Are both points in the same island?
 | ||||
|     int island_idx = -1; | ||||
|     for (MotionPlannerEnv &island : islands) { | ||||
|         if (island.island_bbox.contains(from) && island.island_bbox.contains(to) && | ||||
|             island.island.contains(from) && island.island.contains(to)) { | ||||
|     int island_idx_from = -1; | ||||
|     int island_idx_to   = -1; | ||||
|     int island_idx      = -1; | ||||
|     for (MotionPlannerEnv &island : m_islands) { | ||||
|         int idx = &island - m_islands.data(); | ||||
|         if (island.island_contains(from)) | ||||
|             island_idx_from = idx; | ||||
|         if (island.island_contains(to)) | ||||
|             island_idx_to   = idx; | ||||
|         if (island_idx_from == idx && island_idx_to == idx) { | ||||
|             // Since both points are in the same island, is a direct move possible?
 | ||||
|             // If so, we avoid generating the visibility environment.
 | ||||
|             if (island.island.contains(Line(from, to))) | ||||
|             if (island.m_island.contains(Line(from, to))) | ||||
|                 return Line(from, to); | ||||
|             // Both points are inside a single island, but the straight line crosses the island boundary.
 | ||||
|             island_idx = &island - this->islands.data(); | ||||
|             island_idx = idx; | ||||
|             break; | ||||
|         } | ||||
|     } | ||||
|  | @ -77,9 +84,10 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | |||
|     // lazy generation of configuration space.
 | ||||
|     this->initialize(); | ||||
| 
 | ||||
|     // get environment
 | ||||
|     // Get environment. If the from / to points do not share an island, then they cross an open space,
 | ||||
|     // therefore island_idx == -1 and env will be set to the environment of the empty space.
 | ||||
|     const MotionPlannerEnv &env = this->get_env(island_idx); | ||||
|     if (env.env.expolygons.empty()) { | ||||
|     if (env.m_env.expolygons.empty()) { | ||||
|         // if this environment is empty (probably because it's too small), perform straight move
 | ||||
|         // and avoid running the algorithms on empty dataset
 | ||||
|         return Line(from, to); | ||||
|  | @ -90,32 +98,32 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | |||
|     Point inner_to   = to; | ||||
|      | ||||
|     if (island_idx == -1) { | ||||
|         // The end points do not share the same island. In that case some of the travel
 | ||||
|         // will be likely performed inside the empty space.
 | ||||
|         // TODO: instead of using the nearest_env_point() logic, we should
 | ||||
|         // create a temporary graph where we connect 'from' and 'to' to the
 | ||||
|         // nodes which don't require more than one crossing, and let Dijkstra
 | ||||
|         // figure out the entire path - this should also replace the call to
 | ||||
|         // find_node() below
 | ||||
|         if (! env.island_bbox.contains(inner_from) || ! env.island.contains(inner_from)) { | ||||
|             // Find the closest inner point to start from.
 | ||||
|         if (island_idx_from != -1) | ||||
|             // The start point is inside some island. Find the closest point at the empty space to start from.
 | ||||
|             inner_from = env.nearest_env_point(from, to); | ||||
|         } | ||||
|         if (! env.island_bbox.contains(inner_to) || ! env.island.contains(inner_to)) { | ||||
|             // Find the closest inner point to start from.
 | ||||
|         if (island_idx_to != -1) | ||||
|             // The start point is inside some island. Find the closest point at the empty space to start from.
 | ||||
|             inner_to = env.nearest_env_point(to, inner_from); | ||||
|         } | ||||
|     } | ||||
|      | ||||
|     // perform actual path search
 | ||||
| 
 | ||||
|     // Perform a path search either in the open space, or in a common island of from/to.
 | ||||
|     const MotionPlannerGraph &graph = this->init_graph(island_idx); | ||||
|     Polyline polyline = graph.shortest_path(graph.find_closest_node(inner_from), graph.find_closest_node(inner_to)); | ||||
|      | ||||
|     // If no path exists without crossing perimeters, returns a straight segment.
