Initial port of organic tree support from PrusaSlicer (#1938)

* Initial port of organic tree support from PrusaSlicer

* Port missing Organic support parameters from PrusaSlicer

* Update parameter naming

* Reorganize the `raft_first_layer_expansion` and `raft_first_layer_density` parameters as they are not only used by rafts

* Reset support style only in simple mode

* Sync latest update from PrusaSlicer & copyrights

* Fix organic tree support crash with invalid parameters

---------

Co-authored-by: Vojtech Bubnik <bubnikv@gmail.com>
This commit is contained in:
Noisyfox 2023-09-02 17:29:43 +08:00 committed by GitHub
parent b50dfb69a2
commit a1464735ce
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
33 changed files with 13299 additions and 38 deletions

View file

@ -0,0 +1,595 @@
///|/ Copyright (c) Prusa Research 2023 Vojtěch Bubník @bubnikv
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
// Tree supports by Thomas Rahm, losely based on Tree Supports by CuraEngine.
// Original source of Thomas Rahm's tree supports:
// https://github.com/ThomasRahm/CuraEngine
//
// Original CuraEngine copyright:
// Copyright (c) 2021 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef slic3r_TreeSupportCommon_hpp
#define slic3r_TreeSupportCommon_hpp
#include "../libslic3r.h"
#include "../Polygon.hpp"
#include "SupportCommon.hpp"
#include <string_view>
using namespace Slic3r::FFFSupport;
namespace Slic3r
{
namespace FFFTreeSupport
{
using LayerIndex = int;
enum class InterfacePreference
{
InterfaceAreaOverwritesSupport,
SupportAreaOverwritesInterface,
InterfaceLinesOverwriteSupport,
SupportLinesOverwriteInterface,
Nothing
};
struct TreeSupportMeshGroupSettings {
TreeSupportMeshGroupSettings() = default;
explicit TreeSupportMeshGroupSettings(const PrintObject &print_object);
/*********************************************************************/
/* Print parameters, not support specific: */
/*********************************************************************/
coord_t layer_height { scaled<coord_t>(0.15) };
// Maximum Deviation (meshfix_maximum_deviation)
// The maximum deviation allowed when reducing the resolution for the Maximum Resolution setting. If you increase this,
// the print will be less accurate, but the g-code will be smaller. Maximum Deviation is a limit for Maximum Resolution,
// so if the two conflict the Maximum Deviation will always be held true.
coord_t resolution { scaled<coord_t>(0.025) };
// Minimum Feature Size (aka minimum line width) - Arachne specific
// Minimum thickness of thin features. Model features that are thinner than this value will not be printed, while features thicker
// than the Minimum Feature Size will be widened to the Minimum Wall Line Width.
coord_t min_feature_size { scaled<coord_t>(0.1) };
/*********************************************************************/
/* General support parameters: */
/*********************************************************************/
// Support Overhang Angle
// The minimum angle of overhangs for which support is added. At a value of 0° all overhangs are supported, 90° will not provide any support.
double support_angle { 50. * M_PI / 180. };
// Support Line Width
// Width of a single support structure line.
coord_t support_line_width { scaled<coord_t>(0.4) };
// Support Roof Line Width: Width of a single support roof line.
coord_t support_roof_line_width { scaled<coord_t>(0.4) };
// Enable Support Floor (aka bottom interfaces)
// Generate a dense slab of material between the bottom of the support and the model. This will create a skin between the model and support.
bool support_bottom_enable { false };
// Support Floor Thickness
// The thickness of the support floors. This controls the number of dense layers that are printed on top of places of a model on which support rests.
coord_t support_bottom_height { scaled<coord_t>(1.) };
bool support_material_buildplate_only { false };
// Support X/Y Distance
// Distance of the support structure from the print in the X/Y directions.
// minimum: 0, maximum warning: 1.5 * machine_nozzle_tip_outer_diameter
coord_t support_xy_distance { scaled<coord_t>(0.7) };
// Minimum Support X/Y Distance
// Distance of the support structure from the overhang in the X/Y directions.
