mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-23 00:31:11 -06:00
Rewrote Fill2.pm to C++, deleted Perl infills for good.
Removed dependency on Perl Math::PlanePath module. Fixed compilation with Visual Studio and SLIC3R_DEBUG: Visual Studio older than 2015 does not support the prinf type specifier %zu. Use %Iu instead. C++11 move semantics enabled.
This commit is contained in:
parent
3a31d37d35
commit
95ede7c4b8
49 changed files with 628 additions and 1803 deletions
|
@ -1,14 +1,17 @@
|
|||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "../Surface.hpp"
|
||||
#include "../Geometry.hpp"
|
||||
#include "../Layer.hpp"
|
||||
#include "../Print.hpp"
|
||||
#include "../PrintConfig.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillBase.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
#if 0
|
||||
// Generate infills for Slic3r::Layer::Region.
|
||||
// The Slic3r::Layer::Region at this point of time may contain
|
||||
// surfaces of various types (internal/bridge/top/bottom/solid).
|
||||
|
@ -31,8 +34,8 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
|||
// without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
SurfacesPtr surfaces_with_bridge_angle;
|
||||
surfaces_with_bridge_angle.reserve(layerm->fill_surfaces.surfaces.size());
|
||||
for (Surfaces::iterator it = layerm->fill_surfaces.surfaces.begin(); it != layerm->fill_surfaces.surfaces.end(); ++ it)
|
||||
surfaces_with_bridge_angle.reserve(layerm.fill_surfaces.surfaces.size());
|
||||
for (Surfaces::iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
|
||||
if (it->bridge_angle >= 0)
|
||||
surfaces_with_bridge_angle.push_back(&(*it));
|
||||
|
||||
|
@ -40,76 +43,61 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
|||
// group is of type Slic3r::SurfaceCollection
|
||||
//FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
|
||||
std::vector<SurfacesPtr> groups;
|
||||
layerm->fill_surfaces.group(&groups);
|
||||
layerm.fill_surfaces.group(&groups);
|
||||
|
||||
// merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
// cache flow widths and patterns used for all solid groups
|
||||
// (we'll use them for comparing compatible groups)
|
||||
my @is_solid = my @fw = my @pattern = ();
|
||||
for (my $i = 0; $i <= $num_ groups; $i++) {
|
||||
std::vector<char> is_solid(groups.size(), false);
|
||||
std::vector<float> fw(groups.size(), 0.f);
|
||||
std::vector<int> pattern(groups.size(), -1);
|
||||
for (size_t i = 0; i < groups.size(); ++ i) {
|
||||
// we can only merge solid non-bridge surfaces, so discard
|
||||
// non-solid surfaces
|
||||
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||||
$is_solid[$i] = 1;
|
||||
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||||
? $top_solid_infill_flow->width
|
||||
: $solid_infill_flow->width;
|
||||
$pattern[$i] = $groups[$i][0]->is_external
|
||||
? $layerm->region->config->external_fill_pattern
|
||||
: 'rectilinear';
|
||||
} else {
|
||||
$is_solid[$i] = 0;
|
||||
$fw[$i] = 0;
|
||||
$pattern[$i] = 'none';
|
||||
const Surface &surface = *groups[i].front();
|
||||
if (surface.is_solid() && (!surface.is_bridge() || layerm.layer()->id() == 0)) {
|
||||
is_solid[i] = true;
|
||||
fw[i] = (surface.surface_type == stTop) ? top_solid_infill_flow.width : solid_infill_flow.width;
|
||||
pattern[i] = surface.is_external() ? layerm.region()->config.external_fill_pattern.value : ipRectilinear;
|
||||
}
|
||||
}
|
||||
|
||||
// loop through solid groups
|
||||
for (my $i = 0; $i <= $num_groups; $i++) {
|
||||
next if !$is_solid[$i];
|
||||
|
||||
// find compatible groups and append them to this one
|
||||
for (my $j = $i+1; $j <= $num_groups; $j++) {
|
||||
next if !$is_solid[$j];
|
||||
|
||||
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||||
// groups are compatible, merge them
|
||||
push @{$groups[$i]}, @{$groups[$j]};
|
||||
splice @groups, $j, 1;
|
||||
splice @is_solid, $j, 1;
|
||||
splice @fw, $j, 1;