 | ||||
|     Polyline polyline = graph.shortest_path(inner_from, inner_to); | ||||
|     polyline.points.insert(polyline.points.begin(), from); | ||||
|     polyline.points.push_back(to); | ||||
|     polyline.points.emplace_back(to); | ||||
|      | ||||
|     { | ||||
|         // grow our environment slightly in order for simplify_by_visibility()
 | ||||
|         // to work best by considering moves on boundaries valid as well
 | ||||
|         ExPolygonCollection grown_env(offset_ex(env.env.expolygons, +SCALED_EPSILON)); | ||||
|         ExPolygonCollection grown_env(offset_ex(env.m_env.expolygons, float(+SCALED_EPSILON))); | ||||
|          | ||||
|         if (island_idx == -1) { | ||||
|             /*  If 'from' or 'to' are not inside our env, they were connected using the 
 | ||||
|  | @ -128,14 +136,17 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | |||
|             if (! grown_env.contains(from)) { | ||||
|                 // delete second point while the line connecting first to third crosses the
 | ||||
|                 // boundaries as many times as the current first to second
 | ||||
|                 while (polyline.points.size() > 2 && intersection_ln((Lines)Line(from, polyline.points[2]), grown_env).size() == 1) | ||||
|                 while (polyline.points.size() > 2 && intersection_ln(Line(from, polyline.points[2]), grown_env).size() == 1) | ||||
|                     polyline.points.erase(polyline.points.begin() + 1); | ||||
|             } | ||||
|             if (! grown_env.contains(to)) { | ||||
|                 while (polyline.points.size() > 2 && intersection_ln((Lines)Line(*(polyline.points.end() - 3), to), grown_env).size() == 1) | ||||
|             if (! grown_env.contains(to)) | ||||
|                 while (polyline.points.size() > 2 && intersection_ln(Line(*(polyline.points.end() - 3), to), grown_env).size() == 1) | ||||
|                     polyline.points.erase(polyline.points.end() - 2); | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|         // Perform some quick simplification (simplify_by_visibility() would make this
 | ||||
|         // unnecessary, but this is much faster)
 | ||||
|         polyline.simplify(MP_INNER_MARGIN/10); | ||||
|          | ||||
|         // remove unnecessary vertices
 | ||||
|         // Note: this is computationally intensive and does not look very necessary
 | ||||
|  | @ -169,64 +180,73 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | |||
| 
 | ||||
| const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx) | ||||
| { | ||||
|     if (! this->graphs[island_idx + 1]) { | ||||
|         // if this graph doesn't exist, initialize it
 | ||||
|         this->graphs[island_idx + 1] = make_unique<MotionPlannerGraph>(); | ||||
|         MotionPlannerGraph* graph = this->graphs[island_idx + 1].get(); | ||||
|     // 0th graph is the graph for m_outer. Other graphs are 1 indexed.
 | ||||
|     MotionPlannerGraph *graph = m_graphs[island_idx + 1].get(); | ||||
|     if (graph == nullptr) { | ||||
|         // If this graph doesn't exist, initialize it.
 | ||||
|         m_graphs[island_idx + 1] = make_unique<MotionPlannerGraph>(); | ||||
|         graph = m_graphs[island_idx + 1].get(); | ||||
|          | ||||
|         /*  We don't add polygon boundaries as graph edges, because we'd need to connect
 | ||||
|             them to the Voronoi-generated edges by recognizing coinciding nodes. */ | ||||
|          | ||||
|         typedef voronoi_diagram<double> VD; | ||||
|         VD vd; | ||||
|          | ||||
|         // mapping between Voronoi vertices and graph nodes
 | ||||
|         typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices; | ||||
|         t_vd_vertices vd_vertices; | ||||
|          | ||||
|         // Mapping between Voronoi vertices and graph nodes.
