mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	Disable on-model supports for pierce tests.
Also added separate main for sla_print testsuite to speed up compilation.
This commit is contained in:
		
							parent
							
								
									1df1ef481d
								
							
						
					
					
						commit
						a34ca42709
					
				
					 3 changed files with 51 additions and 9 deletions
				
			
		
							
								
								
									
										647
									
								
								tests/sla_print/sla_print_tests.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										647
									
								
								tests/sla_print/sla_print_tests.cpp
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,647 @@ | |||
| #include <catch2/catch.hpp> | ||||
| 
 | ||||
| #include <unordered_set> | ||||
| #include <unordered_map> | ||||
| #include <random> | ||||
| 
 | ||||
| // Debug
 | ||||
| #include <fstream> | ||||
| 
 | ||||
| #include "libslic3r/libslic3r.h" | ||||
| #include "libslic3r/Format/OBJ.hpp" | ||||
| #include "libslic3r/SLAPrint.hpp" | ||||
| #include "libslic3r/TriangleMesh.hpp" | ||||
| #include "libslic3r/SLA/SLAPad.hpp" | ||||
| #include "libslic3r/SLA/SLASupportTreeBuilder.hpp" | ||||
| #include "libslic3r/SLA/SLASupportTreeBuildsteps.hpp" | ||||
| #include "libslic3r/SLA/SLAAutoSupports.hpp" | ||||
| #include "libslic3r/SLA/SLARaster.hpp" | ||||
| #include "libslic3r/MTUtils.hpp" | ||||
| 
 | ||||
| #include "libslic3r/SVG.hpp" | ||||
| #include "libslic3r/Format/OBJ.hpp" | ||||
| 
 | ||||
| #if defined(WIN32) || defined(_WIN32) | ||||
| #define PATH_SEPARATOR R"(\)" | ||||
| #else | ||||
| #define PATH_SEPARATOR R"(/)" | ||||
| #endif | ||||
| 
 | ||||
| namespace  { | ||||
| using namespace Slic3r; | ||||
| 
 | ||||
| TriangleMesh load_model(const std::string &obj_filename) | ||||
| { | ||||
|     TriangleMesh mesh; | ||||
|     auto fpath = TEST_DATA_DIR PATH_SEPARATOR + obj_filename; | ||||
|     load_obj(fpath.c_str(), &mesh); | ||||
|     return mesh; | ||||
| } | ||||
| 
 | ||||
| enum e_validity { | ||||
|     ASSUME_NO_EMPTY = 1, | ||||
|     ASSUME_MANIFOLD = 2, | ||||
|     ASSUME_NO_REPAIR = 4 | ||||
| }; | ||||
| 
 | ||||
| void check_validity(const TriangleMesh &input_mesh, | ||||
|                     int flags = ASSUME_NO_EMPTY | ASSUME_MANIFOLD | | ||||
|                                 ASSUME_NO_REPAIR) | ||||
| { | ||||
|     TriangleMesh mesh{input_mesh}; | ||||
| 
 | ||||
|     if (flags & ASSUME_NO_EMPTY) { | ||||
|         REQUIRE_FALSE(mesh.empty()); | ||||
|     } else if (mesh.empty()) | ||||
|         return; // If it can be empty and it is, there is nothing left to do.