|
||||
splice @pattern, $j, 1;
|
||||
for (size_t i = 0; i < groups.size(); ++ i) {
|
||||
if (is_solid[i]) {
|
||||
// find compatible groups and append them to this one
|
||||
for (size_t j = i + 1; j < groups.size(); ++ j) {
|
||||
if (is_solid[j] && fw[i] == fw[j] && pattern[i] == pattern[j]) {
|
||||
// groups are compatible, merge them
|
||||
groups[i].insert(groups[i].end(), groups[j].begin(), groups[j].end());
|
||||
groups.erase(groups.begin() + j);
|
||||
is_solid.erase(is_solid.begin() + j);
|
||||
fw.erase(fw.begin() + j);
|
||||
pattern.erase(pattern.begin() + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// give priority to bridges
|
||||
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||||
|
||||
foreach my $group (@groups) {
|
||||
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
my $union_p = union([ map $_->p, @$group ], 1);
|
||||
|
||||
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||||
$union_p = diff(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces_with_bridge_angle ],
|
||||
1,
|
||||
);
|
||||
// Give priority to bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
|
||||
for (size_t round = 0; round < 2; ++ round) {
|
||||
for (std::vector<SurfacesPtr>::iterator it_group = groups.begin(); it_group != groups.end(); ++ it_group) {
|
||||
const SurfacesPtr &group = *it_group;
|
||||
bool is_bridge = group.front()->bridge_angle >= 0;
|
||||
if (is_bridge != (round == 0))
|
||||
continue;
|
||||
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
Polygons union_p = union_(to_polygons(*it_group), true);
|
||||
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (! surfaces_with_bridge_angle.empty() && it_group->front()->bridge_angle < 0)
|
||||
union_p = diff(union_p, to_polygons(surfaces_with_bridge_angle), true);
|
||||
// subtract any other surface already processed
|
||||
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
ExPolygons union_expolys = diff_ex(union_p, to_polygons(surfaces), true);
|
||||
for (ExPolygons::const_iterator it_expoly = union_expolys.begin(); it_expoly != union_expolys.end(); ++ it_expoly)
|
||||
surfaces.push_back(Surface(*it_group->front(), *it_expoly));
|
||||
}
|
||||
|
||||
// subtract any other surface already processed
|
||||
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
my $union = diff_ex(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces ],
|
||||
1,
|
||||
);
|
||||
|
||||
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -123,149 +111,140 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
|||
// TODO: detect and investigate whether there could be narrow regions without
|
||||
// any void neighbors
|
||||
{
|
||||
my $distance_between_surfaces = max(
|
||||
$infill_flow->scaled_spacing,
|
||||
$solid_infill_flow->scaled_spacing,
|
||||
$top_solid_infill_flow->scaled_spacing,
|
||||
);
|
||||
my $collapsed = diff(
|
||||
[ map @{$_->expolygon}, @surfaces ],
|
||||
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||||
1,
|
||||
);
|
||||
push @surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => S_TYPE_INTERNALSOLID,
|
||||
), @{intersection_ex(
|
||||
offset($collapsed, $distance_between_surfaces),
|
||||
[
|
||||
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||||
(@$collapsed),
|
||||
],
|
||||
1,
|
||||
)};
|
||||
coord_t distance_between_surfaces = std::max(
|
||||
std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
|
||||
top_solid_infill_flow.scaled_spacing());
|
||||
Polygons surfaces_polygons = to_polygons(surfaces);
|
||||
Polygons collapsed = diff(
|
||||
surfaces_polygons,
|
||||
offset2(surfaces_polygons, -distance_between_surfaces/2, +distance_between_surfaces/2),
|
||||
true);
|
||||
Polygons to_subtract;
|
||||
to_subtract.reserve(collapsed.size() + number_polygons(surfaces));
|
||||
for (Surfaces::const_iterator it_surface = surfaces.begin(); it_surface != surfaces.end(); ++ it_surface)
|
||||
if (it_surface->surface_type == stInternalVoid)