 | ||||
|         std::map<const VD::vertex_type*, size_t> vd_vertices; | ||||
|         // get boundaries as lines
 | ||||
|         const MotionPlannerEnv &env = this->get_env(island_idx); | ||||
|         Lines lines = env.env.lines(); | ||||
|         Lines lines = env.m_env.lines(); | ||||
|         boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd); | ||||
|          | ||||
|         // traverse the Voronoi diagram and generate graph nodes and edges
 | ||||
|         for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) { | ||||
|             if (edge->is_infinite()) continue; | ||||
|              | ||||
|             const VD::vertex_type* v0 = edge->vertex0(); | ||||
|             const VD::vertex_type* v1 = edge->vertex1(); | ||||
|             Point p0 = Point(v0->x(), v0->y()); | ||||
|             Point p1 = Point(v1->x(), v1->y()); | ||||
|              | ||||
|             // skip edge if any of its endpoints is outside our configuration space
 | ||||
|         for (const VD::edge_type &edge : vd.edges()) { | ||||
|             if (edge.is_infinite()) | ||||
|                 continue; | ||||
|             const VD::vertex_type* v0 = edge.vertex0(); | ||||
|             const VD::vertex_type* v1 = edge.vertex1(); | ||||
|             Point p0(v0->x(), v0->y()); | ||||
|             Point p1(v1->x(), v1->y()); | ||||
|             // Insert only Voronoi edges fully contained in the island.
 | ||||
|             //FIXME This test has a terrible O(n^2) time complexity.
 | ||||
|             if (!env.island.contains_b(p0) || !env.island.contains_b(p1)) continue; | ||||
|              | ||||
|             t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0); | ||||
|             size_t v0_idx; | ||||
|             if (i_v0 == vd_vertices.end()) { | ||||
|                 graph->nodes.push_back(p0); | ||||
|                 vd_vertices[v0] = v0_idx = graph->nodes.size()-1; | ||||
|             } else { | ||||
|                 v0_idx = i_v0->second; | ||||
|             if (env.island_contains_b(p0) && env.island_contains_b(p1)) { | ||||
|                 // Find v0 in the graph, allocate a new node if v0 does not exist in the graph yet.
 | ||||
|                 auto i_v0 = vd_vertices.find(v0); | ||||
|                 size_t v0_idx; | ||||
|                 if (i_v0 == vd_vertices.end()) | ||||
|                     vd_vertices[v0] = v0_idx = graph->add_node(p0); | ||||
|                 else | ||||
|                     v0_idx = i_v0->second; | ||||
|                 // Find v1 in the graph, allocate a new node if v0 does not exist in the graph yet.
 | ||||
|                 auto i_v1 = vd_vertices.find(v1); | ||||
|                 size_t v1_idx; | ||||
|                 if (i_v1 == vd_vertices.end()) | ||||
|                     vd_vertices[v1] = v1_idx = graph->add_node(p1); | ||||
|                 else | ||||
|                     v1_idx = i_v1->second; | ||||
|                 // Euclidean distance is used as weight for the graph edge
 | ||||
|                 graph->add_edge(v0_idx, v1_idx, p0.distance_to(p1)); | ||||
|             } | ||||
|              | ||||
|             t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1); | ||||
|             size_t v1_idx; | ||||
|             if (i_v1 == vd_vertices.end()) { | ||||
|                 graph->nodes.push_back(p1); | ||||
|                 vd_vertices[v1] = v1_idx = graph->nodes.size()-1; | ||||
|             } else { | ||||
|                 v1_idx = i_v1->second; | ||||
|             } | ||||
|              | ||||
|             // Euclidean distance is used as weight for the graph edge
 | ||||
|             double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]); | ||||
|             graph->add_edge(v0_idx, v1_idx, dist); | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     return *this->graphs[island_idx + 1].get(); | ||||
|     return *graph; | ||||
| } | ||||
| 
 | ||||
| // Find a middle point on the path from start_point to end_point with the shortest path.
