Implementing a new switch for the shape of support towers:

expanded to a grid (the old way) vs.
snug (like the upstream Slic3r, Cura or Ideamaker).

Snug supports suffered from the degeneracies when merging overhang islands
over a large number of layers when projecting the support towers down.
We borrowed the idea & a bit of code from Cura by simplifying the support
polygons by closing the concave cracks, see the smooth_outward() function
and the MutablePolygon class.

Fixes Support problems with models with hole in the walls. #555
Fixes Support in the Air #740
Fixes [Bug] Supports generated beyond bed edges (X<0 and X>250) and where none are needed. #902
Fixes Unable to remove support material/can't change support "inflation distance" #2708
Fixes FR: support inflation and support conform to boundary #4783
Fixes Support blocker not working on this model #1346
Fixes Unnecessary support material #1993
Fixes support blocker enforcer issue #6240
This commit is contained in:
Vojtech Bubnik 2021-03-23 11:06:31 +01:00
parent 00295919bf
commit af9c7c967f
10 changed files with 208 additions and 151 deletions

View file

@ -6,6 +6,7 @@
#include "Fill/FillBase.hpp"
#include "Geometry.hpp"
#include "Point.hpp"
#include "MutablePolygon.hpp"
#include <cmath>
#include <memory>
@ -667,17 +668,19 @@ Polygons collect_slices_outer(const Layer &layer)
struct SupportGridParams {
SupportGridParams(const PrintObjectConfig &object_config, const Flow &support_material_flow) :
style(object_config.support_material_style.value),
grid_resolution(object_config.support_material_spacing.value + support_material_flow.spacing()),
support_angle(Geometry::deg2rad(object_config.support_material_angle.value)),
extrusion_width(support_material_flow.spacing()),
expansion_to_slice(coord_t(support_material_flow.scaled_spacing() / 2 + 5)),
expansion_to_propagate(-3) {}
double grid_resolution;
double support_angle;
double extrusion_width;
coord_t expansion_to_slice;
coord_t expansion_to_propagate;
SupportMaterialStyle style;
double grid_resolution;
double support_angle;
double extrusion_width;
coord_t expansion_to_slice;
coord_t expansion_to_propagate;
};
class SupportGridPattern
@ -689,75 +692,88 @@ public:
// Trimming polygons, to trim the stretched support islands. support_polygons were already trimmed with trimming_polygons.
const Polygons *trimming_polygons,
const SupportGridParams &params) :
m_style(params.style),
m_support_polygons(support_polygons), m_trimming_polygons(trimming_polygons),
m_support_spacing(params.grid_resolution), m_support_angle(params.support_angle)
{
if (m_support_angle != 0.) {
// Create a copy of the rotated contours.
m_support_polygons_rotated = *support_polygons;
m_trimming_polygons_rotated = *trimming_polygons;
m_support_polygons = &m_support_polygons_rotated;
m_trimming_polygons = &m_trimming_polygons_rotated;
polygons_rotate(m_support_polygons_rotated, - params.support_angle);
polygons_rotate(m_trimming_polygons_rotated, - params.support_angle);
}
// Resolution of the sparse support grid.
coord_t grid_resolution = coord_t(scale_(m_support_spacing));
BoundingBox bbox = get_extents(*m_support_polygons);
bbox.offset(20);
// Align the bounding box with the sparse support grid.
bbox.align_to_grid(grid_resolution);
#ifdef SUPPORT_USE_AGG_RASTERIZER
m_bbox = bbox;
// Oversample the grid to avoid leaking of supports through or around the object walls.
int oversampling = std::min(8, int(scale_(m_support_spacing) / (scale_(params.extrusion_width) + 100)));
m_pixel_size = scale_(m_support_spacing / oversampling);
assert(scale_(params.extrusion_width) + 20 < m_pixel_size);
// Add one empty column / row boundaries.
m_bbox.offset(m_pixel_size);
// Grid size fitting the support polygons plus one pixel boundary around the polygons.
Vec2i grid_size_raw(int(ceil((m_bbox.max.x() - m_bbox.min.x()) / m_pixel_size)),
int(ceil((m_bbox.max.y() - m_bbox.min.y()) / m_pixel_size)));
// Overlay macro blocks of (oversampling x oversampling) over the grid.
Vec2i grid_blocks((grid_size_raw.x() + oversampling - 1 - 2) / oversampling,
(grid_size_raw.y() + oversampling - 1 - 2) / oversampling);
// and resize the grid to fit the macro blocks + one pixel boundary.
m_grid_size = grid_blocks * oversampling + Vec2i(2, 2);
assert(m_grid_size.x() >= grid_size_raw.x());
assert(m_grid_size.y() >= grid_size_raw.y());
m_grid2 = rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_support_polygons);
seed_fill_block(m_grid2, m_grid_size,
dilate_trimming_region(rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_trimming_polygons), m_grid_size),
grid_blocks, oversampling);
#ifdef SLIC3R_DEBUG
switch (m_style) {
case smsGrid:
{
static int irun;
Slic3r::png::write_gray_to_file_scaled(debug_out_path("support-rasterizer-%d.png", irun++), m_grid_size.x(), m_grid_size.y(), m_grid2.data(), 4);
}
#endif // SLIC3R_DEBUG
// Prepare the grid data, it will be reused when extracting support structures.
if (m_support_angle != 0.) {
// Create a copy of the rotated contours.
m_support_polygons_rotated = *support_polygons;
m_trimming_polygons_rotated = *trimming_polygons;
m_support_polygons = &m_support_polygons_rotated;
m_trimming_polygons = &m_trimming_polygons_rotated;
polygons_rotate(m_support_polygons_rotated, - params.support_angle);
polygons_rotate(m_trimming_polygons_rotated, - params.support_angle);
}
#else // SUPPORT_USE_AGG_RASTERIZER
// Create an EdgeGrid, initialize it with projection, initialize signed distance field.
m_grid.set_bbox(bbox);
m_grid.create(*m_support_polygons, grid_resolution);
#if 0
if (m_grid.has_intersecting_edges()) {
// EdgeGrid fails to produce valid signed distance function for self-intersecting polygons.
m_support_polygons_rotated = simplify_polygons(*m_support_polygons);
m_support_polygons = &m_support_polygons_rotated;
// Resolution of the sparse support grid.
coord_t grid_resolution = coord_t(scale_(m_support_spacing));
BoundingBox bbox = get_extents(*m_support_polygons);
bbox.offset(20);
// Align the bounding box with the sparse support grid.
bbox.align_to_grid(grid_resolution);
#ifdef SUPPORT_USE_AGG_RASTERIZER
m_bbox = bbox;
// Oversample the grid to avoid leaking of supports through or around the object walls.
int oversampling = std::min(8, int(scale_(m_support_spacing) / (scale_(params.extrusion_width) + 100)));
m_pixel_size = scale_(m_support_spacing / oversampling);
assert(scale_(params.extrusion_width) + 20 < m_pixel_size);
// Add one empty column / row boundaries.
m_bbox.offset(m_pixel_size);
// Grid size fitting the support polygons plus one pixel boundary around the polygons.
Vec2i grid_size_raw(int(ceil((m_bbox.max.x() - m_bbox.min.x()) / m_pixel_size)),
int(ceil((m_bbox.max.y() - m_bbox.min.y()) / m_pixel_size)));
// Overlay macro blocks of (oversampling x oversampling) over the grid.
Vec2i grid_blocks((grid_size_raw.x() + oversampling - 1 - 2) / oversampling,
(grid_size_raw.y() + oversampling - 1 - 2) / oversampling);
// and resize the grid to fit the macro blocks + one pixel boundary.
m_grid_size = grid_blocks * oversampling + Vec2i(2, 2);
assert(m_grid_size.x() >= grid_size_raw.x());
assert(m_grid_size.y() >= grid_size_raw.y());
m_grid2 = rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_support_polygons);
seed_fill_block(m_grid2, m_grid_size,
dilate_trimming_region(rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_trimming_polygons), m_grid_size),
grid_blocks, oversampling);
#ifdef SLIC3R_DEBUG
{
static int irun;
Slic3r::png::write_gray_to_file_scaled(debug_out_path("support-rasterizer-%d.png", irun++), m_grid_size.x(), m_grid_size.y(), m_grid2.data(), 4);
}
#endif // SLIC3R_DEBUG
#else // SUPPORT_USE_AGG_RASTERIZER
// Create an EdgeGrid, initialize it with projection, initialize signed distance field.
m_grid.set_bbox(bbox);
m_grid.create(*m_support_polygons, grid_resolution);
// assert(! m_grid.has_intersecting_edges());
printf("SupportGridPattern: fixing polygons with intersection %s\n",
m_grid.has_intersecting_edges() ? "FAILED" : "SUCCEEDED");
#if 0
if (m_grid.has_intersecting_edges()) {
// EdgeGrid fails to produce valid signed distance function for self-intersecting polygons.
m_support_polygons_rotated = simplify_polygons(*m_support_polygons);
m_support_polygons = &m_support_polygons_rotated;
m_grid.set_bbox(bbox);
m_grid.create(*m_support_polygons, grid_resolution);
// assert(! m_grid.has_intersecting_edges());
printf("SupportGridPattern: fixing polygons with intersection %s\n",
m_grid.has_intersecting_edges() ? "FAILED" : "SUCCEEDED");
}
#endif
m_grid.calculate_sdf();
#endif // SUPPORT_USE_AGG_RASTERIZER
break;
}
case smsSnug:
default:
// nothing to prepare
break;
}
#endif
m_grid.calculate_sdf();
#endif // SUPPORT_USE_AGG_RASTERIZER
}
// Extract polygons from the grid, offsetted by offset_in_grid,
@ -770,97 +786,102 @@ public:
#endif
)
{
#ifdef SUPPORT_USE_AGG_RASTERIZER
Polygons support_polygons_simplified = contours_simplified(m_grid_size, m_pixel_size, m_bbox.min, m_grid2, offset_in_grid, fill_holes);
#else // SUPPORT_USE_AGG_RASTERIZER
// Generate islands, so each island may be tested for overlap with island_samples.
assert(std::abs(2 * offset_in_grid) < m_grid.resolution());
Polygons support_polygons_simplified = m_grid.contours_simplified(offset_in_grid, fill_holes);
#endif // SUPPORT_USE_AGG_RASTERIZER
switch (m_style) {
case smsGrid:
{
#ifdef SUPPORT_USE_AGG_RASTERIZER
Polygons support_polygons_simplified = contours_simplified(m_grid_size, m_pixel_size, m_bbox.min, m_grid2, offset_in_grid, fill_holes);
#else // SUPPORT_USE_AGG_RASTERIZER
// Generate islands, so each island may be tested for overlap with island_samples.
assert(std::abs(2 * offset_in_grid) < m_grid.resolution());
Polygons support_polygons_simplified = m_grid.contours_simplified(offset_in_grid, fill_holes);
#endif // SUPPORT_USE_AGG_RASTERIZER
ExPolygons islands = diff_ex(support_polygons_simplified, *m_trimming_polygons, false);
ExPolygons islands = diff_ex(support_polygons_simplified, *m_trimming_polygons, false);
// Extract polygons, which contain some of the island_samples.
Polygons out;
#if 0
out = to_polygons(std::move(islands));
#else
// Extract polygons, which contain some of the island_samples.
Polygons out;
// Sample a single point per input support polygon, keep it as a reference to maintain corresponding
// polygons if ever these polygons get split into parts by the trimming polygons.
// As offset_in_grid may be negative, m_support_polygons may stick slightly outside of islands.
// Trim ti with islands.
Points samples = island_samples(
offset_in_grid > 0 ?
// Expanding, thus m_support_polygons are all inside islands.
union_ex(*m_support_polygons) :
// Shrinking, thus m_support_polygons may be trimmed a tiny bit by islands.
intersection_ex(*m_support_polygons, to_polygons(islands)));
// Sample a single point per input support polygon, keep it as a reference to maintain corresponding
// polygons if ever these polygons get split into parts by the trimming polygons.
// As offset_in_grid may be negative, m_support_polygons may stick slightly outside of islands.
// Trim ti with islands.
Points samples = island_samples(
offset_in_grid > 0 ?
// Expanding, thus m_support_polygons are all inside islands.
union_ex(*m_support_polygons) :
// Shrinking, thus m_support_polygons may be trimmed a tiny bit by islands.
intersection_ex(*m_support_polygons, to_polygons(islands)));
std::vector<std::pair<Point,bool>> samples_inside;
for (ExPolygon &island : islands) {
BoundingBox bbox = get_extents(island.contour);
// Samples are sorted lexicographically.
auto it_lower = std::lower_bound(samples.begin(), samples.end(), Point(bbox.min - Point(1, 1)));
auto it_upper = std::upper_bound(samples.begin(), samples.end(), Point(bbox.max + Point(1, 1)));
samples_inside.clear();
for (auto it = it_lower; it != it_upper; ++ it)
if (bbox.contains(*it))
samples_inside.push_back(std::make_pair(*it, false));
if (! samples_inside.empty()) {
// For all samples_inside count the boundary crossing.
for (size_t i_contour = 0; i_contour <= island.holes.size(); ++ i_contour) {
Polygon &contour = (i_contour == 0) ? island.contour : island.holes[i_contour - 1];
Points::const_iterator i = contour.points.begin();
Points::const_iterator j = contour.points.end() - 1;
for (; i != contour.points.end(); j = i ++) {
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
// Does the ray with y == point(1) intersect this line segment?
for (auto &sample_inside : samples_inside) {
if (((*i)(1) > sample_inside.first(1)) != ((*j)(1) > sample_inside.first(1))) {
double x1 = (double)sample_inside.first(0);
double x2 = (double)(*i)(0) + (double)((*j)(0) - (*i)(0)) * (double)(sample_inside.first(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1));
if (x1 < x2)
sample_inside.second = !sample_inside.second;
std::vector<std::pair<Point,bool>> samples_inside;
for (ExPolygon &island : islands) {
BoundingBox bbox = get_extents(island.contour);
// Samples are sorted lexicographically.
auto it_lower = std::lower_bound(samples.begin(), samples.end(), Point(bbox.min - Point(1, 1)));
auto it_upper = std::upper_bound(samples.begin(), samples.end(), Point(bbox.max + Point(1, 1)));
samples_inside.clear();
for (auto it = it_lower; it != it_upper; ++ it)
if (bbox.contains(*it))
samples_inside.push_back(std::make_pair(*it, false));
if (! samples_inside.empty()) {
// For all samples_inside count the boundary crossing.
for (size_t i_contour = 0; i_contour <= island.holes.size(); ++ i_contour) {
Polygon &contour = (i_contour == 0) ? island.contour : island.holes[i_contour - 1];
Points::const_iterator i = contour.points.begin();
Points::const_iterator j = contour.points.end() - 1;
for (; i != contour.points.end(); j = i ++) {
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
// Does the ray with y == point(1) intersect this line segment?
for (auto &sample_inside : samples_inside) {
if (((*i)(1) > sample_inside.first(1)) != ((*j)(1) > sample_inside.first(1))) {
double x1 = (double)sample_inside.first(0);
double x2 = (double)(*i)(0) + (double)((*j)(0) - (*i)(0)) * (double)(sample_inside.first(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1));
if (x1 < x2)
sample_inside.second = !sample_inside.second;
}
}
}
}
// If any of the sample is inside this island, add this island to the output.