// minimum_value: 0, minimum warning": support_xy_distance - support_line_width * 2, maximum warning: support_xy_distance
coord_t support_xy_distance_overhang { scaled<coord_t>(0.2) };
// Support Top Distance
// Distance from the top of the support to the print.
coord_t support_top_distance { scaled<coord_t>(0.1) };
// Support Bottom Distance
// Distance from the print to the bottom of the support.
coord_t support_bottom_distance { scaled<coord_t>(0.1) };
//FIXME likely not needed, optimization for clipping of interface layers
// When checking where there's model above and below the support, take steps of the given height. Lower values will slice slower, while higher values
// may cause normal support to be printed in some places where there should have been support interface.
coord_t support_interface_skip_height { scaled<coord_t>(0.3) };
// Support Infill Line Directions
// A list of integer line directions to use. Elements from the list are used sequentially as the layers progress and when the end
// of the list is reached, it starts at the beginning again. The list items are separated by commas and the whole list is contained
// in square brackets. Default is an empty list which means use the default angle 0 degrees.
// std::vector<double> support_infill_angles {};
// Enable Support Roof
// Generate a dense slab of material between the top of support and the model. This will create a skin between the model and support.
bool support_roof_enable { false };
// Support Roof Thickness
// The thickness of the support roofs. This controls the amount of dense layers at the top of the support on which the model rests.
coord_t support_roof_layers { 2 };
bool support_floor_enable { false };
coord_t support_floor_layers { 2 };
// Minimum Support Roof Area
// Minimum area size for the roofs of the support. Polygons which have an area smaller than this value will be printed as normal support.
double minimum_roof_area { scaled<double>(scaled<double>(1.)) };
// A list of integer line directions to use. Elements from the list are used sequentially as the layers progress
// and when the end of the list is reached, it starts at the beginning again. The list items are separated
// by commas and the whole list is contained in square brackets. Default is an empty list which means
// use the default angles (alternates between 45 and 135 degrees if interfaces are quite thick or 90 degrees).
std::vector<double> support_roof_angles {};
// Support Roof Pattern (aka top interface)
// The pattern with which the roofs of the support are printed.
SupportMaterialInterfacePattern support_roof_pattern { smipAuto };
// Support Pattern
// The pattern of the support structures of the print. The different options available result in sturdy or easy to remove support.
SupportMaterialPattern support_pattern { smpRectilinear };
// Support Line Distance
// Distance between the printed support structure lines. This setting is calculated by the support density.
coord_t support_line_spacing { scaled<coord_t>(2.66 - 0.4) };
// Support Floor Horizontal Expansion
// Amount of offset applied to the floors of the support.
coord_t support_bottom_offset { scaled<coord_t>(0.) };
// Support Wall Line Count
// The number of walls with which to surround support infill. Adding a wall can make support print more reliably
// and can support overhangs better, but increases print time and material used.
// tree: 1, zig-zag: 0, concentric: 1
int support_wall_count { 1 };
// Support Roof Line Distance
// Distance between the printed support roof lines. This setting is calculated by the Support Roof Density, but can be adjusted separately.
coord_t support_roof_line_distance { scaled<coord_t>(0.4) };
// Minimum Support Area
// Minimum area size for support polygons. Polygons which have an area smaller than this value will not be generated.
coord_t minimum_support_area { scaled<coord_t>(0.) };
// Minimum Support Floor Area
// Minimum area size for the floors of the support. Polygons which have an area smaller than this value will be printed as normal support.
coord_t minimum_bottom_area { scaled<coord_t>(1.0) };
// Support Horizontal Expansion
// Amount of offset applied to all support polygons in each layer. Positive values can smooth out the support areas and result in more sturdy support.
coord_t support_offset { scaled<coord_t>(0.) };
/*********************************************************************/
/* Parameters for the Cura tree supports implementation: */
/*********************************************************************/
// Tree Support Maximum Branch Angle
// The maximum angle of the branches, when the branches have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle to be able to have more reach.