 | ||||
| static inline size_t nearest_waypoint_index(const Point &start_point, const Points &middle_points, const Point &end_point) | ||||
| { | ||||
|     size_t idx = size_t(-1); | ||||
|     double dmin = std::numeric_limits<double>::infinity(); | ||||
|     for (const Point &p : middle_points) { | ||||
|         double d = start_point.distance_to(p) + p.distance_to(end_point); | ||||
|         if (d < dmin) { | ||||
|             idx  = &p - middle_points.data(); | ||||
|             dmin = d; | ||||
|             if (dmin < EPSILON) | ||||
|                 break; | ||||
|         } | ||||
|     } | ||||
|     return idx; | ||||
| } | ||||
| 
 | ||||
| Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const | ||||
|  | @ -240,7 +260,7 @@ Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) co | |||
|      | ||||
|     // get the points of the hole containing 'from', if any
 | ||||
|     Points pp; | ||||
|     for (const ExPolygon &ex : this->env.expolygons) { | ||||
|     for (const ExPolygon &ex : m_env.expolygons) { | ||||
|         for (const Polygon &hole : ex.holes) | ||||
|             if (hole.contains(from)) | ||||
|                 pp = hole; | ||||
|  | @ -248,19 +268,17 @@ Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) co | |||
|             break; | ||||
|     } | ||||
|      | ||||
|     /*  If 'from' is not inside a hole, it's outside of all contours, so take all
 | ||||
|         contours' points */ | ||||
|     // If 'from' is not inside a hole, it's outside of all contours, so take all contours' points.
 | ||||
|     if (pp.empty()) | ||||
|         for (const ExPolygon &ex : this->env.expolygons) | ||||
|         for (const ExPolygon &ex : m_env.expolygons) | ||||
|             append(pp, ex.contour.points); | ||||
|      | ||||
|     /*  Find the candidate result and check that it doesn't cross too many boundaries. */ | ||||
|     while (pp.size() >= 2) { | ||||
|     // Find the candidate result and check that it doesn't cross too many boundaries.
 | ||||
|     while (pp.size() > 1) { | ||||
|         // find the point in pp that is closest to both 'from' and 'to'
 | ||||
|         size_t result = from.nearest_waypoint_index(pp, to); | ||||
|          | ||||
|         size_t result = nearest_waypoint_index(from, pp, to); | ||||
|         // as we assume 'from' is outside env, any node will require at least one crossing
 | ||||
|         if (intersection_ln((Lines)Line(from, pp[result]), this->island).size() > 1) { | ||||
|         if (intersection_ln(Line(from, pp[result]), m_island).size() > 1) { | ||||
|             // discard result
 | ||||
|             pp.erase(pp.begin() + result); | ||||
|         } else | ||||
|  | @ -277,34 +295,35 @@ Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) co | |||
| void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight) | ||||
| { | ||||
|     // Extend adjacency list until this start node.
 | ||||
|     if (this->adjacency_list.size() < from + 1) { | ||||
|     if (m_adjacency_list.size() < from + 1) { | ||||
|         // Reserve in powers of two to avoid repeated reallocation.
 | ||||
|         this->adjacency_list.reserve(std::max<size_t>(8, next_highest_power_of_2(from + 1))); | ||||
|         m_adjacency_list.reserve(std::max<size_t>(8, next_highest_power_of_2(from + 1))); | ||||
|         // Allocate new empty adjacency vectors.
 | ||||
|         this->adjacency_list.resize(from + 1); | ||||
|         m_adjacency_list.resize(from + 1); | ||||
|     } | ||||
|     this->adjacency_list[from].emplace_back(Neighbor(node_t(to), weight)); | ||||
|     m_adjacency_list[from].emplace_back(Neighbor(node_t(to), weight)); | ||||
| } | ||||
| 
 | ||||
| // Dijkstra's shortest path in a weighted graph from node_start to node_end.