 | ||||
| 
 | ||||
|     REQUIRE(stl_validate(&mesh.stl)); | ||||
| 
 | ||||
|     bool do_update_shared_vertices = false; | ||||
|     mesh.repair(do_update_shared_vertices); | ||||
| 
 | ||||
|     if (flags & ASSUME_NO_REPAIR) { | ||||
|         REQUIRE_FALSE(mesh.needed_repair()); | ||||
|     } | ||||
| 
 | ||||
|     if (flags & ASSUME_MANIFOLD) { | ||||
|         mesh.require_shared_vertices(); | ||||
|         if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj"); | ||||
|         REQUIRE(mesh.is_manifold()); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| struct PadByproducts | ||||
| { | ||||
|     ExPolygons   model_contours; | ||||
|     ExPolygons   support_contours; | ||||
|     TriangleMesh mesh; | ||||
| }; | ||||
| 
 | ||||
| void test_pad(const std::string &   obj_filename, | ||||
|               const sla::PadConfig &padcfg, | ||||
|               PadByproducts &       out) | ||||
| { | ||||
|     REQUIRE(padcfg.validate().empty()); | ||||
| 
 | ||||
|     TriangleMesh mesh = load_model(obj_filename); | ||||
| 
 | ||||
|     REQUIRE_FALSE(mesh.empty()); | ||||
| 
 | ||||
|     // Create pad skeleton only from the model
 | ||||
|     Slic3r::sla::pad_blueprint(mesh, out.model_contours); | ||||
| 
 | ||||
|     REQUIRE_FALSE(out.model_contours.empty()); | ||||
| 
 | ||||
|     // Create the pad geometry for the model contours only
 | ||||
|     Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg); | ||||
| 
 | ||||
|     check_validity(out.mesh); | ||||
| 
 | ||||
|     auto bb = out.mesh.bounding_box(); | ||||
|     REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height())); | ||||
| } | ||||
| 
 | ||||
| void test_pad(const std::string &   obj_filename, | ||||
|               const sla::PadConfig &padcfg = {}) | ||||
| { | ||||
|     PadByproducts byproducts; | ||||
|     test_pad(obj_filename, padcfg, byproducts); | ||||
| } | ||||
| 
 | ||||
| struct SupportByproducts | ||||
| { | ||||
|     std::string             obj_fname; | ||||
|     std::vector<float>      slicegrid; | ||||
|     std::vector<ExPolygons> model_slices; | ||||
|     sla::SupportTreeBuilder supporttree; | ||||
|     TriangleMesh            input_mesh; | ||||
| }; | ||||
| 
 | ||||
| const constexpr float CLOSING_RADIUS = 0.005f; | ||||
| 
 | ||||
| void check_support_tree_integrity(const sla::SupportTreeBuilder &stree, | ||||
|                                   const sla::SupportConfig &cfg) | ||||
| { | ||||
|     double gnd  = stree.ground_level; | ||||
|     double H1   = cfg.max_solo_pillar_height_mm; | ||||
|     double H2   = cfg.max_dual_pillar_height_mm; | ||||
| 
 | ||||
|     for (const sla::Head &head : stree.heads()) { | ||||
|         REQUIRE((!head.is_valid() || head.pillar_id != sla::ID_UNSET || | ||||
|                  head.bridge_id != sla::ID_UNSET)); | ||||
|     } | ||||
| 
 | ||||
|     for (const sla::Pillar &pillar : stree.pillars()) { | ||||
|         if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) { | ||||
|             double h = pillar.height; | ||||
| 
 | ||||
|             if (h > H1) REQUIRE(pillar.links >= 1); | ||||
|             else if(h > H2) { REQUIRE(pillar.links >= 2); } | ||||
|         } | ||||
| 
 | ||||
|         REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors); | ||||
|         REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar); | ||||
|     } | ||||
| 
 | ||||
|     double max_bridgelen = 0.; | ||||
|     auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) { | ||||
|         Vec3d n = bridge.endp - bridge.startp; | ||||
|         double d = sla::distance(n); | ||||
|         max_brlen = std::max(d, max_brlen); | ||||
| 
 | ||||
|         double z     = n.z(); | ||||
|         double polar = std::acos(z / d); | ||||
|         double slope = -polar + PI / 2.; | ||||
