Update files related to support to match BambuStudio's project structure

This commit is contained in:
Noisyfox 2024-09-30 13:34:59 +08:00
parent 1b367b7df9
commit 97d1745e5a
28 changed files with 7619 additions and 16152 deletions

View file

@ -1,299 +1,511 @@
// Tree supports by Thomas Rahm, losely based on Tree Supports by CuraEngine.
// Original source of Thomas Rahm's tree supports:
// https://github.com/ThomasRahm/CuraEngine
//
// Original CuraEngine copyright:
// Copyright (c) 2021 Ultimaker B.V.
// CuraEngine is released under the terms of the AGPLv3 or higher.
#ifndef TREESUPPORT_H
#define TREESUPPORT_H
#ifndef slic3r_TreeSupport_hpp
#define slic3r_TreeSupport_hpp
#include <forward_list>
#include <unordered_set>
#include "ExPolygon.hpp"
#include "Point.hpp"
#include "Slicing.hpp"
#include "MinimumSpanningTree.hpp"
#include "tbb/concurrent_unordered_map.h"
#include "Flow.hpp"
#include "PrintConfig.hpp"
#include "Fill/Lightning/Generator.hpp"
#include "SupportLayer.hpp"
#include "TreeModelVolumes.hpp"
#include "TreeSupportCommon.hpp"
#include "../BoundingBox.hpp"
#include "../Point.hpp"
#include "../Utils.hpp"
#include <boost/container/small_vector.hpp>
// #define TREE_SUPPORT_SHOW_ERRORS
#ifdef SLIC3R_TREESUPPORTS_PROGRESS
// The various stages of the process can be weighted differently in the progress bar.
// These weights are obtained experimentally using a small sample size. Sensible weights can differ drastically based on the assumed default settings and model.
#define TREE_PROGRESS_TOTAL 10000
#define TREE_PROGRESS_PRECALC_COLL TREE_PROGRESS_TOTAL * 0.1
#define TREE_PROGRESS_PRECALC_AVO TREE_PROGRESS_TOTAL * 0.4
#define TREE_PROGRESS_GENERATE_NODES TREE_PROGRESS_TOTAL * 0.1
#define TREE_PROGRESS_AREA_CALC TREE_PROGRESS_TOTAL * 0.3
#define TREE_PROGRESS_DRAW_AREAS TREE_PROGRESS_TOTAL * 0.1
#define TREE_PROGRESS_GENERATE_BRANCH_AREAS TREE_PROGRESS_DRAW_AREAS / 3
#define TREE_PROGRESS_SMOOTH_BRANCH_AREAS TREE_PROGRESS_DRAW_AREAS / 3
#define TREE_PROGRESS_FINALIZE_BRANCH_AREAS TREE_PROGRESS_DRAW_AREAS / 3
#endif // SLIC3R_TREESUPPORTS_PROGRESS
#ifndef SQ
#define SQ(x) ((x)*(x))
#endif
namespace Slic3r
{
// Forward declarations
class Print;
class PrintObject;
struct SlicingParameters;
class TreeSupport;
class SupportLayer;
namespace FFFTreeSupport
struct LayerHeightData
{
coordf_t print_z = 0;
coordf_t height = 0;
size_t next_layer_nr = 0;
LayerHeightData() = default;
LayerHeightData(coordf_t z, coordf_t h, size_t next_layer) : print_z(z), height(h), next_layer_nr(next_layer) {}
};
// The number of vertices in each circle.
static constexpr const size_t SUPPORT_TREE_CIRCLE_RESOLUTION = 25;
struct AreaIncreaseSettings
{
AreaIncreaseSettings(
TreeModelVolumes::AvoidanceType type = TreeModelVolumes::AvoidanceType::Fast, coord_t increase_speed = 0,
bool increase_radius = false, bool no_error = false, bool use_min_distance = false, bool move = false) :
increase_speed{ increase_speed }, type{ type }, increase_radius{ increase_radius }, no_error{ no_error }, use_min_distance{ use_min_distance }, move{ move } {}
coord_t increase_speed;
// Packing for smaller memory footprint of SupportElementState && SupportElementMerging
TreeModelVolumes::AvoidanceType type;
bool increase_radius : 1;
bool no_error : 1;
bool use_min_distance : 1;
bool move : 1;
bool operator==(const AreaIncreaseSettings& other) const
{
return type == other.type &&
increase_speed == other.increase_speed &&
increase_radius == other.increase_radius &&
no_error == other.no_error &&
use_min_distance == other.use_min_distance &&
move == other.move;
struct TreeNode {
Vec3f pos;
std::vector<int> children; // index of children in the storing vector
std::vector<int> parents; // index of parents in the storing vector
TreeNode(Point pt, float z) {
pos = { float(unscale_(pt.x())),float(unscale_(pt.y())),z };
}
};
#define TREE_SUPPORTS_TRACK_LOST
/*!