 | ||||
| // The returned path contains the end points.
 | ||||
| // If no path exists from node_start to node_end, a straight segment is returned.
 | ||||
| Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) const | ||||
| { | ||||
|     // This prevents a crash in case for some reason we got here with an empty adjacency list.
 | ||||
|     if (this->adjacency_list.empty()) | ||||
|     if (this->empty()) | ||||
|         return Polyline(); | ||||
| 
 | ||||
|     // Dijkstra algorithm, previous node of the current node 'u' in the shortest path towards node_start.
 | ||||
|     std::vector<node_t>   previous(this->adjacency_list.size(), -1); | ||||
|     std::vector<weight_t> distance(this->adjacency_list.size(), std::numeric_limits<weight_t>::infinity()); | ||||
|     std::vector<size_t>   map_node_to_queue_id(this->adjacency_list.size(), size_t(-1)); | ||||
|     std::vector<node_t>   previous(m_adjacency_list.size(), -1); | ||||
|     std::vector<weight_t> distance(m_adjacency_list.size(), std::numeric_limits<weight_t>::infinity()); | ||||
|     std::vector<size_t>   map_node_to_queue_id(m_adjacency_list.size(), size_t(-1)); | ||||
|     distance[node_start] = 0.; | ||||
| 
 | ||||
|     auto queue = make_mutable_priority_queue<node_t>( | ||||
|         [&map_node_to_queue_id](const node_t &node, size_t idx) { map_node_to_queue_id[node] = idx; }, | ||||
|         [&distance](const node_t &node1, const node_t &node2) { return distance[node1] < distance[node2]; }); | ||||
|     queue.reserve(this->adjacency_list.size()); | ||||
|     for (size_t i = 0; i < this->adjacency_list.size(); ++ i) | ||||
|         [&map_node_to_queue_id](const node_t node, size_t idx) { map_node_to_queue_id[node] = idx; }, | ||||
|         [&distance](const node_t node1, const node_t node2) { return distance[node1] < distance[node2]; }); | ||||
|     queue.reserve(m_adjacency_list.size()); | ||||
|     for (size_t i = 0; i < m_adjacency_list.size(); ++ i) | ||||
|         queue.push(node_t(i)); | ||||
| 
 | ||||
|     while (! queue.empty()) { | ||||
|  | @ -316,7 +335,7 @@ Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) c | |||
|         if (u == node_end) | ||||
|             break; | ||||
|         // Visit each edge starting at node u.
 | ||||
|         for (const Neighbor& neighbor : this->adjacency_list[u]) | ||||
|         for (const Neighbor& neighbor : m_adjacency_list[u]) | ||||
|             if (map_node_to_queue_id[neighbor.target] != size_t(-1)) { | ||||
|                 weight_t alt = distance[u] + neighbor.weight; | ||||
|                 // If total distance through u is shorter than the previous
 | ||||
|  | @ -329,11 +348,13 @@ Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) c | |||
|             } | ||||
|     } | ||||
| 
 | ||||
|     // In case the end point was not reached, previous[node_end] contains -1
 | ||||
|     // and a straight line from node_start to node_end is returned.