|         REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON); | ||||
|     }; | ||||
| 
 | ||||
|     for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen); | ||||
|     REQUIRE(max_bridgelen <= cfg.max_bridge_length_mm); | ||||
| 
 | ||||
|     max_bridgelen = 0; | ||||
|     for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen); | ||||
| 
 | ||||
|     double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope); | ||||
|     REQUIRE(max_bridgelen <= md); | ||||
| } | ||||
| 
 | ||||
| void test_supports(const std::string &       obj_filename, | ||||
|                    const sla::SupportConfig &supportcfg, | ||||
|                    SupportByproducts &       out) | ||||
| { | ||||
|     using namespace Slic3r; | ||||
|     TriangleMesh mesh = load_model(obj_filename); | ||||
| 
 | ||||
|     REQUIRE_FALSE(mesh.empty()); | ||||
| 
 | ||||
|     TriangleMeshSlicer slicer{&mesh}; | ||||
| 
 | ||||
|     auto   bb      = mesh.bounding_box(); | ||||
|     double zmin    = bb.min.z(); | ||||
|     double zmax    = bb.max.z(); | ||||
|     double gnd     = zmin - supportcfg.object_elevation_mm; | ||||
|     auto   layer_h = 0.05f; | ||||
| 
 | ||||
|     out.slicegrid = grid(float(gnd), float(zmax), layer_h); | ||||
|     slicer.slice(out.slicegrid , CLOSING_RADIUS, &out.model_slices, []{}); | ||||
| 
 | ||||
|     // Create the special index-triangle mesh with spatial indexing which
 | ||||
|     // is the input of the support point and support mesh generators
 | ||||
|     sla::EigenMesh3D emesh{mesh}; | ||||
| 
 | ||||
|     // Create the support point generator
 | ||||
|     sla::SLAAutoSupports::Config autogencfg; | ||||
|     autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); | ||||
|     sla::SLAAutoSupports point_gen{emesh, out.model_slices, out.slicegrid, | ||||
|                                    autogencfg, [] {}, [](int) {}}; | ||||
| 
 | ||||
|     // Get the calculated support points.
 | ||||
|     std::vector<sla::SupportPoint> support_points = point_gen.output(); | ||||
| 
 | ||||
|     int validityflags = ASSUME_NO_REPAIR; | ||||
| 
 | ||||
|     // If there is no elevation, support points shall be removed from the
 | ||||
|     // bottom of the object.
 | ||||
|     if (std::abs(supportcfg.object_elevation_mm) < EPSILON) { | ||||
|         sla::remove_bottom_points(support_points, zmin, | ||||
|                                   supportcfg.base_height_mm); | ||||
|     } else { | ||||
|         // Should be support points at least on the bottom of the model
 | ||||
|         REQUIRE_FALSE(support_points.empty()); | ||||
| 
 | ||||
|         // Also the support mesh should not be empty.
 | ||||
|         validityflags |= ASSUME_NO_EMPTY; | ||||
|     } | ||||
| 
 | ||||
|     // Generate the actual support tree
 | ||||
|     sla::SupportTreeBuilder treebuilder; | ||||
|     treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg}); | ||||
| 
 | ||||
|     check_support_tree_integrity(treebuilder, supportcfg); | ||||
| 
 | ||||
|     const TriangleMesh &output_mesh = treebuilder.retrieve_mesh(); | ||||
| 
 | ||||
|     check_validity(output_mesh, validityflags); | ||||
| 
 | ||||
|     // Quick check if the dimensions and placement of supports are correct
 | ||||
|     auto obb = output_mesh.bounding_box(); | ||||
| 
 | ||||
|     double allowed_zmin = zmin - supportcfg.object_elevation_mm; | ||||
| 
 | ||||
|     if (std::abs(supportcfg.object_elevation_mm) < EPSILON) | ||||
|         allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm; | ||||
| 
 | ||||
|     REQUIRE(obb.min.z() >= allowed_zmin); | ||||
|     REQUIRE(obb.max.z() <= zmax); | ||||
| 
 | ||||
|     // Move out the support tree into the byproducts, we can examine it further
 | ||||
|     // in various tests.
 | ||||
|     out.obj_fname   = std::move(obj_filename); | ||||
|     out.supporttree = std::move(treebuilder); | ||||
|     out.input_mesh  = std::move(mesh); | ||||
| } | ||||
| 
 | ||||
| void test_supports(const std::string &       obj_filename, | ||||
|                    const sla::SupportConfig &supportcfg = {}) | ||||
| { | ||||
|     SupportByproducts byproducts; | ||||
|     test_supports(obj_filename, supportcfg, byproducts); | ||||
| } | ||||
| 
 | ||||
| void export_failed_case(const std::vector<ExPolygons> &support_slices, | ||||
|                         const SupportByproducts &byproducts) | ||||
| { | ||||
|     for (size_t n = 0; n < support_slices.size(); ++n) { | ||||
|         const ExPolygons &sup_slice = support_slices[n]; | ||||
|         const ExPolygons &mod_slice = byproducts.model_slices[n]; | ||||
|         Polygons intersections = intersection(sup_slice, mod_slice); | ||||
|          | ||||
|         std::stringstream ss; | ||||
|         if (!intersections.empty()) { | ||||
|             ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg"; | ||||
|             SVG svg(ss.str()); | ||||
|             svg.draw(sup_slice, "green"); | ||||
|             svg.draw(mod_slice, "blue"); | ||||
|             svg.draw(intersections, "red"); | ||||
|             svg.Close(); | ||||
|         } | ||||
|     } | ||||
|      | ||||
|     TriangleMesh m; | ||||
|     byproducts.supporttree.retrieve_full_mesh(m); | ||||
|     m.merge(byproducts.input_mesh); | ||||
|     m.repair(); | ||||
|     m.require_shared_vertices(); | ||||
|     m.WriteOBJFile(byproducts.obj_fname.c_str()); | ||||
| } | ||||
| 
 | ||||
| void test_support_model_collision( | ||||
|     const std::string &       obj_filename, | ||||
|     const sla::SupportConfig &input_supportcfg = {}) | ||||
| { | ||||
|     SupportByproducts byproducts; | ||||
| 
 | ||||
|     sla::SupportConfig supportcfg = input_supportcfg; | ||||
| 
 | ||||
|     // Set head penetration to a small negative value which should ensure that
 | ||||
|     // the supports will not touch the model body.
 | ||||
|     supportcfg.head_penetration_mm = -0.15; | ||||
|      | ||||
|     // TODO: currently, the tailheads penetrating into the model body do not
 | ||||
|     // respect the penetration parameter properly. No issues were reported so
 | ||||
|     // far but we should definitely fix this.
 | ||||
|     supportcfg.ground_facing_only = true; | ||||
| 
 | ||||
|     test_supports(obj_filename, supportcfg, byproducts); | ||||
| 
 | ||||
|     // Slice the support mesh given the slice grid of the model.
 | ||||
|     std::vector<ExPolygons> support_slices = | ||||
|         byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS); | ||||
| 
 | ||||
|     // The slices originate from the same slice grid so the numbers must match
 | ||||
| 
 | ||||
|     bool support_mesh_is_empty = | ||||
|         byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() && | ||||
|         byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty(); | ||||
|      | ||||
|     if (support_mesh_is_empty) | ||||
|         REQUIRE(support_slices.empty()); | ||||
|     else | ||||
|         REQUIRE(support_slices.size() == byproducts.model_slices.size()); | ||||
| 
 | ||||
|     bool notouch = true; | ||||
|     for (size_t n = 0; notouch && n < support_slices.size(); ++n) { | ||||
|         const ExPolygons &sup_slice = support_slices[n]; | ||||
|         const ExPolygons &mod_slice = byproducts.model_slices[n]; | ||||
| 
 | ||||
|         Polygons intersections = intersection(sup_slice, mod_slice); | ||||
| 
 | ||||
|         notouch = notouch && intersections.empty(); | ||||
|     } | ||||
|      | ||||
|     if (!notouch) export_failed_case(support_slices, byproducts); | ||||
| 
 | ||||
|     REQUIRE(notouch); | ||||
| } | ||||
| 
 | ||||
| const char * const BELOW_PAD_TEST_OBJECTS[] = { | ||||
|     "20mm_cube.obj", | ||||
|     "V.obj", | ||||
| }; | ||||
| 
 | ||||
| const char * const AROUND_PAD_TEST_OBJECTS[] = { | ||||
|     "20mm_cube.obj", | ||||
|     "V.obj", | ||||
|     "frog_legs.obj", | ||||
|     "cube_with_concave_hole_enlarged.obj", | ||||
| }; | ||||
| 
 | ||||
| const char *const SUPPORT_TEST_MODELS[] = { | ||||
|     "cube_with_concave_hole_enlarged_standing.obj", | ||||
|     "A_upsidedown.obj", | ||||
|     "extruder_idler.obj" | ||||
| }; | ||||
| 
 | ||||
| } // namespace
 | ||||
| 
 | ||||
| // Test pair hash for 'nums' random number pairs.
 | ||||
| template <class I, class II> void test_pairhash() | ||||
| { | ||||
|     const constexpr size_t nums = 1000; | ||||
|     I A[nums] = {0}, B[nums] = {0}; | ||||
|     std::unordered_set<I> CH; | ||||
|     std::unordered_map<II, std::pair<I, I>> ints; | ||||
| 
 | ||||
|     std::random_device rd; | ||||
|     std::mt19937 gen(rd()); | ||||
| 
 | ||||
|     const I Ibits = int(sizeof(I) * CHAR_BIT); | ||||
|     const II IIbits = int(sizeof(II) * CHAR_BIT); | ||||
|     const int bits = IIbits / 2 < Ibits ? Ibits / 2 : Ibits; | ||||
| 
 | ||||
|     const I Imax = I(std::pow(2., bits) - 1); | ||||
|     std::uniform_int_distribution<I> dis(0, Imax); | ||||
| 
 | ||||
|     for (size_t i = 0; i < nums;) { | ||||
|         I a = dis(gen); | ||||
|         if (CH.find(a) == CH.end()) { CH.insert(a); A[i] = a; ++i; } | ||||
|     } | ||||
| 
 | ||||
|     for (size_t i = 0; i < nums;) { | ||||
|         I b = dis(gen); | ||||
|         if (CH.find(b) == CH.end()) { CH.insert(b); B[i] = b; ++i; } | ||||
|     } | ||||
| 
 | ||||
|     for (size_t i = 0; i < nums; ++i) { | ||||
|         I a = A[i], b = B[i]; | ||||
| 
 | ||||
|         REQUIRE(a != b); | ||||
| 
 | ||||
|         II hash_ab = sla::pairhash<I, II>(a, b); | ||||
|         II hash_ba = sla::pairhash<I, II>(b, a); | ||||
|         REQUIRE(hash_ab == hash_ba); | ||||
| 
 | ||||
|         auto it = ints.find(hash_ab); | ||||
| 
 | ||||
|         if (it != ints.end()) { | ||||
|             REQUIRE(( | ||||
|                 (it->second.first == a && it->second.second == b) || | ||||
|                 (it->second.first == b && it->second.second == a) | ||||
|             )); | ||||
|         } else | ||||
|             ints[hash_ab] = std::make_pair(a, b); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") { | ||||
|     test_pairhash<int, long>(); | ||||
|     test_pairhash<unsigned, unsigned>(); | ||||
|     test_pairhash<unsigned, unsigned long>(); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") { | ||||
|     sla::PadConfig padcfg; | ||||
| 
 | ||||
|     // Disable wings
 | ||||
|     padcfg.wall_height_mm = .0; | ||||
| 
 | ||||
|     for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") { | ||||
|     sla::PadConfig padcfg; | ||||
| 
 | ||||
|     // Add some wings to the pad to test the cavity
 | ||||
|     padcfg.wall_height_mm = 1.; | ||||
| 
 | ||||
|     for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") { | ||||
|     sla::PadConfig padcfg; | ||||
| 
 | ||||
|     // Add some wings to the pad to test the cavity
 | ||||
|     padcfg.wall_height_mm = 0.; | ||||
|     // padcfg.embed_object.stick_stride_mm = 0.;
 | ||||
|     padcfg.embed_object.enabled = true; | ||||
|     padcfg.embed_object.everywhere = true; | ||||
| 
 | ||||
|     for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") { | ||||
|     sla::PadConfig padcfg; | ||||
| 
 | ||||
|     // Add some wings to the pad to test the cavity
 | ||||
|     padcfg.wall_height_mm = 1.; | ||||
|     padcfg.embed_object.enabled = true; | ||||
|     padcfg.embed_object.everywhere = true; | ||||
| 
 | ||||
|     for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") { | ||||
|     sla::SupportConfig supportcfg; | ||||