|
||||
polygons_append(to_subtract, *it_surface);
|
||||
polygons_append(to_subtract, collapsed);
|
||||
surfaces_append(
|
||||
surfaces,
|
||||
intersection_ex(
|
||||
offset(collapsed, distance_between_surfaces),
|
||||
to_subtract,
|
||||
true),
|
||||
stInternalSolid);
|
||||
}
|
||||
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
);
|
||||
// require "Slic3r/SVG.pm";
|
||||
// Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
// expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
// red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
// );
|
||||
}
|
||||
|
||||
SURFACE: foreach my $surface (@surfaces) {
|
||||
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||||
my $filler = $layerm->region->config->fill_pattern;
|
||||
my $density = $fill_density;
|
||||
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||||
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||||
: FLOW_ROLE_INFILL;
|
||||
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||||
my $is_solid = $surface->is_solid;
|
||||
|
||||
for (Surfaces::const_iterator surface_it = surfaces.begin(); surface_it != surfaces.end(); ++ surface_it) {
|
||||
const Surface &surface = *surface_it;
|
||||
if (surface.surface_type == stInternalVoid)
|
||||
continue;
|
||||
InfillPattern fill_pattern = layerm.region()->config.fill_pattern.value;
|
||||
double density = fill_density;
|
||||
FlowRole role = (surface.surface_type == stTop) ? frTopSolidInfill :
|
||||
(surface.is_solid() ? frSolidInfill : frInfill);
|
||||
bool is_bridge = layerm.layer()->id() > 0 && surface.is_bridge();
|
||||
|
||||
if ($surface->is_solid) {
|
||||
$density = 100;
|
||||
$filler = 'rectilinear';
|
||||
if ($surface->is_external && !$is_bridge) {
|
||||
$filler = $layerm->region->config->external_fill_pattern;
|
||||
}
|
||||
} else {
|
||||
next SURFACE unless $density > 0;
|
||||
}
|
||||
if (surface.is_solid()) {
|
||||
density = 100;
|
||||
fill_pattern = (surface.is_external() && ! is_bridge) ?
|
||||
layerm.region()->config.external_fill_pattern.value :
|
||||
ipRectilinear;
|
||||
} else if (density <= 0)
|
||||
continue;
|
||||
|
||||
// get filler object
|
||||
my $f = $self->filler($filler);
|
||||
std::auto_ptr<Fill> f = std::auto_ptr<Fill>(Fill::new_from_type(fill_pattern));
|
||||
f->set_bounding_box(layerm.layer()->object()->bounding_box());
|
||||
|
||||
// calculate the actual flow we'll be using for this infill
|
||||
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||||
my $flow = $layerm->region->flow(
|
||||
$role,
|
||||
$h,
|
||||
$is_bridge || $f->use_bridge_flow,
|
||||
$layerm->layer->id == 0,
|
||||
-1,
|
||||
$layerm->layer->object,
|
||||
coordf_t h = (surface.thickness == -1) ? layerm.layer()->height : surface.thickness;
|
||||
Flow flow = layerm.region()->flow(
|
||||
role,
|
||||
h,
|
||||
is_bridge || f->use_bridge_flow(), // bridge flow?
|
||||
layerm.layer()->id() == 0, // first layer?
|
||||
-1, // auto width
|
||||
*layerm.layer()->object()
|
||||
);
|
||||
|
||||
// calculate flow spacing for infill pattern generation
|
||||
my $using_internal_flow = 0;
|
||||
if (!$is_solid && !$is_bridge) {
|
||||
bool using_internal_flow = false;
|
||||
if (! surface.is_solid() && ! is_bridge) {
|
||||
// it's internal infill, so we can calculate a generic flow spacing
|
||||
// for all layers, for avoiding the ugly effect of
|
||||
// misaligned infill on first layer because of different extrusion width and
|
||||
// layer height
|
||||
my $internal_flow = $layerm->region->flow(
|
||||
FLOW_ROLE_INFILL,
|
||||
$layerm->layer->object->config->layer_height, // TODO: handle infill_every_layers?
|
||||
0, // no bridge
|
||||
0, // no first layer
|
||||
-1, // auto width
|
||||
$layerm->layer->object,
|
||||
Flow internal_flow = layerm.region()->flow(
|
||||
frInfill,
|
||||
layerm.layer()->object()->config.layer_height.value, // TODO: handle infill_every_layers?
