mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-12 09:17:52 -06:00
Merge branch 'master' into xsdata
Conflicts: lib/Slic3r.pm lib/Slic3r/ExPolygon.pm lib/Slic3r/Fill.pm lib/Slic3r/Fill/Rectilinear.pm lib/Slic3r/GCode.pm lib/Slic3r/GUI/Plater.pm lib/Slic3r/Geometry/Clipper.pm lib/Slic3r/Layer/Region.pm lib/Slic3r/Print.pm lib/Slic3r/Print/Object.pm lib/Slic3r/TriangleMesh.pm t/shells.t xs/MANIFEST
This commit is contained in:
commit
b38cc2c244
60 changed files with 1432 additions and 798 deletions
|
@ -1,11 +1,11 @@
|
|||
package Slic3r::Print::Object;
|
||||
use Moo;
|
||||
|
||||
use List::Util qw(min sum first);
|
||||
use List::Util qw(min max sum first);
|
||||
use Slic3r::ExtrusionPath ':roles';
|
||||
use Slic3r::Geometry qw(Z PI scale unscale deg2rad rad2deg scaled_epsilon chained_path_points);
|
||||
use Slic3r::Geometry::Clipper qw(diff_ex intersection_ex union_ex offset collapse_ex
|
||||
offset2 diff intersection);
|
||||
use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex
|
||||
offset offset_ex offset2);
|
||||
use Slic3r::Surface ':types';
|
||||
|
||||
has 'print' => (is => 'ro', weak_ref => 1, required => 1);
|
||||
|
@ -14,9 +14,10 @@ has 'meshes' => (is => 'rw', default => sub { [] }); # by region_id
|
|||
has 'size' => (is => 'rw', required => 1); # XYZ in scaled coordinates
|
||||
has 'copies' => (is => 'rw', trigger => 1); # in scaled coordinates
|
||||
has 'layers' => (is => 'rw', default => sub { [] });
|
||||
has 'support_layers' => (is => 'rw', default => sub { [] });
|
||||
has 'layer_height_ranges' => (is => 'rw', default => sub { [] }); # [ z_min, z_max, layer_height ]
|
||||
has 'fill_maker' => (is => 'lazy');
|
||||
has '_z_table' => (is => 'lazy');
|
||||
has '_slice_z_table' => (is => 'lazy');
|
||||
|
||||
sub BUILD {
|
||||
my $self = shift;
|
||||
|
@ -36,7 +37,7 @@ sub BUILD {
|
|||
object => $self,
|
||||
id => $id,
|
||||
height => $height,
|
||||
print_z => scale $print_z,
|
||||
print_z => $print_z,
|
||||
slice_z => -1,
|
||||
);
|
||||
}
|
||||
|
@ -71,7 +72,7 @@ sub BUILD {
|
|||
object => $self,
|
||||
id => $id,
|
||||
height => $height,
|
||||
print_z => scale $print_z,
|
||||
print_z => $print_z,
|
||||
slice_z => scale $slice_z,
|
||||
);
|
||||
|
||||
|
@ -84,7 +85,7 @@ sub _build_fill_maker {
|
|||
return Slic3r::Fill->new(object => $self);
|
||||
}
|
||||
|
||||
sub _build__z_table {
|
||||
sub _build__slice_z_table {
|
||||
my $self = shift;
|
||||
return Slic3r::Object::XS::ZTable->new([ map $_->slice_z, @{$self->layers} ]);
|
||||
}
|
||||
|
@ -105,7 +106,13 @@ sub layer_count {
|
|||
|
||||
sub get_layer_range {
|
||||
my $self = shift;
|
||||
return @{ $self->_z_table->get_range(@_) };
|
||||
my ($min_z, $max_z) = @_;
|
||||
|
||||
my $min_layer = $self->_slice_z_table->lower_bound($min_z); # first layer whose slice_z is >= $min_z
|
||||
return (
|
||||
$min_layer,
|
||||
$self->_slice_z_table->upper_bound($max_z, $min_layer)-1, # last layer whose slice_z is <= $max_z
|
||||
);
|
||||
}
|
||||
|
||||
sub bounding_box {
|
||||
|
@ -561,11 +568,14 @@ sub discover_horizontal_shells {
|
|||
|
||||
if ($Slic3r::Config->solid_infill_every_layers && $Slic3r::Config->fill_density > 0
|
||||
&& ($i % $Slic3r::Config->solid_infill_every_layers) == 0) {
|
||||
$_->surface_type(S_TYPE_INTERNALSOLID)
|
||||
for grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces};
|
||||
my @surfaces = @{$layerm->fill_surfaces};
|
||||
for my $i (0..$#surfaces) {
|
||||
next unless $surfaces[$i]->surface_type == S_TYPE_INTERNAL;
|
||||
$layerm->fill_surfaces->set_surface_type($i, S_TYPE_INTERNALSOLID);
|
||||
}
|
||||
}
|
||||
|
||||
foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
|
||||
EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) {
|
||||
# find slices of current type for current layer
|
||||
# get both slices and fill_surfaces before the former contains the perimeters area
|
||||
# and the latter contains the enlarged external surfaces
|
||||
|
@ -576,7 +586,7 @@ sub discover_horizontal_shells {
|
|||
my $solid_layers = ($type == S_TYPE_TOP)
|
||||
? $Slic3r::Config->top_solid_layers
|
||||
: $Slic3r::Config->bottom_solid_layers;
|
||||
for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1;
|
||||
NEIGHBOR: for (my $n = ($type == S_TYPE_TOP) ? $i-1 : $i+1;
|
||||
abs($n - $i) <= $solid_layers-1;
|
||||
($type == S_TYPE_TOP) ? $n-- : $n++) {
|
||||
|
||||
|
@ -587,12 +597,19 @@ sub discover_horizontal_shells {
|
|||
|
||||
# find intersection between neighbor and current layer's surfaces
|
||||