* \brief Lazily generates tree guidance volumes.
*
* \warning This class is not currently thread-safe and should not be accessed in OpenMP blocks
*/
class TreeSupportData
{
public:
TreeSupportData() = default;
/*!
* \brief Construct the TreeSupportData object
*
* \param xy_distance The required clearance between the model and the
* tree branches.
* \param max_move The maximum allowable movement between nodes on
* adjacent layers
* \param radius_sample_resolution Sample size used to round requested node radii.
* \param collision_resolution
*/
TreeSupportData(const PrintObject& object, coordf_t max_move, coordf_t radius_sample_resolution, coordf_t collision_resolution);
// C++17 does not support in place initializers of bit values, thus a constructor zeroing the bits is provided.
struct SupportElementStateBits {
SupportElementStateBits() :
to_buildplate(false),
to_model_gracious(false),
use_min_xy_dist(false),
supports_roof(false),
can_use_safe_radius(false),
skip_ovalisation(false),
#ifdef TREE_SUPPORTS_TRACK_LOST
lost(false),
verylost(false),
#endif // TREE_SUPPORTS_TRACK_LOST
deleted(false),
marked(false)
TreeSupportData(TreeSupportData&&) = default;
TreeSupportData& operator=(TreeSupportData&&) = default;
TreeSupportData(const TreeSupportData&) = delete;
TreeSupportData& operator=(const TreeSupportData&) = delete;
/*!
* \brief Creates the areas that have to be avoided by the tree's branches.
*
* The result is a 2D area that would cause nodes of radius \p radius to
* collide with the model.
*
* \param radius The radius of the node of interest
* \param layer The layer of interest
* \return Polygons object
*/
const ExPolygons& get_collision(coordf_t radius, size_t layer_idx) const;
/*!
* \brief Creates the areas that have to be avoided by the tree's branches
* in order to reach the build plate.
*
* The result is a 2D area that would cause nodes of radius \p radius to
* collide with the model or be unable to reach the build platform.
*
* The input collision areas are inset by the maximum move distance and
* propagated upwards.
*
* \param radius The radius of the node of interest
* \param layer The layer of interest
* \return Polygons object
*/
const ExPolygons& get_avoidance(coordf_t radius, size_t layer_idx, int recursions=0) const;
Polygons get_contours(size_t layer_nr) const;
Polygons get_contours_with_holes(size_t layer_nr) const;
std::vector<LayerHeightData> layer_heights;
std::vector<TreeNode> tree_nodes;
private:
/*!
* \brief Convenience typedef for the keys to the caches
*/
struct RadiusLayerPair {
coordf_t radius;
size_t layer_nr;
int recursions;
};
struct RadiusLayerPairEquality {
constexpr bool operator()(const RadiusLayerPair& _Left, const RadiusLayerPair& _Right) const {
return _Left.radius == _Right.radius && _Left.layer_nr == _Right.layer_nr;
}
};
struct RadiusLayerPairHash {
size_t operator()(const RadiusLayerPair& elem) const {
return std::hash<coord_t>()(elem.radius) ^ std::hash<coord_t>()(elem.layer_nr * 7919);
}
};
/*!
* \brief Round \p radius upwards to a multiple of m_radius_sample_resolution
*
* \param radius The radius of the node of interest
*/
coordf_t ceil_radius(coordf_t radius) const;
/*!
* \brief Calculate the collision areas at the radius and layer indicated
* by \p key.
*
* \param key The radius and layer of the node of interest
*/
const ExPolygons& calculate_collision(const RadiusLayerPair& key) const;
/*!
* \brief Calculate the avoidance areas at the radius and layer indicated
* by \p key.
*
* \param key The radius and layer of the node of interest
*/
const ExPolygons& calculate_avoidance(const RadiusLayerPair& key) const;
public:
bool is_slim = false;
/*!
* \brief The required clearance between the model and the tree branches
*/
coordf_t m_xy_distance;
/*!
* \brief The maximum distance that the centrepoint of a tree branch may
* move in consequtive layers
*/
coordf_t m_max_move;
/*!
* \brief Sample resolution for radius values.