|
||||
false, // no bridge
|
||||
false, // no first layer
|
||||
-1, // auto width
|
||||
*layerm.layer()->object()
|
||||
);
|
||||
$f->set_spacing($internal_flow->spacing);
|
||||
$using_internal_flow = 1;
|
||||
f->spacing = internal_flow.spacing();
|
||||
using_internal_flow = 1;
|
||||
} else {
|
||||
$f->set_spacing($flow->spacing);
|
||||
f->spacing = flow.spacing();
|
||||
}
|
||||
|
||||
my $link_max_length = 0;
|
||||
if (! $is_bridge) {
|
||||
$link_max_length = $layerm->region->config->get_abs_value_over($surface->is_external ? 'external_fill_link_max_length' : 'fill_link_max_length', $flow->spacing);
|
||||
print "flow spacing: ", $flow->spacing, " is_external: ", $surface->is_external, ", link_max_length: $link_max_length\n";
|
||||
double link_max_length = 0.;
|
||||
if (! is_bridge) {
|
||||
link_max_length = layerm.region()->config.get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
||||
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
||||
}
|
||||
|
||||
$f->set_layer_id($layerm->layer->id);
|
||||
$f->set_z($layerm->layer->print_z);
|
||||
$f->set_angle(deg2rad($layerm->region->config->fill_angle));
|
||||
f->layer_id = layerm.layer()->id();
|
||||
f->z = layerm.layer()->print_z;
|
||||
f->angle = Geometry::deg2rad(layerm.region()->config.fill_angle.value);
|
||||
// Maximum length of the perimeter segment linking two infill lines.
|
||||
$f->set_link_max_length(scale($link_max_length));
|
||||
f->link_max_length = scale_(link_max_length);
|
||||
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||||
$f->set_loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||||
|
||||
// apply half spacing using this flow's own spacing and generate infill
|
||||
my @polylines = $f->fill_surface(
|
||||
$surface,
|
||||
density => $density/100,
|
||||
layer_height => $h,
|
||||
);
|
||||
next unless @polylines;
|
||||
f->loop_clipping = scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER;
|
||||
// f->layer_height = h;
|
||||
|
||||
// apply half spacing using this flow's own spacing and generate infill
|
||||
FillParams params;
|
||||
params.density = 0.01 * density;
|
||||
params.dont_adjust = true;
|
||||
Polylines polylines = f->fill_surface(&surface, params);
|
||||
if (polylines.empty())
|
||||
continue;
|
||||
|
||||
|
||||
// calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
// pattern generator)
|
||||
if ($using_internal_flow) {
|
||||
if (using_internal_flow) {
|
||||
// if we used the internal flow we're not doing a solid infill
|
||||
// so we can safely ignore the slight variation that might have
|
||||
// been applied to $f->flow_spacing
|
||||
} else {
|
||||
$flow = Slic3r::Flow->new_from_spacing(
|
||||
spacing => $f->spacing,
|
||||
nozzle_diameter => $flow->nozzle_diameter,
|
||||
layer_height => $h,
|
||||
bridge => $is_bridge || $f->use_bridge_flow,
|
||||
);
|
||||
flow = Flow::new_from_spacing(f->spacing, flow.nozzle_diameter, h, is_bridge || f->use_bridge_flow());
|
||||
}
|
||||
|
||||
// save into layer
|
||||
{
|
||||
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||||
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||||
: EXTR_ROLE_FILL;
|
||||
|
||||
out.
|
||||
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||||
ExtrusionRole role = is_bridge ? erBridgeInfill :
|
||||
(surface.is_solid() ? ((surface.surface_type == stTop) ? erTopSolidInfill : erSolidInfill) : erInternalInfill);
|
||||
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
||||
out.entities.push_back(&collection);
|
||||
// Only concentric fills are not sorted.
|
||||
$collection->no_sort($f->no_sort);
|
||||
$collection->append(
|
||||
map Slic3r::ExtrusionPath->new(
|
||||
polyline => $_,
|
||||
role => $role,
|
||||
mm3_per_mm => $flow->mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $flow->height,
|
||||
), map @$_, @polylines,
|
||||
);
|
||||
collection.no_sort = f->no_sort();
|
||||
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
|
||||
ExtrusionPath *path = new ExtrusionPath(role);
|
||||
collection.entities.push_back(path);
|
||||
path->polyline.points.swap(it->points);
|
||||
path->mm3_per_mm = flow.mm3_per_mm();
|
||||
path->width = flow.width,
|
||||
path->height = flow.height;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -275,12 +254,15 @@ void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
|||
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||||
// Why the paths are unpacked?