# intersections have contours and holes
|
||||
my $new_internal_solid = intersection_ex(
|
||||
# we update $solid so that we limit the next neighbor layer to the areas that were
|
||||
# found on this one - in other words, solid shells on one layer (for a given external surface)
|
||||
# are always a subset of the shells found on the previous shell layer
|
||||
# this approach allows for DWIM in hollow sloping vases, where we want bottom
|
||||
# shells to be generated in the base but not in the walls (where there are many
|
||||
# narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
|
||||
# upper perimeter as an obstacle and shell will not be propagated to more upper layers
|
||||
my $new_internal_solid = $solid = intersection_ex(
|
||||
[ map @$_, @$solid ],
|
||||
[ map $_->p, grep { ($_->surface_type == S_TYPE_INTERNAL) || ($_->surface_type == S_TYPE_INTERNALSOLID) } @neighbor_fill_surfaces ],
|
||||
1,
|
||||
);
|
||||
next if !@$new_internal_solid;
|
||||
next EXTERNAL if !@$new_internal_solid;
|
||||
|
||||
# make sure the new internal solid is wide enough, as it might get collapsed when
|
||||
# spacing is added in Fill.pm
|
||||
|
@ -600,25 +617,30 @@ sub discover_horizontal_shells {
|
|||
my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size
|
||||
my $too_narrow = diff_ex(
|
||||
[ map @$_, @$new_internal_solid ],
|
||||
offset(offset([ map @$_, @$new_internal_solid ], -$margin), +$margin),
|
||||
offset2([ map @$_, @$new_internal_solid ], -$margin, +$margin),
|
||||
1,
|
||||
);
|
||||
|
||||
# if some parts are going to collapse, let's grow them and add the extra area to the neighbor layer
|
||||
# as well as to our original surfaces so that we support this additional area in the next shell too
|
||||
# if some parts are going to collapse, use a different strategy according to fill density
|
||||
if (@$too_narrow) {
|
||||
# consider the actual fill area
|
||||
my @fill_boundaries = $Slic3r::Config->fill_density > 0
|
||||
? @neighbor_fill_surfaces
|
||||
: grep $_->surface_type != S_TYPE_INTERNAL, @neighbor_fill_surfaces;
|
||||
|
||||
# make sure our grown surfaces don't exceed the fill area
|
||||
my @grown = map @$_, @{intersection_ex(
|
||||
offset([ map @$_, @$too_narrow ], +$margin),
|
||||
[ map $_->p, @fill_boundaries ],
|
||||
)};
|
||||
$new_internal_solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]);
|
||||
$solid = union_ex([ @grown, (map @$_, @$solid) ]);
|
||||
if ($Slic3r::Config->fill_density > 0) {
|
||||
# if we have internal infill, grow the collapsing parts and add the extra area to
|
||||
# the neighbor layer as well as to our original surfaces so that we support this
|
||||
# additional area in the next shell too
|
||||
|
||||
# make sure our grown surfaces don't exceed the fill area
|
||||
my @grown = map @$_, @{intersection_ex(
|
||||
offset([ map @$_, @$too_narrow ], +$margin),
|
||||
[ map $_->p, @neighbor_fill_surfaces ],
|
||||
)};
|
||||
$new_internal_solid = $solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]);
|
||||
} else {
|
||||
# if we're printing a hollow object, we discard such small parts
|
||||
$new_internal_solid = $solid = diff_ex(
|
||||
[ map @$_, @$new_internal_solid ],
|
||||
[ map @$_, @$too_narrow ],
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -778,263 +800,452 @@ sub generate_support_material {
|
|||
my $self = shift;
|
||||
return if $self->layer_count < 2;
|
||||
|
||||
my $flow = $self->print->support_material_flow;
|
||||
|
||||
# how much we extend support around the actual contact area
|
||||
#my $margin = $flow->scaled_width / 2;
|
||||
my $margin = scale 3;
|
||||
|
||||
# increment used to reach $margin in steps to avoid trespassing thin objects
|
||||
my $margin_step = $margin/3;
|
||||
|
||||
# if user specified a custom angle threshold, convert it to radians
|
||||
my $threshold_rad;
|
||||
if ($Slic3r::Config->support_material_threshold) {
|
||||
$threshold_rad = deg2rad($Slic3r::Config->support_material_threshold + 1); # +1 makes the threshold inclusive
|
||||
Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
|
||||
}
|
||||
my $flow = $self->print->support_material_flow;
|
||||
my $distance_from_object = 1.5 * $flow->scaled_width;
|
||||
my $pattern_spacing = ($Slic3r::Config->support_material_spacing > $flow->spacing)
|
||||
? $Slic3r::Config->support_material_spacing
|
||||
: $flow->spacing;
|
||||
|
||||
# determine support regions in each layer (for upper layers)
|
||||
Slic3r::debugf "Detecting regions\n";
|
||||