// minimum: 0, minimum warning: 20, maximum: 89, maximum warning": 85
double support_tree_angle { 60. * M_PI / 180. };
// Tree Support Branch Diameter Angle
// The angle of the branches' diameter as they gradually become thicker towards the bottom. An angle of 0 will cause the branches to have uniform thickness over their length.
// A bit of an angle can increase stability of the tree support.
// minimum: 0, maximum: 89.9999, maximum warning: 15
double support_tree_branch_diameter_angle { 5. * M_PI / 180. };
// Tree Support Branch Distance
// How far apart the branches need to be when they touch the model. Making this distance small will cause
// the tree support to touch the model at more points, causing better overhang but making support harder to remove.
coord_t support_tree_branch_distance { scaled<coord_t>(1.) };
// Tree Support Branch Diameter
// The diameter of the thinnest branches of tree support. Thicker branches are more sturdy. Branches towards the base will be thicker than this.
// minimum: 0.001, minimum warning: support_line_width * 2
coord_t support_tree_branch_diameter { scaled<coord_t>(2.) };
/*********************************************************************/
/* Parameters new to the Thomas Rahm's tree supports implementation: */
/*********************************************************************/
// Tree Support Preferred Branch Angle
// The preferred angle of the branches, when they do not have to avoid the model. Use a lower angle to make them more vertical and more stable. Use a higher angle for branches to merge faster.
// minimum: 0, minimum warning: 10, maximum: support_tree_angle, maximum warning: support_tree_angle-1
double support_tree_angle_slow { 50. * M_PI / 180. };
// Tree Support Diameter Increase To Model
// The most the diameter of a branch that has to connect to the model may increase by merging with branches that could reach the buildplate.
// Increasing this reduces print time, but increases the area of support that rests on model
// minimum: 0
coord_t support_tree_max_diameter_increase_by_merges_when_support_to_model { scaled<coord_t>(1.0) };
// Tree Support Minimum Height To Model
// How tall a branch has to be if it is placed on the model. Prevents small blobs of support. This setting is ignored when a branch is supporting a support roof.
// minimum: 0, maximum warning: 5
coord_t support_tree_min_height_to_model { scaled<coord_t>(1.0) };
// Tree Support Inital Layer Diameter
// Diameter every branch tries to achieve when reaching the buildplate. Improves bed adhesion.
// minimum: 0, maximum warning: 20
coord_t support_tree_bp_diameter { scaled<coord_t>(7.5) };
// Tree Support Branch Density
// Adjusts the density of the support structure used to generate the tips of the branches. A higher value results in better overhangs,
// but the supports are harder to remove. Use Support Roof for very high values or ensure support density is similarly high at the top.
// ->
// Adjusts the density of the support structure used to generate the tips of the branches.
// A higher value results in better overhangs but the supports are harder to remove, thus it is recommended to enable top support interfaces
// instead of a high branch density value if dense interfaces are needed.
// 5%-35%
double support_tree_top_rate { 15. };
// Tree Support Tip Diameter
// The diameter of the top of the tip of the branches of tree support.
// minimum: min_wall_line_width, minimum warning: min_wall_line_width+0.05, maximum_value: support_tree_branch_diameter, value: support_line_width
coord_t support_tree_tip_diameter { scaled<coord_t>(0.4) };
// Support Interface Priority
// How support interface and support will interact when they overlap. Currently only implemented for support roof.
//enum support_interface_priority { support_lines_overwrite_interface_area };
};
/*!
* \brief This struct contains settings used in the tree support. Thanks to this most functions do not need to know of meshes etc. Also makes the code shorter.
*/
struct TreeSupportSettings
{
public:
TreeSupportSettings() = default; // required for the definition of the config variable in the TreeSupportGenerator class.
explicit TreeSupportSettings(const TreeSupportMeshGroupSettings &mesh_group_settings, const SlicingParameters &slicing_params);
// some static variables dependent on other meshes that are not currently processed.
// Has to be static because TreeSupportConfig will be used in TreeModelVolumes as this reduces redundancy.
inline static bool soluble = false;
/*!