*
* The radius will be rounded (upwards) to multiples of this value before
* calculations are done when collision, avoidance and internal model
* Polygons are requested.
*/
coordf_t m_radius_sample_resolution;
/*!
* \brief Storage for layer outlines of the meshes.
*/
std::vector<ExPolygons> m_layer_outlines;
// union contours of all layers below
std::vector<ExPolygons> m_layer_outlines_below;
/*!
* \brief Caches for the collision, avoidance and internal model polygons
* at given radius and layer indices.
*
* These are mutable to allow modification from const function. This is
* generally considered OK as the functions are still logically const
* (ie there is no difference in behaviour for the user betweeen
* calculating the values each time vs caching the results).
*
* coconut: previously stl::unordered_map is used which seems problematic with tbb::parallel_for.
* So we change to tbb::concurrent_unordered_map
*/
mutable tbb::concurrent_unordered_map<RadiusLayerPair, ExPolygons, RadiusLayerPairHash, RadiusLayerPairEquality> m_collision_cache;
mutable tbb::concurrent_unordered_map<RadiusLayerPair, ExPolygons, RadiusLayerPairHash, RadiusLayerPairEquality> m_avoidance_cache;
friend TreeSupport;
};
struct LineHash {
size_t operator()(const Line& line) const {
return (std::hash<coord_t>()(line.a(0)) ^ std::hash<coord_t>()(line.b(1))) * 102 +
(std::hash<coord_t>()(line.a(1)) ^ std::hash<coord_t>()(line.b(0))) * 10222;
}
};
/*!
* \brief Generates a tree structure to support your models.
*/
class TreeSupport
{
public:
/*!
* \brief Creates an instance of the tree support generator.
*
* \param storage The data storage to get global settings from.
*/
TreeSupport(PrintObject& object, const SlicingParameters &slicing_params);
/*!
* \brief Create the areas that need support.
*
* These areas are stored inside the given SliceDataStorage object.
* \param storage The data storage where the mesh data is gotten from and
* where the resulting support areas are stored.
*/
void generate();
void detect_overhangs(bool detect_first_sharp_tail_only=false);
enum NodeType {
eCircle,
eSquare,
ePolygon
};
/*!
* \brief Represents the metadata of a node in the tree.
*/
struct Node
{
static constexpr Node* NO_PARENT = nullptr;
Node()
: distance_to_top(0)
, position(Point(0, 0))
, obj_layer_nr(0)
, support_roof_layers_below(0)
, support_floor_layers_above(0)
, to_buildplate(true)
, parent(nullptr)
, print_z(0.0)
, height(0.0)
{}
/*!
* \brief The element trys to reach the buildplate
*/
bool to_buildplate : 1;
// when dist_mm_to_top_==0, new node's dist_mm_to_top=parent->dist_mm_to_top + parent->height;
Node(const Point position, const int distance_to_top, const int obj_layer_nr, const int support_roof_layers_below, const bool to_buildplate, Node* parent,
coordf_t print_z_, coordf_t height_, coordf_t dist_mm_to_top_=0)
: distance_to_top(distance_to_top)
, position(position)
, obj_layer_nr(obj_layer_nr)
, support_roof_layers_below(support_roof_layers_below)
, support_floor_layers_above(0)
, to_buildplate(to_buildplate)
, parent(parent)
, print_z(print_z_)
, height(height_)
, dist_mm_to_top(dist_mm_to_top_)
{
if (parent) {
type = parent->type;
overhang = parent->overhang;
if (dist_mm_to_top==0)
dist_mm_to_top = parent->dist_mm_to_top + parent->height;
parent->child = this;
for (auto& neighbor : parent->merged_neighbours)
neighbor->child = this;
}
}
/*!
* \brief Will the branch be able to rest completely on a flat surface, be it buildplate or model ?
*/
bool to_model_gracious : 1;
#ifdef DEBUG // Clear the delete node's data so if there's invalid access after, we may get a clue by inspecting that node.
~Node()
{
parent = nullptr;
merged_neighbours.clear();
}
#endif // DEBUG
/*!
* \brief Whether the min_xy_distance can be used to get avoidance or similar. Will only be true if support_xy_overrides_z=Z overrides X/Y.
*/
bool use_min_xy_dist : 1;
/*!
* \brief The number of layers to go to the top of this branch.
* Negative value means it's a virtual node between support and overhang, which doesn't need to be extruded.
*/
int distance_to_top;
coordf_t dist_mm_to_top = 0; // dist to bottom contact in mm
/*!
* \brief True if this Element or any parent (element above) provides support to a support roof.
*/
bool supports_roof : 1;
/*!
* \brief The position of this node on the layer.
*/
Point position;
Point movement; // movement towards neighbor center or outline
mutable double radius = 0.0;
mutable double max_move_dist = 0.0;
NodeType type = eCircle;
bool is_merged = false; // this node is generated by merging upper nodes
bool is_corner = false;
bool is_processed = false;
const ExPolygon *overhang = nullptr; // when type==ePolygon, set this value to get original overhang area
/*!
* \brief An influence area is considered safe when it can use the holefree avoidance <=> It will not have to encounter holes on its way downward.
*/
bool can_use_safe_radius : 1;
/*!
* \brief The direction of the skin lines above the tip of the branch.
*
* This determines in which direction we should reduce the width of the
* branch.
*/
bool skin_direction;
/*!
* \brief Skip the ovalisation to parent and children when generating the final circles.
*/
bool skip_ovalisation : 1;
/*!
* \brief The number of support roof layers below this one.
*
* When a contact point is created, it is determined whether the mesh
* needs to be supported with support roof or not, since that is a
* per-mesh setting. This is stored in this variable in order to track
* how far we need to extend that support roof downwards.
*/
int support_roof_layers_below;
int support_floor_layers_above;
int obj_layer_nr;
#ifdef TREE_SUPPORTS_TRACK_LOST
// Likely a lost branch, debugging information.
bool lost : 1;
bool verylost : 1;
#endif // TREE_SUPPORTS_TRACK_LOST
/*!
* \brief Whether to try to go towards the build plate.
*
* If the node is inside the collision areas, it has no choice but to go
* towards the model. If it is not inside the collision areas, it must
* go towards the build plate to prevent a scar on the surface.
*/
bool to_buildplate;
// Not valid anymore, to be deleted.
bool deleted : 1;
/*!
* \brief The originating node for this one, one layer higher.
*
* In order to prune branches that can't have any support (because they
* can't be on the model and the path to the buildplate isn't clear),
* the entire branch needs to be known.
*/
Node *parent;
Node *child = nullptr;
// General purpose flag marking a visited element.
bool marked : 1;
};
/*!
* \brief All neighbours (on the same layer) that where merged into this node.
*
* In order to prune branches that can't have any support (because they
* can't be on the model and the path to the buildplate isn't clear),
* the entire branch needs to be known.
*/
std::list<Node*> merged_neighbours;
struct SupportElementState : public SupportElementStateBits
{
/*!
* \brief The layer this support elements wants reach
*/
LayerIndex target_height;
coordf_t print_z;
coordf_t height;
/*!
* \brief The position this support elements wants to support on layer=target_height
*/
Point target_position;
bool operator==(const Node& other) const
{
return position == other.position;
}
};
/*!
* \brief The next position this support elements wants to reach. NOTE: This is mainly a suggestion regarding direction inside the influence area.
*/
Point next_position;
/*!
* \brief The next height this support elements wants to reach
*/
LayerIndex layer_idx;
/*!
* \brief The Effective distance to top of this element regarding radius increases and collision calculations.
*/
uint32_t effective_radius_height;
/*!
* \brief The amount of layers this element is below the topmost layer of this branch.
*/
uint32_t distance_to_top;
/*!
* \brief The resulting center point around which a circle will be drawn later.
* Will be set by setPointsOnAreas
*/
Point result_on_layer { std::numeric_limits<coord_t>::max(), std::numeric_limits<coord_t>::max() };
bool result_on_layer_is_set() const { return this->result_on_layer != Point{ std::numeric_limits<coord_t>::max(), std::numeric_limits<coord_t>::max() }; }
void result_on_layer_reset() { this->result_on_layer = Point{ std::numeric_limits<coord_t>::max(), std::numeric_limits<coord_t>::max() }; }
/*!
* \brief The amount of extra radius we got from merging branches that could have reached the buildplate, but merged with ones that can not.
*/
coord_t increased_to_model_radius; // how much to model we increased only relevant for merging
/*!
* \brief Counter about the times the elephant foot was increased. Can be fractions for merge reasons.
*/
double elephant_foot_increases;
/*!
* \brief The element tries to not move until this dtt is reached, is set to 0 if the element had to move.
*/
uint32_t dont_move_until;
/*!
* \brief Settings used to increase the influence area to its current state.
*/
AreaIncreaseSettings last_area_increase;
/*!