my %layers = (); # this represents the areas of each layer having to support upper layers (excluding interfaces)
|
||||
my %layers_interfaces = (); # this represents the areas of each layer to be filled with interface pattern, excluding the contact areas which are stored separately
|
||||
my %layers_contact_areas = (); # this represents the areas of each layer having an overhang in the immediately upper layer
|
||||
# shape of contact area
|
||||
my $contact_loops = 1;
|
||||
my $circle_distance = 3 * $flow->scaled_width;
|
||||
my $circle;
|
||||
{
|
||||
my @current_support_regions = (); # expolygons we've started to support (i.e. below the empty interface layers)
|
||||
my @upper_layers_overhangs = (map [], 1..$Slic3r::Config->support_material_interface_layers);
|
||||
for my $i (reverse 0 .. $#{$self->layers}) {
|
||||
next unless $Slic3r::Config->support_material
|
||||
|| ($i <= $Slic3r::Config->raft_layers) # <= because we need to start from the first non-raft layer
|
||||
|| ($i <= $Slic3r::Config->support_material_enforce_layers + $Slic3r::Config->raft_layers);
|
||||
# TODO: make sure teeth between circles are compatible with support material flow
|
||||
my $r = 1.5 * $flow->scaled_width;
|
||||
$circle = Slic3r::Polygon->new(map [ $r * cos $_, $r * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
|
||||
}
|
||||
|
||||
# determine contact areas
|
||||
my %contact = (); # contact_z => [ polygons ]
|
||||
my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer
|
||||
for my $layer_id (1 .. $#{$self->layers}) {
|
||||
my $layer = $self->layers->[$layer_id];
|
||||
my $lower_layer = $self->layers->[$layer_id-1];
|
||||
|
||||
# detect overhangs and contact areas needed to support them
|
||||
my (@overhang, @contact) = ();
|
||||
foreach my $layerm (@{$layer->regions}) {
|
||||
my $fw = $layerm->perimeter_flow->scaled_width;
|
||||
my $diff;
|
||||
|
||||
my $layer = $self->layers->[$i];
|
||||
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
|
||||
|
||||
my @current_layer_offsetted_slices = map @{$_->offset_ex($distance_from_object)}, @{$layer->slices};
|
||||
|
||||
# $upper_layers_overhangs[-1] contains the overhangs of the upper layer, regardless of any interface layers
|
||||
# $upper_layers_overhangs[0] contains the overhangs of the first upper layer above the interface layers
|
||||
|
||||
# we only consider the overhangs of the upper layer to define contact areas of the current one
|
||||
$layers_contact_areas{$i} = diff_ex(
|
||||
[ map @$_, @{ $upper_layers_overhangs[-1] || [] } ],
|
||||
[ map @$_, @current_layer_offsetted_slices ],
|
||||
);
|
||||
$layers_contact_areas{$i} = [
|
||||
@{collapse_ex([ map @$_, @{$layers_contact_areas{$i}} ], $flow->scaled_width)},
|
||||
];
|
||||
|
||||
# to define interface regions of this layer we consider the overhangs of all the upper layers
|
||||
# minus the first one
|
||||
$layers_interfaces{$i} = diff_ex(
|
||||
[ map @$_, map @$_, @upper_layers_overhangs[0 .. $#upper_layers_overhangs-1] ],
|
||||
[
|
||||
(map @$_, @current_layer_offsetted_slices),
|
||||
(map @$_, @{ $layers_contact_areas{$i} }),
|
||||
],
|
||||
);
|
||||
$layers_interfaces{$i} = [
|
||||
@{collapse_ex([ map @$_, @{$layers_interfaces{$i}} ], $flow->scaled_width)},
|
||||
];
|
||||
|
||||
# generate support material in current layer (for upper layers)
|
||||
@current_support_regions = @{diff_ex(
|
||||
[
|
||||
(map @$_, @current_support_regions),
|
||||
(map @$_, @{ $upper_layers_overhangs[-1] || [] }), # only considering -1 instead of the whole array contents is just an optimization
|
||||
],
|
||||
[ map @$_, @{$layer->slices} ],
|
||||
)};
|
||||
shift @upper_layers_overhangs;
|
||||
|
||||
$layers{$i} = diff_ex(
|
||||
[ map @$_, @current_support_regions ],
|
||||
[
|
||||
(map @$_, @current_layer_offsetted_slices),
|
||||
(map @$_, @{ $layers_interfaces{$i} }),
|
||||
],
|
||||
);
|
||||
$layers{$i} = [
|
||||
@{collapse_ex([ map @$_, @{$layers{$i}} ], $flow->scaled_width)},
|
||||
];
|
||||
|
||||
# get layer overhangs and put them into queue for adding support inside lower layers;
|
||||
# we need an angle threshold for this
|
||||
my @overhangs = ();
|
||||
if ($lower_layer) {
|
||||
# consider all overhangs regardless of their angle if we're told to enforce support on this layer
|
||||
my $distance = $i <= ($Slic3r::Config->support_material_enforce_layers + $Slic3r::Config->raft_layers)
|
||||
? 0
|
||||
: $Slic3r::Config->support_material_threshold
|
||||
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
|
||||
: $self->layers->[1]->regions->[0]->overhang_width;
|
||||
# If a threshold angle was specified, use a different logic for detecting overhangs.
|
||||
if (defined $threshold_rad || $layer_id <= $Slic3r::Config->support_material_enforce_layers) {
|
||||
my $d = defined $threshold_rad
|
||||
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
|
||||
: 0;
|
||||
|
||||
@overhangs = map @{$_->offset_ex(+$distance)}, @{diff_ex(
|
||||
[ map @$_, @{$layer->slices} ],
|
||||
$diff = diff(
|
||||
offset([ map $_->p, @{$layerm->slices} ], -$d),
|
||||
[ map @$_, @{$lower_layer->slices} ],
|
||||
1,
|
||||
);
|
||||
|
||||
# only enforce spacing from the object ($fw/2) if the threshold angle
|
||||
# is not too high: in that case, $d will be very small (as we need to catch
|
||||
# very short overhangs), and such contact area would be eaten by the
|
||||
# enforced spacing, resulting in high threshold angles to be almost ignored
|
||||
$diff = diff(
|
||||
offset($diff, $d - $fw/2),
|
||||
[ map @$_, @{$lower_layer->slices} ],
|
||||
) if $d > $fw/2;
|
||||
} else {
|
||||
$diff = diff(
|
||||
offset([ map $_->p, @{$layerm->slices} ], -$fw/2),
|
||||
[ map @$_, @{$lower_layer->slices} ],
|
||||
);
|
||||
# $diff now contains the ring or stripe comprised between the boundary of
|
||||
# lower slices and the centerline of the last perimeter in this overhanging layer.
|
||||
# Void $diff means that there's no upper perimeter whose centerline is
|
||||
# outside the lower slice boundary, thus no overhang
|
||||
}
|
||||
|
||||
next if !@$diff;
|
||||
push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
|
||||
|
||||
# Let's define the required contact area by using a max gap of half the upper
|
||||
# extrusion width and extending the area according to the configured margin.
|
||||
# We increment the area in steps because we don't want our support to overflow
|
||||
# on the other side of the object (if it's very thin).
|
||||
{
|
||||
my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)};
|
||||
for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) {
|
||||
$diff = diff(
|
||||
offset($diff, $_),
|
||||
\@slices_margin,
|
||||
);
|
||||
}
|
||||
}
|
||||
push @contact, @$diff;
|
||||
}
|
||||
next if !@contact;
|
||||
|
||||
# now apply the contact areas to the layer were they need to be made
|
||||
{
|
||||
# get the average nozzle diameter used on this layer
|
||||
my @nozzle_diameters = map $_->nozzle_diameter,
|
||||
map { $_->perimeter_flow, $_->solid_infill_flow }
|
||||
@{$layer->regions};
|
||||
my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
|
||||
|
||||
my $contact_z = $layer->print_z - $nozzle_diameter * 1.5;
|
||||
###$contact_z = $layer->print_z - $layer->height;
|
||||
|
||||
# ignore this contact area if it's too low
|
||||
next if $contact_z < $Slic3r::Config->first_layer_height;
|
||||
|
||||
$contact{$contact_z} = [ @contact ];
|
||||
$overhang{$contact_z} = [ @overhang ];
|
||||
}
|
||||
}
|
||||
my @contact_z = sort keys %contact;
|
||||
|
||||
# find object top surfaces
|
||||
# we'll use them to clip our support and detect where does it stick
|
||||
my %top = (); # print_z => [ expolygons ]
|
||||
{
|
||||
my $projection = [];
|
||||
foreach my $layer (reverse @{$self->layers}) {
|
||||
if (my @top = grep $_->surface_type == S_TYPE_TOP, map @{$_->slices}, @{$layer->regions}) {
|
||||
# compute projection of the contact areas above this top layer
|
||||
# first add all the 'new' contact areas to the current projection
|
||||
# ('new' means all the areas that are lower than the last top layer
|
||||
# we considered)
|
||||
my $min_top = min(keys %top) // max(keys %contact);
|
||||
push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ < $min_top } keys %contact;
|
||||
|
||||
# now find whether any projection falls onto this top surface
|
||||
my $touching = intersection($projection, [ map $_->p, @top ]);
|
||||
if (@$touching) {
|
||||
$top{ $layer->print_z } = $touching;
|
||||
}
|
||||
|
||||
# remove the areas that touched from the projection that will continue on
|
||||
# next, lower, top surfaces
|
||||
$projection = diff($projection, $touching);
|
||||
}
|
||||
}
|
||||
}
|
||||
my @top_z = sort keys %top;
|
||||
|
||||
# we now know the upper and lower boundaries for our support material object
|
||||
# (@contact_z and @top_z), so we can generate intermediate layers
|
||||
my @support_layers = _compute_support_layers(\@contact_z, \@top_z, $Slic3r::Config, $flow);
|
||||
|
||||
# if we wanted to apply some special logic to the first support layers lying on
|
||||
# object's top surfaces this is the place to detect them
|
||||
|
||||
# Let's now determine shells (interface layers) and normal support below them.
|
||||
# Let's now fill each support layer by generating shells (interface layers) and
|
||||
# clipping support area to the actual object boundaries.
|
||||
my %interface = (); # layer_id => [ polygons ]
|
||||
my %support = (); # layer_id => [ polygons ]
|
||||
my $interface_layers = $Slic3r::Config->support_material_interface_layers;
|
||||
for my $layer_id (0 .. $#support_layers) {
|
||||
my $z = $support_layers[$layer_id];
|
||||
my $this = $contact{$z} // next;
|
||||
# count contact layer as interface layer
|
||||
for (my $i = $layer_id; $i >= 0 && $i > $layer_id-$interface_layers; $i--) {
|
||||
$z = $support_layers[$i];
|
||||
# Compute interface area on this layer as diff of upper contact area
|
||||
# (or upper interface area) and layer slices.
|
||||
# This diff is responsible of the contact between support material and
|
||||
# the top surfaces of the object. We should probably offset the top
|
||||
# surfaces before performing the diff, but this needs investigation.
|
||||
$this = $interface{$i} = diff(
|
||||
[
|
||||
@$this,
|
||||
@{ $interface{$i} || [] },
|
||||
],
|
||||
[
|
||||
@{ $top{$z} || [] },
|
||||
],
|
||||
1,
|
||||
);
|
||||
}
|
||||
|
||||
# determine what layers does our support belong to
|
||||
for (my $i = $layer_id-$interface_layers; $i >= 0; $i--) {
|
||||
$z = $support_layers[$i];
|
||||
# Compute support area on this layer as diff of upper support area
|
||||
# and layer slices.
|
||||
$this = $support{$i} = diff(
|
||||
[
|
||||
@$this,
|
||||
@{ $support{$i} || [] },
|
||||
],
|
||||
[
|
||||
@{ $top{$z} || [] },
|
||||
@{ $interface{$i} || [] },
|
||||
],
|
||||
1,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
push @{$self->support_layers}, map Slic3r::Layer::Support->new(
|
||||
object => $self,
|
||||
id => $_,
|
||||
height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]),
|
||||
print_z => $support_layers[$_],
|
||||
slice_z => -1,
|
||||
slices => [],
|
||||
), 0 .. $#support_layers;
|
||||
|
||||
Slic3r::debugf "Generating patterns\n";
|
||||
|
||||
# prepare fillers
|
||||
my $pattern = $Slic3r::Config->support_material_pattern;
|
||||
my @angles = ($Slic3r::Config->support_material_angle);
|
||||
if ($pattern eq 'rectilinear-grid') {
|
||||
$pattern = 'rectilinear';
|
||||
push @angles, $angles[0] + 90;
|
||||
}
|
||||
|
||||
my %fillers = (
|
||||
interface => $self->fill_maker->filler('rectilinear'),
|
||||
support => $self->fill_maker->filler($pattern),
|
||||
);
|
||||
|
||||
my $interface_angle = $Slic3r::Config->support_material_angle + 90;
|
||||
my $interface_spacing = $Slic3r::Config->support_material_interface_spacing + $flow->spacing;
|
||||
my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing;
|
||||
my $support_spacing = $Slic3r::Config->support_material_spacing + $flow->spacing;
|
||||
my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
|
||||
|
||||
my $process_layer = sub {
|
||||
my ($layer_id) = @_;
|
||||
my $result = { contact => [], interface => [], support => [] };
|
||||
|
||||
$contact{$layer_id} ||= [];
|
||||
$interface{$layer_id} ||= [];
|
||||
$support{$layer_id} ||= [];
|
||||
|
||||
# contact
|
||||
if ((my $contact = $contact{$support_layers[$layer_id]}) && $contact_loops > 0) {
|
||||
my $overhang = $overhang{$support_layers[$layer_id]};
|
||||
$contact = [ grep $_->is_counter_clockwise, @$contact ];
|
||||
|
||||
# generate the outermost loop
|
||||
my @loops0;
|
||||
{
|
||||
# find centerline of the external loop of the contours
|
||||
my @external_loops = @{offset($contact, -$flow->scaled_width/2)};
|
||||
|
||||
# apply a pattern to the loop
|
||||
my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops;
|
||||
@loops0 = @{diff(
|
||||
[ @external_loops ],
|
||||
[ map $circle->clone->translate(@$_), @positions ],
|
||||
)};
|
||||
}
|
||||
push @upper_layers_overhangs, [@overhangs];
|
||||
|
||||
if ($Slic3r::debug) {
|
||||
printf "Layer %d (z = %.2f) has %d generic support areas, %d normal interface areas, %d contact areas\n",
|
||||
$i, unscale($layer->print_z), scalar(@{$layers{$i}}), scalar(@{$layers_interfaces{$i}}), scalar(@{$layers_contact_areas{$i}});
|
||||
# make more loops
|
||||
my @loops = @loops0;
|
||||
for my $i (2..$contact_loops) {
|
||||
my $d = ($i-1) * $flow->scaled_spacing;
|
||||
push @loops, offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing);
|
||||
}
|
||||
}
|
||||
}
|
||||
return if !map @$_, values %layers;
|
||||
|
||||
# generate paths for the pattern that we're going to use
|
||||
Slic3r::debugf "Generating patterns\n";
|
||||
my $support_patterns = [];
|
||||
my $support_interface_patterns = [];
|
||||
{
|
||||
# 0.5 ensures the paths don't get clipped externally when applying them to layers
|
||||
my @areas = map @{$_->offset_ex(- 0.5 * $flow->scaled_width)},
|
||||
@{union_ex([ map $_->contour, map @$_, values %layers, values %layers_interfaces, values %layers_contact_areas ])};
|
||||
|
||||
my $pattern = $Slic3r::Config->support_material_pattern;
|
||||
my @angles = ($Slic3r::Config->support_material_angle);
|
||||
if ($pattern eq 'rectilinear-grid') {
|
||||
$pattern = 'rectilinear';
|
||||
push @angles, $angles[0] + 90;
|
||||
}
|
||||
|
||||
my $filler = $self->fill_maker->filler($pattern);
|
||||
my $make_pattern = sub {
|
||||
my ($expolygon, $density) = @_;
|
||||
|
||||
my @paths = $filler->fill_surface(
|
||||
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
|
||||
density => $density,
|
||||
flow_spacing => $flow->spacing,
|
||||
# clip such loops to the side oriented towards the object
|
||||
@loops = map Slic3r::Polyline->new(@$_),
|
||||
@{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
|
||||
[ offset_ex([ map @$_, @$overhang ], +scale 3) ],
|
||||
[ map Slic3r::Polygon->new(@$_)->split_at_first_point, @loops ],
|
||||
) };
|
||||
|
||||
# subtract loops from the contact area to detect the remaining part
|
||||
$interface{$layer_id} = intersection(
|
||||
$interface{$layer_id},
|
||||
[ offset2(\@loops0, -($contact_loops) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing) ],
|
||||
);
|
||||
my $params = shift @paths;
|
||||
|
||||
return map Slic3r::ExtrusionPath->new(
|
||||
polyline => Slic3r::Polyline->new(@$_),
|
||||
# transform loops into ExtrusionPath objects
|
||||
@loops = map Slic3r::ExtrusionPath->pack(
|
||||
polyline => $_,
|
||||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||||
height => undef,
|
||||
flow_spacing => $params->{flow_spacing},
|
||||
), @paths;
|
||||
};
|
||||
foreach my $angle (@angles) {
|
||||
$filler->angle($angle);
|
||||
{
|
||||
my $density = $flow->spacing / $pattern_spacing;
|
||||
push @$support_patterns, [ map $make_pattern->($_, $density), @areas ];
|
||||
}
|
||||
flow_spacing => $flow->spacing,
|
||||
), @loops;
|
||||
|
||||
if ($Slic3r::Config->support_material_interface_layers > 0) {
|
||||
# if pattern is not cross-hatched, rotate the interface pattern by 90° degrees
|
||||
$filler->angle($angle + 90) if @angles == 1;
|
||||
|
||||
my $spacing = $Slic3r::Config->support_material_interface_spacing;
|
||||
my $density = $spacing == 0 ? 1 : $flow->spacing / $spacing;
|
||||
push @$support_interface_patterns, [ map $make_pattern->($_, $density), @areas ];
|
||||
}
|
||||
$result->{contact} = [ @loops ];
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("support_$_.svg",
|
||||
polylines => [ map $_->polyline, map @$_, $support_patterns->[$_] ],
|
||||
red_polylines => [ map $_->polyline, map @$_, $support_interface_patterns->[$_] ],
|
||||
polygons => [ map @$_, @areas ],
|
||||
) for 0 .. $#$support_patterns;
|
||||
}
|
||||
}
|
||||
|
||||
# apply the pattern to layers
|
||||
Slic3r::debugf "Applying patterns\n";
|
||||
{
|
||||
my $clip_pattern = sub {
|
||||
my ($layer_id, $expolygons, $height, $is_interface) = @_;
|
||||
my @paths = ();
|
||||
foreach my $expolygon (@$expolygons) {
|
||||
push @paths,
|
||||
map {
|
||||
$_->height($height);
|
||||
|
||||
# useless line because this coderef isn't called for layer 0 anymore;
|
||||
# let's keep it here just in case we want to make the base flange optional
|
||||
# in the future
|
||||
$_->flow_spacing($self->print->first_layer_support_material_flow->spacing)
|
||||
if $layer_id == 0;
|
||||
|
||||
$_;
|
||||
}
|
||||
map $_->clip_with_expolygon($expolygon),
|
||||
###map $_->clip_with_polygon($expolygon->bounding_box->polygon), # currently disabled as a workaround for Boost failing at being idempotent
|
||||
($is_interface && @$support_interface_patterns)
|
||||
? @{$support_interface_patterns->[ $layer_id % @$support_interface_patterns ]}
|
||||
: @{$support_patterns->[ $layer_id % @$support_patterns ]};
|
||||
};
|
||||
return @paths;
|
||||
};
|
||||
my $process_layer = sub {
|
||||
my ($layer_id) = @_;
|
||||
my $layer = $self->layers->[$layer_id];
|
||||
|
||||
my ($paths, $contact_paths) = ([], []);
|
||||
my $islands = union_ex([ map @$_, map @$_, $layers{$layer_id}, $layers_contact_areas{$layer_id} ]);
|
||||
|
||||
# make a solid base on bottom layer
|
||||
if ($layer_id == 0) {
|
||||
my $filler = $self->fill_maker->filler('rectilinear');
|
||||
$filler->angle($Slic3r::Config->support_material_angle + 90);
|
||||
foreach my $expolygon (@$islands) {
|
||||
my @paths = $filler->fill_surface(
|
||||
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
|
||||
density => 0.5,
|
||||
flow_spacing => $self->print->first_layer_support_material_flow->spacing,
|
||||
);
|
||||
my $params = shift @paths;
|
||||
|
||||
push @$paths, map Slic3r::ExtrusionPath->new(
|
||||
polyline => Slic3r::Polyline->new(@$_),
|
||||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||||
height => undef,
|
||||
flow_spacing => $params->{flow_spacing},
|
||||
), @paths;
|
||||
}
|
||||
} else {
|
||||
$paths = [
|
||||
$clip_pattern->($layer_id, $layers{$layer_id}, $layer->height),
|
||||
$clip_pattern->($layer_id, $layers_interfaces{$layer_id}, $layer->height, 1),
|
||||
];
|
||||
$contact_paths = [ $clip_pattern->($layer_id, $layers_contact_areas{$layer_id}, $layer->support_material_contact_height, 1) ];
|
||||
}
|
||||
return ($paths, $contact_paths, $islands);
|
||||
};
|
||||
my %layer_paths = ();
|
||||
my %layer_contact_paths = ();
|
||||
my %layer_islands = ();
|
||||
Slic3r::parallelize(
|
||||
items => [ keys %layers ],
|
||||
thread_cb => sub {
|
||||
my $q = shift;
|
||||
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
|
||||
my $result = {};
|
||||
while (defined (my $layer_id = $q->dequeue)) {
|
||||
$result->{$layer_id} = [ $process_layer->($layer_id) ];
|
||||
}
|
||||
return $result;
|
||||
},
|
||||
collect_cb => sub {
|
||||
my $result = shift;
|
||||
($layer_paths{$_}, $layer_contact_paths{$_}, $layer_islands{$_}) = @{$result->{$_}} for keys %$result;
|
||||
},
|
||||
no_threads_cb => sub {
|
||||
($layer_paths{$_}, $layer_contact_paths{$_}, $layer_islands{$_}) = $process_layer->($_) for keys %layers;
|
||||
},
|
||||
);
|
||||
|
||||
foreach my $layer_id (keys %layer_paths) {
|
||||
my $layer = $self->layers->[$layer_id];
|
||||
$layer->support_islands($layer_islands{$layer_id});
|
||||
$layer->support_fills(Slic3r::ExtrusionPath::Collection->new);
|
||||
$layer->support_contact_fills(Slic3r::ExtrusionPath::Collection->new);
|
||||
$layer->support_fills->append(@{$layer_paths{$layer_id}});
|
||||
$layer->support_contact_fills->append(@{$layer_contact_paths{$layer_id}});
|
||||
# interface
|
||||
if (@{$interface{$layer_id}}) {
|
||||
$fillers{interface}->angle($interface_angle);
|
||||
|
||||
# steal some space from support
|
||||
$interface{$layer_id} = intersection(
|
||||
[ offset($interface{$layer_id}, scale 3) ],
|
||||
[ @{$interface{$layer_id}}, @{$support{$layer_id}} ],
|
||||
);
|
||||
$support{$layer_id} = diff(
|
||||
$support{$layer_id},
|
||||
$interface{$layer_id},
|
||||
);
|
||||
|
||||
my @paths = ();
|
||||
foreach my $expolygon (offset_ex($interface{$layer_id}, -$flow->scaled_width/2)) {
|
||||
my @p = $fillers{interface}->fill_surface(
|
||||
Slic3r::Surface->new(expolygon => $expolygon),
|
||||
density => $interface_density,
|
||||
flow_spacing => $flow->spacing,
|
||||
complete => 1,
|
||||
);
|
||||
my $params = shift @p;
|
||||
|
||||
push @paths, map Slic3r::ExtrusionPath->pack(
|
||||
polyline => Slic3r::Polyline->new(@$_),
|
||||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||||
height => undef,
|
||||
flow_spacing => $params->{flow_spacing},
|
||||
), @p;
|
||||
}
|
||||
$result->{interface} = [ @paths ];
|
||||
}
|
||||
|
||||
# support or flange
|
||||
if (@{$support{$layer_id}}) {
|
||||
my $filler = $fillers{support};
|
||||
$filler->angle($angles[ ($layer_id) % @angles ]);
|
||||
my $density = $support_density;
|
||||
my $flow_spacing = $flow->spacing;
|
||||
|
||||
# TODO: use offset2_ex()
|
||||
my $to_infill = offset_ex(union($support{$layer_id}), -$flow->scaled_width/2);
|
||||
my @paths = ();
|
||||
|
||||
# base flange
|
||||
if ($layer_id == 0) {
|
||||
$filler = $fillers{interface};
|
||||