* \brief Width of a single line of support.
*/
coord_t support_line_width;
/*!
* \brief Height of a single layer
*/
coord_t layer_height;
/*!
* \brief Radius of a branch when it has left the tip.
*/
coord_t branch_radius;
/*!
* \brief smallest allowed radius, required to ensure that even at DTT 0 every circle will still be printed
*/
coord_t min_radius;
/*!
* \brief How far an influence area may move outward every layer at most.
*/
coord_t maximum_move_distance;
/*!
* \brief How far every influence area will move outward every layer if possible.
*/
coord_t maximum_move_distance_slow;
/*!
* \brief Amount of bottom layers. 0 if disabled.
*/
size_t support_bottom_layers;
/*!
* \brief Amount of effectiveDTT increases are required to reach branch radius.
*/
size_t tip_layers;
/*!
* \brief How much a branch radius increases with each layer to guarantee the prescribed tree widening.
*/
double branch_radius_increase_per_layer;
/*!
* \brief How much a branch resting on the model may grow in radius by merging with branches that can reach the buildplate.
*/
coord_t max_to_model_radius_increase;
/*!
* \brief If smaller (in layers) than that, all branches to model will be deleted
*/
size_t min_dtt_to_model;
/*!
* \brief Increase radius in the resulting drawn branches, even if the avoidance does not allow it. Will be cut later to still fit.
*/
coord_t increase_radius_until_radius;
/*!
* \brief Same as increase_radius_until_radius, but contains the DTT at which the radius will be reached.
*/
size_t increase_radius_until_layer;
/*!
* \brief True if the branches may connect to the model.
*/
bool support_rests_on_model;
/*!
* \brief How far should support be from the model.
*/
coord_t xy_distance;
/*!
* \brief A minimum radius a tree trunk should expand to at the buildplate if possible.
*/
coord_t bp_radius;
/*!
* \brief The layer index at which an increase in radius may be required to reach the bp_radius.
*/
LayerIndex layer_start_bp_radius;
/*!
* \brief How much one is allowed to increase the tree branch radius close to print bed to reach the required bp_radius at layer 0.
* Note that this radius increase will not happen in the tip, to ensure the tip is structurally sound.
*/
double bp_radius_increase_per_layer;
/*!
* \brief minimum xy_distance. Only relevant when Z overrides XY, otherwise equal to xy_distance-
*/
coord_t xy_min_distance;
/*!
* \brief Amount of layers distance required the top of the support to the model
*/
size_t z_distance_top_layers;
/*!
* \brief Amount of layers distance required from the top of the model to the bottom of a support structure.
*/
size_t z_distance_bottom_layers;
/*!
* \brief User specified angles for the support infill.
*/
// std::vector<double> support_infill_angles;
/*!
* \brief User specified angles for the support roof infill.
*/
std::vector<double> support_roof_angles;
/*!
* \brief Pattern used in the support roof. May contain non relevant data if support roof is disabled.
*/
SupportMaterialInterfacePattern roof_pattern;
/*!
* \brief Pattern used in the support infill.
*/
SupportMaterialPattern support_pattern;
/*!
* \brief Line width of the support roof.
*/
coord_t support_roof_line_width;
/*!
* \brief Distance between support infill lines.
*/
coord_t support_line_spacing;
/*!
* \brief Offset applied to the support floor area.
*/
coord_t support_bottom_offset;
/*
* \brief Amount of walls the support area will have.
*/
int support_wall_count;
/*
* \brief Maximum allowed deviation when simplifying.
*/
coord_t resolution;
/*
* \brief Distance between the lines of the roof.
*/
coord_t support_roof_line_distance;
/*
* \brief How overlaps of an interface area with a support area should be handled.
*/
InterfacePreference interface_preference;
/*
* \brief The infill class wants a settings object. This one will be the correct one for all settings it uses.
*/
TreeSupportMeshGroupSettings settings;
/*
* \brief Minimum thickness of any model features.
*/
coord_t min_feature_size;
// Extra raft layers below the object.
std::vector<coordf_t> raft_layers;
public:
bool operator==(const TreeSupportSettings& other) const
{
return branch_radius == other.branch_radius && tip_layers == other.tip_layers && branch_radius_increase_per_layer == other.branch_radius_increase_per_layer && layer_start_bp_radius == other.layer_start_bp_radius && bp_radius == other.bp_radius &&
// as a recalculation of the collision areas is required to set a new min_radius.
bp_radius_increase_per_layer == other.bp_radius_increase_per_layer && min_radius == other.min_radius && xy_min_distance == other.xy_min_distance &&
xy_distance - xy_min_distance == other.xy_distance - other.xy_min_distance && // if the delta of xy_min_distance and xy_distance is different the collision areas have to be recalculated.
support_rests_on_model == other.support_rests_on_model && increase_radius_until_layer == other.increase_radius_until_layer && min_dtt_to_model == other.min_dtt_to_model && max_to_model_radius_increase == other.max_to_model_radius_increase && maximum_move_distance == other.maximum_move_distance && maximum_move_distance_slow == other.maximum_move_distance_slow && z_distance_bottom_layers == other.z_distance_bottom_layers && support_line_width == other.support_line_width &&
support_line_spacing == other.support_line_spacing && support_roof_line_width == other.support_roof_line_width && // can not be set on a per-mesh basis currently, so code to enable processing different roof line width in the same iteration seems useless.
support_bottom_offset == other.support_bottom_offset && support_wall_count == other.support_wall_count && support_pattern == other.support_pattern && roof_pattern == other.roof_pattern && // can not be set on a per-mesh basis currently, so code to enable processing different roof patterns in the same iteration seems useless.
support_roof_angles == other.support_roof_angles &&
//support_infill_angles == other.support_infill_angles &&
increase_radius_until_radius == other.increase_radius_until_radius && support_bottom_layers == other.support_bottom_layers && layer_height == other.layer_height && z_distance_top_layers == other.z_distance_top_layers && resolution == other.resolution && // Infill generation depends on deviation and resolution.
support_roof_line_distance == other.support_roof_line_distance && interface_preference == other.interface_preference
&& min_feature_size == other.min_feature_size // interface_preference should be identical to ensure the tree will correctly interact with the roof.
// The infill class now wants the settings object and reads a lot of settings, and as the infill class is used to calculate support roof lines for interface-preference. Not all of these may be required to be identical, but as I am not sure, better safe than sorry
#if 0
&& (interface_preference == InterfacePreference::InterfaceAreaOverwritesSupport || interface_preference == InterfacePreference::SupportAreaOverwritesInterface
// Perimeter generator parameters
||
(settings.get<bool>("fill_outline_gaps") == other.settings.get<bool>("fill_outline_gaps") &&
settings.get<coord_t>("min_bead_width") == other.settings.get<coord_t>("min_bead_width") &&
settings.get<double>("wall_transition_angle") == other.settings.get<double>("wall_transition_angle") &&
settings.get<coord_t>("wall_transition_length") == other.settings.get<coord_t>("wall_transition_length") &&
settings.get<Ratio>("wall_split_middle_threshold") == other.settings.get<Ratio>("wall_split_middle_threshold") &&
settings.get<Ratio>("wall_add_middle_threshold") == other.settings.get<Ratio>("wall_add_middle_threshold") &&
settings.get<int>("wall_distribution_count") == other.settings.get<int>("wall_distribution_count") &&
settings.get<coord_t>("wall_transition_filter_distance") == other.settings.get<coord_t>("wall_transition_filter_distance") &&
settings.get<coord_t>("wall_transition_filter_deviation") == other.settings.get<coord_t>("wall_transition_filter_deviation") &&
settings.get<coord_t>("wall_line_width_x") == other.settings.get<coord_t>("wall_line_width_x") &&
settings.get<int>("meshfix_maximum_extrusion_area_deviation") == other.settings.get<int>("meshfix_maximum_extrusion_area_deviation"))
)
#endif
&& raft_layers == other.raft_layers
;
}
/*!
* \brief Get the Radius part will have based on numeric values.