* \brief Amount of roof layers that were not yet added, because the branch needed to move.
*/
uint32_t missing_roof_layers;
// called by increase_single_area() and increaseAreas()
[[nodiscard]] static SupportElementState propagate_down(const SupportElementState &src)
struct SupportParams
{
SupportElementState dst{ src };
++ dst.distance_to_top;
-- dst.layer_idx;
// set to invalid as we are a new node on a new layer
dst.result_on_layer_reset();
dst.skip_ovalisation = false;
return dst;
}
Flow first_layer_flow;
Flow support_material_flow;
Flow support_material_interface_flow;
Flow support_material_bottom_interface_flow;
coordf_t support_extrusion_width;
// Is merging of regions allowed? Could the interface & base support regions be printed with the same extruder?
bool can_merge_support_regions;
[[nodiscard]] bool locked() const { return this->distance_to_top < this->dont_move_until; }
};
coordf_t support_layer_height_min;
// coordf_t support_layer_height_max;
/*!
* \brief Get the Distance to top regarding the real radius this part will have. This is different from distance_to_top, which is can be used to calculate the top most layer of the branch.
* \param elem[in] The SupportElement one wants to know the effectiveDTT
* \return The Effective DTT.
*/
[[nodiscard]] inline size_t getEffectiveDTT(const TreeSupportSettings &settings, const SupportElementState &elem)
{
return elem.effective_radius_height < settings.increase_radius_until_layer ?
(elem.distance_to_top < settings.increase_radius_until_layer ? elem.distance_to_top : settings.increase_radius_until_layer) :
elem.effective_radius_height;
}
coordf_t gap_xy;
/*!
* \brief Get the Radius, that this element will have.
* \param elem[in] The Element.
* \return The radius the element has.
*/
[[nodiscard]] inline coord_t support_element_radius(const TreeSupportSettings &settings, const SupportElementState &elem)
{
return settings.getRadius(getEffectiveDTT(settings, elem), elem.elephant_foot_increases);
}
float base_angle;
float interface_angle;
coordf_t interface_spacing;
coordf_t interface_density;
coordf_t support_spacing;
coordf_t support_density;
/*!
* \brief Get the collision Radius of this Element. This can be smaller then the actual radius, as the drawAreas will cut off areas that may collide with the model.
* \param elem[in] The Element.
* \return The collision radius the element has.
*/
[[nodiscard]] inline coord_t support_element_collision_radius(const TreeSupportSettings &settings, const SupportElementState &elem)
{
return settings.getRadius(elem.effective_radius_height, elem.elephant_foot_increases);
}
InfillPattern base_fill_pattern;
InfillPattern interface_fill_pattern;
InfillPattern contact_fill_pattern;
bool with_sheath;
const double thresh_big_overhang = SQ(scale_(10));
};
struct SupportElement
{
using ParentIndices =
#ifdef NDEBUG
// To reduce memory allocation in release mode.
boost::container::small_vector<int32_t, 4>;
#else // NDEBUG
// To ease debugging.
std::vector<int32_t>;
#endif // NDEBUG
int avg_node_per_layer = 0;
float nodes_angle = 0;
bool has_overhangs = false;
bool has_sharp_tails = false;
bool has_cantilever = false;
double max_cantilever_dist = 0;
SupportType support_type;
SupportMaterialStyle support_style;
// SupportElement(const SupportElementState &state) : SupportElementState(state) {}
SupportElement(const SupportElementState &state, Polygons &&influence_area) : state(state), influence_area(std::move(influence_area)) {}
SupportElement(const SupportElementState &state, ParentIndices &&parents, Polygons &&influence_area) :
state(state), parents(std::move(parents)), influence_area(std::move(influence_area)) {}
std::unique_ptr<FillLightning::Generator> generator;
std::unordered_map<double, size_t> printZ_to_lightninglayer;
private:
/*!
* \brief Generator for model collision, avoidance and internal guide volumes
*
* Lazily computes volumes as needed.
* \warning This class is NOT currently thread-safe and should not be accessed in OpenMP blocks
*/
std::shared_ptr<TreeSupportData> m_ts_data;
PrintObject *m_object;
const PrintObjectConfig *m_object_config;
SlicingParameters m_slicing_params;
// Various precomputed support parameters to be shared with external functions.
SupportParams m_support_params;
size_t m_raft_layers = 0;
size_t m_highest_overhang_layer = 0;
std::vector<std::vector<MinimumSpanningTree>> m_spanning_trees;
std::vector< std::unordered_map<Line, bool, LineHash>> m_mst_line_x_layer_contour_caches;
coordf_t MAX_BRANCH_RADIUS = 10.0;
coordf_t MAX_BRANCH_RADIUS_FIRST_LAYER = 12.0;
coordf_t MIN_BRANCH_RADIUS = 0.5;
float tree_support_branch_diameter_angle = 5.0;
bool is_strong = false;
bool is_slim = false;
bool with_infill = false;
SupportElementState state;
/*!
* \brief All elements in the layer above the current one that are supported by this element
* \brief Polygons representing the limits of the printable area of the
* machine
*/
ParentIndices parents;
ExPolygon m_machine_border;
/*!
* \brief The resulting influence area.
* Will only be set in the results of createLayerPathing, and will be nullptr inside!
* \brief Draws circles around each node of the tree into the final support.
*
* This also handles the areas that have to become support roof, support
* bottom, the Z distances, etc.
*
* \param storage[in, out] The settings storage to get settings from and to
* save the resulting support polygons to.
* \param contact_nodes The nodes to draw as support.
*/
Polygons influence_area;
void draw_circles(const std::vector<std::vector<Node*>>& contact_nodes);
/*!
* \brief Drops down the nodes of the tree support towards the build plate.
*
* This is where the cleverness of tree support comes in: The nodes stay on
* their 2D layers but on the next layer they are slightly shifted. This
* causes them to move towards each other as they are copied to lower layers
* which ultimately results in a 3D tree.
*
* \param contact_nodes[in, out] The nodes in the space that need to be
* dropped down. The nodes are dropped to lower layers inside the same
* vector of layers.
*/
void drop_nodes(std::vector<std::vector<Node *>> &contact_nodes);
void smooth_nodes(std::vector<std::vector<Node *>> &contact_nodes);
void adjust_layer_heights(std::vector<std::vector<Node*>>& contact_nodes);
/*! BBS: MusangKing: maximum layer height
* \brief Optimize the generation of tree support by pre-planning the layer_heights
*
*/
std::vector<LayerHeightData> plan_layer_heights(std::vector<std::vector<Node *>> &contact_nodes);
/*!
* \brief Creates points where support contacts the model.
*
* A set of points is created for each layer.
* \param mesh The mesh to get the overhang areas to support of.
* \param contact_nodes[out] A vector of mappings from contact points to
* their tree nodes.
* \param collision_areas For every layer, the areas where a generated
* contact point would immediately collide with the model due to the X/Y
* distance.
* \return For each layer, a list of points where the tree should connect
* with the model.
*/
void generate_contact_points(std::vector<std::vector<Node*>>& contact_nodes);
/*!
* \brief Add a node to the next layer.
*
* If a node is already at that position in the layer, the nodes are merged.
*/
void insert_dropped_node(std::vector<Node*>& nodes_layer, Node* node);
void create_tree_support_layers();
void generate_toolpaths();
Polygons spanning_tree_to_polygon(const std::vector<MinimumSpanningTree>& spanning_trees, Polygons layer_contours, int layer_nr);
Polygons contact_nodes_to_polygon(const std::vector<Node*>& contact_nodes, Polygons layer_contours, int layer_nr, std::vector<double>& radiis, std::vector<bool>& is_interface);
coordf_t calc_branch_radius(coordf_t base_radius, size_t layers_to_top, size_t tip_layers, double diameter_angle_scale_factor);
coordf_t calc_branch_radius(coordf_t base_radius, coordf_t mm_to_top, double diameter_angle_scale_factor);
// similar to SupportMaterial::trim_support_layers_by_object
Polygons get_trim_support_regions(
const PrintObject& object,
SupportLayer* support_layer_ptr,
const coordf_t gap_extra_above,
const coordf_t gap_extra_below,
const coordf_t gap_xy);
};
using SupportElements = std::deque<SupportElement>;
[[nodiscard]] inline coord_t support_element_radius(const TreeSupportSettings &settings, const SupportElement &elem)
{
return support_element_radius(settings, elem.state);
}
[[nodiscard]] inline coord_t support_element_collision_radius(const TreeSupportSettings &settings, const SupportElement &elem)
{
return support_element_collision_radius(settings, elem.state);
}
} // namespace FFFTreeSupport
void fff_tree_support_generate(PrintObject &print_object, std::function<void()> throw_on_cancel = []{});
} // namespace Slic3r
#endif /* slic3r_TreeSupport_hpp */
#endif /* TREESUPPORT_H */