$filler->angle($Slic3r::Config->support_material_angle + 90);
|
||||
$density = 0.5;
|
||||
$flow_spacing = $self->print->first_layer_support_material_flow->spacing;
|
||||
} else {
|
||||
# draw a perimeter all around support infill
|
||||
# TODO: use brim ordering algorithm
|
||||
push @paths, map Slic3r::ExtrusionPath->pack(
|
||||
polyline => $_->split_at_first_point,
|
||||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||||
height => undef,
|
||||
flow_spacing => $flow->spacing,
|
||||
), map @$_, @$to_infill;
|
||||
|
||||
# TODO: use offset2_ex()
|
||||
$to_infill = [ offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing) ];
|
||||
}
|
||||
|
||||
foreach my $expolygon (@$to_infill) {
|
||||
my @p = $filler->fill_surface(
|
||||
Slic3r::Surface->new(expolygon => $expolygon),
|
||||
density => $density,
|
||||
flow_spacing => $flow_spacing,
|
||||
complete => 1,
|
||||
);
|
||||
my $params = shift @p;
|
||||
|
||||
push @paths, map Slic3r::ExtrusionPath->pack(
|
||||
polyline => Slic3r::Polyline->new(@$_),
|
||||
role => EXTR_ROLE_SUPPORTMATERIAL,
|
||||
height => undef,
|
||||
flow_spacing => $params->{flow_spacing},
|
||||
), @p;
|
||||
}
|
||||
|
||||
$result->{support} = [ @paths ];
|
||||
}
|
||||
|
||||
# islands
|
||||
$result->{islands} = union_ex([
|
||||
@{$interface{$layer_id} || []},
|
||||
@{$support{$layer_id} || []},
|
||||
]);
|
||||
|
||||
return $result;
|
||||
};
|
||||
|
||||
my $apply = sub {
|
||||
my ($layer_id, $result) = @_;
|
||||
my $layer = $self->support_layers->[$layer_id];
|
||||
|
||||
my $interface_collection = Slic3r::ExtrusionPath::Collection->new(paths => [ @{$result->{contact}}, @{$result->{interface}} ]);
|
||||
$layer->support_interface_fills($interface_collection) if @{$interface_collection->paths} > 0;
|
||||
|
||||
my $support_collection = Slic3r::ExtrusionPath::Collection->new(paths => $result->{support});
|
||||
$layer->support_fills($support_collection) if @{$support_collection->paths} > 0;
|
||||
|
||||
$layer->support_islands($result->{islands});
|
||||
};
|
||||
Slic3r::parallelize(
|
||||
items => [ 0 .. $#{$self->support_layers} ],
|
||||
thread_cb => sub {
|
||||
my $q = shift;
|
||||
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
|
||||
my $result = {};
|
||||
while (defined (my $layer_id = $q->dequeue)) {
|
||||
$result->{$layer_id} = $process_layer->($layer_id);
|
||||
}
|
||||
return $result;
|
||||
},
|
||||
collect_cb => sub {
|
||||
my $result = shift;
|
||||
$apply->($_, $result->{$_}) for keys %$result;
|
||||
},
|
||||
no_threads_cb => sub {
|
||||
$apply->($_, $process_layer->($_)) for 0 .. $#{$self->support_layers};
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
sub _compute_support_layers {
|
||||
my ($contact_z, $top_z, $config, $flow) = @_;
|
||||
|
||||
# quick table to check whether a given Z is a top surface
|
||||
my %top = map { $_ => 1 } @$top_z;
|
||||
|
||||
# determine layer height for any non-contact layer
|
||||
# we use max() to prevent many ultra-thin layers to be inserted in case
|
||||
# layer_height > nozzle_diameter * 0.75
|
||||
my $support_material_height = max($config->layer_height, $flow->nozzle_diameter * 0.75);
|
||||
|
||||
my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z,
|
||||
(map { $_ + $flow->nozzle_diameter } @$top_z);
|
||||
|
||||
# enforce first layer height
|
||||
my $first_layer_height = $config->get_value('first_layer_height');
|
||||
shift @support_layers while @support_layers && $support_layers[0] <= $first_layer_height;
|
||||
unshift @support_layers, $first_layer_height;
|
||||
|
||||
for (my $i = $#support_layers; $i >= 0; $i--) {
|
||||
my $target_height = $support_material_height;
|
||||
if ($i > 0 && $top{ $support_layers[$i-1] }) {
|
||||
$target_height = $flow->nozzle_diameter;
|
||||
}
|
||||
|
||||
# enforce first layer height
|
||||
if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height)
|
||||
|| ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
|
||||
splice @support_layers, $i, 0, ($support_layers[$i] - $target_height);
|
||||
$i++;
|
||||
}
|
||||
}
|
||||
|
||||
# remove duplicates and make sure all 0.x values have the leading 0
|
||||
{
|
||||
my %sl = map { 1 * $_ => 1 } @support_layers;
|
||||
@support_layers = sort { $a <=> $b } keys %sl;
|
||||
}
|
||||
|
||||
return @support_layers;
|
||||
}
|
||||
|
||||
1;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue