mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 12:11:15 -06:00 
			
		
		
		
	Follow-up of 6194e67e68 - Separated the part that computed triangles normals and lighting inside the fragment shader into a separate shader mm_gouraud, which is only used for the multi-material painting gizmo.
				
					
				
			This commit is contained in:
		
							parent
							
								
									912f73d79c
								
							
						
					
					
						commit
						b45675b4e1
					
				
					 10 changed files with 179 additions and 84 deletions
				
			
		|  | @ -50,8 +50,6 @@ varying float world_pos_z; | |||
| varying float world_normal_z; | ||||
| varying vec3 eye_normal; | ||||
| 
 | ||||
| uniform bool compute_triangle_normals_in_fs; | ||||
| 
 | ||||
| void main() | ||||
| { | ||||
|     if (any(lessThan(clipping_planes_dots, ZERO))) | ||||
|  | @ -59,36 +57,7 @@ void main() | |||
|     vec3  color = uniform_color.rgb; | ||||
|     float alpha = uniform_color.a; | ||||
| 
 | ||||
|     vec2  intensity_fs      = intensity; | ||||
|     vec3  eye_normal_fs     = eye_normal; | ||||
|     float world_normal_z_fs = world_normal_z; | ||||
|     if (compute_triangle_normals_in_fs) { | ||||
|         vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz))); | ||||
| #ifdef FLIP_TRIANGLE_NORMALS | ||||
|         triangle_normal = -triangle_normal; | ||||
| #endif | ||||
| 
 | ||||
|         // First transform the normal into camera space and normalize the result. | ||||
|         eye_normal_fs = normalize(gl_NormalMatrix * triangle_normal); | ||||
| 
 | ||||
|         // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. | ||||
|         // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. | ||||
|         float NdotL = max(dot(eye_normal_fs, LIGHT_TOP_DIR), 0.0); | ||||
| 
 | ||||
|         intensity_fs = vec2(0.0, 0.0); | ||||
|         intensity_fs.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; | ||||
|         vec3 position = (gl_ModelViewMatrix * model_pos).xyz; | ||||
|         intensity_fs.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal_fs)), 0.0), LIGHT_TOP_SHININESS); | ||||
| 
 | ||||
|         // Perform the same lighting calculation for the 2nd light source (no specular applied). | ||||
|         NdotL = max(dot(eye_normal_fs, LIGHT_FRONT_DIR), 0.0); | ||||
|         intensity_fs.x += NdotL * LIGHT_FRONT_DIFFUSE; | ||||
| 
 | ||||
|         // z component of normal vector in world coordinate used for slope shading | ||||
|         world_normal_z_fs = slope.actived ? (normalize(slope.volume_world_normal_matrix * triangle_normal)).z : 0.0; | ||||
|     } | ||||
| 
 | ||||
|     if (slope.actived && world_normal_z_fs < slope.normal_z - EPSILON) { | ||||
|     if (slope.actived && world_normal_z < slope.normal_z - EPSILON) { | ||||
|         color = vec3(0.7, 0.7, 1.0); | ||||
|         alpha = 1.0; | ||||
|     } | ||||
|  | @ -96,8 +65,8 @@ void main() | |||
| 	color = (any(lessThan(delta_box_min, ZERO)) || any(greaterThan(delta_box_max, ZERO))) ? mix(color, ZERO, 0.3333) : color; | ||||
| #ifdef ENABLE_ENVIRONMENT_MAP | ||||
|     if (use_environment_tex) | ||||
|         gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal_fs).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity_fs.x, alpha); | ||||
|         gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity.x, alpha); | ||||
|     else | ||||
| #endif | ||||
|         gl_FragColor = vec4(vec3(intensity_fs.y) + color * intensity_fs.x, alpha); | ||||
|         gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha); | ||||
| } | ||||
|  |  | |||
|  | @ -54,26 +54,22 @@ varying float world_pos_z; | |||
| varying float world_normal_z; | ||||
| varying vec3 eye_normal; | ||||
| 
 | ||||
| uniform bool compute_triangle_normals_in_fs; | ||||
| 
 | ||||
| void main() | ||||
| { | ||||
|     if (!compute_triangle_normals_in_fs) { | ||||
|         // First transform the normal into camera space and normalize the result. | ||||
|         eye_normal = normalize(gl_NormalMatrix * gl_Normal); | ||||
|     // First transform the normal into camera space and normalize the result. | ||||
|     eye_normal = normalize(gl_NormalMatrix * gl_Normal); | ||||
| 
 | ||||
|         // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. | ||||
|         // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. | ||||
|         float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); | ||||
|     // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. | ||||
|     // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. | ||||
|     float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); | ||||
| 
 | ||||
|         intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; | ||||
|         vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz; | ||||
|         intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); | ||||
|     intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; | ||||
|     vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz; | ||||
|     intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); | ||||
| 
 | ||||
|         // Perform the same lighting calculation for the 2nd light source (no specular applied). | ||||
|         NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); | ||||
|         intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; | ||||
|     } | ||||
|     // Perform the same lighting calculation for the 2nd light source (no specular applied). | ||||
|     NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); | ||||
|     intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; | ||||
| 
 | ||||
|     model_pos = gl_Vertex; | ||||
|     // Point in homogenous coordinates. | ||||
|  | @ -90,8 +86,7 @@ void main() | |||
|     } | ||||
| 
 | ||||
|     // z component of normal vector in world coordinate used for slope shading | ||||
|     if (!compute_triangle_normals_in_fs) | ||||
|         world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0; | ||||
|     world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0; | ||||
| 
 | ||||
|     gl_Position = ftransform(); | ||||
|     // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded. | ||||
|  |  | |||
							
								
								
									
										55
									
								
								resources/shaders/mm_gouraud.fs
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										55
									
								
								resources/shaders/mm_gouraud.fs
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,55 @@ | |||
| #version 110 | ||||
| 
 | ||||
| #define INTENSITY_CORRECTION 0.6 | ||||
| 
 | ||||
| // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) | ||||
| const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); | ||||
| #define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION) | ||||
| #define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION) | ||||
| #define LIGHT_TOP_SHININESS  20.0 | ||||
| 
 | ||||
| // normalized values for (1./1.43, 0.2/1.43, 1./1.43) | ||||
| const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); | ||||
| #define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION) | ||||
| 
 | ||||
| #define INTENSITY_AMBIENT    0.3 | ||||
| 
 | ||||
| const vec3  ZERO    = vec3(0.0, 0.0, 0.0); | ||||
| const float EPSILON = 0.0001; | ||||
| 
 | ||||
| uniform vec4 uniform_color; | ||||
| 
 | ||||
| varying vec3 clipping_planes_dots; | ||||
| varying vec4 model_pos; | ||||
| 
 | ||||
| void main() | ||||
| { | ||||
|     if (any(lessThan(clipping_planes_dots, ZERO))) | ||||
|         discard; | ||||
|     vec3  color = uniform_color.rgb; | ||||
|     float alpha = uniform_color.a; | ||||
| 
 | ||||
|     vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz))); | ||||
| #ifdef FLIP_TRIANGLE_NORMALS | ||||
|     triangle_normal = -triangle_normal; | ||||
| #endif | ||||
| 
 | ||||
|     // First transform the normal into camera space and normalize the result. | ||||
|     vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal); | ||||
| 
 | ||||
|     // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. | ||||
|     // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. | ||||
|     float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); | ||||
| 
 | ||||
|     // x = diffuse, y = specular; | ||||
|     vec2 intensity = vec2(0.0, 0.0); | ||||
|     intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; | ||||
|     vec3 position = (gl_ModelViewMatrix * model_pos).xyz; | ||||
|     intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); | ||||
| 
 | ||||
|     // Perform the same lighting calculation for the 2nd light source (no specular applied). | ||||
|     NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); | ||||
|     intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; | ||||
| 
 | ||||
|     gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha); | ||||
| } | ||||
							
								
								
									
										23
									
								
								resources/shaders/mm_gouraud.vs
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								resources/shaders/mm_gouraud.vs
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,23 @@ | |||
| #version 110 | ||||
| 
 | ||||
| const vec3 ZERO = vec3(0.0, 0.0, 0.0); | ||||
| 
 | ||||
| uniform mat4 volume_world_matrix; | ||||
| // Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane. | ||||
| uniform vec2 z_range; | ||||
| // Clipping plane - general orientation. Used by the SLA gizmo. | ||||
| uniform vec4 clipping_plane; | ||||
| 
 | ||||
| varying vec3 clipping_planes_dots; | ||||
| varying vec4 model_pos; | ||||
| 
 | ||||
| void main() | ||||
| { | ||||
|     model_pos = gl_Vertex; | ||||
|     // Point in homogenous coordinates. | ||||
|     vec4 world_pos = volume_world_matrix * gl_Vertex; | ||||
| 
 | ||||
|     gl_Position = ftransform(); | ||||
|     // Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded. | ||||
|     clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z); | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Lukáš Hejl
						Lukáš Hejl