* \param distance_to_top[in] The effective distance_to_top of the element
* \param elephant_foot_increases[in] The elephant_foot_increases of the element.
* \return The radius an element with these attributes would have.
*/
[[nodiscard]] inline coord_t getRadius(size_t distance_to_top, const double elephant_foot_increases = 0) const
{
return (distance_to_top <= tip_layers ? min_radius + (branch_radius - min_radius) * distance_to_top / tip_layers : // tip
branch_radius + // base
(distance_to_top - tip_layers) * branch_radius_increase_per_layer)
+ // gradual increase
elephant_foot_increases * (std::max(bp_radius_increase_per_layer - branch_radius_increase_per_layer, 0.0));
}
/*!
* \brief Get the Radius an element should at least have at a given layer.
* \param layer_idx[in] The layer.
* \return The radius every element should aim to achieve.
*/
[[nodiscard]] inline coord_t recommendedMinRadius(LayerIndex layer_idx) const
{
double num_layers_widened = layer_start_bp_radius - layer_idx;
return num_layers_widened > 0 ? branch_radius + num_layers_widened * bp_radius_increase_per_layer : 0;
}
#if 0
/*!
* \brief Return on which z in microns the layer will be printed. Used only for support infill line generation.
* \param layer_idx[in] The layer.
* \return The radius every element should aim to achieve.
*/
[[nodiscard]] inline coord_t getActualZ(LayerIndex layer_idx)
{
return layer_idx < coord_t(known_z.size()) ? known_z[layer_idx] : (layer_idx - known_z.size()) * layer_height + known_z.size() ? known_z.back() : 0;
}
/*!
* \brief Set the z every Layer is printed at. Required for getActualZ to work
* \param z[in] The z every LayerIndex is printed. Vector is used as a map<LayerIndex,coord_t> with the index of each element being the corresponding LayerIndex
* \return The radius every element should aim to achieve.
*/
void setActualZ(std::vector<coord_t>& z)
{
known_z = z;
}
#endif
private:
// std::vector<coord_t> known_z;
};
static constexpr const bool polygons_strictly_simple = false;
static constexpr const auto tiny_area_threshold = sqr(scaled<double>(0.001));
void tree_supports_show_error(std::string_view message, bool critical);
inline double layer_z(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const size_t layer_idx)
{
return layer_idx >= config.raft_layers.size() ?
slicing_params.object_print_z_min + slicing_params.first_object_layer_height + (layer_idx - config.raft_layers.size()) * slicing_params.layer_height :
config.raft_layers[layer_idx];
}
// Lowest collision layer
inline LayerIndex layer_idx_ceil(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const double z)
{
return
LayerIndex(config.raft_layers.size()) +
std::max<LayerIndex>(0, ceil((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height));
}
// Highest collision layer
inline LayerIndex layer_idx_floor(const SlicingParameters &slicing_params, const TreeSupportSettings &config, const double z)
{
return
LayerIndex(config.raft_layers.size()) +
std::max<LayerIndex>(0, floor((z - slicing_params.object_print_z_min - slicing_params.first_object_layer_height) / slicing_params.layer_height));
}
inline SupportGeneratorLayer& layer_initialize(
SupportGeneratorLayer &layer_new,
const SlicingParameters &slicing_params,
const TreeSupportSettings &config,
const size_t layer_idx)
{
layer_new.print_z = layer_z(slicing_params, config, layer_idx);
layer_new.bottom_z = layer_idx > 0 ? layer_z(slicing_params, config, layer_idx - 1) : 0;
layer_new.height = layer_new.print_z - layer_new.bottom_z;
return layer_new;
}
// Using the std::deque as an allocator.