for (auto &sample_inside : samples_inside)
if (sample_inside.second) {
polygons_append(out, std::move(island));
island.clear();
break;
}
}
// If any of the sample is inside this island, add this island to the output.
for (auto &sample_inside : samples_inside)
if (sample_inside.second) {
polygons_append(out, std::move(island));
island.clear();
break;
}
}
#ifdef SLIC3R_DEBUG
BoundingBox bbox = get_extents(*m_trimming_polygons);
if (! islands.empty())
bbox.merge(get_extents(islands));
if (!out.empty())
bbox.merge(get_extents(out));
if (!support_polygons_simplified.empty())
bbox.merge(get_extents(support_polygons_simplified));
SVG svg(debug_out_path("extract_support_from_grid_trimmed-%s-%d-%d-%lf.svg", step_name, iRun, layer_id, print_z).c_str(), bbox);
svg.draw(union_ex(support_polygons_simplified), "gray", 0.25f);
svg.draw(islands, "red", 0.5f);
svg.draw(union_ex(out), "green", 0.5f);
svg.draw(union_ex(*m_support_polygons), "blue", 0.5f);
svg.draw_outline(islands, "red", "red", scale_(0.05));
svg.draw_outline(union_ex(out), "green", "green", scale_(0.05));
svg.draw_outline(union_ex(*m_support_polygons), "blue", "blue", scale_(0.05));
for (const Point &pt : samples)
svg.draw(pt, "black", coord_t(scale_(0.15)));
svg.Close();
#endif /* SLIC3R_DEBUG */
if (m_support_angle != 0.)
polygons_rotate(out, m_support_angle);
return out;
}
case smsSnug:
// Just close the gaps.
float thr = scaled<float>(0.5);
return smooth_outward(offset(offset_ex(*m_support_polygons, thr), - thr), thr);
}
#endif
#ifdef SLIC3R_DEBUG
BoundingBox bbox = get_extents(*m_trimming_polygons);
if (! islands.empty())
bbox.merge(get_extents(islands));
if (!out.empty())
bbox.merge(get_extents(out));
if (!support_polygons_simplified.empty())
bbox.merge(get_extents(support_polygons_simplified));
SVG svg(debug_out_path("extract_support_from_grid_trimmed-%s-%d-%d-%lf.svg", step_name, iRun, layer_id, print_z).c_str(), bbox);
svg.draw(union_ex(support_polygons_simplified), "gray", 0.25f);
svg.draw(islands, "red", 0.5f);
svg.draw(union_ex(out), "green", 0.5f);
svg.draw(union_ex(*m_support_polygons), "blue", 0.5f);
svg.draw_outline(islands, "red", "red", scale_(0.05));
svg.draw_outline(union_ex(out), "green", "green", scale_(0.05));
svg.draw_outline(union_ex(*m_support_polygons), "blue", "blue", scale_(0.05));
for (const Point &pt : samples)
svg.draw(pt, "black", coord_t(scale_(0.15)));
svg.Close();
#endif /* SLIC3R_DEBUG */
if (m_support_angle != 0.)
polygons_rotate(out, m_support_angle);
return out;
}
#if defined(SLIC3R_DEBUG) && ! defined(SUPPORT_USE_AGG_RASTERIZER)
@ -1096,6 +1117,7 @@ private:
return pts;
}
SupportMaterialStyle m_style;
const Polygons *m_support_polygons;
const Polygons *m_trimming_polygons;
Polygons m_support_polygons_rotated;
@ -1525,7 +1547,7 @@ static inline std::tuple<Polygons, Polygons, Polygons, float> detect_overhangs(
ClipperLib::jtRound,
// round mitter limit
scale_(0.05)),
slices_margin_cached);
slices_margin.polygons);
}
#else
diff_polygons = diff(diff_polygons, slices_margin.polygons);