|     supportcfg.object_elevation_mm = 5.; | ||||
| 
 | ||||
|     for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("FloorSupportGeometryIsValid", "[SLASupportGeneration]") { | ||||
|     sla::SupportConfig supportcfg; | ||||
|     supportcfg.object_elevation_mm = 0; | ||||
| 
 | ||||
|     for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") { | ||||
| 
 | ||||
|     sla::SupportConfig supportcfg; | ||||
| 
 | ||||
|     for (auto fname : SUPPORT_TEST_MODELS) | ||||
|         test_support_model_collision(fname, supportcfg); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") { | ||||
| 
 | ||||
|     sla::SupportConfig supportcfg; | ||||
|     supportcfg.object_elevation_mm = 0; | ||||
| 
 | ||||
|     for (auto fname : SUPPORT_TEST_MODELS) | ||||
|         test_support_model_collision(fname, supportcfg); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("DefaultRasterShouldBeEmpty", "[SLARasterOutput]") { | ||||
|     sla::Raster raster; | ||||
|     REQUIRE(raster.empty()); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") { | ||||
|     // Default Prusa SL1 display parameters
 | ||||
|     sla::Raster::Resolution res{2560, 1440}; | ||||
|     sla::Raster::PixelDim   pixdim{120. / res.width_px, 68. / res.height_px}; | ||||
| 
 | ||||
|     sla::Raster raster; | ||||
|     raster.reset(res, pixdim); | ||||
|     REQUIRE_FALSE(raster.empty()); | ||||
|     REQUIRE(raster.resolution().width_px == res.width_px); | ||||
|     REQUIRE(raster.resolution().height_px == res.height_px); | ||||
|     REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm)); | ||||
|     REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm)); | ||||
| } | ||||
| 
 | ||||
| using TPixel = uint8_t; | ||||
| static constexpr const TPixel FullWhite = 255; | ||||
| static constexpr const TPixel FullBlack = 0; | ||||
| 
 | ||||
| template <class A, int N> constexpr int arraysize(const A (&)[N]) { return N; } | ||||
| 
 | ||||
| static void check_raster_transformations(sla::Raster::Orientation o, | ||||
|                                          sla::Raster::TMirroring  mirroring) | ||||
| { | ||||
|     double disp_w = 120., disp_h = 68.; | ||||
|     sla::Raster::Resolution res{2560, 1440}; | ||||
|     sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; | ||||
| 
 | ||||
|     auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); | ||||
|     sla::Raster::Trafo trafo{o, mirroring}; | ||||
|     trafo.origin_x = bb.center().x(); | ||||
|     trafo.origin_y = bb.center().y(); | ||||
| 
 | ||||
|     sla::Raster raster{res, pixdim, trafo}; | ||||
| 
 | ||||
|     // create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
 | ||||
|     coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm))); | ||||
|     coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm))); | ||||
|     ExPolygon box; | ||||
|     box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}}; | ||||
| 
 | ||||
|     double tr_x = scaled<double>(20.), tr_y = tr_x; | ||||
| 
 | ||||
|     box.translate(tr_x, tr_y); | ||||
|     ExPolygon expected_box = box; | ||||
| 
 | ||||
|     // Now calculate the position of the translated box according to output
 | ||||
|     // trafo.