 | ||||
|     Polyline polyline; | ||||
|     polyline.points.reserve(previous.size()); | ||||
|     polyline.points.reserve(m_adjacency_list.size()); | ||||
|     for (node_t vertex = node_t(node_end); vertex != -1; vertex = previous[vertex]) | ||||
|         polyline.points.push_back(this->nodes[vertex]); | ||||
|     polyline.points.push_back(this->nodes[node_start]); | ||||
|         polyline.points.emplace_back(m_nodes[vertex]); | ||||
|     polyline.points.emplace_back(m_nodes[node_start]); | ||||
|     polyline.reverse(); | ||||
|     return polyline; | ||||
| } | ||||
|  |  | |||
|  | @ -23,34 +23,45 @@ class MotionPlannerEnv | |||
|     friend class MotionPlanner; | ||||
|      | ||||
| public: | ||||
|     ExPolygon           island; | ||||
|     BoundingBox         island_bbox; | ||||
|     ExPolygonCollection env; | ||||
|     MotionPlannerEnv() {}; | ||||
|     MotionPlannerEnv(const ExPolygon &island) : island(island), island_bbox(get_extents(island)) {}; | ||||
|     MotionPlannerEnv(const ExPolygon &island) : m_island(island), m_island_bbox(get_extents(island)) {}; | ||||
|     Point nearest_env_point(const Point &from, const Point &to) const; | ||||
|     bool  island_contains(const Point &pt) const | ||||
|         { return m_island_bbox.contains(pt) && m_island.contains(pt); } | ||||
|     bool  island_contains_b(const Point &pt) const | ||||
|         { return m_island_bbox.contains(pt) && m_island.contains_b(pt); } | ||||
| 
 | ||||
| private: | ||||
|     ExPolygon           m_island; | ||||
|     BoundingBox         m_island_bbox; | ||||
|     // Region, where the travel is allowed.
 | ||||
|     ExPolygonCollection m_env; | ||||
| }; | ||||
| 
 | ||||
| // A 2D directed graph for searching a shortest path using the famous Dijkstra algorithm.
 | ||||
| class MotionPlannerGraph | ||||
| { | ||||
|     friend class MotionPlanner; | ||||
|      | ||||
| {     | ||||
| public: | ||||
|     // Add a directed edge into the graph.
 | ||||
|     size_t   add_node(const Point &p) { m_nodes.emplace_back(p); return m_nodes.size() - 1; } | ||||
|     void     add_edge(size_t from, size_t to, double weight); | ||||
|     size_t   find_closest_node(const Point &point) const { return point.nearest_point_index(m_nodes); } | ||||
| 
 | ||||
|     bool     empty() const { return m_adjacency_list.empty(); } | ||||
|     Polyline shortest_path(size_t from, size_t to) const; | ||||
|     Polyline shortest_path(const Point &from, const Point &to) const | ||||
|         { return this->shortest_path(this->find_closest_node(from), this->find_closest_node(to)); } | ||||
| 
 | ||||
| private: | ||||
|     typedef int     node_t; | ||||
|     typedef double  weight_t; | ||||
|     struct Neighbor { | ||||
|         Neighbor(node_t target, weight_t weight) : target(target), weight(weight) {} | ||||
|         node_t   target; | ||||
|         weight_t weight; | ||||
|         Neighbor(node_t arg_target, weight_t arg_weight) : target(arg_target), weight(arg_weight) {} | ||||
|     }; | ||||
|     typedef std::vector<std::vector<Neighbor>> adjacency_list_t; | ||||
|     adjacency_list_t adjacency_list; | ||||
|      | ||||
| public: | ||||
|     Points   nodes; | ||||
|     void     add_edge(size_t from, size_t to, double weight); | ||||
|     size_t   find_closest_node(const Point &point) const { return point.nearest_point_index(this->nodes); } | ||||
|     Polyline shortest_path(size_t from, size_t to) const; | ||||
|     Points                              m_nodes; | ||||
|     std::vector<std::vector<Neighbor>>  m_adjacency_list; | ||||
| }; | ||||
| 
 | ||||
| class MotionPlanner | ||||
|  | @ -60,18 +71,19 @@ public: | |||
|     ~MotionPlanner() {} | ||||
| 
 | ||||
|     Polyline    shortest_path(const Point &from, const Point &to); | ||||
|     size_t      islands_count() const { return this->islands.size(); } | ||||
|     size_t      islands_count() const { return m_islands.size(); } | ||||
| 
 | ||||
| private: | ||||
|     bool                                initialized; | ||||
|     std::vector<MotionPlannerEnv>       islands; | ||||
|     MotionPlannerEnv                    outer; | ||||
|     std::vector<std::unique_ptr<MotionPlannerGraph>> graphs; | ||||
|     bool                                m_initialized; | ||||
|     std::vector<MotionPlannerEnv>       m_islands; | ||||
|     MotionPlannerEnv                    m_outer; | ||||
|     // 0th graph is the graph for m_outer. Other graphs are 1 indexed.
