Merge remote-tracking branch 'remote/master' into feature/merge_upstream

# Conflicts:
#	bbl/i18n/OrcaSlicer.pot
#	bbl/i18n/de/OrcaSlicer_de.po
#	bbl/i18n/en/OrcaSlicer_en.po
#	bbl/i18n/es/OrcaSlicer_es.po
#	bbl/i18n/fr/OrcaSlicer_fr.po
#	bbl/i18n/hu/OrcaSlicer_hu.po
#	bbl/i18n/it/OrcaSlicer_it.po
#	bbl/i18n/ja/OrcaSlicer_ja.po
#	bbl/i18n/nl/OrcaSlicer_nl.po
#	bbl/i18n/sv/OrcaSlicer_sv.po
#	bbl/i18n/zh_cn/OrcaSlicer_zh_CN.po
#	resources/config.json
#	resources/i18n/de/BambuStudio.mo
#	resources/i18n/en/BambuStudio.mo
#	resources/i18n/es/BambuStudio.mo
#	resources/i18n/fr/BambuStudio.mo
#	resources/i18n/hu/BambuStudio.mo
#	resources/i18n/it/BambuStudio.mo
#	resources/i18n/ja/OrcaSlicer.mo
#	resources/i18n/nl/BambuStudio.mo
#	resources/i18n/sv/BambuStudio.mo
#	resources/i18n/zh_cn/BambuStudio.mo
#	resources/images/ams_humidity_2.svg
#	resources/images/ams_humidity_3.svg
#	resources/images/ams_humidity_4.svg
#	resources/images/ams_humidity_tips.svg
#	resources/images/monitor_state_on.svg
#	resources/images/sdcard_state_normal.svg
#	resources/profiles/BBL.json
#	resources/profiles/BBL/filament/Bambu PETG-CF @base.json
#	resources/profiles/BBL/filament/Generic PETG-CF @base.json
#	resources/profiles/BBL/machine/Bambu Lab P1P 0.4 nozzle.json
#	resources/web/data/text.js
#	resources/web/guide/3/index.html
#	resources/web/guide/31/index.html
#	src/BambuStudio.cpp
#	src/libslic3r/AABBTreeLines.hpp
#	src/libslic3r/Brim.cpp
#	src/libslic3r/CMakeLists.txt
#	src/libslic3r/ExPolygon.hpp
#	src/libslic3r/Fill/FillBase.hpp
#	src/libslic3r/Format/bbs_3mf.cpp
#	src/libslic3r/GCodeWriter.cpp
#	src/libslic3r/Line.hpp
#	src/libslic3r/PerimeterGenerator.cpp
#	src/libslic3r/Preset.cpp
#	src/libslic3r/Print.cpp
#	src/libslic3r/Print.hpp
#	src/libslic3r/PrintConfig.cpp
#	src/libslic3r/PrintConfig.hpp
#	src/libslic3r/TreeSupport.cpp
#	src/slic3r/GUI/AmsMappingPopup.cpp
#	src/slic3r/GUI/BackgroundSlicingProcess.cpp
#	src/slic3r/GUI/ConfigManipulation.cpp
#	src/slic3r/GUI/GCodeViewer.cpp
#	src/slic3r/GUI/GCodeViewer.hpp
#	src/slic3r/GUI/GLCanvas3D.cpp
#	src/slic3r/GUI/GUI_App.cpp
#	src/slic3r/GUI/MainFrame.cpp
#	src/slic3r/GUI/PartPlate.cpp
#	src/slic3r/GUI/Plater.cpp
#	src/slic3r/GUI/Preferences.cpp
#	src/slic3r/GUI/SelectMachine.cpp
#	src/slic3r/GUI/Widgets/AMSControl.cpp
#	src/slic3r/GUI/wxMediaCtrl2.cpp
#	src/slic3r/Utils/Process.cpp
#	version.inc
This commit is contained in:
SoftFever 2023-04-19 08:48:07 +08:00
commit 9f598046d1
658 changed files with 70312 additions and 4877 deletions

View file

@ -1,8 +1,8 @@
#ifndef slic3r_Line_hpp_
#define slic3r_Line_hpp_
#include "Point.hpp"
#include "libslic3r.h"
#include "Point.hpp"
#include <type_traits>
@ -22,201 +22,175 @@ Linef3 transform(const Linef3& line, const Transform3d& t);
namespace line_alg {
template <class L, class En = void>
struct Traits {
static constexpr int Dim = L::Dim;
using Scalar = typename L::Scalar;
template<class L, class En = void> struct Traits {
static constexpr int Dim = L::Dim;
using Scalar = typename L::Scalar;
static Vec<Dim, Scalar>& get_a(L& l) { return l.a; }
static Vec<Dim, Scalar>& get_b(L& l) { return l.b; }
static const Vec<Dim, Scalar>& get_a(const L& l) { return l.a; }
static const Vec<Dim, Scalar>& get_b(const L& l) { return l.b; }
};
static Vec<Dim, Scalar>& get_a(L &l) { return l.a; }
static Vec<Dim, Scalar>& get_b(L &l) { return l.b; }
static const Vec<Dim, Scalar>& get_a(const L &l) { return l.a; }
static const Vec<Dim, Scalar>& get_b(const L &l) { return l.b; }
};
template <class L>
const constexpr int Dim = Traits<remove_cvref_t<L>>::Dim;
template <class L>
using Scalar = typename Traits<remove_cvref_t<L>>::Scalar;
template<class L> const constexpr int Dim = Traits<remove_cvref_t<L>>::Dim;
template<class L> using Scalar = typename Traits<remove_cvref_t<L>>::Scalar;
template <class L>
auto get_a(L&& l) { return Traits<remove_cvref_t<L>>::get_a(l); }
template <class L>
auto get_b(L&& l) { return Traits<remove_cvref_t<L>>::get_b(l); }
template<class L> auto get_a(L &&l) { return Traits<remove_cvref_t<L>>::get_a(l); }
template<class L> auto get_b(L &&l) { return Traits<remove_cvref_t<L>>::get_b(l); }
// Distance to the closest point of line.
template <class L>
double distance_to_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point, Vec<Dim<L>, Scalar<L>>* nearest_point)
{
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0) {
// a == b case
*nearest_point = get_a(line);
return va.squaredNorm();
}
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
if (t <= 0.0) {
// beyond the 'a' end of the segment
*nearest_point = get_a(line);
return va.squaredNorm();
} else if (t >= 1.0) {
// beyond the 'b' end of the segment
*nearest_point = get_b(line);
return (point - get_b(line)).template cast<double>().squaredNorm();
}
*nearest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
return (t * v - va).squaredNorm();
// Distance to the closest point of line.
template<class L>
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *nearest_point)
{
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0) {
// a == b case
*nearest_point = get_a(line);
return va.squaredNorm();
}
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
if (t <= 0.0) {
// beyond the 'a' end of the segment
*nearest_point = get_a(line);
return va.squaredNorm();
} else if (t >= 1.0) {
// beyond the 'b' end of the segment
*nearest_point = get_b(line);
return (point - get_b(line)).template cast<double>().squaredNorm();
}
// Distance to the closest point of line.
template <class L>
double distance_to_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
{
Vec<Dim<L>, Scalar<L>> nearest_point;
return distance_to_squared<L>(line, point, &nearest_point);
}
*nearest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
return (t * v - va).squaredNorm();
}
template <class L>
double distance_to(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
{
return std::sqrt(distance_to_squared(line, point));
}
// Distance to the closest point of line.
template<class L>
double distance_to_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
Vec<Dim<L>, Scalar<L>> nearest_point;
return distance_to_squared<L>(line, point, &nearest_point);
}
// Returns a squared distance to the closest point on the infinite.
// Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template <class L>
double distance_to_infinite_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point, Vec<Dim<L>, Scalar<L>>* closest_point)
{
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.) {
// a == b case
*closest_point = get_a(line);
return va.squaredNorm();
}
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
*closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
return (t * v - va).squaredNorm();
}
template<class L>
double distance_to(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
return std::sqrt(distance_to_squared(line, point));
}
// Returns a squared distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template <class L>
double distance_to_infinite_squared(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
{
Vec<Dim<L>, Scalar<L>> nearest_point;
return distance_to_infinite_squared<L>(line, point, &nearest_point);
// Returns a squared distance to the closest point on the infinite.
// Returned nearest_point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template<class L>
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point, Vec<Dim<L>, Scalar<L>> *closest_point)
{
const Vec<Dim<L>, double> v = (get_b(line) - get_a(line)).template cast<double>();
const Vec<Dim<L>, double> va = (point - get_a(line)).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.) {
// a == b case
*closest_point = get_a(line);
return va.squaredNorm();
}
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
*closest_point = (get_a(line).template cast<double>() + t * v).template cast<Scalar<L>>();
return (t * v - va).squaredNorm();
}
// Returns a distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template <class L>
double distance_to_infinite(const L& line, const Vec<Dim<L>, Scalar<L>>& point)
{
return std::sqrt(distance_to_infinite_squared(line, point));
}
// Returns a squared distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template<class L>
double distance_to_infinite_squared(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
Vec<Dim<L>, Scalar<L>> nearest_point;
return distance_to_infinite_squared<L>(line, point, &nearest_point);
}
template <class L>
bool intersection(const L& l1, const L& l2, Vec<Dim<L>, Scalar<L>>* intersection_pt)
{
using Floating = typename std::conditional<std::is_floating_point<Scalar<L>>::value, Scalar<L>, double>::type;
using VecType = const Vec<Dim<L>, Floating>;
const VecType v1 = (l1.b - l1.a).template cast<Floating>();
const VecType v2 = (l2.b - l2.a).template cast<Floating>();
Floating denom = cross2(v1, v2);
if (fabs(denom) < EPSILON)
// Returns a distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
template<class L>
double distance_to_infinite(const L &line, const Vec<Dim<L>, Scalar<L>> &point)
{
return std::sqrt(distance_to_infinite_squared(line, point));
}
template<class L> bool intersection(const L &l1, const L &l2, Vec<Dim<L>, Scalar<L>> *intersection_pt)
{
using Floating = typename std::conditional<std::is_floating_point<Scalar<L>>::value, Scalar<L>, double>::type;
using VecType = const Vec<Dim<L>, Floating>;
const VecType v1 = (l1.b - l1.a).template cast<Floating>();
const VecType v2 = (l2.b - l2.a).template cast<Floating>();
Floating denom = cross2(v1, v2);
if (fabs(denom) < EPSILON)
#if 0
// Lines are collinear. Return true if they are coincident (overlappign).
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
#else
return false;
return false;
#endif
const VecType v12 = (l1.a - l2.a).template cast<Floating>();
Floating nume_a = cross2(v2, v12);
Floating nume_b = cross2(v1, v12);
Floating t1 = nume_a / denom;
Floating t2 = nume_b / denom;
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
// Get the intersection point.
(*intersection_pt) = (l1.a.template cast<Floating>() + t1 * v1).template cast<Scalar<L>>();
return true;
}
return false; // not intersecting
const VecType v12 = (l1.a - l2.a).template cast<Floating>();
Floating nume_a = cross2(v2, v12);
Floating nume_b = cross2(v1, v12);
Floating t1 = nume_a / denom;
Floating t2 = nume_b / denom;
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
// Get the intersection point.
(*intersection_pt) = (l1.a.template cast<Floating>() + t1 * v1).template cast<Scalar<L>>();
return true;
}
return false; // not intersecting
}
} // namespace line_alg
class Line {
class Line
{
public:
Line() { }
Line(const Point& _a, const Point& _b)
: a(_a)
, b(_b)
{
}
explicit operator Lines() const
{
Lines lines;
lines.emplace_back(*this);
return lines;
}
void scale(double factor)
{
this->a *= factor;
this->b *= factor;
}
void translate(const Point& v)
{
this->a += v;
this->b += v;
}
void translate(double x, double y) { this->translate(Point(x, y)); }
void rotate(double angle, const Point& center)
{
this->a.rotate(angle, center);
this->b.rotate(angle, center);
}
void reverse() { std::swap(this->a, this->b); }
Line() {}
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
void scale(double factor) { this->a *= factor; this->b *= factor; }
void translate(const Point &v) { this->a += v; this->b += v; }
void translate(double x, double y) { this->translate(Point(x, y)); }
void rotate(double angle, const Point &center) { this->a.rotate(angle, center); this->b.rotate(angle, center); }
void reverse() { std::swap(this->a, this->b); }
double length() const { return (b - a).cast<double>().norm(); }
Point midpoint() const { return (this->a + this->b) / 2; }
bool intersection_infinite(const Line& other, Point* point) const;
bool operator==(const Line& rhs) const { return this->a == rhs.a && this->b == rhs.b; }
double distance_to_squared(const Point& point) const { return distance_to_squared(point, this->a, this->b); }
double distance_to_squared(const Point& point, Point* closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
double distance_to(const Point& point) const { return distance_to(point, this->a, this->b); }
double distance_to_infinite_squared(const Point& point, Point* closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
double perp_distance_to(const Point& point) const;
bool parallel_to(double angle) const;
bool parallel_to(const Line& line) const;
bool perpendicular_to(double angle) const;
bool perpendicular_to(const Line& line) const;
Point midpoint() const { return (this->a + this->b) / 2; }
bool intersection_infinite(const Line &other, Point* point) const;
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
double distance_to_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_squared(*this, point, closest_point); }
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
double distance_to_infinite_squared(const Point &point, Point *closest_point) const { return line_alg::distance_to_infinite_squared(*this, point, closest_point); }
double perp_distance_to(const Point &point) const;
bool parallel_to(double angle) const;
bool parallel_to(const Line& line) const;
bool perpendicular_to(double angle) const;
bool perpendicular_to(const Line& line) const;
double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
double orientation() const;
double direction() const;
Vector vector() const { return this->b - this->a; }
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
bool intersection(const Line& line, Point* intersection) const;
bool intersection(const Line& line, Point* intersection) const;
// Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
bool clip_with_bbox(const BoundingBox& bbox);
bool clip_with_bbox(const BoundingBox &bbox);
// Extend the line from both sides by an offset.
void extend(double offset);
void extend(double offset);
static inline double distance_to_squared(const Point& point, const Point& a, const Point& b) { return line_alg::distance_to_squared(Line { a, b }, Vec<2, coord_t> { point }); }
static double distance_to(const Point& point, const Point& a, const Point& b) { return sqrt(distance_to_squared(point, a, b)); }
static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
// Returns a distance to the closest point on the infinite.
// Closest point (and returned squared distance to this point) could be beyond the 'a' and 'b' ends of the segment.
static inline double distance_to_infinite_squared(const Point& point, const Point& a, const Point& b) { return line_alg::distance_to_infinite_squared(Line { a, b }, Vec<2, coord_t> { point }); }
static double distance_to_infinite(const Point& point, const Point& a, const Point& b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
static inline double distance_to_infinite_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_infinite_squared(Line{a, b}, Vec<2, coord_t>{point}); }
static double distance_to_infinite(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_infinite_squared(point, a, b)); }
Point a;
Point b;
@ -225,43 +199,23 @@ public:
using Scalar = Point::Scalar;
};
class ThickLine : public Line {
class ThickLine : public Line
{
public:
ThickLine()
: a_width(0)
, b_width(0)
{
}
ThickLine(const Point& a, const Point& b)
: Line(a, b)
, a_width(0)
, b_width(0)
{
}
ThickLine(const Point& a, const Point& b, double wa, double wb)
: Line(a, b)
, a_width(wa)
, b_width(wb)
{
}
ThickLine() : a_width(0), b_width(0) {}
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
double a_width, b_width;
};
class Line3 {
class Line3
{
public:
Line3()
: a(Vec3crd::Zero())
, b(Vec3crd::Zero())
{
}
Line3(const Vec3crd& _a, const Vec3crd& _b)
: a(_a)
, b(_b)
{
}
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
double length() const { return (this->a - this->b).cast<double>().norm(); }
double length() const { return (this->a - this->b).cast<double>().norm(); }
Vec3crd vector() const { return this->b - this->a; }
Vec3crd a;
@ -271,18 +225,11 @@ public:
using Scalar = Vec3crd::Scalar;
};
class Linef {
class Linef
{
public:
Linef()
: a(Vec2d::Zero())
, b(Vec2d::Zero())
{
}
Linef(const Vec2d& _a, const Vec2d& _b)
: a(_a)
, b(_b)
{
}
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
Vec2d a;
Vec2d b;
@ -292,28 +239,17 @@ public:
};
using Linesf = std::vector<Linef>;
class Linef3 {
class Linef3
{
public:
Linef3()
: a(Vec3d::Zero())
, b(Vec3d::Zero())
{
}
Linef3(const Vec3d& _a, const Vec3d& _b)
: a(_a)
, b(_b)
{
}
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
Vec3d intersect_plane(double z) const;
void scale(double factor)
{
this->a *= factor;
this->b *= factor;
}
Vec3d vector() const { return this->b - this->a; }
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
double length() const { return vector().norm(); }
Vec3d intersect_plane(double z) const;
void scale(double factor) { this->a *= factor; this->b *= factor; }
Vec3d vector() const { return this->b - this->a; }
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
double length() const { return vector().norm(); }
Vec3d a;
Vec3d b;
@ -322,31 +258,26 @@ public:
using Scalar = Vec3d::Scalar;
};
BoundingBox get_extents(const Lines& lines);
BoundingBox get_extents(const Lines &lines);
} // namespace Slic3r
// start Boost
#include <boost/polygon/polygon.hpp>
namespace boost {
namespace polygon {
namespace boost { namespace polygon {
template <>
struct geometry_concept<Slic3r::Line> {
typedef segment_concept type;
};
struct geometry_concept<Slic3r::Line> { typedef segment_concept type; };
template <>
struct segment_traits<Slic3r::Line> {
typedef coord_t coordinate_type;
typedef Slic3r::Point point_type;
static inline point_type get(const Slic3r::Line& line, direction_1d dir)
{
static inline point_type get(const Slic3r::Line& line, direction_1d dir) {
return dir.to_int() ? line.b : line.a;
}
};
}
}
} }
// end Boost
#endif // slic3r_Line_hpp_
#endif // slic3r_Line_hpp_