 | ||||
|     if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.); | ||||
| 
 | ||||
|     if (mirroring[X]) | ||||
|         for (auto &p : expected_box.contour.points) p.x() = -p.x(); | ||||
| 
 | ||||
|     if (mirroring[Y]) | ||||
|         for (auto &p : expected_box.contour.points) p.y() = -p.y(); | ||||
| 
 | ||||
|     raster.draw(box); | ||||
| 
 | ||||
|     Point expected_coords = expected_box.contour.bounding_box().center(); | ||||
|     double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm; | ||||
|     double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm; | ||||
|     auto w = size_t(std::floor(rx)); | ||||
|     auto h = res.height_px - size_t(std::floor(ry)); | ||||
| 
 | ||||
|     REQUIRE((w < res.width_px && h < res.height_px)); | ||||
| 
 | ||||
|     auto px = raster.read_pixel(w, h); | ||||
| 
 | ||||
|     if (px != FullWhite) { | ||||
|         sla::PNGImage img; | ||||
|         std::fstream outf("out.png", std::ios::out); | ||||
| 
 | ||||
|         outf << img.serialize(raster); | ||||
|     } | ||||
| 
 | ||||
|     REQUIRE(px == FullWhite); | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") { | ||||
|     sla::Raster::TMirroring mirrorings[] = {sla::Raster::NoMirror, | ||||
|                                             sla::Raster::MirrorX, | ||||
|                                             sla::Raster::MirrorY, | ||||
|                                             sla::Raster::MirrorXY}; | ||||
| 
 | ||||
|     sla::Raster::Orientation orientations[] = {sla::Raster::roLandscape, | ||||
|                                                sla::Raster::roPortrait}; | ||||
|     for (auto orientation : orientations) | ||||
|         for (auto &mirror : mirrorings) | ||||
|             check_raster_transformations(orientation, mirror); | ||||
| } | ||||
| 
 | ||||
| static ExPolygon square_with_hole(double v) | ||||
| { | ||||
|     ExPolygon poly; | ||||
|     coord_t V = scaled(v / 2.); | ||||
| 
 | ||||
|     poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}}; | ||||
|     poly.holes.emplace_back(); | ||||
|     V = V / 2; | ||||
|     poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}}; | ||||
|     return poly; | ||||
| } | ||||
| 
 | ||||
| static double pixel_area(TPixel px, const sla::Raster::PixelDim &pxdim) | ||||
| { | ||||
|     return (pxdim.h_mm * pxdim.w_mm) * px * 1. / (FullWhite - FullBlack); | ||||
| } | ||||
| 
 | ||||
| static double raster_white_area(const sla::Raster &raster) | ||||
| { | ||||
|     if (raster.empty()) return std::nan(""); | ||||
| 
 | ||||
|     auto res = raster.resolution(); | ||||
|     double a = 0; | ||||
| 
 | ||||
|     for (size_t x = 0; x < res.width_px; ++x) | ||||
|         for (size_t y = 0; y < res.height_px; ++y) { | ||||
|             auto px = raster.read_pixel(x, y); | ||||
|             a += pixel_area(px, raster.pixel_dimensions()); | ||||
|         } | ||||
| 
 | ||||
|     return a; | ||||
| } | ||||
| 
 | ||||
| static double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd) | ||||
| { | ||||
|     auto lines = p.lines(); | ||||
|     double pix_err = pixel_area(FullWhite, pd)  / 2.; | ||||
| 
 | ||||
|     // Worst case is when a line is parallel to the shorter axis of one pixel,
 | ||||
|     // when the line will be composed of the max number of pixels
 | ||||
|     double pix_l = std::min(pd.h_mm, pd.w_mm); | ||||
| 
 | ||||
|     double error = 0.; | ||||
|     for (auto &l : lines) | ||||
|         error += (unscaled(l.length()) / pix_l) * pix_err; | ||||
| 
 | ||||
|     return error; | ||||
| } | ||||
| 
 | ||||
| TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") { | ||||
|     double disp_w = 120., disp_h = 68.; | ||||
|     sla::Raster::Resolution res{2560, 1440}; | ||||
|     sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; | ||||
| 
 | ||||
|     sla::Raster raster{res, pixdim}; | ||||
|     auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); | ||||
| 
 | ||||
|     ExPolygon poly = square_with_hole(10.); | ||||
|     poly.translate(bb.center().x(), bb.center().y()); | ||||
|     raster.draw(poly); | ||||
| 
 | ||||
|     double a = poly.area() / (scaled<double>(1.) * scaled(1.)); | ||||
|     double ra = raster_white_area(raster); | ||||
|     double diff = std::abs(a - ra); | ||||
| 
 | ||||
|     REQUIRE(diff <= predict_error(poly, pixdim)); | ||||
| 
 | ||||
|     raster.clear(); | ||||
|     poly = square_with_hole(60.); | ||||
|     poly.translate(bb.center().x(), bb.center().y()); | ||||
|     raster.draw(poly); | ||||
| 
 | ||||
|     a = poly.area() / (scaled<double>(1.) * scaled(1.)); | ||||
|     ra = raster_white_area(raster); | ||||
|     diff = std::abs(a - ra); | ||||
| 
 | ||||
|     REQUIRE(diff <= predict_error(poly, pixdim)); | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 tamasmeszaros
						tamasmeszaros