inline SupportGeneratorLayer& layer_allocate_unguarded(
SupportGeneratorLayerStorage &layer_storage,
SupporLayerType layer_type,
const SlicingParameters &slicing_params,
const TreeSupportSettings &config,
size_t layer_idx)
{
SupportGeneratorLayer &layer = layer_storage.allocate_unguarded(layer_type);
return layer_initialize(layer, slicing_params, config, layer_idx);
}
inline SupportGeneratorLayer& layer_allocate(
SupportGeneratorLayerStorage &layer_storage,
SupporLayerType layer_type,
const SlicingParameters &slicing_params,
const TreeSupportSettings &config,
size_t layer_idx)
{
SupportGeneratorLayer &layer = layer_storage.allocate(layer_type);
return layer_initialize(layer, slicing_params, config, layer_idx);
}
// Used by generate_initial_areas() in parallel by multiple layers.
class InterfacePlacer {
public:
InterfacePlacer(
const SlicingParameters &slicing_parameters,
const SupportParameters &support_parameters,
const TreeSupportSettings &config,
SupportGeneratorLayerStorage &layer_storage,
SupportGeneratorLayersPtr &top_contacts,
SupportGeneratorLayersPtr &top_interfaces,
SupportGeneratorLayersPtr &top_base_interfaces)
:
slicing_parameters(slicing_parameters), support_parameters(support_parameters), config(config),
layer_storage(layer_storage), top_contacts(top_contacts), top_interfaces(top_interfaces), top_base_interfaces(top_base_interfaces)
{}
InterfacePlacer(const InterfacePlacer& rhs) :
slicing_parameters(rhs.slicing_parameters), support_parameters(rhs.support_parameters), config(rhs.config),
layer_storage(rhs.layer_storage), top_contacts(rhs.top_contacts), top_interfaces(rhs.top_interfaces), top_base_interfaces(rhs.top_base_interfaces)
{}
const SlicingParameters &slicing_parameters;
const SupportParameters &support_parameters;
const TreeSupportSettings &config;
SupportGeneratorLayersPtr& top_contacts_mutable() { return this->top_contacts; }
public:
// Insert the contact layer and some of the inteface and base interface layers below.
void add_roofs(std::vector<Polygons> &&new_roofs, const size_t insert_layer_idx)
{
if (! new_roofs.empty()) {
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
for (size_t idx = 0; idx < new_roofs.size(); ++ idx)
if (! new_roofs[idx].empty())
add_roof_unguarded(std::move(new_roofs[idx]), insert_layer_idx - idx, idx);
}
}
void add_roof(Polygons &&new_roof, const size_t insert_layer_idx, const size_t dtt_tip)
{
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
add_roof_unguarded(std::move(new_roof), insert_layer_idx, dtt_tip);
}
// called by sample_overhang_area()
void add_roof_build_plate(Polygons &&overhang_areas, size_t dtt_roof)
{
std::lock_guard<std::mutex> lock(m_mutex_layer_storage);
this->add_roof_unguarded(std::move(overhang_areas), 0, std::min(dtt_roof, this->support_parameters.num_top_interface_layers));
}
void add_roof_unguarded(Polygons &&new_roofs, const size_t insert_layer_idx, const size_t dtt_roof)
{
assert(support_parameters.has_top_contacts);
assert(dtt_roof <= support_parameters.num_top_interface_layers);
SupportGeneratorLayersPtr &layers =
dtt_roof == 0 ? this->top_contacts :
dtt_roof <= support_parameters.num_top_interface_layers_only() ? this->top_interfaces : this->top_base_interfaces;
SupportGeneratorLayer*& l = layers[insert_layer_idx];
if (l == nullptr)
l = &layer_allocate_unguarded(layer_storage, dtt_roof == 0 ? SupporLayerType::TopContact : SupporLayerType::TopInterface,
slicing_parameters, config, insert_layer_idx);
// will be unioned in finalize_interface_and_support_areas()
append(l->polygons, std::move(new_roofs));
}
private:
// Outputs
SupportGeneratorLayerStorage &layer_storage;
SupportGeneratorLayersPtr &top_contacts;
SupportGeneratorLayersPtr &top_interfaces;
SupportGeneratorLayersPtr &top_base_interfaces;
// Mutexes, guards
std::mutex m_mutex_layer_storage;
};
} // namespace FFFTreeSupport
} // namespace Slic3r
#endif // slic3r_TreeSupportCommon_hpp