Generation of preview paths moved to c++

This commit is contained in:
Enrico Turri 2018-06-05 14:09:36 +02:00
parent f262ec9094
commit a8254e0053
9 changed files with 879 additions and 463 deletions

View file

@ -1348,8 +1348,11 @@ static void point_to_indexed_vertex_array(const Point3& point,
volume.push_triangle(idxs[0], idxs[3], idxs[4]);
}
static void thick_lines_to_verts(
const Lines &lines,
//##################################################################################################################
void _3DScene::thick_lines_to_verts(
//static void thick_lines_to_verts(
//##################################################################################################################
const Lines &lines,
const std::vector<double> &widths,
const std::vector<double> &heights,
bool closed,
@ -1359,7 +1362,10 @@ static void thick_lines_to_verts(
thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, volume.indexed_vertex_array);
}
static void thick_lines_to_verts(const Lines3& lines,
//##################################################################################################################
void _3DScene::thick_lines_to_verts(const Lines3& lines,
//static void thick_lines_to_verts(const Lines3& lines,
//##################################################################################################################
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
@ -2010,6 +2016,21 @@ static inline std::vector<float> parse_colors(const std::vector<std::string> &sc
}
//##################################################################################################################
void _3DScene::load_print_toolpaths(wxGLCanvas* canvas)
{
s_canvas_mgr.load_print_toolpaths(canvas);
}
void _3DScene::load_print_object_toolpaths(wxGLCanvas* canvas, const PrintObject* print_object, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_print_object_toolpaths(canvas, print_object, str_tool_colors);
}
void _3DScene::load_wipe_tower_toolpaths(wxGLCanvas* canvas, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_wipe_tower_toolpaths(canvas, str_tool_colors);
}
void _3DScene::load_gcode_preview(wxGLCanvas* canvas, const GCodePreviewData* preview_data, const std::vector<std::string>& str_tool_colors)
{
s_canvas_mgr.load_gcode_preview(canvas, preview_data, str_tool_colors);
@ -2102,366 +2123,366 @@ unsigned int _3DScene::finalize_warning_texture()
return s_warning_texture.finalize();
}
// Create 3D thick extrusion lines for a skirt and brim.
// Adds a new Slic3r::GUI::3DScene::Volume to volumes.
void _3DScene::_load_print_toolpaths(
const Print *print,
GLVolumeCollection *volumes,
const std::vector<std::string> &tool_colors,
bool use_VBOs)
{
if (!print->has_skirt() && print->config.brim_width.value == 0)
return;
const float color[] = { 0.5f, 1.0f, 0.5f, 1.f }; // greenish
// number of skirt layers
size_t total_layer_count = 0;
for (const PrintObject *print_object : print->objects)
total_layer_count = std::max(total_layer_count, print_object->total_layer_count());
size_t skirt_height = print->has_infinite_skirt() ?
total_layer_count :
std::min<size_t>(print->config.skirt_height.value, total_layer_count);
if (skirt_height == 0 && print->config.brim_width.value > 0)
skirt_height = 1;
// get first skirt_height layers (maybe this should be moved to a PrintObject method?)
const PrintObject *object0 = print->objects.front();
std::vector<float> print_zs;
print_zs.reserve(skirt_height * 2);
for (size_t i = 0; i < std::min(skirt_height, object0->layers.size()); ++ i)
print_zs.push_back(float(object0->layers[i]->print_z));
//FIXME why there are support layers?
for (size_t i = 0; i < std::min(skirt_height, object0->support_layers.size()); ++ i)
print_zs.push_back(float(object0->support_layers[i]->print_z));
sort_remove_duplicates(print_zs);
if (print_zs.size() > skirt_height)
print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
volumes->volumes.emplace_back(new GLVolume(color));
GLVolume &volume = *volumes->volumes.back();
for (size_t i = 0; i < skirt_height; ++ i) {
volume.print_zs.push_back(print_zs[i]);
volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size());
volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size());
if (i == 0)
extrusionentity_to_verts(print->brim, print_zs[i], Point(0, 0), volume);
extrusionentity_to_verts(print->skirt, print_zs[i], Point(0, 0), volume);
}
volume.bounding_box = volume.indexed_vertex_array.bounding_box();
volume.indexed_vertex_array.finalize_geometry(use_VBOs);
}
// Create 3D thick extrusion lines for object forming extrusions.
// Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
// one for perimeters, one for infill and one for supports.
void _3DScene::_load_print_object_toolpaths(
const PrintObject *print_object,
GLVolumeCollection *volumes,
const std::vector<std::string> &tool_colors_str,
bool use_VBOs)
{
std::vector<float> tool_colors = parse_colors(tool_colors_str);
struct Ctxt
{
const Points *shifted_copies;
std::vector<const Layer*> layers;
bool has_perimeters;
bool has_infill;
bool has_support;
const std::vector<float>* tool_colors;
// Number of vertices (each vertex is 6x4=24 bytes long)
static const size_t alloc_size_max () { return 131072; } // 3.15MB
// static const size_t alloc_size_max () { return 65536; } // 1.57MB
// static const size_t alloc_size_max () { return 32768; } // 786kB
static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
static const float* color_perimeters () { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow
static const float* color_infill () { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish
static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
int volume_idx(int extruder, int feature) const
{ return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(extruder - 1, 0)) : feature; }
} ctxt;
ctxt.shifted_copies = &print_object->_shifted_copies;
// order layers by print_z
ctxt.layers.reserve(print_object->layers.size() + print_object->support_layers.size());
for (const Layer *layer : print_object->layers)
ctxt.layers.push_back(layer);
for (const Layer *layer : print_object->support_layers)
ctxt.layers.push_back(layer);
std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; });
// Maximum size of an allocation block: 32MB / sizeof(float)
ctxt.has_perimeters = print_object->state.is_done(posPerimeters);
ctxt.has_infill = print_object->state.is_done(posInfill);
ctxt.has_support = print_object->state.is_done(posSupportMaterial);
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start";
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* {
auto *volume = new GLVolume(color);
new_volume_mutex.lock();
volume->outside_printer_detection_enabled = false;
volumes->volumes.emplace_back(volume);
new_volume_mutex.unlock();
return volume;
};
const size_t volumes_cnt_initial = volumes->volumes.size();
std::vector<GLVolumeCollection> volumes_per_thread(ctxt.layers.size());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
std::vector<GLVolume*> vols;
if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++ i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
} else
vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
for (GLVolume *vol : vols)
vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
const Layer *layer = ctxt.layers[idx_layer];
for (size_t i = 0; i < vols.size(); ++ i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) {
vol.print_zs.push_back(layer->print_z);
vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
}
}
for (const Point &copy: *ctxt.shifted_copies) {
for (const LayerRegion *layerm : layer->regions) {
if (ctxt.has_perimeters)
extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy,
*vols[ctxt.volume_idx(layerm->region()->config.perimeter_extruder.value, 0)]);
if (ctxt.has_infill) {
for (const ExtrusionEntity *ee : layerm->fills.entities) {
// fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (! fill->entities.empty())
extrusionentity_to_verts(*fill, float(layer->print_z), copy,
*vols[ctxt.volume_idx(
is_solid_infill(fill->entities.front()->role()) ?
layerm->region()->config.solid_infill_extruder :
layerm->region()->config.infill_extruder,
1)]);
}
}
}
if (ctxt.has_support) {
const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
if (support_layer) {
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy,
*vols[ctxt.volume_idx(
(extrusion_entity->role() == erSupportMaterial) ?
support_layer->object()->config.support_material_extruder :
support_layer->object()->config.support_material_interface_extruder,
2)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++ i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// Store the vertex arrays and restart their containers,
vols[i] = new_volume(vol.color);
GLVolume &vol_new = *vols[i];
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// Finalize a bounding box of the old GLVolume.
vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
}
}
}
for (GLVolume *vol : vols) {
vol->bounding_box = vol->indexed_vertex_array.bounding_box();
vol->indexed_vertex_array.shrink_to_fit();
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results";
// Remove empty volumes from the newly added volumes.
volumes->volumes.erase(
std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
volumes->volumes.end());
for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i)
volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs);
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end";
}
void _3DScene::_load_wipe_tower_toolpaths(
const Print *print,
GLVolumeCollection *volumes,
const std::vector<std::string> &tool_colors_str,
bool use_VBOs)
{
if (print->m_wipe_tower_tool_changes.empty())
return;
std::vector<float> tool_colors = parse_colors(tool_colors_str);
struct Ctxt
{
const Print *print;
const std::vector<float> *tool_colors;
// Number of vertices (each vertex is 6x4=24 bytes long)
static const size_t alloc_size_max () { return 131072; } // 3.15MB
static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
int volume_idx(int tool, int feature) const
{ return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(tool, 0)) : feature; }
const std::vector<WipeTower::ToolChangeResult>& tool_change(size_t idx) {
return priming.empty() ?