|
||||
for (ExtrusionEntitiesPtr::iterator thin_fill = layerm.thin_fills.entities.begin(); thin_fill != layerm.thin_fills.entities.end(); ++ thin_fill) {
|
||||
// ExtrusionEntityCollection
|
||||
out.append(new ExtrusionEntityCollection->new($thin_fill);
|
||||
#if 0
|
||||
out.entities.push_back((*thin_fill)->clone());
|
||||
assert(dynamic_cast<ExtrusionEntityCollection*>(out.entities.back()) != NULL);
|
||||
#else
|
||||
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
||||
out.entities.push_back(&collection);
|
||||
collection.entities.push_back((*thin_fill)->clone());
|
||||
#endif
|
||||
}
|
||||
|
||||
return @fills;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace Slic3r
|
||||
|
|
|
@ -13,7 +13,8 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
class Surface;
|
||||
class ExtrusionEntityCollection;
|
||||
class LayerRegion;
|
||||
|
||||
// An interface class to Perl, aggregating an instance of a Fill and a FillData.
|
||||
class Filler
|
||||
|
@ -28,6 +29,8 @@ public:
|
|||
FillParams params;
|
||||
};
|
||||
|
||||
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out);
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // slic3r_Fill_hpp_
|
||||
|
|
|
@ -60,15 +60,25 @@ Polylines Fill::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|||
|
||||
// Calculate a new spacing to fill width with possibly integer number of lines,
|
||||
// the first and last line being centered at the interval ends.
|
||||
//FIXME Vojtech: This
|
||||
// This function possibly increases the spacing, never decreases,
|
||||
// and for a narrow width the increase in spacing may become severe!
|
||||
// and for a narrow width the increase in spacing may become severe,
|
||||
// therefore the adjustment is limited to 20% increase.
|
||||
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
|
||||
{
|
||||
coord_t number_of_intervals = coord_t(coordf_t(width) / coordf_t(distance));
|
||||
return (number_of_intervals == 0) ?
|
||||
assert(width >= 0);
|
||||
assert(distance > 0);
|
||||
// floor(width / distance)
|
||||
coord_t number_of_intervals = width / distance;
|
||||
coord_t distance_new = (number_of_intervals == 0) ?
|
||||
distance :
|
||||
(width / number_of_intervals);
|
||||
const coordf_t factor = coordf_t(distance_new) / coordf_t(distance);
|
||||
assert(factor > 1. - 1e-5);
|
||||
// How much could the extrusion width be increased? By 20%.
|
||||
const coordf_t factor_max = 1.2;
|
||||
if (factor > factor_max)
|
||||
distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
|
||||
return distance_new;
|
||||
}
|
||||
|
||||
// Returns orientation of the infill and the reference point of the infill pattern.
|
||||
|
|
|
@ -17,7 +17,8 @@ void FillHoneycomb::_fill_surface_single(
|
|||
CacheID cache_id(params.density, this->spacing);
|
||||
Cache::iterator it_m = this->cache.find(cache_id);
|
||||
if (it_m == this->cache.end()) {
|
||||
#if SLIC3R_CPPVER > 11
|
||||
#if 0
|
||||
// #if SLIC3R_CPPVER > 11
|
||||
it_m = this->cache.emplace_hint(it_m);
|
||||
#else
|
||||
it_m = this->cache.insert(it_m, std::pair<CacheID, CacheData>(cache_id, CacheData()));
|
||||
|
|
|
@ -67,7 +67,7 @@ public:
|
|||
virtual ~FillGrid() {}
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
// Flag for Slic3r::Fill::Rectilinear to fill both directions.
|
||||
virtual bool _horizontal_lines() const { return true; }
|
||||
|
|
|
@ -790,10 +790,8 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
|
||||
rotate_vector.first += angleBase;
|
||||
|
||||
this->_min_spacing = scale_(this->spacing);
|
||||
myassert(params.density > 0.0001f && params.density <= 1.f);
|
||||
this->_line_spacing = coord_t(coordf_t(this->_min_spacing) / params.density);
|
||||
this->_diagonal_distance = this->_line_spacing * 2;
|
||||
coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
|
||||
|
||||
// On the polygons of poly_with_offset, the infill lines will be connected.
|
||||
ExPolygonWithOffset poly_with_offset(
|
||||
|
@ -811,24 +809,24 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
// define flow spacing according to requested density
|
||||
bool full_infill = params.density > 0.9999f;
|
||||
if (full_infill && !params.dont_adjust) {
|
||||
// this->_min_spacing = this->_line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, this->_line_spacing);
|
||||
// this->spacing = unscale(this->_line_spacing);
|
||||
line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, line_spacing);
|
||||
this->spacing = unscale(line_spacing);
|
||||
} else {
|
||||
// extend bounding box so that our pattern will be aligned with other layers
|
||||
// Transform the reference point to the rotated coordinate system.
|
||||
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
|
||||
// _align_to_grid will not work correctly with positive pattern_shift.
|
||||
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % this->_line_spacing;
|
||||
refpt.x -= (pattern_shift_scaled > 0) ? pattern_shift_scaled : (this->_line_spacing + pattern_shift_scaled);
|
||||
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
|
||||
refpt.x -= (pattern_shift_scaled > 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
||||
bounding_box.merge(_align_to_grid(
|
||||
bounding_box.min,
|
||||
Point(this->_line_spacing, this->_line_spacing),
|
||||
Point(line_spacing, line_spacing),
|
||||
refpt));
|
||||
}
|
||||
|
||||
// Intersect a set of euqally spaced vertical lines wiht expolygon.
|
||||
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / this->_line_spacing;
|
||||
coord_t x0 = bounding_box.min.x + this->_line_spacing;
|
||||
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + SCALED_EPSILON) / line_spacing;
|
||||
coord_t x0 = bounding_box.min.x + line_spacing / 2;
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
static int iRun = 0;
|
||||
|
@ -847,7 +845,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
|
||||
for (size_t i = 0; i < n_vlines; ++ i) {
|
||||
segs[i].idx = i;
|
||||
segs[i].pos = x0 + i * this->_line_spacing;
|
||||
segs[i].pos = x0 + i * line_spacing;
|
||||
}
|
||||
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
|
||||
const Points &contour = poly_with_offset.contour(iContour).points;
|
||||
|
@ -864,12 +862,12 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
if (l > r)
|
||||
std::swap(l, r);
|
||||
// il, ir are the left / right indices of vertical lines intersecting a segment
|
||||
int il = (l - x0) / this->_line_spacing;
|
||||
while (il * this->_line_spacing + x0 < l)
|
||||
int il = (l - x0) / line_spacing;
|
||||
while (il * line_spacing + x0 < l)
|
||||
++ il;
|
||||
il = std::max(int(0), il);
|
||||
int ir = (r - x0 + this->_line_spacing) / this->_line_spacing;
|
||||
while (ir * this->_line_spacing + x0 > r)
|
||||
int ir = (r - x0 + line_spacing) / line_spacing;
|
||||
while (ir * line_spacing + x0 > r)
|
||||
-- ir;
|
||||
ir = std::min(int(segs.size()) - 1, ir);
|
||||
if (il > ir)
|
||||
|
@ -879,7 +877,7 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
|
|||
myassert(ir >= 0 && ir < segs.size());
|
||||
for (int i = il; i <= ir; ++ i) {
|
||||
coord_t this_x = segs[i].pos;
|
||||
assert(this_x == i * this->_line_spacing + x0);
|
||||
assert(this_x == i * line_spacing + x0);
|
||||
SegmentIntersection is;
|
||||
is.iContour = iContour;
|
||||
is.iSegment = iSegment;
|
||||
|
|
|
@ -17,11 +17,6 @@ public:
|
|||
|
||||
protected:
|
||||
bool fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, float pattern_shift, Polylines &polylines_out);
|
||||
|
||||
coord_t _min_spacing;
|
||||
coord_t _line_spacing;
|
||||
// distance threshold for allowing the horizontal infill lines to be connected into a continuous path
|
||||
coord_t _diagonal_distance;
|
||||
};
|
||||
|
||||
class FillGrid2 : public FillRectilinear2
|
||||
|
@ -31,7 +26,7 @@ public:
|
|||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
|
@ -42,7 +37,7 @@ public:
|
|||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
|
@ -53,7 +48,7 @@ public:
|
|||
virtual Polylines fill_surface(const Surface *surface, const FillParams ¶ms);
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue