Merge branch 'master' into xsdata

Conflicts:
	lib/Slic3r.pm
	lib/Slic3r/ExPolygon.pm
	lib/Slic3r/Fill.pm
	lib/Slic3r/Fill/Rectilinear.pm
	lib/Slic3r/GCode.pm
	lib/Slic3r/GUI/Plater.pm
	lib/Slic3r/Geometry/Clipper.pm
	lib/Slic3r/Layer/Region.pm
	lib/Slic3r/Print.pm
	lib/Slic3r/Print/Object.pm
	lib/Slic3r/TriangleMesh.pm
	t/shells.t
	xs/MANIFEST
This commit is contained in:
Alessandro Ranellucci 2013-08-08 02:10:34 +02:00
commit b38cc2c244
60 changed files with 1432 additions and 798 deletions

View file

@ -99,6 +99,7 @@ EOF
# temporarily require this dev version until this upstream bug
# is resolved: https://rt.cpan.org/Ticket/Display.html?id=86367
system $cpanm, 'SMUELLER/ExtUtils-ParseXS-3.18_04.tar.gz';
system './xs/Build', 'distclean' if -e './xs/Build';
system $cpanm, '--reinstall', './xs';
}

View file

@ -88,7 +88,6 @@ t/support.t
t/svg.t
t/vibrationlimit.t
utils/amf-to-stl.pl
utils/file_info.pl
utils/gcode_sectioncut.pl
utils/post-processing/filament-weight.pl
utils/post-processing/prowl-notification.pl

View file

@ -80,7 +80,7 @@ The author of the Silk icon set is Mark James.
## How can I invoke slic3r.pl using the command line?
Usage: slic3r.pl [ OPTIONS ] file.stl
Usage: slic3r.pl [ OPTIONS ] [ file.stl ] [ file2.stl ] ...
--help Output this usage screen and exit
--version Output the version of Slic3r and exit
@ -90,7 +90,10 @@ The author of the Silk icon set is Mark James.
-o, --output <file> File to output gcode to (by default, the file will be saved
into the same directory as the input file using the
--output-filename-format to generate the filename)
--repair Automatically repair given STL files and saves them as _fixed.obj
Non-slicing actions (no G-code will be generated):
--repair Repair given STL files and save them as <name>_fixed.obj
--info Output information about the supplied file(s) and exit
GUI options:
--no-plater Disable the plater tab
@ -322,6 +325,8 @@ The author of the Silk icon set is Mark James.
--infill-extruder Extruder to use for infill (1+, default: 1)
--support-material-extruder
Extruder to use for support material (1+, default: 1)
--support-material-interface-extruder
Extruder to use for support material interface (1+, default: 1)
If you want to change a preset file, just do

View file

@ -19,6 +19,10 @@ our $have_threads;
BEGIN {
use Config;
$have_threads = $Config{useithreads} && eval "use threads; use threads::shared; use Thread::Queue; 1";
### temporarily disable threads if using the broken Moo version
use Moo;
$have_threads = 0 if $Moo::VERSION == 1.003000;
}
warn "Running Slic3r under Perl >= 5.16 is not supported nor recommended\n"

View file

@ -204,11 +204,18 @@ our $Options = {
},
'support_material_extruder' => {
label => 'Support material extruder',
tooltip => 'The extruder to use when printing support material. This affects brim too.',
tooltip => 'The extruder to use when printing support material. This affects brim and raft too.',
cli => 'support-material-extruder=i',
type => 'i',
default => 1,
},
'support_material_interface_extruder' => {
label => 'Support material interface extruder',
tooltip => 'The extruder to use when printing support material interface. This affects raft too.',
cli => 'support-material-interface-extruder=i',
type => 'i',
default => 1,
},
# filament options
'first_layer_bed_temperature' => {
@ -652,7 +659,7 @@ our $Options = {
type => 'select',
values => [qw(rectilinear rectilinear-grid honeycomb)],
labels => ['rectilinear', 'rectilinear grid', 'honeycomb'],
default => 'rectilinear',
default => 'honeycomb',
},
'support_material_spacing' => {
label => 'Pattern spacing',
@ -676,7 +683,7 @@ our $Options = {
sidetext => 'layers',
cli => 'support-material-interface-layers=i',
type => 'i',
default => 0,
default => 3,
},
'support_material_interface_spacing' => {
label => 'Interface pattern spacing',
@ -696,7 +703,7 @@ our $Options = {
},
'raft_layers' => {
label => 'Raft layers',
tooltip => 'Number of total raft layers to insert below the object(s).',
tooltip => 'The object will be raised by this number of layers, and support material will be generated under it.',
sidetext => 'layers',
cli => 'raft-layers=i',
type => 'i',
@ -814,7 +821,7 @@ END
},
'retract_lift' => {
label => 'Lift Z',
tooltip => 'If you set this to a positive value, Z is quickly raised every time a retraction is triggered.',
tooltip => 'If you set this to a positive value, Z is quickly raised every time a retraction is triggered. When using multiple extruders, only the setting for the first extruder will be considered.',
sidetext => 'mm',
cli => 'retract-lift=f@',
type => 'f',
@ -832,7 +839,7 @@ END
default => [1],
},
'wipe' => {
label => 'Wipe before retract',
label => 'Wipe while retracting',
tooltip => 'This flag will move the nozzle while retracting to minimize the possible blob on leaky extruders.',
cli => 'wipe!',
type => 'bool',

View file

@ -44,6 +44,12 @@ sub wkt {
join ',', map "($_)", map { join ',', map "$_->[0] $_->[1]", @$_ } @$self;
}
sub dump_perl {
my $self = shift;
return sprintf "[%s]",
join ',', map "[$_]", map { join ',', map "[$_->[0],$_->[1]]", @$_ } @$self;
}
sub offset {
my $self = shift;
return Slic3r::Geometry::Clipper::offset(\@$self, @_);
@ -108,15 +114,21 @@ sub clip_line {
];
}
sub simplify {
sub simplify_as_polygons {
my $self = shift;
my ($tolerance) = @_;
# it would be nice to have a multilinestring_simplify method in B::G::U
my @simplified = Slic3r::Geometry::Clipper::simplify_polygons(
return @{Slic3r::Geometry::Clipper::simplify_polygons(
[ map Boost::Geometry::Utils::linestring_simplify($_, $tolerance), @{$self->pp} ],
);
return @{ Slic3r::Geometry::Clipper::union_ex([ @simplified ]) };
)};
}
sub simplify {
my $self = shift;
my ($tolerance) = @_;
return @{ Slic3r::Geometry::Clipper::union_ex([ $self->simplify_as_polygons($tolerance) ]) };
}
sub area {
@ -146,7 +158,7 @@ sub medial_axis {
push @points, @$polygon;
}
my $voronoi = Math::Geometry::Voronoi->new(points => \@points);
my $voronoi = Math::Geometry::Voronoi->new(points => [ map $_->pp, @points ]);
$voronoi->compute;
my @skeleton_lines = ();
@ -158,8 +170,8 @@ sub medial_axis {
next if $edge->[1] == -1 || $edge->[2] == -1;
my ($a, $b);
$a = $vertices->[$edge->[1]];
$b = $vertices->[$edge->[2]];
$a = Slic3r::Point->new(@{$vertices->[$edge->[1]]});
$b = Slic3r::Point->new(@{$vertices->[$edge->[2]]});
next if !$self->encloses_point_quick($a) || !$self->encloses_point_quick($b);

View file

@ -162,7 +162,6 @@ sub make_fill {
$surface,
density => $density,
flow_spacing => $flow_spacing,
dont_adjust => $is_bridge,
);
next unless @polylines;
@ -190,8 +189,10 @@ sub make_fill {
}
# add thin fill regions
push @fills, @{$layerm->thin_fills};
push @fills_ordering_points, map $_->[0], @{$layerm->thin_fills};
if (@{ $layerm->thin_fills }) {
push @fills, Slic3r::ExtrusionPath::Collection->new(@{$layerm->thin_fills});
push @fills_ordering_points, $fills[-1]->first_point;
}
# organize infill paths using a nearest-neighbor search
@fills = @fills[ chained_path(\@fills_ordering_points) ];

View file

@ -5,7 +5,7 @@ extends 'Slic3r::Fill::Base';
has 'cache' => (is => 'rw', default => sub {{}});
use Slic3r::Geometry qw(A B X Y scale unscale scaled_epsilon);
use Slic3r::Geometry qw(A B X Y MIN scale unscale scaled_epsilon);
sub fill_surface {
my $self = shift;
@ -16,73 +16,67 @@ sub fill_surface {
my $rotate_vector = $self->infill_direction($surface);
$self->rotate_points($expolygon, $rotate_vector);
my $expolygon_off = $expolygon->offset_ex(scale $params{flow_spacing}/2)->[0];
return {} if !defined $expolygon_off; # skip some very small polygons (which shouldn't arrive here)
my $flow_spacing = $params{flow_spacing};
my $min_spacing = scale $params{flow_spacing};
my $line_spacing = $min_spacing / $params{density};
my $line_oscillation = $line_spacing - $min_spacing;
my $is_line_pattern = $self->isa('Slic3r::Fill::Line');
my $bounding_box = $expolygon->bounding_box;
my $flow_spacing = $params{flow_spacing};
my $min_spacing = scale $params{flow_spacing};
my $distance_between_lines = $min_spacing / $params{density};
my $line_oscillation = $distance_between_lines - $min_spacing;
my $is_line_pattern = $self->isa('Slic3r::Fill::Line');
# define flow spacing according to requested density
if ($params{density} == 1 && !$params{dont_adjust}) {
$line_spacing = $self->adjust_solid_spacing(
width => $bounding_box->size->[X],
distance => $line_spacing,
);
$flow_spacing = unscale $line_spacing;
} else {
# extend bounding box so that our pattern will be aligned with other layers
# $bounding_box->[X1] and [Y1] represent the displacement between new bounding box offset and old one
$bounding_box->extents->[X][MIN] -= $bounding_box->x_min;
$bounding_box->extents->[Y][MIN] -= $bounding_box->y_min;
}
my $cache_id = sprintf "d%s_s%.2f_a%.2f",
$params{density}, $params{flow_spacing}, $rotate_vector->[0][0];
if (!$self->cache->{$cache_id}) {
# compute bounding box
my $bounding_box;
{
my $bb_polygon = $self->bounding_box->polygon;
$bb_polygon->scale(sqrt 2);
$self->rotate_points($bb_polygon, $rotate_vector);
$bounding_box = $bb_polygon->bounding_box;
# generate the basic pattern
my $i = 0;
my $x = $bounding_box->x_min;
my $x_max = $bounding_box->x_max + scaled_epsilon;
my @vertical_lines = ();
while ($x <= $x_max) {
my $vertical_line = Slic3r::Line->new([$x, $bounding_box->y_max], [$x, $bounding_box->y_min]);
if ($is_line_pattern && $i % 2) {
$vertical_line->[A][X] += $line_oscillation;
$vertical_line->[B][X] -= $line_oscillation;
}
# define flow spacing according to requested density
if ($params{density} == 1 && !$params{dont_adjust}) {
$distance_between_lines = $self->adjust_solid_spacing(
width => $bounding_box->size->[X],
distance => $distance_between_lines,
);
$flow_spacing = unscale $distance_between_lines;
}
# generate the basic pattern
my $x = $bounding_box->x_min;
my @vertical_lines = ();
for (my $i = 0; $x <= $bounding_box->x_max + scaled_epsilon; $i++) {
my $vertical_line = Slic3r::Line->new([$x, $bounding_box->y_max], [$x, $bounding_box->y_min]);
if ($is_line_pattern && $i % 2) {
$vertical_line->[A][X] += $line_oscillation;
$vertical_line->[B][X] -= $line_oscillation;
}
push @vertical_lines, $vertical_line;
$x += $distance_between_lines;
}
$self->cache->{$cache_id} = [@vertical_lines];
push @vertical_lines, $vertical_line;
$i++;
$x += $line_spacing;
}
# clip paths against a slightly offsetted expolygon, so that the first and last paths
# are kept even if the expolygon has vertical sides
# the minimum offset for preventing edge lines from being clipped is scaled_epsilon;
# however we use a larger offset to support expolygons with slightly skewed sides and
# not perfectly straight
my @polylines = map Slic3r::Polyline->new(@$_),
@{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
[ map $_->pp, @{ $expolygon->offset_ex(scaled_epsilon) } ],
[ map $_->pp, @{ $self->cache->{$cache_id} } ],
[ map $_->pp, @{$expolygon->offset_ex($line_spacing*0.05)} ],
[ map $_->pp, @vertical_lines ],
) };
# connect lines
unless ($params{dont_connect}) {
my ($expolygon_off) = @{$expolygon->offset_ex(scale $params{flow_spacing}/2)};
my $collection = Slic3r::Polyline::Collection->new(
polylines => [ @polylines ],
);
@polylines = ();
my $tolerance = 10 * scaled_epsilon;
my $diagonal_distance = $distance_between_lines * 2;
my $diagonal_distance = $line_spacing * 2;
my $can_connect = $is_line_pattern
? sub {
($_[X] >= ($distance_between_lines - $line_oscillation) - $tolerance) && ($_[X] <= ($distance_between_lines + $line_oscillation) + $tolerance)
($_[X] >= ($line_spacing - $line_oscillation) - $tolerance) && ($_[X] <= ($line_spacing + $line_oscillation) + $tolerance)
&& $_[Y] <= $diagonal_distance
}
: sub { $_[X] <= $diagonal_distance && $_[Y] <= $diagonal_distance };

View file

@ -10,7 +10,7 @@ sub read_file {
my $tmesh = Slic3r::TriangleMesh::XS->new;
$tmesh->ReadSTLFile(Slic3r::encode_path($file));
$tmesh->Repair;
my ($vertices, $facets) = @{$tmesh->ToPerl};
my ($vertices, $facets) = ($tmesh->vertices, $tmesh->facets);
my $model = Slic3r::Model->new;
my $object = $model->add_object(vertices => $vertices, mesh_stats => $tmesh->stats);

View file

@ -3,13 +3,14 @@ use Moo;
use List::Util qw(min max first);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(scale unscale scaled_epsilon points_coincide PI X Y B);
use Slic3r::Geometry qw(epsilon scale unscale scaled_epsilon points_coincide PI X Y B);
use Slic3r::Geometry::Clipper qw(union_ex);
use Slic3r::Surface ':types';
has 'config' => (is => 'ro', required => 1);
has 'extruders' => (is => 'ro', default => sub {0}, required => 1);
has 'multiple_extruders' => (is => 'lazy');
has 'enable_loop_clipping' => (is => 'rw', default => sub {1});
has 'enable_wipe' => (is => 'lazy'); # at least one extruder has wipe enabled
has 'layer_count' => (is => 'ro', required => 1 );
has 'layer' => (is => 'rw');
@ -118,22 +119,31 @@ sub change_layer {
return $gcode;
}
# this method accepts Z in scaled coordinates
# this method accepts Z in unscaled coordinates
sub move_z {
my $self = shift;
my ($z, $comment) = @_;
$z *= &Slic3r::SCALING_FACTOR;
$z += $self->config->z_offset;
my $gcode = "";
my $current_z = $self->z;
if (!defined $current_z || $current_z != ($z + $self->lifted)) {
if (!defined $self->z || $z > $self->z) {
# if we're going over the current Z we won't be lifted anymore
$self->lifted(0);
# this retraction may alter $self->z
$gcode .= $self->retract(move_z => $z) if $self->extruder->retract_layer_change;
$self->speed('travel');
$gcode .= $self->G0(undef, $z, 0, $comment || ('move to next layer (' . $self->layer->id . ')'))
unless ($current_z // -1) != ($self->z // -1);
if !defined $self->z || abs($z - ($self->z - $self->lifted)) > epsilon;
$gcode .= $self->move_z_callback->() if defined $self->move_z_callback;
} elsif ($z < $self->z && $z > ($self->z - $self->lifted + epsilon)) {
# we're moving to a layer height which is greater than the nominal current one
# (nominal = actual - lifted) and less than the actual one. we're basically
# advancing to next layer, whose nominal Z is still lower than the previous
# layer Z with lift.
$self->lifted($self->z - $z);
}
return $gcode;
@ -195,7 +205,8 @@ sub extrude_loop {
# clip the path to avoid the extruder to get exactly on the first point of the loop;
# if polyline was shorter than the clipping distance we'd get a null polyline, so
# we discard it in that case
$extrusion_path->clip_end(scale $extrusion_path->flow_spacing * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_SPACING);
$extrusion_path->clip_end(scale $extrusion_path->flow_spacing * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_SPACING)
if $self->enable_loop_clipping;
return '' if !@{$extrusion_path->polyline};
my @paths = ();
@ -346,8 +357,12 @@ sub travel_to {
# build a more complete configuration space
$travel->translate(-$self->shift_x, -$self->shift_y);
# skip retraction if the travel move is contained in an island in the current layer
# *and* in an island in the upper layer (so that the ooze will not be visible)
if ($travel->length < scale $self->extruder->retract_before_travel
|| ($self->config->only_retract_when_crossing_perimeters && defined first { $_->encloses_line($travel, scaled_epsilon) } @{$self->layer->upper_layer_slices})
|| ($self->config->only_retract_when_crossing_perimeters
&& (first { $_->encloses_line($travel, scaled_epsilon) } @{$self->layer->upper_layer_slices})
&& (first { $_->encloses_line($travel, scaled_epsilon) } @{$self->layer->slices}))
|| ($role == EXTR_ROLE_SUPPORTMATERIAL && $self->layer->support_islands_enclose_line($travel))
) {
$self->straight_once(0);
@ -505,6 +520,7 @@ sub unretract {
if ($self->lifted) {
$self->speed('travel');
$gcode .= sprintf ";AAA selfz = %s, lifted = %s\n", $self->z // 'nd', $self->lifted // 'nd';
$gcode .= $self->G0(undef, $self->z - $self->lifted, 0, 'restore layer Z');
$self->lifted(0);
}
@ -523,7 +539,7 @@ sub unretract {
sub reset_e {
my $self = shift;
return "" if $self->config->gcode_flavor =~ /^(?:mach3|makerware)$/;
return "" if $self->config->gcode_flavor =~ /^(?:mach3|makerware|sailfish)$/;
$self->extruder->e(0) if $self->extruder;
return sprintf "G92 %s0%s\n", $self->config->extrusion_axis, ($self->config->gcode_comments ? ' ; reset extrusion distance' : '')

View file

@ -18,8 +18,6 @@ sub append {
my $self = shift;
my ($gcode, $obj_id, $layer_id, $print_z) = @_;
# TODO: differentiate $obj_id between normal layers and support layers
my $return = "";
if (exists $self->last_z->{$obj_id} && $self->last_z->{$obj_id} != $print_z) {
$return = $self->flush;

View file

@ -18,7 +18,7 @@ sub _build_spiralvase {
my $self = shift;
return $Slic3r::Config->spiral_vase
? Slic3r::GCode::SpiralVase->new
? Slic3r::GCode::SpiralVase->new(config => $self->gcodegen->config)
: undef;
}
@ -27,6 +27,15 @@ sub process_layer {
my ($layer, $object_copies) = @_;
my $gcode = "";
# check whether we're going to apply spiralvase logic
my $spiralvase = defined $self->spiralvase
&& ($layer->id > 0 || $Slic3r::Config->brim_width == 0)
&& ($layer->id >= $Slic3r::Config->skirt_height)
&& ($layer->id >= $Slic3r::Config->bottom_solid_layers);
# if we're going to apply spiralvase to this layer, disable loop clipping
$self->gcodegen->enable_loop_clipping(!$spiralvase);
if (!$self->second_layer_things_done && $layer->id == 1) {
for my $t (grep $self->extruders->[$_], 0 .. $#{$Slic3r::Config->temperature}) {
$gcode .= $self->gcodegen->set_temperature($self->extruders->[$t]->temperature, 0, $t)
@ -88,17 +97,15 @@ sub process_layer {
# extrude support material before other things because it might use a lower Z
# and also because we avoid travelling on other things when printing it
if ($self->print->has_support_material) {
$gcode .= $self->gcodegen->move_z($layer->support_material_contact_z)
if ($layer->support_contact_fills && @{ $layer->support_contact_fills->paths });
$gcode .= $self->gcodegen->set_extruder($self->extruders->[$Slic3r::Config->support_material_extruder-1]);
if ($layer->support_contact_fills) {
$gcode .= $self->gcodegen->extrude_path($_, 'support material contact area')
for $layer->support_contact_fills->chained_path($self->gcodegen->last_pos);
}
if ($self->print->has_support_material && $layer->isa('Slic3r::Layer::Support')) {
$gcode .= $self->gcodegen->move_z($layer->print_z);
if ($layer->support_interface_fills) {
$gcode .= $self->gcodegen->set_extruder($self->extruders->[$Slic3r::Config->support_material_interface_extruder-1]);
$gcode .= $self->gcodegen->extrude_path($_, 'support material interface')
for $layer->support_interface_fills->chained_path($self->gcodegen->last_pos);
}
if ($layer->support_fills) {
$gcode .= $self->gcodegen->set_extruder($self->extruders->[$Slic3r::Config->support_material_extruder-1]);
$gcode .= $self->gcodegen->extrude_path($_, 'support material')
for $layer->support_fills->chained_path($self->gcodegen->last_pos);
}
@ -116,7 +123,7 @@ sub process_layer {
}
foreach my $region_id (@region_ids) {
my $layerm = $layer->regions->[$region_id];
my $layerm = $layer->regions->[$region_id] or next;
my $region = $self->print->regions->[$region_id];
my @islands = ();
@ -165,10 +172,7 @@ sub process_layer {
# apply spiral vase post-processing if this layer contains suitable geometry
$gcode = $self->spiralvase->process_layer($gcode, $layer)
if defined $self->spiralvase
&& ($layer->id > 0 || $Slic3r::Config->brim_width == 0)
&& ($layer->id >= $Slic3r::Config->skirt_height)
&& ($layer->id >= $Slic3r::Config->bottom_solid_layers);
if $spiralvase;
return $gcode;
}

View file

@ -1,6 +1,8 @@
package Slic3r::GCode::SpiralVase;
use Moo;
has 'config' => (is => 'ro', required => 1);
use Slic3r::Geometry qw(unscale);
sub process_layer {
@ -16,7 +18,8 @@ sub process_layer {
my $new_gcode = "";
my $layer_height = $layer->height;
my $z = unscale($layer->print_z) - $layer_height;
my $z = $layer->print_z + $self->config->z_offset - $layer_height;
my $newlayer = 0;
Slic3r::GCode::Reader->new(gcode => $gcode)->parse(sub {
my ($reader, $cmd, $args, $info) = @_;
@ -24,11 +27,21 @@ sub process_layer {
my $line = $info->{raw};
$line =~ s/Z([^ ]+)/Z$z/;
$new_gcode .= "$line\n";
} elsif ($cmd eq 'G1' && !exists $args->{Z} && $info->{extruding} && $info->{dist_XY}) {
$z += $info->{dist_XY} * $layer_height / $total_layer_length;
$newlayer = 1;
} elsif ($cmd eq 'G1' && !exists $args->{Z} && $info->{dist_XY}) {
my $line = $info->{raw};
$line =~ s/^G1 /sprintf 'G1 Z%.3f ', $z/e;
$new_gcode .= "$line\n";
if ($info->{extruding}) {
$z += $info->{dist_XY} * $layer_height / $total_layer_length;
$line =~ s/^G1 /sprintf 'G1 Z%.3f ', $z/e;
$new_gcode .= "$line\n";
} elsif ($newlayer) {
# remove the first travel move after layer change; extrusion
# will just blend to the first loop vertex
# TODO: should we adjust (stretch) E for the first loop segment?
$newlayer = 0;
} else {
$new_gcode .= "$line\n";
}
} else {
$new_gcode .= "$info->{raw}\n";
}

View file

@ -448,7 +448,7 @@ sub changescale {
return if !$scale || $scale == -1;
$self->{list}->SetItem($obj_idx, 2, "$scale%");
$object->scale($scale / 100);
$object->changescale($scale / 100);
$self->arrange;
}
@ -1111,11 +1111,23 @@ sub _trigger_model_object {
}
}
sub changescale {
my $self = shift;
my ($scale) = @_;
my $variation = $scale / $self->scale;
foreach my $range (@{ $self->layer_height_ranges }) {
$range->[0] *= $variation;
$range->[1] *= $variation;
}
$self->scale($scale);
}
sub check_manifoldness {
my $self = shift;
if ($self->mesh_stats) {
if (first { $self->mesh_stats->{$_} > 0 } qw(degenerate_facets edges_fixed facets_removed facets_added facets_reversed backwards_edges)) {
if ($self->get_model_object->needed_repair) {
warn "Warning: the input file contains manifoldness errors. "
. "Slic3r repaired it successfully by guessing what the correct shape should be, "
. "but you might still want to inspect the G-code before printing.\n";
@ -1157,15 +1169,23 @@ sub make_thumbnail {
my $self = shift;
my $mesh = $self->model_object->mesh; # $self->model_object is already aligned to origin
my $thumbnail = Slic3r::ExPolygon::Collection->new(
# only simplify expolygons larger than the threshold
grep @$_,
map { ($_->area >= 1) ? $_->simplify(0.5) : $_ }
(@{$mesh->facets} <= 5000)
? @{$mesh->horizontal_projection}
: Slic3r::ExPolygon->new($self->convex_hull)
);
my $thumbnail = Slic3r::ExPolygon::Collection->new;
if (@{$mesh->facets} <= 5000) {
$thumbnail->append(@{ $mesh->horizontal_projection });
} else {
my $convex_hull = Slic3r::ExPolygon->new($self->convex_hull)->clone;
$convex_hull->scale(1/&Slic3r::SCALING_FACTOR);
$thumbnail->append($convex_hull);
}
# remove polygons with area <= 1mm
my $area_threshold = Slic3r::Geometry::scale 1;
@{$thumbnail->expolygons} =
map $_->simplify(0.5),
grep $_->area >= $area_threshold,
@{$thumbnail->expolygons};
$thumbnail->scale(&Slic3r::SCALING_FACTOR);
$self->thumbnail($thumbnail); # ignored in multi-threaded environments
$self->free_model_object;
@ -1188,6 +1208,7 @@ sub transformed_bounding_box {
my $bb = Slic3r::Geometry::BoundingBox->new_from_points($self->_apply_transform($self->convex_hull));
$bb->extents->[Z] = $self->bounding_box->clone->extents->[Z];
$bb->extents->[Z][MAX] *= $self->scale;
return $bb;
}

View file

@ -4,6 +4,7 @@ use warnings;
use utf8;
use File::Basename qw(basename dirname);
use List::Util qw(min);
use Slic3r::Geometry qw(X Y);
use Wx qw(:dialog :filedialog :font :icon :id :misc :notebook :panel :sizer);
use Wx::Event qw(EVT_BUTTON);
@ -404,6 +405,10 @@ sub config {
$config->set('first_layer_height', $config->nozzle_diameter->[0]);
$config->set('avoid_crossing_perimeters', 1);
$config->set('infill_every_layers', 10);
} else {
my $extruders_count = $self->{options_tabs}{printer}{extruders_count};
$config->set("${_}_extruder", min($config->get("${_}_extruder"), $extruders_count))
for qw(perimeter infill support_material support_material_interface);
}
return $config;

View file

@ -526,7 +526,7 @@ sub build {
$self->add_options_page('Multiple Extruders', 'funnel.png', optgroups => [
{
title => 'Extruders',
options => [qw(perimeter_extruder infill_extruder support_material_extruder)],
options => [qw(perimeter_extruder infill_extruder support_material_extruder support_material_interface_extruder)],
},
]);

View file

@ -7,7 +7,7 @@ our @ISA = qw(Exporter);
our @EXPORT_OK = qw(safety_offset safety_offset_ex offset offset_ex collapse_ex
diff_ex diff union_ex intersection_ex xor_ex PFT_EVENODD JT_MITER JT_ROUND
JT_SQUARE is_counter_clockwise union_pt offset2 offset2_ex traverse_pt
intersection);
intersection union);
use Math::Clipper 1.22 qw(:cliptypes :polyfilltypes :jointypes is_counter_clockwise area);
use Slic3r::Geometry qw(scale);
@ -25,6 +25,17 @@ sub safety_offset_ex {
@{Math::Clipper::ex_int_offset(_convert($polygons), $factor // (scale 1e-05), 100000, JT_MITER, 2)};
}
sub union {
my ($polygons, $jointype, $safety_offset) = @_;
$jointype = PFT_NONZERO unless defined $jointype;
$clipper->clear;
$clipper->add_subject_polygons($safety_offset ? safety_offset($polygons) : $polygons);
return [
map Slic3r::Polygon->new(@$_),
@{ $clipper->execute(CT_UNION, $jointype, $jointype) },
];
}
sub union_pt {
my ($polygons, $jointype, $safety_offset) = @_;
$jointype = PFT_NONZERO unless defined $jointype;
@ -38,16 +49,6 @@ sub collapse_ex {
return offset2_ex($polygons, -$width/2, +$width/2);
}
sub simplify_polygon {
my ($polygon, $pft) = @_;
return @{ Math::Clipper::simplify_polygon(_convert([$polygon])->[0], $pft // PFT_NONZERO) };
}
sub simplify_polygons {
my ($polygons, $pft) = @_;
return @{ Math::Clipper::simplify_polygons(_convert($polygons), $pft // PFT_NONZERO) };
}
sub traverse_pt {
my ($polynodes) = @_;

View file

@ -11,49 +11,18 @@ has 'regions' => (is => 'ro', default => sub { [] });
has 'slicing_errors' => (is => 'rw');
has 'slice_z' => (is => 'ro', required => 1); # Z used for slicing in scaled coordinates
has 'print_z' => (is => 'ro', required => 1); # Z used for printing in scaled coordinates
has 'print_z' => (is => 'ro', required => 1); # Z used for printing in unscaled coordinates
has 'height' => (is => 'ro', required => 1); # layer height in unscaled coordinates
# collection of expolygons generated by slicing the original geometry;
# also known as 'islands' (all regions and surface types are merged here)
has 'slices' => (is => 'rw', default => sub { Slic3r::ExPolygon::Collection->new });
# ordered collection of extrusion paths to fill surfaces for support material
has 'support_islands' => (is => 'rw');
has 'support_fills' => (is => 'rw');
has 'support_contact_fills' => (is => 'rw');
sub _trigger_id {
my $self = shift;
$_->_trigger_layer for @{$self->regions || []};
}
# layer height of contact paths in unscaled coordinates
sub support_material_contact_height {
my $self = shift;
return $self->height if $self->id == 0;
# TODO: check what upper region applies instead of considering the first one
my $upper_layer = $self->object->layers->[ $self->id + 1 ] // $self;
my $h = ($self->height + $upper_layer->height) - $upper_layer->regions->[0]->extruders->{infill}->bridge_flow->width;
# If layer height is less than half the bridge width then we'll get a negative height for contact area.
# The optimal solution would be to skip some layers during support material generation, but for now
# we'll apply a (dirty) workaround that should still work.
if ($h <= 0) {
$h = $self->height;
}
return $h;
}
# Z used for printing support material contact in scaled coordinates
sub support_material_contact_z {
my $self = shift;
return $self->print_z - ($self->height - $self->support_material_contact_height) / &Slic3r::SCALING_FACTOR;
}
sub upper_layer_slices {
my $self = shift;
@ -81,7 +50,7 @@ sub make_slices {
my $slices = union_ex([ map $_->p, map @{$_->slices}, @{$self->regions} ]);
$self->slices->clear;
$self->slices->append(map Slic3r::ExPolygon->new(@$_), @$slices);
$self->slices->append(@$slices);
}
sub make_perimeters {
@ -97,4 +66,13 @@ sub support_islands_enclose_line {
return (first { $_->encloses_line($line) } @{$self->support_islands}) ? 1 : 0;
}
package Slic3r::Layer::Support;
use Moo;
extends 'Slic3r::Layer';
# ordered collection of extrusion paths to fill surfaces for support material
has 'support_islands' => (is => 'rw');
has 'support_fills' => (is => 'rw');
has 'support_interface_fills' => (is => 'rw');
1;

View file

@ -93,19 +93,21 @@ sub make_surfaces {
# detect thin walls by offsetting slices by half extrusion inwards
if ($Slic3r::Config->thin_walls) {
my $width = $self->perimeter_flow->scaled_width;
$self->thin_walls([]);
# we use spacing here because there could be a case where
# the slice collapses with width but doesn't collapse with spacing,
# thus causing both perimeters and medial axis to be generated
my $width = $self->perimeter_flow->scaled_spacing;
my $diff = diff_ex(
[ map $_->p, @{$self->slices} ],
offset2([ map @$_, map $_->expolygon, @{$self->slices} ], -$width, +$width),
offset2([ map $_->p, @{$self->slices} ], -$width*0.5, +$width*0.5),
1,
);
$self->thin_walls->clear;
if (@$diff) {
my $area_threshold = $self->perimeter_flow->scaled_spacing ** 2;
@$diff = grep $_->area > ($area_threshold), @$diff;
$self->thin_walls->append(map $_->medial_axis($self->perimeter_flow->scaled_width), @$diff);
Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls};
my $area_threshold = $width ** 2;
if (@$diff = grep { $_->area > $area_threshold } @$diff) {
@{$self->thin_walls} = map $_->medial_axis($width), @$diff;
Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls});
}
}
@ -144,7 +146,7 @@ sub _merge_loops {
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops);
return map Slic3r::Surface->new(expolygon => Slic3r::ExPolygon->new(@$_), surface_type => S_TYPE_INTERNAL), @$expolygons;
return map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$expolygons;
}
sub make_perimeters {
@ -205,13 +207,12 @@ sub make_perimeters {
# we offset by half the perimeter spacing (to get to the actual infill boundary)
# and then we offset back and forth by the infill spacing to only consider the
# non-collapsing regions
# use a bogus surface_type
$self->fill_surfaces->append(
map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_TOP), @{offset2_ex(
[ map $_->simplify(&Slic3r::SCALED_RESOLUTION), @last ],
@{offset2_ex(
[ map $_->simplify_as_polygons(&Slic3r::SCALED_RESOLUTION), @{union_ex(\@last)} ],
-($perimeter_spacing/2 + $infill_spacing),
+$infill_spacing,
)}
)},
);
}
@ -347,12 +348,11 @@ sub _fill_gaps {
my @infill = map @{$_->offset_ex(-0.5*$flow->scaled_width)}, @this_width;
foreach my $expolygon (@infill) {
my @paths = $filler->fill_surface(
my ($params, @paths) = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNALSOLID),
density => 1,
flow_spacing => $flow->spacing,
);
my $params = shift @paths;
push @{ $self->thin_fills },
map {
@ -364,7 +364,19 @@ sub _fill_gaps {
role => EXTR_ROLE_GAPFILL,
height => $self->height,
flow_spacing => $params->{flow_spacing},
), @paths;
),
# Split polylines into lines so that the chained_path() search
# at the final stage has more freedom and will choose starting
# points closer than last positions. OTOH, this will make such
# search slower. Probably, ExtrusionPath objects should support
# splitting nearby a given position so that we can choose the right
# entry point even in the middle of the path without needing a
# complex, slow, chained_path() search on all segments. TODO.
# Such logic will also avoid all the small travel moves that this
# line-splitting causes, and it will be applicable to other things
# too.
map Slic3r::Polyline->new(@$_)->lines,
@paths;
}
}
@ -379,195 +391,203 @@ sub _fill_gaps {
sub prepare_fill_surfaces {
my $self = shift;
my @surfaces = @{$self->fill_surfaces};
# if no solid layers are requested, turn top/bottom surfaces to internal
if ($Slic3r::Config->top_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_TOP, @{$self->fill_surfaces};
for my $i (0..$#surfaces) {
next unless $surfaces[$i]->surface_type == S_TYPE_TOP;
$self->fill_surfaces->set_surface_type($i, S_TYPE_INTERNAL);
}
}
if ($Slic3r::Config->bottom_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces};
for my $i (0..$#surfaces) {
next unless $surfaces[$i]->surface_type == S_TYPE_BOTTOM;
$self->fill_surfaces->set_surface_type($i, S_TYPE_INTERNAL);
}
}
# turn too small internal regions into solid regions according to the user setting
if ($Slic3r::Config->fill_density > 0) {
my $min_area = scale scale $Slic3r::Config->solid_infill_below_area; # scaling an area requires two calls!
my @small = grep $_->surface_type == S_TYPE_INTERNAL && $_->expolygon->contour->area <= $min_area, @{$self->fill_surfaces};
$_->surface_type(S_TYPE_INTERNALSOLID) for @small;
Slic3r::debugf "identified %d small solid surfaces at layer %d\n", scalar(@small), $self->id if @small > 0;
for my $i (0..$#surfaces) {
next unless $surfaces[$i]->surface_type == S_TYPE_INTERNAL && $surfaces[$i]->expolygon->contour->area <= $min_area;
$self->fill_surfaces->set_surface_type($i, S_TYPE_INTERNALSOLID);
}
}
}
sub process_external_surfaces {
my $self = shift;
# enlarge top and bottom surfaces
{
# get all external surfaces
my @top = grep $_->surface_type == S_TYPE_TOP, @{$self->fill_surfaces};
my @bottom = grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces};
my $margin = scale 3; # TODO: ensure this is greater than the total thickness of the perimeters
my @bottom = ();
foreach my $surface (grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces}) {
my $grown = $surface->expolygon->offset_ex(+$margin);
# if we're slicing with no infill, we can't extend external surfaces
# over non-existent infill
my @fill_boundaries = $Slic3r::Config->fill_density > 0
? @{$self->fill_surfaces}
: grep $_->surface_type != S_TYPE_INTERNAL, @{$self->fill_surfaces};
# detect bridge direction before merging grown surfaces otherwise adjacent bridges
# would get merged into a single one while they need different directions
# also, supply the original expolygon instead of the grown one, because in case
# of very thin (but still working) anchors, the grown expolygon would go beyond them
my $angle = $self->id > 0
? $self->_detect_bridge_direction($surface->expolygon)
: undef;
# offset them and intersect the results with the actual fill boundaries
my $margin = scale 3; # TODO: ensure this is greater than the total thickness of the perimeters
@top = @{intersection_ex(
Slic3r::Geometry::Clipper::offset([ map $_->p, @top ], +$margin),
[ map $_->p, @fill_boundaries ],
1, # to ensure adjacent expolygons are unified
)};
@bottom = @{intersection_ex(
Slic3r::Geometry::Clipper::offset([ map $_->p, @bottom ], +$margin),
[ map $_->p, @fill_boundaries ],
1, # to ensure adjacent expolygons are unified
)};
# give priority to bottom surfaces
@top = @{diff_ex(
[ map @$_, @top ],
[ map @$_, @bottom ],
)};
# generate new surfaces
my @new_surfaces = ();
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_TOP,
), @top;
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_BOTTOM,
), @bottom;
# subtract the new top surfaces from the other non-top surfaces and re-add them
my @other = grep $_->surface_type != S_TYPE_TOP && $_->surface_type != S_TYPE_BOTTOM, @{$self->fill_surfaces};
foreach my $group (Slic3r::Surface->group(@other)) {
push @new_surfaces, map $_->clone, map $group->[0]->clone(expolygon => $_), @{diff_ex(
[ map $_->p, @$group ],
[ map $_->p, @new_surfaces ],
)};
}
$self->fill_surfaces->clear;
$self->fill_surfaces->append(@new_surfaces);
push @bottom, map $surface->clone(expolygon => $_, bridge_angle => $angle), @$grown;
}
# detect bridge direction (skip bottom layer)
$self->_detect_bridges if $self->id > 0;
my @top = ();
foreach my $surface (grep $_->surface_type == S_TYPE_TOP, @{$self->fill_surfaces}) {
# give priority to bottom surfaces
my $grown = diff_ex(
$surface->expolygon->offset(+$margin),
[ map $_->p, @bottom ],
);
push @top, map $surface->clone(expolygon => $_), @$grown;
}
# if we're slicing with no infill, we can't extend external surfaces
# over non-existent infill
my @fill_boundaries = $Slic3r::Config->fill_density > 0
? @{$self->fill_surfaces}
: grep $_->surface_type != S_TYPE_INTERNAL, @{$self->fill_surfaces};
# intersect the grown surfaces with the actual fill boundaries
my @new_surfaces = ();
foreach my $group (Slic3r::Surface->group(@top, @bottom)) {
push @new_surfaces,
map $group->[0]->clone(expolygon => $_),
@{intersection_ex(
[ map $_->p, @$group ],
[ map $_->p, @fill_boundaries ],
1, # to ensure adjacent expolygons are unified
)};
}
# subtract the new top surfaces from the other non-top surfaces and re-add them
my @other = grep $_->surface_type != S_TYPE_TOP && $_->surface_type != S_TYPE_BOTTOM, @{$self->fill_surfaces};
foreach my $group (Slic3r::Surface->group(@other)) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex(
[ map $_->p, @$group ],
[ map $_->p, @new_surfaces ],
)};
}
@{$self->fill_surfaces} = @new_surfaces;
}
sub _detect_bridges {
sub _detect_bridge_direction {
my $self = shift;
my ($expolygon) = @_;
my @bottom = grep $_->surface_type == S_TYPE_BOTTOM, @{$self->fill_surfaces}; # surfaces
my @lower = @{$self->layer->object->layers->[ $self->id - 1 ]->slices}; # expolygons
my $grown = $expolygon->offset_ex(+$self->perimeter_flow->scaled_width);
my @lower = @{$self->layer->object->layers->[ $self->id - 1 ]->slices}; # expolygons
foreach my $surface (@bottom) {
# detect what edges lie on lower slices
my @edges = (); # polylines
foreach my $lower (@lower) {
# turn bridge contour and holes into polylines and then clip them
# with each lower slice's contour
my @clipped = map $_->split_at_first_point->clip_with_polygon($lower->contour), @{$surface->expolygon};
if (@clipped == 2) {
# If the split_at_first_point() call above happens to split the polygon inside the clipping area
# we would get two consecutive polylines instead of a single one, so we use this ugly hack to
# recombine them back into a single one in order to trigger the @edges == 2 logic below.
# This needs to be replaced with something way better.
if (points_coincide($clipped[0][0], $clipped[-1][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[-1]}, @{$clipped[0]}));
}
if (points_coincide($clipped[-1][0], $clipped[0][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[0]}, @{$clipped[1]}));
}
# detect what edges lie on lower slices
my @edges = (); # polylines
foreach my $lower (@lower) {
# turn bridge contour and holes into polylines and then clip them
# with each lower slice's contour
my @clipped = map $_->split_at_first_point->clip_with_polygon($lower->contour), map @$_, @$grown;
if (@clipped == 2) {
# If the split_at_first_point() call above happens to split the polygon inside the clipping area
# we would get two consecutive polylines instead of a single one, so we use this ugly hack to
# recombine them back into a single one in order to trigger the @edges == 2 logic below.
# This needs to be replaced with something way better.
if (points_coincide($clipped[0][0], $clipped[-1][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[-1]}, @{$clipped[0]}));
}
push @edges, @clipped;
}
Slic3r::debugf "Found bridge on layer %d with %d support(s)\n", $self->id, scalar(@edges);
next if !@edges;
my $bridge_angle = undef;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("bridge_$surface.svg",
expolygons => [ $surface->expolygon ],
red_expolygons => [ @lower ],
polylines => [ @edges ],
);
}
if (@edges == 2) {
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
my @midpoints = map $_->midpoint, @chords;
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line_between_midpoints->direction);
} elsif (@edges == 1) {
# TODO: this case includes both U-shaped bridges and plain overhangs;
# we need a trapezoidation algorithm to detect the actual bridged area
# and separate it from the overhang area.
# in the mean time, we're treating as overhangs all cases where
# our supporting edge is a straight line
if (@{$edges[0]} > 2) {
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line->direction);
if (points_coincide($clipped[-1][0], $clipped[0][-1])) {
@clipped = (Slic3r::Polyline->new(@{$clipped[0]}, @{$clipped[1]}));
}
} elsif (@edges) {
# inset the bridge expolygon; we'll use this one to clip our test lines
my $inset = $surface->expolygon->offset_ex($self->infill_flow->scaled_width);
# detect anchors as intersection between our bridge expolygon and the lower slices
my $anchors = intersection_ex(
[ $surface->p ],
[ map @$_, @lower ],
1, # safety offset required to avoid Clipper from detecting empty intersection while Boost actually found some @edges
);
# we'll now try several directions using a rudimentary visibility check:
# bridge in several directions and then sum the length of lines having both
# endpoints within anchors
my %directions = (); # angle => score
my $angle_increment = PI/36; # 5°
my $line_increment = $self->infill_flow->scaled_width;
for (my $angle = 0; $angle <= PI; $angle += $angle_increment) {
# rotate everything - the center point doesn't matter
$_->rotate($angle, [0,0]) for @$inset, @$anchors;
# generate lines in this direction
my $bounding_box = Slic3r::Geometry::BoundingBox->new_from_points([ map @$_, map @$_, @$anchors ]);
my @lines = ();
for (my $x = $bounding_box->x_min; $x <= $bounding_box->x_max; $x += $line_increment) {
push @lines, [ [$x, $bounding_box->y_min], [$x, $bounding_box->y_max] ];
}
# TODO: use a multi_polygon_multi_linestring_intersection() call
my @clipped_lines = map @{ Boost::Geometry::Utils::polygon_multi_linestring_intersection($_, \@lines) }, @$inset;
# remove any line not having both endpoints within anchors
@clipped_lines = grep {
my $line = $_;
!(first { $_->encloses_point_quick($line->[A]) } @$anchors)
&& !(first { $_->encloses_point_quick($line->[B]) } @$anchors);
} @clipped_lines;
# sum length of bridged lines
$directions{-$angle} = sum(map Slic3r::Geometry::line_length($_), @clipped_lines) // 0;
}
# this could be slightly optimized with a max search instead of the sort
my @sorted_directions = sort { $directions{$a} <=> $directions{$b} } keys %directions;
# the best direction is the one causing most lines to be bridged
$bridge_angle = Slic3r::Geometry::rad2deg_dir($sorted_directions[-1]);
}
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
$self->id, $bridge_angle if defined $bridge_angle;
$surface->bridge_angle($bridge_angle // -1);
push @edges, @clipped;
}
Slic3r::debugf "Found bridge on layer %d with %d support(s)\n", $self->id, scalar(@edges);
return undef if !@edges;
my $bridge_angle = undef;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("bridge_$expolygon.svg",
expolygons => [ $expolygon ],
red_expolygons => [ @lower ],
polylines => [ @edges ],
);
}
if (@edges == 2) {
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
my @midpoints = map $_->midpoint, @chords;
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line_between_midpoints->direction);
} elsif (@edges == 1) {
# TODO: this case includes both U-shaped bridges and plain overhangs;
# we need a trapezoidation algorithm to detect the actual bridged area
# and separate it from the overhang area.
# in the mean time, we're treating as overhangs all cases where
# our supporting edge is a straight line
if (@{$edges[0]} > 2) {
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line->direction);
}
} elsif (@edges) {
# inset the bridge expolygon; we'll use this one to clip our test lines
my $inset = [ $expolygon->offset_ex($self->infill_flow->scaled_width) ];
# detect anchors as intersection between our bridge expolygon and the lower slices
my $anchors = intersection_ex(
[ @$grown ],
[ map @$_, @lower ],
undef,
1, # safety offset required to avoid Clipper from detecting empty intersection while Boost actually found some @edges
);
# we'll now try several directions using a rudimentary visibility check:
# bridge in several directions and then sum the length of lines having both
# endpoints within anchors
my %directions = (); # angle => score
my $angle_increment = PI/36; # 5°
my $line_increment = $self->infill_flow->scaled_width;
for (my $angle = 0; $angle <= PI; $angle += $angle_increment) {
# rotate everything - the center point doesn't matter
$_->rotate($angle, [0,0]) for @$inset, @$anchors;
# generate lines in this direction
my $bounding_box = Slic3r::Geometry::BoundingBox->new_from_points([ map @$_, map @$_, @$anchors ]);
my @lines = ();
for (my $x = $bounding_box->x_min; $x <= $bounding_box->x_max; $x += $line_increment) {
push @lines, [ [$x, $bounding_box->y_min], [$x, $bounding_box->y_max] ];
}
# TODO: use a multi_polygon_multi_linestring_intersection() call
my @clipped_lines = map @{ Boost::Geometry::Utils::polygon_multi_linestring_intersection($_, \@lines) }, @$inset;
# remove any line not having both endpoints within anchors
@clipped_lines = grep {
my $line = $_;
!(first { $_->encloses_point_quick($line->[A]) } @$anchors)
&& !(first { $_->encloses_point_quick($line->[B]) } @$anchors);
} @clipped_lines;
# sum length of bridged lines
$directions{-$angle} = sum(map Slic3r::Geometry::line_length($_), @clipped_lines) // 0;
}
# this could be slightly optimized with a max search instead of the sort
my @sorted_directions = sort { $directions{$a} <=> $directions{$b} } keys %directions;
# the best direction is the one causing most lines to be bridged
$bridge_angle = Slic3r::Geometry::rad2deg_dir($sorted_directions[-1]);
}
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
$self->id, $bridge_angle if defined $bridge_angle;
return $bridge_angle;
}
1;

View file

@ -50,4 +50,9 @@ sub midpoint {
);
}
sub grow {
my $self = shift;
return Slic3r::Polyline->new(@$self[0,1,0])->grow(@_);
}
1;

View file

@ -278,6 +278,11 @@ sub split_meshes {
}
}
sub print_info {
my $self = shift;
$_->print_info for @{$self->objects};
}
package Slic3r::Model::Region;
use Moo;
@ -287,6 +292,7 @@ has 'attributes' => (is => 'rw', default => sub { {} });
package Slic3r::Model::Object;
use Moo;
use File::Basename qw(basename);
use List::Util qw(first);
use Slic3r::Geometry qw(X Y Z MIN MAX move_points move_points_3D);
use Storable qw(dclone);
@ -396,6 +402,7 @@ sub scale {
}
$self->_bounding_box->scale($factor) if defined $self->_bounding_box;
$self->mesh_stats->{volume} *= ($factor**3) if defined $self->mesh_stats;
}
sub rotate {
@ -425,6 +432,39 @@ sub check_manifoldness {
return (first { !$_->mesh->check_manifoldness } @{$self->volumes}) ? 0 : 1;
}
sub needed_repair {
my $self = shift;
return $self->mesh_stats
&& first { $self->mesh_stats->{$_} > 0 }
qw(degenerate_facets edges_fixed facets_removed facets_added facets_reversed backwards_edges);
}
sub print_info {
my $self = shift;
printf "Info about %s:\n", basename($self->input_file);
printf " size: x=%.3f y=%.3f z=%.3f\n", @{$self->size};
if (my $stats = $self->mesh_stats) {
printf " number of facets: %d\n", $stats->{number_of_facets};
printf " number of shells: %d\n", $stats->{number_of_parts};
printf " volume: %.3f\n", $stats->{volume};
if ($self->needed_repair) {
printf " needed repair: yes\n";
printf " degenerate facets: %d\n", $stats->{degenerate_facets};
printf " edges fixed: %d\n", $stats->{edges_fixed};
printf " facets removed: %d\n", $stats->{facets_removed};
printf " facets added: %d\n", $stats->{facets_added};
printf " facets reversed: %d\n", $stats->{facets_reversed};
printf " backwards edges: %d\n", $stats->{backwards_edges};
} else {
printf " needed repair: no\n";
}
} else {
printf " number of facets: %d\n", scalar(map @{$_->facets}, @{$self->volumes});
}
}
sub clone { dclone($_[0]) }
package Slic3r::Model::Volume;

View file

@ -44,9 +44,11 @@ sub grow {
return $self->split_at_first_point->grow(@_);
}
# NOTE that this will turn the polygon to ccw regardless of its
# original orientation
sub simplify {
my $self = shift;
return Slic3r::Geometry::Clipper::simplify_polygon( $self->SUPER::simplify(@_) );
return @{Slic3r::Geometry::Clipper::simplify_polygons([ $self->SUPER::simplify(@_) ])};
}
# this method subdivides the polygon segments to that no one of them

View file

@ -43,14 +43,15 @@ sub length {
sub grow {
my $self = shift;
my ($distance, $scale, $joinType, $miterLimit) = @_;
$joinType //= JT_SQUARE;
$joinType //= JT_SQUARE; # we override this one
$scale //= 100000; # we init these because we can't pass undef
$miterLimit //= 3;
my @points = @$self;
return map Slic3r::Polygon->new(@$_),
@{Slic3r::Geometry::Clipper::offset(
[ Slic3r::Polygon->new(@points, CORE::reverse @points[1..($#points-1)]) ],
$distance, $scale, $joinType, $miterLimit,
)};
return @{Slic3r::Geometry::Clipper::offset(
[ Slic3r::Polygon->new(@points, CORE::reverse @points[1..($#points-1)]) ],
$distance, $scale, $joinType, $miterLimit,
)};
}
sub nearest_point_to {
@ -144,6 +145,38 @@ sub clip_start {
return (ref $self)->new($points);
}
# this method returns a collection of points picked on the polygon contour
# so that they are evenly spaced according to the input distance
# (find a better name!)
sub regular_points {
my $self = shift;
my ($distance) = @_;
my @points = ($self->[0]);
my $len = 0;
for (my $i = 1; $i <= $#$self; $i++) {
my $point = $self->[$i];
my $segment_length = $point->distance_to($self->[$i-1]);
$len += $segment_length;
next if $len < $distance;
if ($len == $distance) {
push @points, $point;
$len = 0;
next;
}
my $take = $segment_length - ($len - $distance); # how much we take of this segment
my $new_point = Slic3r::Geometry::point_along_segment($self->[$i-1], $point, $take);
push @points, Slic3r::Point->new($new_point);
$i--;
$len = -$take;
}
return @points;
}
package Slic3r::Polyline::Collection;
use Moo;

View file

@ -3,7 +3,7 @@ use Moo;
use File::Basename qw(basename fileparse);
use File::Spec;
use List::Util qw(max first);
use List::Util qw(min max first);
use Math::ConvexHull::MonotoneChain qw(convex_hull);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 MIN MAX PI scale unscale move_points
@ -73,6 +73,9 @@ sub _trigger_config {
$self->config->set('support_material_enforce_layers', 0);
$self->config->set('retract_layer_change', [0]); # TODO: only apply this to the spiral layers
}
# force all retraction lift values to be the same
$self->config->set('retract_lift', [ map $self->config->retract_lift->[0], @{$self->config->retract_lift} ]);
}
sub _build_has_support_material {
@ -104,6 +107,9 @@ sub add_model {
# this mesh into distinct objects so that we reduce the complexity
# of the graphs
# -- Disabling this one because there are too many legit objects having nested shells
# -- It also caused a bug where plater rotation was applied to each single object by the
# -- code below (thus around its own center), instead of being applied to the whole
# -- thing before the split.
###$model->split_meshes if $Slic3r::Config->avoid_crossing_perimeters && !$Slic3r::Config->complete_objects;
foreach my $object (@{ $model->objects }) {
@ -222,7 +228,7 @@ sub init_extruders {
# initialize all extruder(s) we need
my @used_extruders = (
0,
(map $self->config->get("${_}_extruder")-1, qw(perimeter infill support_material)),
(map $self->config->get("${_}_extruder")-1, qw(perimeter infill support_material support_material_interface)),
(values %extruder_mapping),
);
for my $extruder_id (keys %{{ map {$_ => 1} @used_extruders }}) {
@ -257,6 +263,7 @@ sub init_extruders {
}
# calculate support material flow
# Note: we should calculate a different flow for support material interface
if ($self->has_support_material) {
my $extruder = $self->extruders->[$self->config->support_material_extruder-1];
$self->support_material_flow($extruder->make_flow(
@ -565,15 +572,19 @@ sub make_skirt {
# collect points from all layers contained in skirt height
my @points = ();
foreach my $obj_idx (0 .. $#{$self->objects}) {
my $skirt_height = $Slic3r::Config->skirt_height;
$skirt_height = $self->objects->[$obj_idx]->layer_count if $skirt_height > $self->objects->[$obj_idx]->layer_count;
my @layers = map $self->objects->[$obj_idx]->layers->[$_], 0..($skirt_height-1);
my $object = $self->objects->[$obj_idx];
my @layers = map $object->layers->[$_], 0..min($Slic3r::Config->skirt_height-1, $#{$object->layers});
my @layer_points = (
(map @$_, map @$_, map @{$_->slices}, @layers),
(map @$_, map @{$_->thin_walls}, map @{$_->regions}, @layers),
(map @{$_->polyline}, map @{$_->support_fills}, grep $_->support_fills, @layers),
);
push @points, map move_points($_, @layer_points), @{$self->objects->[$obj_idx]->copies};
if (@{ $object->support_layers }) {
my @support_layers = map $object->support_layers->[$_], 0..min($Slic3r::Config->skirt_height-1, $#{$object->support_layers});
push @layer_points,
(map @{$_->unpack->polyline}, map @{$_->support_fills->paths}, grep $_->support_fills, @support_layers),
(map @{$_->unpack->polyline}, map @{$_->support_interface_fills->paths}, grep $_->support_interface_fills, @support_layers);
}
push @points, map move_points($_, @layer_points), @{$object->copies};
}
return if @points < 3; # at least three points required for a convex hull
@ -627,13 +638,22 @@ sub make_brim {
my $grow_distance = $flow->scaled_width / 2;
my @islands = (); # array of polygons
foreach my $obj_idx (0 .. $#{$self->objects}) {
my $layer0 = $self->objects->[$obj_idx]->layers->[0];
my $object = $self->objects->[$obj_idx];
my $layer0 = $object->layers->[0];
my @object_islands = (
(map $_->contour, @{$layer0->slices}),
(map { $_->isa('Slic3r::Polygon') ? $_ : $_->grow($grow_distance) } map @{$_->thin_walls}, @{$layer0->regions}),
(map $_->polyline->grow($grow_distance), map @{$_->support_fills}, grep $_->support_fills, $layer0),
);
foreach my $copy (@{$self->objects->[$obj_idx]->copies}) {
if (@{ $object->support_layers }) {
my $support_layer0 = $object->support_layers->[0];
push @object_islands,
(map $_->unpack->polyline->grow($grow_distance), @{$support_layer0->support_fills->paths})
if $support_layer0->support_fills;
push @object_islands,
(map $_->unpack->polyline->grow($grow_distance), @{$support_layer0->support_interface_fills->paths})
if $support_layer0->support_interface_fills;
}
foreach my $copy (@{$object->copies}) {
push @islands, map $_->clone->translate(@$copy), @object_islands;
}
}
@ -706,21 +726,26 @@ sub write_gcode {
print $fh "G21 ; set units to millimeters\n" if $Slic3r::Config->gcode_flavor ne 'makerware';
print $fh $gcodegen->set_fan(0, 1) if $Slic3r::Config->cooling && $Slic3r::Config->disable_fan_first_layers;
# write start commands to file
printf $fh $gcodegen->set_bed_temperature($Slic3r::Config->first_layer_bed_temperature, 1),
if $Slic3r::Config->first_layer_bed_temperature && $Slic3r::Config->start_gcode !~ /M(?:190|140)/i;
# set bed temperature
if ((my $temp = $Slic3r::Config->first_layer_bed_temperature) && $Slic3r::Config->start_gcode !~ /M(?:190|140)/i) {
printf $fh $gcodegen->set_bed_temperature($temp, 1);
}
# set extruder(s) temperature before and after start G-code
my $print_first_layer_temperature = sub {
for my $t (grep $self->extruders->[$_], 0 .. $#{$Slic3r::Config->first_layer_temperature}) {
printf $fh $gcodegen->set_temperature($self->extruders->[$t]->first_layer_temperature, 0, $t)
if $self->extruders->[$t]->first_layer_temperature;
my ($wait) = @_;
return if $Slic3r::Config->start_gcode =~ /M(?:109|104)/i;
for my $t (0 .. $#{$self->extruders}) {
my $temp = $self->extruders->[$t]->first_layer_temperature;
printf $fh $gcodegen->set_temperature($temp, $wait, $t) if $temp > 0;
}
};
$print_first_layer_temperature->() if $Slic3r::Config->start_gcode !~ /M(?:109|104)/i;
$print_first_layer_temperature->(0);
printf $fh "%s\n", $Slic3r::Config->replace_options($Slic3r::Config->start_gcode);
for my $t (grep $self->extruders->[$_], 0 .. $#{$Slic3r::Config->first_layer_temperature}) {
printf $fh $gcodegen->set_temperature($self->extruders->[$t]->first_layer_temperature, 1, $t)
if $self->extruders->[$t]->first_layer_temperature && $Slic3r::Config->start_gcode !~ /M(?:109|104)/i;
}
$print_first_layer_temperature->(1);
# set other general things
print $fh "G90 ; use absolute coordinates\n" if $Slic3r::Config->gcode_flavor ne 'makerware';
if ($Slic3r::Config->gcode_flavor =~ /^(?:reprap|teacup)$/) {
printf $fh $gcodegen->reset_e;
@ -795,7 +820,9 @@ sub write_gcode {
gcodegen => $gcodegen,
);
for my $layer (@{$self->objects->[$obj_idx]->layers}) {
my $object = $self->objects->[$obj_idx];
my @layers = sort { $a->print_z <=> $b->print_z } @{$object->layers}, @{$object->support_layers};
for my $layer (@layers) {
# if we are printing the bottom layer of an object, and we have already finished
# another one, set first layer temperatures. this happens before the Z move
# is triggered, so machine has more time to reach such temperatures
@ -820,11 +847,13 @@ sub write_gcode {
my @obj_idx = chained_path([ map Slic3r::Point->new(@{$_->copies->[0]}), @{$self->objects} ]);
# sort layers by Z
my %layers = (); # print_z => [ layer, layer, layer ] by obj_idx
my %layers = (); # print_z => [ [layers], [layers], [layers] ] by obj_idx
foreach my $obj_idx (0 .. $#{$self->objects}) {
foreach my $layer (@{$self->objects->[$obj_idx]->layers}) {
my $object = $self->objects->[$obj_idx];
foreach my $layer (@{$object->layers}, @{$object->support_layers}) {
$layers{ $layer->print_z } ||= [];
$layers{ $layer->print_z }[$obj_idx] = $layer; # turn this into [$layer] when merging support layers
$layers{ $layer->print_z }[$obj_idx] ||= [];
push @{$layers{ $layer->print_z }[$obj_idx]}, $layer;
}
}
@ -834,13 +863,14 @@ sub write_gcode {
);
foreach my $print_z (sort { $a <=> $b } keys %layers) {
foreach my $obj_idx (@obj_idx) {
next unless my $layer = $layers{$print_z}[$obj_idx];
print $fh $buffer->append(
$layer_gcode->process_layer($layer, $layer->object->copies),
$layer->object."",
$layer->id,
$layer->print_z,
);
foreach my $layer (@{ $layers{$print_z}[$obj_idx] // [] }) {
print $fh $buffer->append(
$layer_gcode->process_layer($layer, $layer->object->copies),
$layer->object . ref($layer), # differentiate $obj_id between normal layers and support layers
$layer->id,
$layer->print_z,
);
}
}
}
print $fh $buffer->flush;

View file

@ -1,11 +1,11 @@
package Slic3r::Print::Object;
use Moo;
use List::Util qw(min sum first);
use List::Util qw(min max sum first);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(Z PI scale unscale deg2rad rad2deg scaled_epsilon chained_path_points);
use Slic3r::Geometry::Clipper qw(diff_ex intersection_ex union_ex offset collapse_ex
offset2 diff intersection);
use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex
offset offset_ex offset2);
use Slic3r::Surface ':types';
has 'print' => (is => 'ro', weak_ref => 1, required => 1);
@ -14,9 +14,10 @@ has 'meshes' => (is => 'rw', default => sub { [] }); # by region_id
has 'size' => (is => 'rw', required => 1); # XYZ in scaled coordinates
has 'copies' => (is => 'rw', trigger => 1); # in scaled coordinates
has 'layers' => (is => 'rw', default => sub { [] });
has 'support_layers' => (is => 'rw', default => sub { [] });
has 'layer_height_ranges' => (is => 'rw', default => sub { [] }); # [ z_min, z_max, layer_height ]
has 'fill_maker' => (is => 'lazy');
has '_z_table' => (is => 'lazy');
has '_slice_z_table' => (is => 'lazy');
sub BUILD {
my $self = shift;
@ -36,7 +37,7 @@ sub BUILD {
object => $self,
id => $id,
height => $height,
print_z => scale $print_z,
print_z => $print_z,
slice_z => -1,
);
}
@ -71,7 +72,7 @@ sub BUILD {
object => $self,
id => $id,
height => $height,
print_z => scale $print_z,
print_z => $print_z,
slice_z => scale $slice_z,
);
@ -84,7 +85,7 @@ sub _build_fill_maker {
return Slic3r::Fill->new(object => $self);
}
sub _build__z_table {
sub _build__slice_z_table {
my $self = shift;
return Slic3r::Object::XS::ZTable->new([ map $_->slice_z, @{$self->layers} ]);
}
@ -105,7 +106,13 @@ sub layer_count {
sub get_layer_range {
my $self = shift;
return @{ $self->_z_table->get_range(@_) };
my ($min_z, $max_z) = @_;
my $min_layer = $self->_slice_z_table->lower_bound($min_z); # first layer whose slice_z is >= $min_z
return (
$min_layer,
$self->_slice_z_table->upper_bound($max_z, $min_layer)-1, # last layer whose slice_z is <= $max_z
);
}
sub bounding_box {
@ -561,11 +568,14 @@ sub discover_horizontal_shells {
if ($Slic3r::Config->solid_infill_every_layers && $Slic3r::Config->fill_density > 0
&& ($i % $Slic3r::Config->solid_infill_every_layers) == 0) {
$_->surface_type(S_TYPE_INTERNALSOLID)
for grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces};
my @surfaces = @{$layerm->fill_surfaces};
for my $i (0..$#surfaces) {
next unless $surfaces[$i]->surface_type == S_TYPE_INTERNAL;
$layerm->fill_surfaces->set_surface_type($i, S_TYPE_INTERNALSOLID);
}
}
foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
# find slices of current type for current layer
# get both slices and fill_surfaces before the former contains the perimeters area
# and the latter contains the enlarged external surfaces
@ -576,7 +586,7 @@ sub discover_horizontal_shells {
my $solid_layers = ($type == S_TYPE_TOP)
? $Slic3r::Config->top_solid_layers
: $Slic3r::Config->bottom_solid_layers;
for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1;
NEIGHBOR: for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1;
abs($n - $i) <= $solid_layers-1;
($type == S_TYPE_TOP) ? $n-- : $n++) {
@ -587,12 +597,19 @@ sub discover_horizontal_shells {
# find intersection between neighbor and current layer's surfaces
# intersections have contours and holes
my $new_internal_solid = intersection_ex(
# we update $solid so that we limit the next neighbor layer to the areas that were
# found on this one - in other words, solid shells on one layer (for a given external surface)
# are always a subset of the shells found on the previous shell layer
# this approach allows for DWIM in hollow sloping vases, where we want bottom
# shells to be generated in the base but not in the walls (where there are many
# narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
# upper perimeter as an obstacle and shell will not be propagated to more upper layers
my $new_internal_solid = $solid = intersection_ex(
[ map @$_, @$solid ],
[ map $_->p, grep { ($_->surface_type == S_TYPE_INTERNAL) || ($_->surface_type == S_TYPE_INTERNALSOLID) } @neighbor_fill_surfaces ],
1,
);
next if !@$new_internal_solid;
next EXTERNAL if !@$new_internal_solid;
# make sure the new internal solid is wide enough, as it might get collapsed when
# spacing is added in Fill.pm
@ -600,25 +617,30 @@ sub discover_horizontal_shells {
my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size
my $too_narrow = diff_ex(
[ map @$_, @$new_internal_solid ],
offset(offset([ map @$_, @$new_internal_solid ], -$margin), +$margin),
offset2([ map @$_, @$new_internal_solid ], -$margin, +$margin),
1,
);
# if some parts are going to collapse, let's grow them and add the extra area to the neighbor layer
# as well as to our original surfaces so that we support this additional area in the next shell too
# if some parts are going to collapse, use a different strategy according to fill density
if (@$too_narrow) {
# consider the actual fill area
my @fill_boundaries = $Slic3r::Config->fill_density > 0
? @neighbor_fill_surfaces
: grep $_->surface_type != S_TYPE_INTERNAL, @neighbor_fill_surfaces;
# make sure our grown surfaces don't exceed the fill area
my @grown = map @$_, @{intersection_ex(
offset([ map @$_, @$too_narrow ], +$margin),
[ map $_->p, @fill_boundaries ],
)};
$new_internal_solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]);
$solid = union_ex([ @grown, (map @$_, @$solid) ]);
if ($Slic3r::Config->fill_density > 0) {
# if we have internal infill, grow the collapsing parts and add the extra area to
# the neighbor layer as well as to our original surfaces so that we support this
# additional area in the next shell too
# make sure our grown surfaces don't exceed the fill area
my @grown = map @$_, @{intersection_ex(
offset([ map @$_, @$too_narrow ], +$margin),
[ map $_->p, @neighbor_fill_surfaces ],
)};
$new_internal_solid = $solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]);
} else {
# if we're printing a hollow object, we discard such small parts
$new_internal_solid = $solid = diff_ex(
[ map @$_, @$new_internal_solid ],
[ map @$_, @$too_narrow ],
);
}
}
}
@ -778,263 +800,452 @@ sub generate_support_material {
my $self = shift;
return if $self->layer_count < 2;
my $flow = $self->print->support_material_flow;
# how much we extend support around the actual contact area
#my $margin = $flow->scaled_width / 2;
my $margin = scale 3;
# increment used to reach $margin in steps to avoid trespassing thin objects
my $margin_step = $margin/3;
# if user specified a custom angle threshold, convert it to radians
my $threshold_rad;
if ($Slic3r::Config->support_material_threshold) {
$threshold_rad = deg2rad($Slic3r::Config->support_material_threshold + 1); # +1 makes the threshold inclusive
Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
}
my $flow = $self->print->support_material_flow;
my $distance_from_object = 1.5 * $flow->scaled_width;
my $pattern_spacing = ($Slic3r::Config->support_material_spacing > $flow->spacing)
? $Slic3r::Config->support_material_spacing
: $flow->spacing;
# determine support regions in each layer (for upper layers)
Slic3r::debugf "Detecting regions\n";
my %layers = (); # this represents the areas of each layer having to support upper layers (excluding interfaces)
my %layers_interfaces = (); # this represents the areas of each layer to be filled with interface pattern, excluding the contact areas which are stored separately
my %layers_contact_areas = (); # this represents the areas of each layer having an overhang in the immediately upper layer
# shape of contact area
my $contact_loops = 1;
my $circle_distance = 3 * $flow->scaled_width;
my $circle;
{
my @current_support_regions = (); # expolygons we've started to support (i.e. below the empty interface layers)
my @upper_layers_overhangs = (map [], 1..$Slic3r::Config->support_material_interface_layers);
for my $i (reverse 0 .. $#{$self->layers}) {
next unless $Slic3r::Config->support_material
|| ($i <= $Slic3r::Config->raft_layers) # <= because we need to start from the first non-raft layer
|| ($i <= $Slic3r::Config->support_material_enforce_layers + $Slic3r::Config->raft_layers);
# TODO: make sure teeth between circles are compatible with support material flow
my $r = 1.5 * $flow->scaled_width;
$circle = Slic3r::Polygon->new(map [ $r * cos $_, $r * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
}
# determine contact areas
my %contact = (); # contact_z => [ polygons ]
my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer
for my $layer_id (1 .. $#{$self->layers}) {
my $layer = $self->layers->[$layer_id];
my $lower_layer = $self->layers->[$layer_id-1];
# detect overhangs and contact areas needed to support them
my (@overhang, @contact) = ();
foreach my $layerm (@{$layer->regions}) {
my $fw = $layerm->perimeter_flow->scaled_width;
my $diff;
my $layer = $self->layers->[$i];
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
my @current_layer_offsetted_slices = map @{$_->offset_ex($distance_from_object)}, @{$layer->slices};
# $upper_layers_overhangs[-1] contains the overhangs of the upper layer, regardless of any interface layers
# $upper_layers_overhangs[0] contains the overhangs of the first upper layer above the interface layers
# we only consider the overhangs of the upper layer to define contact areas of the current one
$layers_contact_areas{$i} = diff_ex(
[ map @$_, @{ $upper_layers_overhangs[-1] || [] } ],
[ map @$_, @current_layer_offsetted_slices ],
);
$layers_contact_areas{$i} = [
@{collapse_ex([ map @$_, @{$layers_contact_areas{$i}} ], $flow->scaled_width)},
];
# to define interface regions of this layer we consider the overhangs of all the upper layers
# minus the first one
$layers_interfaces{$i} = diff_ex(
[ map @$_, map @$_, @upper_layers_overhangs[0 .. $#upper_layers_overhangs-1] ],
[
(map @$_, @current_layer_offsetted_slices),
(map @$_, @{ $layers_contact_areas{$i} }),
],
);
$layers_interfaces{$i} = [
@{collapse_ex([ map @$_, @{$layers_interfaces{$i}} ], $flow->scaled_width)},
];
# generate support material in current layer (for upper layers)
@current_support_regions = @{diff_ex(
[
(map @$_, @current_support_regions),
(map @$_, @{ $upper_layers_overhangs[-1] || [] }), # only considering -1 instead of the whole array contents is just an optimization
],
[ map @$_, @{$layer->slices} ],
)};
shift @upper_layers_overhangs;
$layers{$i} = diff_ex(
[ map @$_, @current_support_regions ],
[
(map @$_, @current_layer_offsetted_slices),
(map @$_, @{ $layers_interfaces{$i} }),
],
);
$layers{$i} = [
@{collapse_ex([ map @$_, @{$layers{$i}} ], $flow->scaled_width)},
];
# get layer overhangs and put them into queue for adding support inside lower layers;
# we need an angle threshold for this
my @overhangs = ();
if ($lower_layer) {
# consider all overhangs regardless of their angle if we're told to enforce support on this layer
my $distance = $i <= ($Slic3r::Config->support_material_enforce_layers + $Slic3r::Config->raft_layers)
? 0
: $Slic3r::Config->support_material_threshold
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
: $self->layers->[1]->regions->[0]->overhang_width;
# If a threshold angle was specified, use a different logic for detecting overhangs.
if (defined $threshold_rad || $layer_id <= $Slic3r::Config->support_material_enforce_layers) {
my $d = defined $threshold_rad
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
: 0;
@overhangs = map @{$_->offset_ex(+$distance)}, @{diff_ex(
[ map @$_, @{$layer->slices} ],
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$d),
[ map @$_, @{$lower_layer->slices} ],
1,
);
# only enforce spacing from the object ($fw/2) if the threshold angle
# is not too high: in that case, $d will be very small (as we need to catch
# very short overhangs), and such contact area would be eaten by the
# enforced spacing, resulting in high threshold angles to be almost ignored
$diff = diff(
offset($diff, $d - $fw/2),
[ map @$_, @{$lower_layer->slices} ],
) if $d > $fw/2;
} else {
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$fw/2),
[ map @$_, @{$lower_layer->slices} ],
);
# $diff now contains the ring or stripe comprised between the boundary of
# lower slices and the centerline of the last perimeter in this overhanging layer.
# Void $diff means that there's no upper perimeter whose centerline is
# outside the lower slice boundary, thus no overhang
}
next if !@$diff;
push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
# Let's define the required contact area by using a max gap of half the upper
# extrusion width and extending the area according to the configured margin.
# We increment the area in steps because we don't want our support to overflow
# on the other side of the object (if it's very thin).
{
my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)};
for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) {
$diff = diff(
offset($diff, $_),
\@slices_margin,
);
}
}
push @contact, @$diff;
}
next if !@contact;
# now apply the contact areas to the layer were they need to be made
{
# get the average nozzle diameter used on this layer
my @nozzle_diameters = map $_->nozzle_diameter,
map { $_->perimeter_flow, $_->solid_infill_flow }
@{$layer->regions};
my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
my $contact_z = $layer->print_z - $nozzle_diameter * 1.5;
###$contact_z = $layer->print_z - $layer->height;
# ignore this contact area if it's too low
next if $contact_z < $Slic3r::Config->first_layer_height;
$contact{$contact_z} = [ @contact ];
$overhang{$contact_z} = [ @overhang ];
}
}
my @contact_z = sort keys %contact;
# find object top surfaces
# we'll use them to clip our support and detect where does it stick
my %top = (); # print_z => [ expolygons ]
{
my $projection = [];
foreach my $layer (reverse @{$self->layers}) {
if (my @top = grep $_->surface_type == S_TYPE_TOP, map @{$_->slices}, @{$layer->regions}) {
# compute projection of the contact areas above this top layer
# first add all the 'new' contact areas to the current projection
# ('new' means all the areas that are lower than the last top layer
# we considered)
my $min_top = min(keys %top) // max(keys %contact);
push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ < $min_top } keys %contact;
# now find whether any projection falls onto this top surface
my $touching = intersection($projection, [ map $_->p, @top ]);
if (@$touching) {
$top{ $layer->print_z } = $touching;
}
# remove the areas that touched from the projection that will continue on
# next, lower, top surfaces
$projection = diff($projection, $touching);
}
}
}
my @top_z = sort keys %top;
# we now know the upper and lower boundaries for our support material object
# (@contact_z and @top_z), so we can generate intermediate layers
my @support_layers = _compute_support_layers(\@contact_z, \@top_z, $Slic3r::Config, $flow);
# if we wanted to apply some special logic to the first support layers lying on
# object's top surfaces this is the place to detect them
# Let's now determine shells (interface layers) and normal support below them.
# Let's now fill each support layer by generating shells (interface layers) and
# clipping support area to the actual object boundaries.
my %interface = (); # layer_id => [ polygons ]
my %support = (); # layer_id => [ polygons ]
my $interface_layers = $Slic3r::Config->support_material_interface_layers;
for my $layer_id (0 .. $#support_layers) {
my $z = $support_layers[$layer_id];
my $this = $contact{$z} // next;
# count contact layer as interface layer
for (my $i = $layer_id; $i >= 0 && $i > $layer_id-$interface_layers; $i--) {
$z = $support_layers[$i];
# Compute interface area on this layer as diff of upper contact area
# (or upper interface area) and layer slices.
# This diff is responsible of the contact between support material and
# the top surfaces of the object. We should probably offset the top
# surfaces before performing the diff, but this needs investigation.
$this = $interface{$i} = diff(
[
@$this,
@{ $interface{$i} || [] },
],
[
@{ $top{$z} || [] },
],
1,
);
}
# determine what layers does our support belong to
for (my $i = $layer_id-$interface_layers; $i >= 0; $i--) {
$z = $support_layers[$i];
# Compute support area on this layer as diff of upper support area
# and layer slices.
$this = $support{$i} = diff(
[
@$this,
@{ $support{$i} || [] },
],
[
@{ $top{$z} || [] },
@{ $interface{$i} || [] },
],
1,
);
}
}
push @{$self->support_layers}, map Slic3r::Layer::Support->new(
object => $self,
id => $_,
height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]),
print_z => $support_layers[$_],
slice_z => -1,
slices => [],
), 0 .. $#support_layers;
Slic3r::debugf "Generating patterns\n";
# prepare fillers
my $pattern = $Slic3r::Config->support_material_pattern;
my @angles = ($Slic3r::Config->support_material_angle);
if ($pattern eq 'rectilinear-grid') {
$pattern = 'rectilinear';
push @angles, $angles[0] + 90;
}
my %fillers = (
interface => $self->fill_maker->filler('rectilinear'),
support => $self->fill_maker->filler($pattern),
);
my $interface_angle = $Slic3r::Config->support_material_angle + 90;
my $interface_spacing = $Slic3r::Config->support_material_interface_spacing + $flow->spacing;
my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing;
my $support_spacing = $Slic3r::Config->support_material_spacing + $flow->spacing;
my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
my $process_layer = sub {
my ($layer_id) = @_;
my $result = { contact => [], interface => [], support => [] };
$contact{$layer_id} ||= [];
$interface{$layer_id} ||= [];
$support{$layer_id} ||= [];
# contact
if ((my $contact = $contact{$support_layers[$layer_id]}) && $contact_loops > 0) {
my $overhang = $overhang{$support_layers[$layer_id]};
$contact = [ grep $_->is_counter_clockwise, @$contact ];
# generate the outermost loop
my @loops0;
{
# find centerline of the external loop of the contours
my @external_loops = @{offset($contact, -$flow->scaled_width/2)};
# apply a pattern to the loop
my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops;
@loops0 = @{diff(
[ @external_loops ],
[ map $circle->clone->translate(@$_), @positions ],
)};
}
push @upper_layers_overhangs, [@overhangs];
if ($Slic3r::debug) {
printf "Layer %d (z = %.2f) has %d generic support areas, %d normal interface areas, %d contact areas\n",
$i, unscale($layer->print_z), scalar(@{$layers{$i}}), scalar(@{$layers_interfaces{$i}}), scalar(@{$layers_contact_areas{$i}});
# make more loops
my @loops = @loops0;
for my $i (2..$contact_loops) {
my $d = ($i-1) * $flow->scaled_spacing;
push @loops, offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing);
}
}
}
return if !map @$_, values %layers;
# generate paths for the pattern that we're going to use
Slic3r::debugf "Generating patterns\n";
my $support_patterns = [];
my $support_interface_patterns = [];
{
# 0.5 ensures the paths don't get clipped externally when applying them to layers
my @areas = map @{$_->offset_ex(- 0.5 * $flow->scaled_width)},
@{union_ex([ map $_->contour, map @$_, values %layers, values %layers_interfaces, values %layers_contact_areas ])};
my $pattern = $Slic3r::Config->support_material_pattern;
my @angles = ($Slic3r::Config->support_material_angle);
if ($pattern eq 'rectilinear-grid') {
$pattern = 'rectilinear';
push @angles, $angles[0] + 90;
}
my $filler = $self->fill_maker->filler($pattern);
my $make_pattern = sub {
my ($expolygon, $density) = @_;
my @paths = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => $density,
flow_spacing => $flow->spacing,
# clip such loops to the side oriented towards the object
@loops = map Slic3r::Polyline->new(@$_),
@{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
[ offset_ex([ map @$_, @$overhang ], +scale 3) ],
[ map Slic3r::Polygon->new(@$_)->split_at_first_point, @loops ],
) };
# subtract loops from the contact area to detect the remaining part
$interface{$layer_id} = intersection(
$interface{$layer_id},
[ offset2(\@loops0, -($contact_loops) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing) ],
);
my $params = shift @paths;
return map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
# transform loops into ExtrusionPath objects
@loops = map Slic3r::ExtrusionPath->pack(
polyline => $_,
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @paths;
};
foreach my $angle (@angles) {
$filler->angle($angle);
{
my $density = $flow->spacing / $pattern_spacing;
push @$support_patterns, [ map $make_pattern->($_, $density), @areas ];
}
flow_spacing => $flow->spacing,
), @loops;
if ($Slic3r::Config->support_material_interface_layers > 0) {
# if pattern is not cross-hatched, rotate the interface pattern by 90° degrees
$filler->angle($angle + 90) if @angles == 1;
my $spacing = $Slic3r::Config->support_material_interface_spacing;
my $density = $spacing == 0 ? 1 : $flow->spacing / $spacing;
push @$support_interface_patterns, [ map $make_pattern->($_, $density), @areas ];
}
$result->{contact} = [ @loops ];
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("support_$_.svg",
polylines => [ map $_->polyline, map @$_, $support_patterns->[$_] ],
red_polylines => [ map $_->polyline, map @$_, $support_interface_patterns->[$_] ],
polygons => [ map @$_, @areas ],
) for 0 .. $#$support_patterns;
}
}
# apply the pattern to layers
Slic3r::debugf "Applying patterns\n";
{
my $clip_pattern = sub {
my ($layer_id, $expolygons, $height, $is_interface) = @_;
my @paths = ();
foreach my $expolygon (@$expolygons) {
push @paths,
map {
$_->height($height);
# useless line because this coderef isn't called for layer 0 anymore;
# let's keep it here just in case we want to make the base flange optional
# in the future
$_->flow_spacing($self->print->first_layer_support_material_flow->spacing)
if $layer_id == 0;
$_;
}
map $_->clip_with_expolygon($expolygon),
###map $_->clip_with_polygon($expolygon->bounding_box->polygon), # currently disabled as a workaround for Boost failing at being idempotent
($is_interface && @$support_interface_patterns)
? @{$support_interface_patterns->[ $layer_id % @$support_interface_patterns ]}
: @{$support_patterns->[ $layer_id % @$support_patterns ]};
};
return @paths;
};
my $process_layer = sub {
my ($layer_id) = @_;
my $layer = $self->layers->[$layer_id];
my ($paths, $contact_paths) = ([], []);
my $islands = union_ex([ map @$_, map @$_, $layers{$layer_id}, $layers_contact_areas{$layer_id} ]);
# make a solid base on bottom layer
if ($layer_id == 0) {
my $filler = $self->fill_maker->filler('rectilinear');
$filler->angle($Slic3r::Config->support_material_angle + 90);
foreach my $expolygon (@$islands) {
my @paths = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => 0.5,
flow_spacing => $self->print->first_layer_support_material_flow->spacing,
);
my $params = shift @paths;
push @$paths, map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @paths;
}
} else {
$paths = [
$clip_pattern->($layer_id, $layers{$layer_id}, $layer->height),
$clip_pattern->($layer_id, $layers_interfaces{$layer_id}, $layer->height, 1),
];
$contact_paths = [ $clip_pattern->($layer_id, $layers_contact_areas{$layer_id}, $layer->support_material_contact_height, 1) ];
}
return ($paths, $contact_paths, $islands);
};
my %layer_paths = ();
my %layer_contact_paths = ();
my %layer_islands = ();
Slic3r::parallelize(
items => [ keys %layers ],
thread_cb => sub {
my $q = shift;
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
my $result = {};
while (defined (my $layer_id = $q->dequeue)) {
$result->{$layer_id} = [ $process_layer->($layer_id) ];
}
return $result;
},
collect_cb => sub {
my $result = shift;
($layer_paths{$_}, $layer_contact_paths{$_}, $layer_islands{$_}) = @{$result->{$_}} for keys %$result;
},
no_threads_cb => sub {
($layer_paths{$_}, $layer_contact_paths{$_}, $layer_islands{$_}) = $process_layer->($_) for keys %layers;
},
);
foreach my $layer_id (keys %layer_paths) {
my $layer = $self->layers->[$layer_id];
$layer->support_islands($layer_islands{$layer_id});
$layer->support_fills(Slic3r::ExtrusionPath::Collection->new);
$layer->support_contact_fills(Slic3r::ExtrusionPath::Collection->new);
$layer->support_fills->append(@{$layer_paths{$layer_id}});
$layer->support_contact_fills->append(@{$layer_contact_paths{$layer_id}});
# interface
if (@{$interface{$layer_id}}) {
$fillers{interface}->angle($interface_angle);
# steal some space from support
$interface{$layer_id} = intersection(
[ offset($interface{$layer_id}, scale 3) ],
[ @{$interface{$layer_id}}, @{$support{$layer_id}} ],
);
$support{$layer_id} = diff(
$support{$layer_id},
$interface{$layer_id},
);
my @paths = ();
foreach my $expolygon (offset_ex($interface{$layer_id}, -$flow->scaled_width/2)) {
my @p = $fillers{interface}->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon),
density => $interface_density,
flow_spacing => $flow->spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->pack(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
$result->{interface} = [ @paths ];
}
# support or flange
if (@{$support{$layer_id}}) {
my $filler = $fillers{support};
$filler->angle($angles[ ($layer_id) % @angles ]);
my $density = $support_density;
my $flow_spacing = $flow->spacing;
# TODO: use offset2_ex()
my $to_infill = offset_ex(union($support{$layer_id}), -$flow->scaled_width/2);
my @paths = ();
# base flange
if ($layer_id == 0) {
$filler = $fillers{interface};
$filler->angle($Slic3r::Config->support_material_angle + 90);
$density = 0.5;
$flow_spacing = $self->print->first_layer_support_material_flow->spacing;
} else {
# draw a perimeter all around support infill
# TODO: use brim ordering algorithm
push @paths, map Slic3r::ExtrusionPath->pack(
polyline => $_->split_at_first_point,
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $flow->spacing,
), map @$_, @$to_infill;
# TODO: use offset2_ex()
$to_infill = [ offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing) ];
}
foreach my $expolygon (@$to_infill) {
my @p = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon),
density => $density,
flow_spacing => $flow_spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->pack(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
$result->{support} = [ @paths ];
}
# islands
$result->{islands} = union_ex([
@{$interface{$layer_id} || []},
@{$support{$layer_id} || []},
]);
return $result;
};
my $apply = sub {
my ($layer_id, $result) = @_;
my $layer = $self->support_layers->[$layer_id];
my $interface_collection = Slic3r::ExtrusionPath::Collection->new(paths => [ @{$result->{contact}}, @{$result->{interface}} ]);
$layer->support_interface_fills($interface_collection) if @{$interface_collection->paths} > 0;
my $support_collection = Slic3r::ExtrusionPath::Collection->new(paths => $result->{support});
$layer->support_fills($support_collection) if @{$support_collection->paths} > 0;
$layer->support_islands($result->{islands});
};
Slic3r::parallelize(
items => [ 0 .. $#{$self->support_layers} ],
thread_cb => sub {
my $q = shift;
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
my $result = {};
while (defined (my $layer_id = $q->dequeue)) {
$result->{$layer_id} = $process_layer->($layer_id);
}
return $result;
},
collect_cb => sub {
my $result = shift;
$apply->($_, $result->{$_}) for keys %$result;
},
no_threads_cb => sub {
$apply->($_, $process_layer->($_)) for 0 .. $#{$self->support_layers};
},
);
}
sub _compute_support_layers {
my ($contact_z, $top_z, $config, $flow) = @_;
# quick table to check whether a given Z is a top surface
my %top = map { $_ => 1 } @$top_z;
# determine layer height for any non-contact layer
# we use max() to prevent many ultra-thin layers to be inserted in case
# layer_height > nozzle_diameter * 0.75
my $support_material_height = max($config->layer_height, $flow->nozzle_diameter * 0.75);
my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z,
(map { $_ + $flow->nozzle_diameter } @$top_z);
# enforce first layer height
my $first_layer_height = $config->get_value('first_layer_height');
shift @support_layers while @support_layers && $support_layers[0] <= $first_layer_height;
unshift @support_layers, $first_layer_height;
for (my $i = $#support_layers; $i >= 0; $i--) {
my $target_height = $support_material_height;
if ($i > 0 && $top{ $support_layers[$i-1] }) {
$target_height = $flow->nozzle_diameter;
}
# enforce first layer height
if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height)
|| ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
splice @support_layers, $i, 0, ($support_layers[$i] - $target_height);
$i++;
}
}
# remove duplicates and make sure all 0.x values have the leading 0
{
my %sl = map { 1 * $_ => 1 } @support_layers;
@support_layers = sort { $a <=> $b } keys %sl;
}
return @support_layers;
}
1;

File diff suppressed because one or more lines are too long

View file

@ -25,7 +25,7 @@ sub export_svg {
my ($filename) = @_;
my $print_size = $self->print->size;
$self->height(unscale max(map $_->print_z, map @{$_->layers}, @{$self->print->objects}));
$self->height(max(map $_->print_z, map @{$_->layers}, @{$self->print->objects}));
my $svg = SVG->new(
width => $self->scale * unscale($print_size->[X]),
height => $self->scale * $self->height,
@ -58,7 +58,7 @@ sub export_svg {
);
$group->(
filter => sub { $_[0]->support_fills, $_[0]->support_contact_fills },
filter => sub { $_[0]->isa('Slic3r::Layer::Support') ? ($_[0]->support_fills, $_[0]->support_interface_fills) : () },
style => {
'stroke-width' => 1,
'stroke' => '#444444',
@ -80,19 +80,19 @@ sub _plot {
foreach my $object (@{$self->print->objects}) {
foreach my $copy (@{$object->copies}) {
foreach my $layer (@{$object->layers}) {
foreach my $layer (@{$object->layers}, @{$object->support_layers}) {
# get all ExtrusionPath objects
my @paths =
map { $_->polyline->translate(@$copy); $_ }
map { $_->isa('Slic3r::ExtrusionLoop') ? $_->split_at_first_point : $_ }
map { $_->isa('Slic3r::ExtrusionPath::Collection') ? @{$_->paths} : $_ }
map { $_->isa('Slic3r::ExtrusionPath::Collection') ? @$_ : $_ }
grep defined $_,
$filter->($layer);
foreach my $path (@paths) {
foreach my $line ($path->lines) {
foreach my $line (@{$path->lines}) {
my @intersections = @{ Boost::Geometry::Utils::polygon_multi_linestring_intersection(
Slic3r::ExPolygon->new($line->grow(Slic3r::Geometry::scale $path->flow_spacing/2)),
Slic3r::ExPolygon->new($line->grow(Slic3r::Geometry::scale $path->flow_spacing/2))->pp,
[ $self->line ],
) };
die "Intersection has more than two points!\n" if first { @$_ > 2 } @intersections;
@ -105,7 +105,7 @@ sub _plot {
# we're cutting the path in the longitudinal direction, so we've got a rectangle
push @rectangles, {
'x' => $self->scale * unscale $line->[A][X],
'y' => $self->scale * $self->_y(unscale($layer->print_z)),
'y' => $self->scale * $self->_y($layer->print_z),
'width' => $self->scale * $width,
'height' => $self->scale * $radius * 2,
'rx' => $self->scale * $radius * 0.35,
@ -114,7 +114,7 @@ sub _plot {
} else {
push @circles, {
'cx' => $self->scale * (unscale($line->[A][X]) + $radius),
'cy' => $self->scale * $self->_y(unscale($layer->print_z) - $radius),
'cy' => $self->scale * $self->_y($layer->print_z - $radius),
'r' => $self->scale * $radius,
};
}
@ -124,7 +124,7 @@ sub _plot {
my $height = $path->height // $layer->height;
{
'x' => $self->scale * unscale $_->[A][X],
'y' => $self->scale * $self->_y(unscale($layer->print_z)),
'y' => $self->scale * $self->_y($layer->print_z),
'width' => $self->scale * unscale(abs($_->[B][X] - $_->[A][X])),
'height' => $self->scale * $height,
'rx' => $self->scale * $height * 0.35,

View file

@ -3,7 +3,7 @@ use Moo;
use List::Util qw(reduce min max first);
use Slic3r::Geometry qw(X Y Z A B unscale same_point);
use Slic3r::Geometry::Clipper qw(union_ex);
use Slic3r::Geometry::Clipper qw(union_ex offset);
use Storable;
# public
@ -191,7 +191,7 @@ sub make_loops {
next unless defined $lines[$j] && defined $lines[$j][I_FACET_EDGE];
# are these facets adjacent? (sharing a common edge on this layer)
if ($lines[$i][I_A_ID] == $lines[$j][I_B_ID] && $lines[$i][I_B_ID] == $lines[$j][I_A_ID]) {
if ($lines[$i][I_A_ID] == $lines[$j][I_A_ID] && $lines[$i][I_B_ID] == $lines[$j][I_B_ID]) {
# if they are both oriented upwards or downwards (like a 'V')
# then we can remove both edges from this layer since it won't
@ -205,7 +205,7 @@ sub make_loops {
# if one of them is oriented upwards and the other is oriented
# downwards, let's only keep one of them (it doesn't matter which
# one since all 'top' lines were reversed at slicing)
if ($lines[$i][I_FACET_EDGE] == FE_TOP && $lines[$j][I_FACET_EDGE] == FE_BOTTOM) {
if ($lines[$i][I_FACET_EDGE] != $lines[$j][I_FACET_EDGE]) {
$lines[$j] = undef;
last;
}
@ -267,10 +267,10 @@ sub make_loops {
}
# TODO: we should try to combine failed loops
for (grep @$_ >= 3, @failed_loops) {
push @polygons, Slic3r::Polygon->new(@$_);
for my $loop (grep @$_ >= 3, @failed_loops) {
push @polygons, Slic3r::Polygon->new(map $_->[I_A], @$loop);
Slic3r::debugf " Discovered failed %s polygon of %d points\n",
($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@$_)
($polygons[-1]->is_counter_clockwise ? 'ccw' : 'cw'), scalar(@$loop)
if $Slic3r::debug;
}
@ -301,6 +301,16 @@ sub scale {
}
}
sub scale_xyz {
my $self = shift;
my ($versor) = @_;
# transform vertex coordinates
foreach my $vertex (@{$self->vertices}) {
$vertex->[$_] *= $versor->[$_] for X,Y,Z;
}
}
sub move {
my $self = shift;
my (@shift) = @_;
@ -540,20 +550,20 @@ sub split_mesh {
return @meshes;
}
# this will return *scaled* expolygons, so it is expected to be run
# on unscaled meshes
sub horizontal_projection {
my $self = shift;
my @f = ();
foreach my $facet (@{$self->facets}) {
push @f, Slic3r::Polygon->new(map [ @{$self->vertices->[$_]}[X,Y] ], @$facet);
push @f, Slic3r::Polygon->new(
map [ map $_ / &Slic3r::SCALING_FACTOR, @{$self->vertices->[$_]}[X,Y] ], @$facet
);
}
my $scale_vector = Math::Clipper::integerize_coordinate_sets({ bits => 32 }, @f);
$_->make_counter_clockwise for @f; # do this after scaling, as winding order might change while doing that
my $union = union_ex(Slic3r::Geometry::Clipper::offset(\@f, 10000));
$union = [ map $_->arrayref, @$union ];
Math::Clipper::unscale_coordinate_sets($scale_vector, $_) for @$union;
return $union;
return union_ex(\@f, 1);
}
1;

View file

@ -34,6 +34,7 @@ my %cli_options = ();
'export-svg' => \$opt{export_svg},
'merge|m' => \$opt{merge},
'repair' => \$opt{repair},
'info' => \$opt{info},
);
foreach my $opt_key (keys %{$Slic3r::Config::Options}) {
my $cli = $Slic3r::Config::Options->{$opt_key}->{cli} or next;
@ -120,6 +121,11 @@ if (@ARGV) { # slicing from command line
$_->rotate($config->rotate) for @{$model->objects};
$model->arrange_objects($config);
if ($opt{info}) {
$model->print_info;
next;
}
my $print = Slic3r::Print->new(config => $config);
$print->add_model($model);
$print->validate;
@ -156,7 +162,7 @@ EOF
Slic3r $Slic3r::VERSION is a STL-to-GCODE translator for RepRap 3D printers
written by Alessandro Ranellucci <aar\@cpan.org> - http://slic3r.org/
Usage: slic3r.pl [ OPTIONS ] file.stl
Usage: slic3r.pl [ OPTIONS ] [ file.stl ] [ file2.stl ] ...
--help Output this usage screen and exit
--version Output the version of Slic3r and exit
@ -166,7 +172,11 @@ Usage: slic3r.pl [ OPTIONS ] file.stl
-o, --output <file> File to output gcode to (by default, the file will be saved
into the same directory as the input file using the
--output-filename-format to generate the filename)
--repair Automatically repair given STL files and saves them as _fixed.obj
Non-slicing actions (no G-code will be generated):
--repair Repair given STL files and save them as <name>_fixed.obj
--info Output information about the supplied file(s) and exit
$j
GUI options:
--no-plater Disable the plater tab
@ -407,6 +417,8 @@ $j
--infill-extruder Extruder to use for infill (1+, default: 1)
--support-material-extruder
Extruder to use for support material (1+, default: 1)
--support-material-interface-extruder
Extruder to use for support material interface (1+, default: 1)
EOF
exit ($exit_code || 0);

View file

@ -2,7 +2,7 @@ use Test::More;
use strict;
use warnings;
plan tests => 7;
plan tests => 10;
BEGIN {
use FindBin;
@ -78,6 +78,28 @@ use Slic3r;
ok @simplified == 1, 'gear simplified to a single polygon';
note sprintf "original points: %d\nnew points: %d", $num_points, scalar(@{$simplified[0]});
ok @{$simplified[0]} < $num_points, 'gear was further simplified using Douglas-Peucker';
my @simplified_ex = Slic3r::ExPolygon->new($polygon)->simplify(10);
is_deeply [ map $_->pp, @simplified_ex ], [ [ map $_->pp, @simplified ] ], 'simplified polygon equals simplified expolygon';
}
{
my $square = Slic3r::Polygon->new( # ccw
[100, 100],
[200, 100],
[200, 200],
[100, 200],
);
my $hole_in_square = Slic3r::Polygon->new( # cw
[140, 140],
[140, 160],
[160, 160],
[160, 140],
);
my $expolygon = Slic3r::ExPolygon->new($square, $hole_in_square);
my @simplified = $hole_in_square->simplify;
is scalar(@simplified), 1, 'hole simplification returns one polygon';
ok $simplified[0]->is_counter_clockwise, 'hole simplification turns cw polygon into ccw polygon';
}
{

View file

@ -2,7 +2,7 @@ use Test::More;
use strict;
use warnings;
plan tests => 10;
plan tests => 32;
BEGIN {
use FindBin;
@ -11,6 +11,7 @@ BEGIN {
use Slic3r;
use Slic3r::Geometry qw(scale X Y);
use Slic3r::Geometry::Clipper qw(diff_ex);
use Slic3r::Surface qw(:types);
use Slic3r::Test;
@ -48,6 +49,59 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
}
}
{
my $test = sub {
my ($expolygon, $flow_spacing) = @_;
my $filler = Slic3r::Fill::Rectilinear->new(
bounding_box => $expolygon->bounding_box,
angle => 0,
);
my $surface = Slic3r::Surface->new(
surface_type => S_TYPE_BOTTOM,
expolygon => $expolygon,
);
my ($params, @paths) = $filler->fill_surface($surface, flow_spacing => $flow_spacing, density => 1);
# check whether any part was left uncovered
my @grown_paths = map Slic3r::Polyline->new(@$_)->grow(scale $params->{flow_spacing}/2), @paths;
my $uncovered = diff_ex([ @$expolygon ], [ @grown_paths ], 1);
# ignore very small dots
@$uncovered = grep $_->area > (scale $flow_spacing)**2, @$uncovered;
is scalar(@$uncovered), 0, 'solid surface is fully filled';
if (0 && @$uncovered) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"uncovered.svg",
expolygons => [$expolygon],
red_expolygons => $uncovered,
);
exit;
}
};
my $expolygon = Slic3r::ExPolygon->new([
[6883102, 9598327.01296997],
[6883102, 20327272.01297],
[3116896, 20327272.01297],
[3116896, 9598327.01296997],
]);
$test->($expolygon, 0.55);
for (1..20) {
$expolygon->scale(1.05);
$test->($expolygon, 0.55);
}
$expolygon = Slic3r::ExPolygon->new(
[[59515297,5422499],[59531249,5578697],[59695801,6123186],[59965713,6630228],[60328214,7070685],[60773285,7434379],[61274561,7702115],[61819378,7866770],[62390306,7924789],[62958700,7866744],[63503012,7702244],[64007365,7434357],[64449960,7070398],[64809327,6634999],[65082143,6123325],[65245005,5584454],[65266967,5422499],[66267307,5422499],[66269190,8310081],[66275379,17810072],[66277259,20697500],[65267237,20697500],[65245004,20533538],[65082082,19994444],[64811462,19488579],[64450624,19048208],[64012101,18686514],[63503122,18415781],[62959151,18251378],[62453416,18198442],[62390147,18197355],[62200087,18200576],[61813519,18252990],[61274433,18415918],[60768598,18686517],[60327567,19047892],[59963609,19493297],[59695865,19994587],[59531222,20539379],[59515153,20697500],[58502480,20697500],[58502480,5422499]]
);
$test->($expolygon, 0.524341649025257);
}
{
my $collection = Slic3r::Polyline::Collection->new(polylines => [
Slic3r::Polyline->new([0,15], [0,18], [0,20]),

View file

@ -2,7 +2,7 @@ use Test::More;
use strict;
use warnings;
plan tests => 24;
plan tests => 25;
BEGIN {
use FindBin;
@ -183,3 +183,10 @@ is Slic3r::Geometry::can_connect_points(@$points, $polygons), 0, 'can_connect_po
}
#==========================================================
{
my $line = Slic3r::Line->new([10,10], [20,10]);
is +($line->grow(5))[0]->area, Slic3r::Polygon->new([5,5], [25,5], [25,15], [5,15])->area, 'grow line';
}
#==========================================================

View file

@ -1,4 +1,4 @@
use Test::More tests => 5;
use Test::More tests => 4;
use strict;
use warnings;
@ -56,15 +56,4 @@ ok $test->(), "positive Z offset";
$config->set('z_offset', -0.8);
ok $test->(), "negative Z offset";
{
my $config = Slic3r::Config->new_from_defaults;
$config->set('nozzle_diameter', [0.35]);
$config->set('layer_height', 0.1333);
my $print = Slic3r::Test::init_print('2x20x10', config => $config);
$print->init_extruders;
$_->region(0) for @{$print->objects->[0]->layers}; # init layer regions
ok $print->objects->[0]->layers->[1]->support_material_contact_height > 0, 'support_material_contact_height is positive';
}
__END__

View file

@ -48,8 +48,9 @@ my $test = sub {
}
if ($info->{dist_Z} < 0) {
fail 'going down only after lifting' if !$lifted;
fail 'going down by the same amount of the lift'
if !_eq($info->{dist_Z}, -$print->extruders->[$tool]->retract_lift);
fail 'going down by the same amount of the lift or by the amount needed to get to next layer'
if !_eq($info->{dist_Z}, -$print->extruders->[$tool]->retract_lift)
&& !_eq($info->{dist_Z}, -$print->extruders->[$tool]->retract_lift + $conf->layer_height);
$lifted = 0;
}
fail 'move Z at travel speed' if ($args->{F} // $self->F) != $conf->travel_speed * 60;
@ -123,6 +124,8 @@ $retract_tests->(' (G0 and duplicate)');
$config->set('duplicate', 1);
$config->set('g0', 0);
$config->set('infill_extruder', 2);
$retract_tests->(' (dual extruder)');
$config->set('skirts', 4);
$config->set('skirt_height', 3);
$retract_tests->(' (dual extruder with multiple skirt layers)');
__END__

View file

@ -1,4 +1,4 @@
use Test::More tests => 4;
use Test::More tests => 10;
use strict;
use warnings;
@ -84,4 +84,72 @@ use Slic3r::Test;
"correct number of top solid shells is generated in V-shaped object";
}
{
my $config = Slic3r::Config->new_from_defaults;
# we need to check against one perimeter because this test is calibrated
# (shape, extrusion_width) so that perimeters cover the bottom surfaces of
# their lower layer - the test checks that shells are not generated on the
# above layers (thus 'across' the shadow perimeter)
# the test is actually calibrated to leave a narrow bottom region for each
# layer - we test that in case of fill_density = 0 such narrow shells are
# discarded instead of grown
$config->set('perimeters', 1);
$config->set('fill_density', 0);
$config->set('cooling', 0); # prevent speed alteration
$config->set('first_layer_speed', '100%'); # prevent speed alteration
$config->set('layer_height', 0.4);
$config->set('first_layer_height', '100%');
$config->set('extrusion_width', 0.5);
$config->set('bottom_solid_layers', 3);
$config->set('top_solid_layers', 0);
$config->set('solid_infill_speed', 99);
my $print = Slic3r::Test::init_print('V', config => $config);
my %layers = (); # Z => 1
Slic3r::GCode::Reader->new(gcode => Slic3r::Test::gcode($print))->parse(sub {
my ($self, $cmd, $args, $info) = @_;
$layers{$self->Z} = 1
if $info->{extruding} && ($args->{F} // $self->F) == $config->solid_infill_speed*60;
});
is scalar(keys %layers), $config->bottom_solid_layers,
"shells are not propagated across perimeters of the neighbor layer";
}
{
my $config = Slic3r::Config->new_from_defaults;
$config->set('spiral_vase', 1);
$config->set('bottom_solid_layers', 0);
$config->set('skirts', 0);
$config->set('first_layer_height', '100%');
# TODO: this needs to be tested with a model with sloping edges, where starting
# points of each layer are not aligned - in that case we would test that no
# travel moves are left to move to the new starting point - in a cube, end
# points coincide with next layer starting points (provided there's no clipping)
my $test = sub {
my ($model_name, $description) = @_;
my $print = Slic3r::Test::init_print($model_name, config => $config);
my $travel_moves_after_first_extrusion = 0;
my $started_extruding = 0;
my @z_steps = ();
Slic3r::GCode::Reader->new(gcode => Slic3r::Test::gcode($print))->parse(sub {
my ($self, $cmd, $args, $info) = @_;
$started_extruding = 1 if $info->{extruding};
push @z_steps, ($args->{Z} - $self->Z)
if $started_extruding && exists $args->{Z};
$travel_moves_after_first_extrusion++
if $info->{travel} && $started_extruding && !exists $args->{Z};
});
is $travel_moves_after_first_extrusion, 0, "no gaps in spiral vase ($description)";
ok !(grep { $_ > $config->layer_height } @z_steps), "no gaps in Z ($description)";
};
$test->('20mm_cube', 'solid model');
$test->('40x10', 'hollow model');
$config->set('z_offset', -10);
$test->('20mm_cube', 'solid model with negative z-offset');
}
__END__

View file

@ -1,4 +1,4 @@
use Test::More tests => 1;
use Test::More tests => 13;
use strict;
use warnings;
@ -7,15 +7,58 @@ BEGIN {
use lib "$FindBin::Bin/../lib";
}
use List::Util qw(first);
use Slic3r;
use Slic3r::Geometry qw(epsilon);
use Slic3r::Test;
{
my $config = Slic3r::Config->new_from_defaults;
my @contact_z = my @top_z = ();
my $test = sub {
my $flow = Slic3r::Flow->new(nozzle_diameter => $config->nozzle_diameter->[0], layer_height => $config->layer_height);
my @support_layers = Slic3r::Print::Object::_compute_support_layers(\@contact_z, \@top_z, $config, $flow);
is $support_layers[0], $config->first_layer_height,
'first layer height is honored';
is scalar(grep { $support_layers[$_]-$support_layers[$_-1] <= 0 } 1..$#support_layers), 0,
'no null or negative support layers';
is scalar(grep { $support_layers[$_]-$support_layers[$_-1] > $flow->nozzle_diameter + epsilon } 1..$#support_layers), 0,
'no layers thicker than nozzle diameter';
my $wrong_top_spacing = 0;
foreach my $top_z (@top_z) {
# find layer index of this top surface
my $layer_id = first { abs($support_layers[$_] - $top_z) < epsilon } 0..$#support_layers;
# check that first support layer above this top surface is spaced with nozzle diameter
$wrong_top_spacing = 1
if ($support_layers[$layer_id+1] - $support_layers[$layer_id]) != $flow->nozzle_diameter;
}
ok !$wrong_top_spacing, 'layers above top surfaces are spaced correctly';
};
$config->set('layer_height', 0.2);
$config->set('first_layer_height', 0.3);
@contact_z = (1.9);
@top_z = (1.1);
$test->();
$config->set('first_layer_height', 0.4);
$test->();
$config->set('layer_height', $config->nozzle_diameter->[0]);
$test->();
}
{
my $config = Slic3r::Config->new_from_defaults;
$config->set('raft_layers', 3);
$config->set('brim_width', 6);
$config->set('skirts', 0);
$config->set('support_material_extruder', 2);
$config->set('support_material_interface_extruder', 2);
$config->set('layer_height', 0.4);
$config->set('first_layer_height', '100%');
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);

View file

@ -1,5 +1,6 @@
#!/usr/bin/perl
# This script dumps a STL file into Perl syntax for writing tests
# or dumps a test model into a STL file
use strict;
use warnings;
@ -10,15 +11,24 @@ BEGIN {
}
use Slic3r;
use Slic3r::Test;
$|++;
$ARGV[0] or usage(1);
{
if (-e $ARGV[0]) {
my $model = Slic3r::Format::STL->read_file($ARGV[0]);
my $mesh = $model->mesh;
printf "VERTICES = %s\n", join ',', map "[$_->[0],$_->[1],$_->[2]]", @{$mesh->vertices};
printf "FACETS = %s\n", join ',', map "[$_->[0],$_->[1],$_->[2]]", @{$mesh->facets};
exit 0;
} elsif ((my $model = Slic3r::Test::model($ARGV[0]))) {
$ARGV[1] or die "Missing writeable destination as second argument\n";
Slic3r::Format::STL->write_file($ARGV[1], $model);
printf "Model $ARGV[0] written to $ARGV[1]\n";
exit 0;
} else {
die "No such model exists\n";
}
@ -27,6 +37,7 @@ sub usage {
print <<"EOF";
Usage: dump-stl.pl file.stl
dump-stl.pl modelname file.stl
EOF
exit ($exit_code || 0);
}

View file

@ -1,54 +0,0 @@
#!/usr/bin/perl
# This script reads a file and outputs information about it
use strict;
use warnings;
BEGIN {
use FindBin;
use lib "$FindBin::Bin/../lib";
}
use File::Basename qw(basename);
use Getopt::Long qw(:config no_auto_abbrev);
use Slic3r;
$|++;
my %opt = ();
{
my %options = (
'help' => sub { usage() },
);
GetOptions(%options) or usage(1);
$ARGV[0] or usage(1);
}
{
my $input_file = $ARGV[0];
die "This script doesn't support AMF yet\n" if $input_file =~ /\.amf$/i;
my $model;
$model = Slic3r::Format::STL->read_file($input_file) if $input_file =~ /\.stl$/i;
die "Unable to read file\n" if !$model;
printf "Info about %s:\n", basename($input_file);
my $mesh = $model->mesh;
$mesh->check_manifoldness;
printf " number of facets: %d\n", scalar @{$mesh->facets};
printf " size: x=%s y=%s z=%s\n", @{$mesh->size};
}
sub usage {
my ($exit_code) = @_;
print <<"EOF";
Usage: file_info.pl [ OPTIONS ] file.stl
--help Output this usage screen and exit
EOF
exit ($exit_code || 0);
}
__END__

View file

@ -25,7 +25,6 @@ use overload
package Slic3r::Polyline;
use overload
'@{}' => sub { $_[0]->arrayref },
'fallback' => 1,
'fallback' => 1;
package Slic3r::Polygon;
@ -128,7 +127,7 @@ sub clone {
my ($self, %args) = @_;
return (ref $self)->_new(
delete $args{expolygon} // $self->expolygon->clone,
delete $args{expolygon} // $self->expolygon,
delete $args{surface_type} // $self->surface_type,
delete $args{thickness} // $self->thickness,
delete $args{thickness_layers} // $self->thickness_layers,

View file

@ -277,4 +277,19 @@ void union_ex(Slic3r::Polygons &subject, Slic3r::ExPolygons &retval, bool safety
_clipper(ClipperLib::ctUnion, subject, p, retval, safety_offset);
}
void simplify_polygons(Slic3r::Polygons &subject, Slic3r::Polygons &retval)
{
// convert into Clipper polygons
ClipperLib::Polygons* input_subject = new ClipperLib::Polygons();
Slic3rPolygons_to_ClipperPolygons(subject, *input_subject);
ClipperLib::Polygons* output = new ClipperLib::Polygons();
ClipperLib::SimplifyPolygons(*input_subject, *output, ClipperLib::pftNonZero);
delete input_subject;
// convert into Slic3r polygons
ClipperPolygons_to_Slic3rPolygons(*output, retval);
delete output;
}
}

View file

@ -62,6 +62,8 @@ void xor_ex(Slic3r::Polygons &subject, Slic3r::Polygons &clip, Slic3r::ExPolygon
void union_ex(Slic3r::Polygons &subject, Slic3r::ExPolygons &retval, bool safety_offset = false);
void simplify_polygons(Slic3r::Polygons &subject, Slic3r::Polygons &retval);
}
#endif

View file

@ -11,7 +11,6 @@ class ExPolygon
public:
Polygon contour;
Polygons holes;
bool in_collection;
void from_SV(SV* poly_sv);
void from_SV_check(SV* poly_sv);
SV* to_SV();
@ -23,7 +22,6 @@ class ExPolygon
};
typedef std::vector<ExPolygon> ExPolygons;
typedef std::vector<ExPolygon*> ExPolygonsPtr;
}

View file

@ -5,24 +5,24 @@ namespace Slic3r {
void
ExPolygonCollection::scale(double factor)
{
for (ExPolygonsPtr::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
(**it).scale(factor);
for (ExPolygons::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
(*it).scale(factor);
}
}
void
ExPolygonCollection::translate(double x, double y)
{
for (ExPolygonsPtr::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
(**it).translate(x, y);
for (ExPolygons::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
(*it).translate(x, y);
}
}
void
ExPolygonCollection::rotate(double angle, Point* center)
{
for (ExPolygonsPtr::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
(**it).rotate(angle, center);
for (ExPolygons::iterator it = expolygons.begin(); it != expolygons.end(); ++it) {
(*it).rotate(angle, center);
}
}

View file

@ -9,7 +9,7 @@ namespace Slic3r {
class ExPolygonCollection
{
public:
ExPolygonsPtr expolygons;
ExPolygons expolygons;
void scale(double factor);
void translate(double x, double y);
void rotate(double angle, Point* center);

View file

@ -16,11 +16,9 @@ class Surface
unsigned short thickness_layers; // in layers
double bridge_angle;
unsigned short extra_perimeters;
bool in_collection;
};
typedef std::vector<Surface> Surfaces;
typedef std::vector<Surface*> SurfacesPtr;
}

View file

@ -8,7 +8,7 @@ namespace Slic3r {
class SurfaceCollection
{
public:
SurfacesPtr surfaces;
Surfaces surfaces;
};
}

View file

@ -28,17 +28,17 @@ void TriangleMesh::ReadFromPerl(SV* vertices, SV* facets)
for (unsigned int i = 0; i < stl.stats.number_of_facets; i++) {
AV* facet_av = (AV*)SvRV(*av_fetch(facets_av, i, 0));
stl_facet facet;
facet.normal.x = NULL;
facet.normal.y = NULL;
facet.normal.z = NULL;
facet.normal.x = 0;
facet.normal.y = 0;
facet.normal.z = 0;
for (unsigned int v = 0; v <= 2; v++) {
AV* vertex_av = (AV*)SvRV(*av_fetch(vertices_av, SvIV(*av_fetch(facet_av, v, 0)), 0));
facet.vertex[v].x = SvNV(*av_fetch(vertex_av, 0, 0));
facet.vertex[v].y = SvNV(*av_fetch(vertex_av, 1, 0));
facet.vertex[v].z = SvNV(*av_fetch(vertex_av, 2, 0));
}
facet.extra[0] = NULL;
facet.extra[1] = NULL;
facet.extra[0] = 0;
facet.extra[1] = 0;
stl.facet_start[i] = facet;
}

View file

@ -82,6 +82,7 @@ stl_check_facets_exact(stl_file *stl)
{
facet = stl->facet_start[i];
//If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet.
if( !memcmp(&facet.vertex[0], &facet.vertex[1],
sizeof(stl_vertex))
|| !memcmp(&facet.vertex[1], &facet.vertex[2],

View file

@ -121,9 +121,13 @@ stl_fix_normal_directions(stl_file *stl)
facet_num = 0;
//If normal vector is not within tolerance and backwards:
//Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances
// of it being wrong randomly are low if most of the triangles are right:
if(stl_check_normal_vector(stl, 0, 0) == 2)
stl_reverse_facet(stl, 0);
//Say that we've fixed this facet:
norm_sw[facet_num] = 1;
/* edge_num = 0;
vnot = stl->neighbors_start[0].which_vertex_not[0];
@ -133,19 +137,24 @@ stl_fix_normal_directions(stl_file *stl)
for(;;)
{
/* Add neighbors_to_list. */
//Add unconnected neighbors to the list:a
for(j = 0; j < 3; j++)
{
/* Reverse the neighboring facets if necessary. */
if(stl->neighbors_start[facet_num].which_vertex_not[j] > 2)
{
// If the facet has a neighbor that is -1, it means that edge isn't shared by another
// facet.
if(stl->neighbors_start[facet_num].neighbor[j] != -1)
{
stl_reverse_facet
(stl, stl->neighbors_start[facet_num].neighbor[j]);
}
}
//If this edge of the facet is connected:
if(stl->neighbors_start[facet_num].neighbor[j] != -1)
{
//If we haven't fixed this facet yet, add it to the list:
if(norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1)
{
/* Add node to beginning of list. */
@ -170,14 +179,14 @@ stl_fix_normal_directions(stl_file *stl)
head->next = head->next->next;
free(temp);
}
else
else //if we ran out of facets to fix:
{
/* All of the facets in this part have been fixed. */
stl->stats.number_of_parts += 1;
/* There are (checked-checked_before) facets */
/* in part stl->stats.number_of_parts */
checked_before = checked;
if(checked == stl->stats.number_of_facets)
if(checked >= stl->stats.number_of_facets)
{
/* All of the facets have been checked. Bail out. */
break;
@ -350,7 +359,7 @@ void stl_normalize_vector(float v[])
min_normal_length = 0.000000000001;
if(length < min_normal_length)
{
v[0] = 1.0;
v[0] = 0.0;
v[1] = 0.0;
v[2] = 0.0;
return;

View file

@ -198,6 +198,7 @@ stl_print_neighbors(stl_file *stl, char *file)
stl->neighbors_start[i].neighbor[2],
(int)stl->neighbors_start[i].which_vertex_not[2]);
}
fclose(fp);
}
static void

View file

@ -4,9 +4,22 @@ use strict;
use warnings;
use Slic3r::XS;
use Test::More tests => 1;
use Test::More tests => 10;
my $table = Slic3r::Object::XS::ZTable->new([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 ]);
is_deeply $table->get_range(31, 61), [2, 6], 'get_layer_range';
is_deeply $table->get_range(39, 69), [2, 6], 'get_layer_range';
is_deeply $table->get_range(30, 60), [2, 5], 'get_layer_range';
# upper_bound points to the first element that is greater than argument
is $table->upper_bound(30), 3, 'upper_bound';
is $table->upper_bound(31), 3, 'upper_bound';
is $table->upper_bound(39), 3, 'upper_bound';
is $table->upper_bound(39, 4), 4, 'upper_bound with offset';
# lower_bound points to the first element that is not less than argument
is $table->lower_bound(31), 3, 'lower_bound';
is $table->lower_bound(39), 3, 'lower_bound';
is $table->lower_bound(40), 3, 'lower_bound';
__END__

View file

@ -95,9 +95,7 @@ is_deeply $expolygon->clone->pp, [$square, $hole_in_square], 'clone';
my $exp = $collection->[0];
$exp->scale(3);
### we store a copy, not the original by reference
###is_deeply $expolygon->pp, $exp->pp, 'input is stored by reference in collection';
is_deeply $collection->[0]->pp, $exp->pp, 'collection items are returned by reference';
isnt $collection->[0][0][0][0], $exp->[0][0][0], 'collection items are not returned by reference';
is_deeply $collection->[0]->clone->pp, $collection->[0]->pp, 'clone collection item';
}

View file

@ -52,7 +52,7 @@ is $surface->extra_perimeters, 2, 'extra_perimeters';
my $item = $collection->[0];
$item->surface_type(Slic3r::Surface::S_TYPE_INTERNAL);
is $item->surface_type, $collection->[0]->surface_type, 'changing item affects actual item';
isnt $item->surface_type, $collection->[0]->surface_type, 'collection returns copies of items';
}
__END__

View file

@ -119,4 +119,12 @@ union_ex(subject, safety_offset = false)
OUTPUT:
RETVAL
Polygons
simplify_polygons(subject)
Polygons subject
CODE:
simplify_polygons(subject, RETVAL);
OUTPUT:
RETVAL
%}

View file

@ -6,8 +6,9 @@
%}
%name{Slic3r::ExPolygon} class ExPolygon {
~ExPolygon();
ExPolygon* clone()
%code{% const char* CLASS = "Slic3r::ExPolygon"; RETVAL = new ExPolygon(*THIS); RETVAL->in_collection = false; %};
%code{% const char* CLASS = "Slic3r::ExPolygon"; RETVAL = new ExPolygon(*THIS); %};
SV* arrayref()
%code{% RETVAL = THIS->to_SV(); %};
SV* pp()
@ -29,14 +30,6 @@ ExPolygon::new(...)
OUTPUT:
RETVAL
void
ExPolygon::DESTROY()
CODE:
if (!THIS->in_collection) {
delete THIS;
THIS = NULL;
}
void
ExPolygon::rotate(angle, center_sv)
double angle;

View file

@ -24,9 +24,7 @@ ExPolygonCollection::new(...)
RETVAL->expolygons.resize(items-1);
for (unsigned int i = 1; i < items; i++) {
// Note: a COPY of the input is stored
RETVAL->expolygons[i-1] = new ExPolygon;
RETVAL->expolygons[i-1]->from_SV_check(ST(i));
RETVAL->expolygons[i-1]->in_collection = true;
RETVAL->expolygons[i-1].from_SV_check(ST(i));
}
OUTPUT:
RETVAL
@ -37,10 +35,8 @@ ExPolygonCollection::arrayref()
AV* av = newAV();
av_fill(av, THIS->expolygons.size()-1);
int i = 0;
for (ExPolygonsPtr::iterator it = THIS->expolygons.begin(); it != THIS->expolygons.end(); ++it) {
SV* sv = newSV(0);
sv_setref_pv( sv, "Slic3r::ExPolygon", *it );
av_store(av, i++, sv);
for (ExPolygons::iterator it = THIS->expolygons.begin(); it != THIS->expolygons.end(); ++it) {
av_store(av, i++, (*it).to_SV_ref());
}
RETVAL = newRV_noinc((SV*)av);
OUTPUT:
@ -52,8 +48,8 @@ ExPolygonCollection::pp()
AV* av = newAV();
av_fill(av, THIS->expolygons.size()-1);
int i = 0;
for (ExPolygonsPtr::iterator it = THIS->expolygons.begin(); it != THIS->expolygons.end(); ++it) {
av_store(av, i++, (*it)->to_SV_pureperl());
for (ExPolygons::iterator it = THIS->expolygons.begin(); it != THIS->expolygons.end(); ++it) {
av_store(av, i++, (*it).to_SV_pureperl());
}
RETVAL = newRV_noinc((SV*)av);
OUTPUT:
@ -63,9 +59,8 @@ void
ExPolygonCollection::append(...)
CODE:
for (unsigned int i = 1; i < items; i++) {
ExPolygon* expolygon = new ExPolygon;
expolygon->from_SV_check( ST(i) );
expolygon->in_collection = true;
ExPolygon expolygon;
expolygon.from_SV_check( ST(i) );
THIS->expolygons.push_back(expolygon);
}

View file

@ -4,10 +4,12 @@
#include <myinit.h>
#include "ZTable.hpp"
#include <vector>
#include <algorithm>
%}
%name{Slic3r::Object::XS::ZTable} class ZTable {
ZTable(std::vector<unsigned int>* z_array);
~ZTable();
%{
std::vector<unsigned int>
@ -47,6 +49,25 @@ get_range(THIS, min_z, max_z)
}
OUTPUT:
RETVAL
unsigned int
ZTable::lower_bound(z, offset = 0)
unsigned int z
unsigned int offset
CODE:
RETVAL = std::lower_bound(THIS->z.begin() + offset, THIS->z.end(), z) - THIS->z.begin();
OUTPUT:
RETVAL
unsigned int
ZTable::upper_bound(z, offset = 0)
unsigned int z
unsigned int offset
CODE:
RETVAL = std::upper_bound(THIS->z.begin() + offset, THIS->z.end(), z) - THIS->z.begin();
OUTPUT:
RETVAL
%}
};

View file

@ -6,6 +6,7 @@
%}
%name{Slic3r::Surface} class Surface {
~Surface();
ExPolygon* expolygon()
%code{% const char* CLASS = "Slic3r::ExPolygon"; RETVAL = new ExPolygon(THIS->expolygon); %};
double thickness()
@ -31,17 +32,11 @@ _new(CLASS, expolygon, surface_type, thickness, thickness_layers, bridge_angle,
RETVAL->thickness_layers = thickness_layers;
RETVAL->bridge_angle = bridge_angle;
RETVAL->extra_perimeters = extra_perimeters;
// we don't delete expolygon here because it's referenced by a Perl SV
// whose DESTROY will take care of destruction
OUTPUT:
RETVAL
void
Surface::DESTROY()
CODE:
if (!THIS->in_collection) {
delete THIS;
THIS = NULL;
}
SurfaceType
Surface::surface_type(...)
CODE:

View file

@ -14,13 +14,12 @@
SurfaceCollection*
SurfaceCollection::new(...)
CODE:
RETVAL = new SurfaceCollection ();
RETVAL = new SurfaceCollection;
// ST(0) is class name, others are surfaces
RETVAL->surfaces.resize(items-1);
for (unsigned int i = 1; i < items; i++) {
// Note: a COPY of the input is stored
RETVAL->surfaces[i-1] = (Surface *)SvIV((SV*)SvRV( ST(i) ));
RETVAL->surfaces[i-1]->in_collection = true;
RETVAL->surfaces[i-1] = *(Surface *)SvIV((SV*)SvRV( ST(i) ));
}
OUTPUT:
RETVAL
@ -31,9 +30,9 @@ SurfaceCollection::arrayref()
AV* av = newAV();
av_fill(av, THIS->surfaces.size()-1);
int i = 0;
for (SurfacesPtr::iterator it = THIS->surfaces.begin(); it != THIS->surfaces.end(); ++it) {
for (Surfaces::iterator it = THIS->surfaces.begin(); it != THIS->surfaces.end(); ++it) {
SV* sv = newSV(0);
sv_setref_pv( sv, "Slic3r::Surface", *it );
sv_setref_pv( sv, "Slic3r::Surface", new Surface(*it) );
av_store(av, i++, sv);
}
RETVAL = newRV_noinc((SV*)av);
@ -44,9 +43,22 @@ void
SurfaceCollection::append(...)
CODE:
for (unsigned int i = 1; i < items; i++) {
THIS->surfaces.push_back((Surface *)SvIV((SV*)SvRV( ST(i) )));
THIS->surfaces.back()->in_collection = true;
THIS->surfaces.push_back(*(Surface *)SvIV((SV*)SvRV( ST(i) )));
}
void
SurfaceCollection::replace(index, surface)
int index
Surface* surface
CODE:
THIS->surfaces[index] = *surface;
void
SurfaceCollection::set_surface_type(index, surface_type)
int index
SurfaceType surface_type;
CODE:
THIS->surfaces[index].surface_type = surface_type;
%}
};

View file

@ -44,8 +44,9 @@ OUTPUT
T_ARRAYREF
AV* av = newAV();
$arg = newRV_noinc((SV*)av);
const unsigned int len = $var.size();
av_extend(av, len-1);
for (unsigned int i = 0; i < len; i++) {
av_store(av, i, ${var}[i].to_SV_ref());
}
av_extend(av, $var.size()-1);
int i = 0;
for (${type}::iterator it = $var.begin(); it != $var.end(); ++it) {
av_store(av, i++, (*it).to_SV_ref());
}
$var.clear();