((idx == print->m_wipe_tower_tool_changes.size()) ? final : print->m_wipe_tower_tool_changes[idx]) :
((idx == 0) ? priming : (idx == print->m_wipe_tower_tool_changes.size() + 1) ? final : print->m_wipe_tower_tool_changes[idx - 1]);
}
std::vector<WipeTower::ToolChangeResult> priming;
std::vector<WipeTower::ToolChangeResult> final;
} ctxt;
ctxt.print = print;
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
if (print->m_wipe_tower_priming)
ctxt.priming.emplace_back(*print->m_wipe_tower_priming.get());
if (print->m_wipe_tower_final_purge)
ctxt.final.emplace_back(*print->m_wipe_tower_final_purge.get());
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start";
//FIXME Improve the heuristics for a grain size.
size_t n_items = print->m_wipe_tower_tool_changes.size() + (ctxt.priming.empty() ? 0 : 1);
size_t grain_size = std::max(n_items / 128, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* {
auto *volume = new GLVolume(color);
new_volume_mutex.lock();
volume->outside_printer_detection_enabled = false;
volumes->volumes.emplace_back(volume);
new_volume_mutex.unlock();
return volume;
};
const size_t volumes_cnt_initial = volumes->volumes.size();
std::vector<GLVolumeCollection> volumes_per_thread(n_items);
tbb::parallel_for(
tbb::blocked_range<size_t>(0, n_items, grain_size),
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// Bounding box of this slab of a wipe tower.
std::vector<GLVolume*> vols;
if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++ i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
} else
vols = { new_volume(ctxt.color_support()) };
for (GLVolume *volume : vols)
volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
const std::vector<WipeTower::ToolChangeResult> &layer = ctxt.tool_change(idx_layer);
for (size_t i = 0; i < vols.size(); ++ i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) {
vol.print_zs.push_back(layer.front().print_z);
vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
}
}
for (const WipeTower::ToolChangeResult &extrusions : layer) {
for (size_t i = 1; i < extrusions.extrusions.size();) {
const WipeTower::Extrusion &e = extrusions.extrusions[i];
if (e.width == 0.) {
++ i;
continue;
}
size_t j = i + 1;
if (ctxt.color_by_tool())
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++ j) ;
else
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++ j) ;
size_t n_lines = j - i;
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
lines.reserve(n_lines);
widths.reserve(n_lines);
heights.assign(n_lines, extrusions.layer_height);
for (; i < j; ++ i) {
const WipeTower::Extrusion &e = extrusions.extrusions[i];
assert(e.width > 0.f);
const WipeTower::Extrusion &e_prev = *(&e - 1);
lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y));
widths.emplace_back(e.width);
}
thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
*vols[ctxt.volume_idx(e.tool, 0)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++ i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// Store the vertex arrays and restart their containers,
vols[i] = new_volume(vol.color);
GLVolume &vol_new = *vols[i];
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// Finalize a bounding box of the old GLVolume.
vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
}
}
for (GLVolume *vol : vols) {
vol->bounding_box = vol->indexed_vertex_array.bounding_box();
vol->indexed_vertex_array.shrink_to_fit();
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results";
// Remove empty volumes from the newly added volumes.
volumes->volumes.erase(
std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
volumes->volumes.end());
for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i)
volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end";
}
//##################################################################################################################
//// Create 3D thick extrusion lines for a skirt and brim.
//// Adds a new Slic3r::GUI::3DScene::Volume to volumes.
//void _3DScene::_load_print_toolpaths(
// const Print *print,
// GLVolumeCollection *volumes,
// const std::vector<std::string> &tool_colors,
// bool use_VBOs)
//{
// if (!print->has_skirt() && print->config.brim_width.value == 0)
// return;
//
// const float color[] = { 0.5f, 1.0f, 0.5f, 1.f }; // greenish
//
// // number of skirt layers
// size_t total_layer_count = 0;
// for (const PrintObject *print_object : print->objects)
// total_layer_count = std::max(total_layer_count, print_object->total_layer_count());
// size_t skirt_height = print->has_infinite_skirt() ?
// total_layer_count :
// std::min<size_t>(print->config.skirt_height.value, total_layer_count);
// if (skirt_height == 0 && print->config.brim_width.value > 0)
// skirt_height = 1;
//
// // get first skirt_height layers (maybe this should be moved to a PrintObject method?)
// const PrintObject *object0 = print->objects.front();
// std::vector<float> print_zs;
// print_zs.reserve(skirt_height * 2);
// for (size_t i = 0; i < std::min(skirt_height, object0->layers.size()); ++ i)
// print_zs.push_back(float(object0->layers[i]->print_z));
// //FIXME why there are support layers?
// for (size_t i = 0; i < std::min(skirt_height, object0->support_layers.size()); ++ i)
// print_zs.push_back(float(object0->support_layers[i]->print_z));
// sort_remove_duplicates(print_zs);
// if (print_zs.size() > skirt_height)
// print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
//
// volumes->volumes.emplace_back(new GLVolume(color));
// GLVolume &volume = *volumes->volumes.back();
// for (size_t i = 0; i < skirt_height; ++ i) {
// volume.print_zs.push_back(print_zs[i]);
// volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size());
// volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size());
// if (i == 0)
// extrusionentity_to_verts(print->brim, print_zs[i], Point(0, 0), volume);
// extrusionentity_to_verts(print->skirt, print_zs[i], Point(0, 0), volume);
// }
// volume.bounding_box = volume.indexed_vertex_array.bounding_box();
// volume.indexed_vertex_array.finalize_geometry(use_VBOs);
//}
//
//// Create 3D thick extrusion lines for object forming extrusions.
//// Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
//// one for perimeters, one for infill and one for supports.
//void _3DScene::_load_print_object_toolpaths(
// const PrintObject *print_object,
// GLVolumeCollection *volumes,
// const std::vector<std::string> &tool_colors_str,
// bool use_VBOs)
//{
// std::vector<float> tool_colors = parse_colors(tool_colors_str);
//
// struct Ctxt
// {
// const Points *shifted_copies;
// std::vector<const Layer*> layers;
// bool has_perimeters;
// bool has_infill;
// bool has_support;
// const std::vector<float>* tool_colors;
//
// // Number of vertices (each vertex is 6x4=24 bytes long)
// static const size_t alloc_size_max () { return 131072; } // 3.15MB
//// static const size_t alloc_size_max () { return 65536; } // 1.57MB
//// static const size_t alloc_size_max () { return 32768; } // 786kB
// static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
//
// static const float* color_perimeters () { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow
// static const float* color_infill () { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish
// static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
//
// // For cloring by a tool, return a parsed color.
// bool color_by_tool() const { return tool_colors != nullptr; }
// size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
// const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
// int volume_idx(int extruder, int feature) const
// { return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(extruder - 1, 0)) : feature; }
// } ctxt;
//
// ctxt.shifted_copies = &print_object->_shifted_copies;
//
// // order layers by print_z
// ctxt.layers.reserve(print_object->layers.size() + print_object->support_layers.size());
// for (const Layer *layer : print_object->layers)
// ctxt.layers.push_back(layer);
// for (const Layer *layer : print_object->support_layers)
// ctxt.layers.push_back(layer);
// std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; });
//
// // Maximum size of an allocation block: 32MB / sizeof(float)
// ctxt.has_perimeters = print_object->state.is_done(posPerimeters);
// ctxt.has_infill = print_object->state.is_done(posInfill);
// ctxt.has_support = print_object->state.is_done(posSupportMaterial);
// ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
//
// BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start";
//
// //FIXME Improve the heuristics for a grain size.
// size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1));
// tbb::spin_mutex new_volume_mutex;
// auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* {
// auto *volume = new GLVolume(color);
// new_volume_mutex.lock();
// volume->outside_printer_detection_enabled = false;
// volumes->volumes.emplace_back(volume);
// new_volume_mutex.unlock();
// return volume;
// };
// const size_t volumes_cnt_initial = volumes->volumes.size();
// std::vector<GLVolumeCollection> volumes_per_thread(ctxt.layers.size());
// tbb::parallel_for(
// tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
// [&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// std::vector<GLVolume*> vols;
// if (ctxt.color_by_tool()) {
// for (size_t i = 0; i < ctxt.number_tools(); ++ i)
// vols.emplace_back(new_volume(ctxt.color_tool(i)));
// } else
// vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
// for (GLVolume *vol : vols)
// vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
// const Layer *layer = ctxt.layers[idx_layer];
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) {
// vol.print_zs.push_back(layer->print_z);
// vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
// vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
// }
// }
// for (const Point &copy: *ctxt.shifted_copies) {
// for (const LayerRegion *layerm : layer->regions) {
// if (ctxt.has_perimeters)
// extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy,
// *vols[ctxt.volume_idx(layerm->region()->config.perimeter_extruder.value, 0)]);
// if (ctxt.has_infill) {
// for (const ExtrusionEntity *ee : layerm->fills.entities) {
// // fill represents infill extrusions of a single island.
// const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
// if (! fill->entities.empty())
// extrusionentity_to_verts(*fill, float(layer->print_z), copy,
// *vols[ctxt.volume_idx(
// is_solid_infill(fill->entities.front()->role()) ?
// layerm->region()->config.solid_infill_extruder :
// layerm->region()->config.infill_extruder,
// 1)]);
// }
// }
// }
// if (ctxt.has_support) {
// const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
// if (support_layer) {
// for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
// extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy,
// *vols[ctxt.volume_idx(
// (extrusion_entity->role() == erSupportMaterial) ?
// support_layer->object()->config.support_material_extruder :
// support_layer->object()->config.support_material_interface_extruder,
// 2)]);
// }
// }
// }
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// // Store the vertex arrays and restart their containers,
// vols[i] = new_volume(vol.color);
// GLVolume &vol_new = *vols[i];
// // Assign the large pre-allocated buffers to the new GLVolume.
// vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// // Copy the content back to the old GLVolume.
// vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// // Finalize a bounding box of the old GLVolume.
// vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// // Clear the buffers, but keep them pre-allocated.
// vol_new.indexed_vertex_array.clear();
// // Just make sure that clear did not clear the reserved memory.
// vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// }
// }
// }
// for (GLVolume *vol : vols) {
// vol->bounding_box = vol->indexed_vertex_array.bounding_box();
// vol->indexed_vertex_array.shrink_to_fit();
// }
// });
//
// BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results";
// // Remove empty volumes from the newly added volumes.
// volumes->volumes.erase(
// std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(),
// [](const GLVolume *volume) { return volume->empty(); }),
// volumes->volumes.end());
// for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i)
// volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs);
//
// BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end";
//}
//
//void _3DScene::_load_wipe_tower_toolpaths(
// const Print *print,
// GLVolumeCollection *volumes,
// const std::vector<std::string> &tool_colors_str,
// bool use_VBOs)
//{
// if (print->m_wipe_tower_tool_changes.empty())
// return;
//
// std::vector<float> tool_colors = parse_colors(tool_colors_str);
//
// struct Ctxt
// {
// const Print *print;
// const std::vector<float> *tool_colors;
//
// // Number of vertices (each vertex is 6x4=24 bytes long)
// static const size_t alloc_size_max () { return 131072; } // 3.15MB
// static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
//
// static const float* color_support () { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
//
// // For cloring by a tool, return a parsed color.
// bool color_by_tool() const { return tool_colors != nullptr; }
// size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
// const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
// int volume_idx(int tool, int feature) const
// { return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(tool, 0)) : feature; }
//
// const std::vector<WipeTower::ToolChangeResult>& tool_change(size_t idx) {
// return priming.empty() ?
// ((idx == print->m_wipe_tower_tool_changes.size()) ? final : print->m_wipe_tower_tool_changes[idx]) :
// ((idx == 0) ? priming : (idx == print->m_wipe_tower_tool_changes.size() + 1) ? final : print->m_wipe_tower_tool_changes[idx - 1]);
// }
// std::vector<WipeTower::ToolChangeResult> priming;
// std::vector<WipeTower::ToolChangeResult> final;
// } ctxt;
//
// ctxt.print = print;
// ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
// if (print->m_wipe_tower_priming)
// ctxt.priming.emplace_back(*print->m_wipe_tower_priming.get());
// if (print->m_wipe_tower_final_purge)
// ctxt.final.emplace_back(*print->m_wipe_tower_final_purge.get());
//
// BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start";
//
// //FIXME Improve the heuristics for a grain size.