 | ||||
|     std::vector<std::unique_ptr<MotionPlannerGraph>> m_graphs; | ||||
|      | ||||
|     void                      initialize(); | ||||
|     const MotionPlannerGraph& init_graph(int island_idx); | ||||
|     const MotionPlannerEnv&   get_env(int island_idx) const | ||||
|         { return (island_idx == -1) ? this->outer : this->islands[island_idx]; } | ||||
|         { return (island_idx == -1) ? m_outer : m_islands[island_idx]; } | ||||
| }; | ||||
| 
 | ||||
| } | ||||
|  |  | |||
|  | @ -119,29 +119,6 @@ int Point::nearest_point_index(const PointConstPtrs &points) const | |||
|     return idx; | ||||
| } | ||||
| 
 | ||||
| /* This method finds the point that is closest to both this point and the supplied one */ | ||||
| size_t Point::nearest_waypoint_index(const Points &points, const Point &dest) const | ||||
| { | ||||
|     size_t idx = size_t(-1); | ||||
|     double d2min = std::numeric_limits<double>::infinity();  // double because long is limited to 2147483647 on some platforms and it's not enough
 | ||||
| 
 | ||||
|     for (const Point &p : points) { | ||||
|         double d2 = | ||||
|             // distance from this to candidate
 | ||||
|             sqr<double>(this->x - p.x) + sqr<double>(this->y - p.y) +  | ||||
|             // distance from candidate to dest
 | ||||
|             sqr<double>(p.x - dest.x) + sqr<double>(p.y - dest.y); | ||||
|         if (d2 < d2min) { | ||||
|             idx      = &p - points.data(); | ||||
|             d2min = d2; | ||||
|             if (d2min < EPSILON) | ||||
|                 break; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     return idx; | ||||
| } | ||||
| 
 | ||||
| int | ||||
| Point::nearest_point_index(const PointPtrs &points) const | ||||
| { | ||||
|  | @ -161,15 +138,6 @@ Point::nearest_point(const Points &points, Point* point) const | |||
|     return true; | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| Point::nearest_waypoint(const Points &points, const Point &dest, Point* point) const | ||||
| { | ||||
|     int idx = this->nearest_waypoint_index(points, dest); | ||||
|     if (idx == -1) return false; | ||||
|     *point = points.at(idx); | ||||
|     return true; | ||||
| } | ||||
| 
 | ||||
| /* distance to the closest point of line */ | ||||
| double | ||||
| Point::distance_to(const Line &line) const | ||||
|  |  | |||
|  | @ -60,9 +60,7 @@ class Point | |||
|     int nearest_point_index(const Points &points) const; | ||||
|     int nearest_point_index(const PointConstPtrs &points) const; | ||||
|     int nearest_point_index(const PointPtrs &points) const; | ||||
|     size_t nearest_waypoint_index(const Points &points, const Point &point) const; | ||||
|     bool nearest_point(const Points &points, Point* point) const; | ||||
|     bool nearest_waypoint(const Points &points, const Point &dest, Point* point) const; | ||||
|     double distance_to(const Point &point) const { return sqrt(distance_to_sq(point)); } | ||||
|     double distance_to_sq(const Point &point) const { double dx = double(point.x - this->x); double dy = double(point.y - this->y); return dx*dx + dy*dy; } | ||||
|     double distance_to(const Line &line) const; | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 bubnikv
						bubnikv