// size_t n_items = print->m_wipe_tower_tool_changes.size() + (ctxt.priming.empty() ? 0 : 1);
// size_t grain_size = std::max(n_items / 128, size_t(1));
// tbb::spin_mutex new_volume_mutex;
// auto new_volume = [volumes, &new_volume_mutex](const float *color) -> GLVolume* {
// auto *volume = new GLVolume(color);
// new_volume_mutex.lock();
// volume->outside_printer_detection_enabled = false;
// volumes->volumes.emplace_back(volume);
// new_volume_mutex.unlock();
// return volume;
// };
// const size_t volumes_cnt_initial = volumes->volumes.size();
// std::vector<GLVolumeCollection> volumes_per_thread(n_items);
// tbb::parallel_for(
// tbb::blocked_range<size_t>(0, n_items, grain_size),
// [&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// // Bounding box of this slab of a wipe tower.
// std::vector<GLVolume*> vols;
// if (ctxt.color_by_tool()) {
// for (size_t i = 0; i < ctxt.number_tools(); ++ i)
// vols.emplace_back(new_volume(ctxt.color_tool(i)));
// } else
// vols = { new_volume(ctxt.color_support()) };
// for (GLVolume *volume : vols)
// volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
// const std::vector<WipeTower::ToolChangeResult> &layer = ctxt.tool_change(idx_layer);
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) {
// vol.print_zs.push_back(layer.front().print_z);
// vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
// vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
// }
// }
// for (const WipeTower::ToolChangeResult &extrusions : layer) {
// for (size_t i = 1; i < extrusions.extrusions.size();) {
// const WipeTower::Extrusion &e = extrusions.extrusions[i];
// if (e.width == 0.) {
// ++ i;
// continue;
// }
// size_t j = i + 1;
// if (ctxt.color_by_tool())
// for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++ j) ;
// else
// for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++ j) ;
// size_t n_lines = j - i;
// Lines lines;
// std::vector<double> widths;
// std::vector<double> heights;
// lines.reserve(n_lines);
// widths.reserve(n_lines);
// heights.assign(n_lines, extrusions.layer_height);
// for (; i < j; ++ i) {
// const WipeTower::Extrusion &e = extrusions.extrusions[i];
// assert(e.width > 0.f);
// const WipeTower::Extrusion &e_prev = *(&e - 1);
// lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y));
// widths.emplace_back(e.width);
// }
// thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
// *vols[ctxt.volume_idx(e.tool, 0)]);
// }
// }
// }
// for (size_t i = 0; i < vols.size(); ++ i) {
// GLVolume &vol = *vols[i];
// if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// // Store the vertex arrays and restart their containers,
// vols[i] = new_volume(vol.color);
// GLVolume &vol_new = *vols[i];
// // Assign the large pre-allocated buffers to the new GLVolume.
// vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// // Copy the content back to the old GLVolume.
// vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// // Finalize a bounding box of the old GLVolume.
// vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// // Clear the buffers, but keep them pre-allocated.
// vol_new.indexed_vertex_array.clear();
// // Just make sure that clear did not clear the reserved memory.
// vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
// }
// }
// for (GLVolume *vol : vols) {
// vol->bounding_box = vol->indexed_vertex_array.bounding_box();
// vol->indexed_vertex_array.shrink_to_fit();
// }
// });
//
// BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results";
// // Remove empty volumes from the newly added volumes.
// volumes->volumes.erase(
// std::remove_if(volumes->volumes.begin() + volumes_cnt_initial, volumes->volumes.end(),
// [](const GLVolume *volume) { return volume->empty(); }),
// volumes->volumes.end());
// for (size_t i = volumes_cnt_initial; i < volumes->volumes.size(); ++ i)
// volumes->volumes[i]->indexed_vertex_array.finalize_geometry(use_VBOs);
//
// BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end";
//}
//
//void _3DScene::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, GLVolumeCollection& volumes, const std::vector<float>& tool_colors, bool use_VBOs)
//{
// // helper functions to select data in dependence of the extrusion view type