mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-30 04:02:52 -06:00
Rewrote Fill2.pm to C++, deleted Perl infills for good.
Removed dependency on Perl Math::PlanePath module. Fixed compilation with Visual Studio and SLIC3R_DEBUG: Visual Studio older than 2015 does not support the prinf type specifier %zu. Use %Iu instead. C++11 move semantics enabled.
This commit is contained in:
parent
3a31d37d35
commit
95ede7c4b8
49 changed files with 628 additions and 1803 deletions
|
|
@ -1,308 +0,0 @@
|
|||
package Slic3r::Fill;
|
||||
use Moo;
|
||||
|
||||
use List::Util qw(max);
|
||||
use Slic3r::ExtrusionPath ':roles';
|
||||
use Slic3r::Fill::3DHoneycomb;
|
||||
use Slic3r::Fill::Base;
|
||||
use Slic3r::Fill::Concentric;
|
||||
use Slic3r::Fill::Honeycomb;
|
||||
use Slic3r::Fill::PlanePath;
|
||||
use Slic3r::Fill::Rectilinear;
|
||||
use Slic3r::Flow ':roles';
|
||||
use Slic3r::Geometry qw(X Y PI scale chained_path deg2rad);
|
||||
use Slic3r::Geometry::Clipper qw(union union_ex diff diff_ex intersection_ex offset offset2);
|
||||
use Slic3r::Surface ':types';
|
||||
|
||||
|
||||
has 'bounding_box' => (is => 'ro', required => 0);
|
||||
has 'fillers' => (is => 'rw', default => sub { {} });
|
||||
|
||||
our %FillTypes = (
|
||||
archimedeanchords => 'Slic3r::Fill::ArchimedeanChords',
|
||||
rectilinear => 'Slic3r::Fill::Rectilinear',
|
||||
grid => 'Slic3r::Fill::Grid',
|
||||
flowsnake => 'Slic3r::Fill::Flowsnake',
|
||||
octagramspiral => 'Slic3r::Fill::OctagramSpiral',
|
||||
hilbertcurve => 'Slic3r::Fill::HilbertCurve',
|
||||
line => 'Slic3r::Fill::Line',
|
||||
concentric => 'Slic3r::Fill::Concentric',
|
||||
honeycomb => 'Slic3r::Fill::Honeycomb',
|
||||
'3dhoneycomb' => 'Slic3r::Fill::3DHoneycomb',
|
||||
);
|
||||
|
||||
sub filler {
|
||||
my $self = shift;
|
||||
my ($filler) = @_;
|
||||
|
||||
if (!ref $self) {
|
||||
return $FillTypes{$filler}->new;
|
||||
}
|
||||
|
||||
$self->fillers->{$filler} ||= $FillTypes{$filler}->new(
|
||||
bounding_box => $self->bounding_box,
|
||||
);
|
||||
return $self->fillers->{$filler};
|
||||
}
|
||||
|
||||
sub make_fill {
|
||||
my $self = shift;
|
||||
my ($layerm) = @_;
|
||||
|
||||
Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
|
||||
|
||||
my $fill_density = $layerm->region->config->fill_density;
|
||||
my $infill_flow = $layerm->flow(FLOW_ROLE_INFILL);
|
||||
my $solid_infill_flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL);
|
||||
my $top_solid_infill_flow = $layerm->flow(FLOW_ROLE_TOP_SOLID_INFILL);
|
||||
|
||||
my @surfaces = ();
|
||||
|
||||
# merge adjacent surfaces
|
||||
# in case of bridge surfaces, the ones with defined angle will be attached to the ones
|
||||
# without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
my @surfaces_with_bridge_angle = grep { $_->bridge_angle >= 0 } @{$layerm->fill_surfaces};
|
||||
|
||||
# group surfaces by distinct properties
|
||||
my @groups = @{$layerm->fill_surfaces->group};
|
||||
|
||||
# merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
# cache flow widths and patterns used for all solid groups
|
||||
# (we'll use them for comparing compatible groups)
|
||||
my @is_solid = my @fw = my @pattern = ();
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
# we can only merge solid non-bridge surfaces, so discard
|
||||
# non-solid surfaces
|
||||
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||||
$is_solid[$i] = 1;
|
||||
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||||
? $top_solid_infill_flow->width
|
||||
: $solid_infill_flow->width;
|
||||
$pattern[$i] = $groups[$i][0]->is_external
|
||||
? $layerm->region->config->external_fill_pattern
|
||||
: 'rectilinear';
|
||||
} else {
|
||||
$is_solid[$i] = 0;
|
||||
$fw[$i] = 0;
|
||||
$pattern[$i] = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
# loop through solid groups
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
next if !$is_solid[$i];
|
||||
|
||||
# find compatible groups and append them to this one
|
||||
for (my $j = $i+1; $j <= $#groups; $j++) {
|
||||
next if !$is_solid[$j];
|
||||
|
||||
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||||
# groups are compatible, merge them
|
||||
push @{$groups[$i]}, @{$groups[$j]};
|
||||
splice @groups, $j, 1;
|
||||
splice @is_solid, $j, 1;
|
||||
splice @fw, $j, 1;
|
||||
splice @pattern, $j, 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# give priority to bridges
|
||||
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||||
|
||||
foreach my $group (@groups) {
|
||||
my $union_p = union([ map $_->p, @$group ], 1);
|
||||
|
||||
# subtract surfaces having a defined bridge_angle from any other
|
||||
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||||
$union_p = diff(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces_with_bridge_angle ],
|
||||
1,
|
||||
);
|
||||
}
|
||||
|
||||
# subtract any other surface already processed
|
||||
my $union = diff_ex(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces ],
|
||||
1,
|
||||
);
|
||||
|
||||
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
# we need to detect any narrow surfaces that might collapse
|
||||
# when adding spacing below
|
||||
# such narrow surfaces are often generated in sloping walls
|
||||
# by bridge_over_infill() and combine_infill() as a result of the
|
||||
# subtraction of the combinable area from the layer infill area,
|
||||
# which leaves small areas near the perimeters
|
||||
# we are going to grow such regions by overlapping them with the void (if any)
|
||||
# TODO: detect and investigate whether there could be narrow regions without
|
||||
# any void neighbors
|
||||
{
|
||||
my $distance_between_surfaces = max(
|
||||
$infill_flow->scaled_spacing,
|
||||
$solid_infill_flow->scaled_spacing,
|
||||
$top_solid_infill_flow->scaled_spacing,
|
||||
);
|
||||
my $collapsed = diff(
|
||||
[ map @{$_->expolygon}, @surfaces ],
|
||||
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||||
1,
|
||||
);
|
||||
push @surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => S_TYPE_INTERNALSOLID,
|
||||
), @{intersection_ex(
|
||||
offset($collapsed, $distance_between_surfaces),
|
||||
[
|
||||
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||||
(@$collapsed),
|
||||
],
|
||||
1,
|
||||
)};
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
);
|
||||
}
|
||||
|
||||
my @fills = ();
|
||||
SURFACE: foreach my $surface (@surfaces) {
|
||||
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||||
my $filler = $layerm->region->config->fill_pattern;
|
||||
my $density = $fill_density;
|
||||
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||||
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||||
: FLOW_ROLE_INFILL;
|
||||
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||||
my $is_solid = $surface->is_solid;
|
||||
|
||||
if ($surface->is_solid) {
|
||||
$density = 100;
|
||||
$filler = 'rectilinear';
|
||||
if ($surface->is_external && !$is_bridge) {
|
||||
$filler = $layerm->region->config->external_fill_pattern;
|
||||
}
|
||||
} else {
|
||||
next SURFACE unless $density > 0;
|
||||
}
|
||||
|
||||
# get filler object
|
||||
my $f = $self->filler($filler);
|
||||
|
||||
# calculate the actual flow we'll be using for this infill
|
||||
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||||
my $flow = $layerm->region->flow(
|
||||
$role,
|
||||
$h,
|
||||
$is_bridge || $f->use_bridge_flow,
|
||||
$layerm->layer->id == 0,
|
||||
-1,
|
||||
$layerm->layer->object,
|
||||
);
|
||||
|
||||
# calculate flow spacing for infill pattern generation
|
||||
my $using_internal_flow = 0;
|
||||
if (!$is_solid && !$is_bridge) {
|
||||
# it's internal infill, so we can calculate a generic flow spacing
|
||||
# for all layers, for avoiding the ugly effect of
|
||||
# misaligned infill on first layer because of different extrusion width and
|
||||
# layer height
|
||||
my $internal_flow = $layerm->region->flow(
|
||||
FLOW_ROLE_INFILL,
|
||||
$layerm->layer->object->config->layer_height, # TODO: handle infill_every_layers?
|
||||
0, # no bridge
|
||||
0, # no first layer
|
||||
-1, # auto width
|
||||
$layerm->layer->object,
|
||||
);
|
||||
$f->spacing($internal_flow->spacing);
|
||||
$using_internal_flow = 1;
|
||||
# } elsif ($surface->surface_type == S_TYPE_INTERNALBRIDGE) {
|
||||
# # The internal bridging layer will be sparse.
|
||||
# $f->spacing($flow->spacing * 2.);
|
||||
} else {
|
||||
$f->spacing($flow->spacing);
|
||||
}
|
||||
|
||||
my $old_spacing = $f->spacing;
|
||||
|
||||
$f->layer_id($layerm->layer->id);
|
||||
$f->z($layerm->layer->print_z);
|
||||
$f->angle(deg2rad($layerm->region->config->fill_angle));
|
||||
$f->loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||||
|
||||
# apply half spacing using this flow's own spacing and generate infill
|
||||
my @polylines = map $f->fill_surface(
|
||||
$_,
|
||||
density => $density/100,
|
||||
layer_height => $h,
|
||||
#FIXME Vojtech disabled the automatic extrusion width adjustment as this feature quite often
|
||||
# generated extrusions with excessive widths.
|
||||
# The goal of the automatic line width adjustment was to fill in a region without a gap, but because
|
||||
# the filled regions are mostly not aligned with the fill direction, very likely
|
||||
# the extrusion width adjustment causes more harm than good.
|
||||
dont_adjust => 1,
|
||||
), @{ $surface->offset(-scale($f->spacing)/2) };
|
||||
|
||||
next unless @polylines;
|
||||
|
||||
# calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
# pattern generator)
|
||||
if ($using_internal_flow) {
|
||||
# if we used the internal flow we're not doing a solid infill
|
||||
# so we can safely ignore the slight variation that might have
|
||||
# been applied to $f->flow_spacing
|
||||
} else {
|
||||
if (abs($old_spacing - $f->spacing) > 0.3 * $old_spacing) {
|
||||
print "Infill: Extreme spacing adjustment, from: ", $old_spacing, " to: ", $f->spacing, "\n";
|
||||
}
|
||||
$flow = Slic3r::Flow->new_from_spacing(
|
||||
spacing => $f->spacing,
|
||||
nozzle_diameter => $flow->nozzle_diameter,
|
||||
layer_height => $h,
|
||||
bridge => $is_bridge || $f->use_bridge_flow,
|
||||
);
|
||||
}
|
||||
my $mm3_per_mm = $flow->mm3_per_mm;
|
||||
|
||||
# save into layer
|
||||
{
|
||||
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||||
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||||
: EXTR_ROLE_FILL;
|
||||
|
||||
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||||
$collection->no_sort($f->no_sort);
|
||||
$collection->append(
|
||||
map Slic3r::ExtrusionPath->new(
|
||||
polyline => $_,
|
||||
role => $role,
|
||||
mm3_per_mm => $mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $flow->height,
|
||||
), @polylines,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
# add thin fill regions
|
||||
foreach my $thin_fill (@{$layerm->thin_fills}) {
|
||||
push @fills, Slic3r::ExtrusionPath::Collection->new($thin_fill);
|
||||
}
|
||||
|
||||
return @fills;
|
||||
}
|
||||
|
||||
1;
|
||||
|
|
@ -1,230 +0,0 @@
|
|||
package Slic3r::Fill::3DHoneycomb;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
|
||||
use POSIX qw(ceil fmod);
|
||||
use Slic3r::Geometry qw(scale scaled_epsilon);
|
||||
use Slic3r::Geometry::Clipper qw(intersection_pl);
|
||||
|
||||
# require bridge flow since most of this pattern hangs in air
|
||||
sub use_bridge_flow { 1 }
|
||||
|
||||
sub fill_surface {
|
||||
my ($self, $surface, %params) = @_;
|
||||
|
||||
my $expolygon = $surface->expolygon;
|
||||
my $bb = $expolygon->bounding_box;
|
||||
my $size = $bb->size;
|
||||
|
||||
my $distance = scale($self->spacing) / $params{density};
|
||||
|
||||
# align bounding box to a multiple of our honeycomb grid module
|
||||
# (a module is 2*$distance since one $distance half-module is
|
||||
# growing while the other $distance half-module is shrinking)
|
||||
{
|
||||
my $min = $bb->min_point;
|
||||
$min->translate(
|
||||
-($bb->x_min % (2*$distance)),
|
||||
-($bb->y_min % (2*$distance)),
|
||||
);
|
||||
$bb->merge_point($min);
|
||||
}
|
||||
|
||||
# generate pattern
|
||||
my @polylines = map Slic3r::Polyline->new(@$_),
|
||||
makeGrid(
|
||||
scale($self->z),
|
||||
$distance,
|
||||
ceil($size->x / $distance) + 1,
|
||||
ceil($size->y / $distance) + 1, #//
|
||||
(($self->layer_id / $surface->thickness_layers) % 2) + 1,
|
||||
);
|
||||
|
||||
# move pattern in place
|
||||
$_->translate($bb->x_min, $bb->y_min) for @polylines;
|
||||
|
||||
# clip pattern to boundaries
|
||||
@polylines = @{intersection_pl(\@polylines, \@$expolygon)};
|
||||
|
||||
# connect lines
|
||||
unless ($params{dont_connect} || !@polylines) { # prevent calling leftmost_point() on empty collections
|
||||
my ($expolygon_off) = @{$expolygon->offset_ex(scaled_epsilon)};
|
||||
my $collection = Slic3r::Polyline::Collection->new(@polylines);
|
||||
@polylines = ();
|
||||
foreach my $polyline (@{$collection->chained_path_from($collection->leftmost_point, 0)}) {
|
||||
# try to append this polyline to previous one if any
|
||||
if (@polylines) {
|
||||
my $line = Slic3r::Line->new($polylines[-1]->last_point, $polyline->first_point);
|
||||
if ($line->length <= 1.5*$distance && $expolygon_off->contains_line($line)) {
|
||||
$polylines[-1]->append_polyline($polyline);
|
||||
next;
|
||||
}
|
||||
}
|
||||
|
||||
# make a clone before $collection goes out of scope
|
||||
push @polylines, $polyline->clone;
|
||||
}
|
||||
}
|
||||
|
||||
# TODO: return ExtrusionLoop objects to get better chained paths
|
||||
return @polylines;
|
||||
}
|
||||
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
Creates a contiguous sequence of points at a specified height that make
|
||||
up a horizontal slice of the edges of a space filling truncated
|
||||
octahedron tesselation. The octahedrons are oriented so that the
|
||||
square faces are in the horizontal plane with edges parallel to the X
|
||||
and Y axes.
|
||||
|
||||
Credits: David Eccles (gringer).
|
||||
|
||||
=head2 makeGrid(z, gridSize, gridWidth, gridHeight, curveType)
|
||||
|
||||
Generate a set of curves (array of array of 2d points) that describe a
|
||||
horizontal slice of a truncated regular octahedron with a specified
|
||||
grid square size.
|
||||
|
||||
=cut
|
||||
|
||||
sub makeGrid {
|
||||
my ($z, $gridSize, $gridWidth, $gridHeight, $curveType) = @_;
|
||||
my $scaleFactor = $gridSize;
|
||||
my $normalisedZ = $z / $scaleFactor;
|
||||
my @points = makeNormalisedGrid($normalisedZ, $gridWidth, $gridHeight, $curveType);
|
||||
foreach my $lineRef (@points) {
|
||||
foreach my $pointRef (@$lineRef) {
|
||||
$pointRef->[0] *= $scaleFactor;
|
||||
$pointRef->[1] *= $scaleFactor;
|
||||
}
|
||||
}
|
||||
return @points;
|
||||
}
|
||||
|
||||
=head1 FUNCTIONS
|
||||
=cut
|
||||
|
||||
=head2 colinearPoints(offset, gridLength)
|
||||
|
||||
Generate an array of points that are in the same direction as the
|
||||
basic printing line (i.e. Y points for columns, X points for rows)
|
||||
|
||||
Note: a negative offset only causes a change in the perpendicular
|
||||
direction
|
||||
|
||||
=cut
|
||||
|
||||
sub colinearPoints {
|
||||
my ($offset, $baseLocation, $gridLength) = @_;
|
||||
|
||||
my @points = ();
|
||||
push @points, $baseLocation - abs($offset/2);
|
||||
for (my $i = 0; $i < $gridLength; $i++) {
|
||||
push @points, $baseLocation + $i + abs($offset/2);
|
||||
push @points, $baseLocation + ($i+1) - abs($offset/2);
|
||||
}
|
||||
push @points, $baseLocation + $gridLength + abs($offset/2);
|
||||
return @points;
|
||||
}
|
||||
|
||||
=head2 colinearPoints(offset, baseLocation, gridLength)
|
||||
|
||||
Generate an array of points for the dimension that is perpendicular to
|
||||
the basic printing line (i.e. X points for columns, Y points for rows)
|
||||
|
||||
=cut
|
||||
|
||||
sub perpendPoints {
|
||||
my ($offset, $baseLocation, $gridLength) = @_;
|
||||
|
||||
my @points = ();
|
||||
my $side = 2*(($baseLocation) % 2) - 1;
|
||||
push @points, $baseLocation - $offset/2 * $side;
|
||||
for (my $i = 0; $i < $gridLength; $i++) {
|
||||
$side = 2*(($i+$baseLocation) % 2) - 1;
|
||||
push @points, $baseLocation + $offset/2 * $side;
|
||||
push @points, $baseLocation + $offset/2 * $side;
|
||||
}
|
||||
push @points, $baseLocation - $offset/2 * $side;
|
||||
|
||||
return @points;
|
||||
}
|
||||
|
||||
=head2 trim(pointArrayRef, minX, minY, maxX, maxY)
|
||||
|
||||
Trims an array of points to specified rectangular limits. Point
|
||||
components that are outside these limits are set to the limits.
|
||||
|
||||
=cut
|
||||
|
||||
sub trim {
|
||||
my ($pointArrayRef, $minX, $minY, $maxX, $maxY) = @_;
|
||||
|
||||
foreach (@$pointArrayRef) {
|
||||
$_->[0] = ($_->[0] < $minX) ? $minX : (($_->[0] > $maxX) ? $maxX : $_->[0]);
|
||||
$_->[1] = ($_->[1] < $minY) ? $minY : (($_->[1] > $maxY) ? $maxY : $_->[1]);
|
||||
}
|
||||
}
|
||||
|
||||
=head2 makeNormalisedGrid(z, gridWidth, gridHeight, curveType)
|
||||
|
||||
Generate a set of curves (array of array of 2d points) that describe a
|
||||
horizontal slice of a truncated regular octahedron with edge length 1.
|
||||
|
||||
curveType specifies which lines to print, 1 for vertical lines
|
||||
(columns), 2 for horizontal lines (rows), and 3 for both.
|
||||
|
||||
=cut
|
||||
|
||||
sub makeNormalisedGrid {
|
||||
my ($z, $gridWidth, $gridHeight, $curveType) = @_;
|
||||
|
||||
## offset required to create a regular octagram
|
||||
my $octagramGap = 0.5;
|
||||
|
||||
# sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
|
||||
my $a = sqrt(2); # period
|
||||
my $wave = abs(fmod($z, $a) - $a/2)/$a*4 - 1;
|
||||
my $offset = $wave * $octagramGap;
|
||||
|
||||
my @points = ();
|
||||
if (($curveType & 1) != 0) {
|
||||
for (my $x = 0; $x <= $gridWidth; $x++) {
|
||||
my @xPoints = perpendPoints($offset, $x, $gridHeight);
|
||||
my @yPoints = colinearPoints($offset, 0, $gridHeight);
|
||||
# This is essentially @newPoints = zip(@xPoints, @yPoints)
|
||||
my @newPoints = map [ $xPoints[$_], $yPoints[$_] ], 0..$#xPoints;
|
||||
|
||||
# trim points to grid edges
|
||||
#trim(\@newPoints, 0, 0, $gridWidth, $gridHeight);
|
||||
|
||||
if ($x % 2 == 0){
|
||||
push @points, [ @newPoints ];
|
||||
} else {
|
||||
push @points, [ reverse @newPoints ];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (($curveType & 2) != 0) {
|
||||
for (my $y = 0; $y <= $gridHeight; $y++) {
|
||||
my @xPoints = colinearPoints($offset, 0, $gridWidth);
|
||||
my @yPoints = perpendPoints($offset, $y, $gridWidth);
|
||||
my @newPoints = map [ $xPoints[$_], $yPoints[$_] ], 0..$#xPoints;
|
||||
|
||||
# trim points to grid edges
|
||||
#trim(\@newPoints, 0, 0, $gridWidth, $gridHeight);
|
||||
|
||||
if ($y % 2 == 0) {
|
||||
push @points, [ @newPoints ];
|
||||
} else {
|
||||
push @points, [ reverse @newPoints ];
|
||||
}
|
||||
}
|
||||
}
|
||||
return @points;
|
||||
}
|
||||
|
||||
1;
|
||||
|
|
@ -1,101 +0,0 @@
|
|||
package Slic3r::Fill::Base;
|
||||
use Moo;
|
||||
|
||||
has 'layer_id' => (is => 'rw');
|
||||
has 'z' => (is => 'rw'); # in unscaled coordinates
|
||||
has 'angle' => (is => 'rw'); # in radians, ccw, 0 = East
|
||||
has 'spacing' => (is => 'rw'); # in unscaled coordinates
|
||||
has 'loop_clipping' => (is => 'rw', default => sub { 0 }); # in scaled coordinates
|
||||
has 'bounding_box' => (is => 'ro', required => 0); # Slic3r::Geometry::BoundingBox object
|
||||
|
||||
sub set_spacing {
|
||||
my ($self, $spacing) = @_;
|
||||
$self->spacing($spacing);
|
||||
}
|
||||
|
||||
sub set_angle {
|
||||
my ($self, $angle) = @_;
|
||||
$self->angle($angle);
|
||||
}
|
||||
|
||||
sub adjust_solid_spacing {
|
||||
my $self = shift;
|
||||
my %params = @_;
|
||||
|
||||
my $number_of_lines = int($params{width} / $params{distance}) + 1;
|
||||
return $params{distance} if $number_of_lines <= 1;
|
||||
|
||||
my $extra_space = $params{width} % $params{distance};
|
||||
return $params{distance} + $extra_space / ($number_of_lines - 1);
|
||||
}
|
||||
|
||||
sub no_sort { 0 }
|
||||
sub use_bridge_flow { 0 }
|
||||
|
||||
|
||||
package Slic3r::Fill::WithDirection;
|
||||
use Moo::Role;
|
||||
|
||||
use Slic3r::Geometry qw(PI rad2deg);
|
||||
|
||||
sub angles () { [0, PI/2] }
|
||||
|
||||
sub infill_direction {
|
||||
my $self = shift;
|
||||
my ($surface) = @_;
|
||||
|
||||
if (!defined $self->angle) {
|
||||
warn "Using undefined infill angle";
|
||||
$self->angle(0);
|
||||
}
|
||||
|
||||
# set infill angle
|
||||
my (@rotate);
|
||||
$rotate[0] = $self->angle;
|
||||
$rotate[1] = $self->bounding_box
|
||||
? $self->bounding_box->center
|
||||
: $surface->expolygon->bounding_box->center;
|
||||
my $shift = $rotate[1]->clone;
|
||||
|
||||
if (defined $self->layer_id) {
|
||||
# alternate fill direction
|
||||
my $layer_num = $self->layer_id / $surface->thickness_layers;
|
||||
my $angle = $self->angles->[$layer_num % @{$self->angles}];
|
||||
$rotate[0] = $self->angle + $angle if $angle;
|
||||
}
|
||||
|
||||
# use bridge angle
|
||||
if ($surface->bridge_angle >= 0) {
|
||||
Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
|
||||
$rotate[0] = $surface->bridge_angle;
|
||||
}
|
||||
|
||||
$rotate[0] += PI/2;
|
||||
$shift->rotate(@rotate);
|
||||
return [\@rotate, $shift];
|
||||
}
|
||||
|
||||
# this method accepts any object that implements rotate() and translate()
|
||||
sub rotate_points {
|
||||
my $self = shift;
|
||||
my ($expolygon, $rotate_vector) = @_;
|
||||
|
||||
# rotate points
|
||||
my ($rotate, $shift) = @$rotate_vector;
|
||||
$rotate = [ -$rotate->[0], $rotate->[1] ];
|
||||
$expolygon->rotate(@$rotate);
|
||||
$expolygon->translate(@$shift);
|
||||
}
|
||||
|
||||
sub rotate_points_back {
|
||||
my $self = shift;
|
||||
my ($paths, $rotate_vector) = @_;
|
||||
|
||||
my ($rotate, $shift) = @$rotate_vector;
|
||||
$shift = [ map -$_, @$shift ];
|
||||
|
||||
$_->translate(@$shift) for @$paths;
|
||||
$_->rotate(@$rotate) for @$paths;
|
||||
}
|
||||
|
||||
1;
|
||||
|
|
@ -1,57 +0,0 @@
|
|||
package Slic3r::Fill::Concentric;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
|
||||
use Slic3r::Geometry qw(scale unscale X);
|
||||
use Slic3r::Geometry::Clipper qw(offset offset2 union_pt_chained);
|
||||
|
||||
sub no_sort { 1 }
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
# no rotation is supported for this infill pattern
|
||||
|
||||
my $expolygon = $surface->expolygon;
|
||||
my $bounding_box = $expolygon->bounding_box;
|
||||
|
||||
my $min_spacing = scale($self->spacing);
|
||||
my $distance = $min_spacing / $params{density};
|
||||
|
||||
if ($params{density} == 1 && !$params{dont_adjust}) {
|
||||
$distance = $self->adjust_solid_spacing(
|
||||
width => $bounding_box->size->[X],
|
||||
distance => $distance,
|
||||
);
|
||||
$self->spacing(unscale $distance);
|
||||
}
|
||||
|
||||
my @loops = my @last = map $_->clone, @$expolygon;
|
||||
while (@last) {
|
||||
push @loops, @last = @{offset2(\@last, -($distance + 0.5*$min_spacing), +0.5*$min_spacing)};
|
||||
}
|
||||
|
||||
# generate paths from the outermost to the innermost, to avoid
|
||||
# adhesion problems of the first central tiny loops
|
||||
@loops = map Slic3r::Polygon->new(@$_),
|
||||
reverse @{union_pt_chained(\@loops)};
|
||||
|
||||
# split paths using a nearest neighbor search
|
||||
my @paths = ();
|
||||
my $last_pos = Slic3r::Point->new(0,0);
|
||||
foreach my $loop (@loops) {
|
||||
push @paths, $loop->split_at_index($last_pos->nearest_point_index(\@$loop));
|
||||
$last_pos = $paths[-1]->last_point;
|
||||
}
|
||||
|
||||
# clip the paths to prevent the extruder from getting exactly on the first point of the loop
|
||||
$_->clip_end($self->loop_clipping) for @paths;
|
||||
@paths = grep $_->is_valid, @paths; # remove empty paths (too short, thus eaten by clipping)
|
||||
|
||||
# TODO: return ExtrusionLoop objects to get better chained paths
|
||||
return @paths;
|
||||
}
|
||||
|
||||
1;
|
||||
|
|
@ -1,129 +0,0 @@
|
|||
package Slic3r::Fill::Honeycomb;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
with qw(Slic3r::Fill::WithDirection);
|
||||
|
||||
has 'cache' => (is => 'rw', default => sub {{}});
|
||||
|
||||
use Slic3r::Geometry qw(PI X Y MIN MAX scale scaled_epsilon);
|
||||
use Slic3r::Geometry::Clipper qw(intersection intersection_pl);
|
||||
|
||||
sub angles () { [0, PI/3, PI/3*2] }
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
my $rotate_vector = $self->infill_direction($surface);
|
||||
|
||||
# cache hexagons math
|
||||
my $cache_id = sprintf "d%s_s%s", $params{density}, $self->spacing;
|
||||
my $m;
|
||||
if (!($m = $self->cache->{$cache_id})) {
|
||||
$m = $self->cache->{$cache_id} = {};
|
||||
my $min_spacing = scale($self->spacing);
|
||||
$m->{distance} = $min_spacing / $params{density};
|
||||
$m->{hex_side} = $m->{distance} / (sqrt(3)/2);
|
||||
$m->{hex_width} = $m->{distance} * 2; # $m->{hex_width} == $m->{hex_side} * sqrt(3);
|
||||
my $hex_height = $m->{hex_side} * 2;
|
||||
$m->{pattern_height} = $hex_height + $m->{hex_side};
|
||||
$m->{y_short} = $m->{distance} * sqrt(3)/3;
|
||||
$m->{x_offset} = $min_spacing / 2;
|
||||
$m->{y_offset} = $m->{x_offset} * sqrt(3)/3;
|
||||
$m->{hex_center} = Slic3r::Point->new($m->{hex_width}/2, $m->{hex_side});
|
||||
}
|
||||
|
||||
my @polygons = ();
|
||||
{
|
||||
# adjust actual bounding box to the nearest multiple of our hex pattern
|
||||
# and align it so that it matches across layers
|
||||
|
||||
my $bounding_box = $surface->expolygon->bounding_box;
|
||||
{
|
||||
# rotate bounding box according to infill direction
|
||||
my $bb_polygon = $bounding_box->polygon;
|
||||
$bb_polygon->rotate($rotate_vector->[0][0], $m->{hex_center});
|
||||
$bounding_box = $bb_polygon->bounding_box;
|
||||
|
||||
# extend bounding box so that our pattern will be aligned with other layers
|
||||
# $bounding_box->[X1] and [Y1] represent the displacement between new bounding box offset and old one
|
||||
$bounding_box->merge_point(Slic3r::Point->new(
|
||||
$bounding_box->x_min - ($bounding_box->x_min % $m->{hex_width}),
|
||||
$bounding_box->y_min - ($bounding_box->y_min % $m->{pattern_height}),
|
||||
));
|
||||
}
|
||||
|
||||
my $x = $bounding_box->x_min;
|
||||
while ($x <= $bounding_box->x_max) {
|
||||
my $p = [];
|
||||
|
||||
my @x = ($x + $m->{x_offset}, $x + $m->{distance} - $m->{x_offset});
|
||||
for (1..2) {
|
||||
@$p = reverse @$p; # turn first half upside down
|
||||
my @p = ();
|
||||
for (my $y = $bounding_box->y_min; $y <= $bounding_box->y_max; $y += $m->{y_short} + $m->{hex_side} + $m->{y_short} + $m->{hex_side}) {
|
||||
push @$p,
|
||||
[ $x[1], $y + $m->{y_offset} ],
|
||||
[ $x[0], $y + $m->{y_short} - $m->{y_offset} ],
|
||||
[ $x[0], $y + $m->{y_short} + $m->{hex_side} + $m->{y_offset} ],
|
||||
[ $x[1], $y + $m->{y_short} + $m->{hex_side} + $m->{y_short} - $m->{y_offset} ],
|
||||
[ $x[1], $y + $m->{y_short} + $m->{hex_side} + $m->{y_short} + $m->{hex_side} + $m->{y_offset} ];
|
||||
}
|
||||
@x = map $_ + $m->{distance}, reverse @x; # draw symmetrical pattern
|
||||
$x += $m->{distance};
|
||||
}
|
||||
|
||||
push @polygons, Slic3r::Polygon->new(@$p);
|
||||
}
|
||||
|
||||
$_->rotate(-$rotate_vector->[0][0], $m->{hex_center}) for @polygons;
|
||||
}
|
||||
|
||||
my @paths;
|
||||
if ($params{complete} || 1) {
|
||||
# we were requested to complete each loop;
|
||||
# in this case we don't try to make more continuous paths
|
||||
@paths = map $_->split_at_first_point,
|
||||
@{intersection([ $surface->p ], \@polygons)};
|
||||
|
||||
} else {
|
||||
# consider polygons as polylines without re-appending the initial point:
|
||||
# this cuts the last segment on purpose, so that the jump to the next
|
||||
# path is more straight
|
||||
@paths = @{intersection_pl(
|
||||
[ map Slic3r::Polyline->new(@$_), @polygons ],
|
||||
[ @{$surface->expolygon} ],
|
||||
)};
|
||||
|
||||
# connect paths
|
||||
if (@paths) { # prevent calling leftmost_point() on empty collections
|
||||
my $collection = Slic3r::Polyline::Collection->new(@paths);
|
||||
@paths = ();
|
||||
foreach my $path (@{$collection->chained_path_from($collection->leftmost_point, 0)}) {
|
||||
if (@paths) {
|
||||
# distance between first point of this path and last point of last path
|
||||
my $distance = $paths[-1]->last_point->distance_to($path->first_point);
|
||||
|
||||
if ($distance <= $m->{hex_width}) {
|
||||
$paths[-1]->append_polyline($path);
|
||||
next;
|
||||
}
|
||||
}
|
||||
|
||||
# make a clone before $collection goes out of scope
|
||||
push @paths, $path->clone;
|
||||
}
|
||||
}
|
||||
|
||||
# clip paths again to prevent connection segments from crossing the expolygon boundaries
|
||||
@paths = @{intersection_pl(
|
||||
\@paths,
|
||||
[ map @$_, @{$surface->expolygon->offset_ex(scaled_epsilon)} ],
|
||||
)};
|
||||
}
|
||||
|
||||
return @paths;
|
||||
}
|
||||
|
||||
1;
|
||||
|
|
@ -1,118 +0,0 @@
|
|||
package Slic3r::Fill::PlanePath;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
with qw(Slic3r::Fill::WithDirection);
|
||||
|
||||
use Slic3r::Geometry qw(scale X1 Y1 X2 Y2);
|
||||
use Slic3r::Geometry::Clipper qw(intersection_pl);
|
||||
|
||||
sub angles () { [0] }
|
||||
sub multiplier () { 1 }
|
||||
|
||||
sub process_polyline {}
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
# rotate polygons
|
||||
my $expolygon = $surface->expolygon->clone;
|
||||
my $rotate_vector = $self->infill_direction($surface);
|
||||
$self->rotate_points($expolygon, $rotate_vector);
|
||||
|
||||
my $distance_between_lines = scale($self->spacing) / $params{density} * $self->multiplier;
|
||||
|
||||
# align infill across layers using the object's bounding box
|
||||
my $bb_polygon = $self->bounding_box->polygon;
|
||||
$self->rotate_points($bb_polygon, $rotate_vector);
|
||||
my $bounding_box = $bb_polygon->bounding_box;
|
||||
|
||||
(ref $self) =~ /::([^:]+)$/;
|
||||
my $path = "Math::PlanePath::$1"->new;
|
||||
|
||||
my $translate = Slic3r::Point->new(0,0); # vector
|
||||
if ($path->x_negative || $path->y_negative) {
|
||||
# if the curve extends on both positive and negative coordinate space,
|
||||
# center our expolygon around origin
|
||||
$translate = $bounding_box->center->negative;
|
||||
} else {
|
||||
# if the curve does not extend in negative coordinate space,
|
||||
# move expolygon entirely in positive coordinate space
|
||||
$translate = $bounding_box->min_point->negative;
|
||||
}
|
||||
$expolygon->translate(@$translate);
|
||||
$bounding_box->translate(@$translate);
|
||||
|
||||
my ($n_lo, $n_hi) = $path->rect_to_n_range(
|
||||
map { $_ / $distance_between_lines }
|
||||
@{$bounding_box->min_point},
|
||||
@{$bounding_box->max_point},
|
||||
);
|
||||
|
||||
my $polyline = Slic3r::Polyline->new(
|
||||
map [ map { $_ * $distance_between_lines } $path->n_to_xy($_) ], ($n_lo..$n_hi)
|
||||
);
|
||||
return {} if @$polyline <= 1;
|
||||
|
||||
$self->process_polyline($polyline, $bounding_box);
|
||||
|
||||
my @paths = @{intersection_pl([$polyline], \@$expolygon)};
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill.svg",
|
||||
no_arrows => 1,
|
||||
polygons => \@$expolygon,
|
||||
green_polygons => [ $bounding_box->polygon ],
|
||||
polylines => [ $polyline ],
|
||||
red_polylines => \@paths,
|
||||
);
|
||||
}
|
||||
|
||||
# paths must be repositioned and rotated back
|
||||
$_->translate(@{$translate->negative}) for @paths;
|
||||
$self->rotate_points_back(\@paths, $rotate_vector);
|
||||
|
||||
return @paths;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::ArchimedeanChords;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::ArchimedeanChords;
|
||||
|
||||
|
||||
package Slic3r::Fill::Flowsnake;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::Flowsnake;
|
||||
use Slic3r::Geometry qw(X);
|
||||
|
||||
# Sorry, this fill is currently broken.
|
||||
|
||||
sub process_polyline {
|
||||
my $self = shift;
|
||||
my ($polyline, $bounding_box) = @_;
|
||||
|
||||
$_->[X] += $bounding_box->center->[X] for @$polyline;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::HilbertCurve;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::HilbertCurve;
|
||||
|
||||
|
||||
package Slic3r::Fill::OctagramSpiral;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::PlanePath';
|
||||
use Math::PlanePath::OctagramSpiral;
|
||||
|
||||
sub multiplier () { sqrt(2) }
|
||||
|
||||
|
||||
|
||||
1;
|
||||
|
|
@ -1,172 +0,0 @@
|
|||
package Slic3r::Fill::Rectilinear;
|
||||
use Moo;
|
||||
|
||||
extends 'Slic3r::Fill::Base';
|
||||
with qw(Slic3r::Fill::WithDirection);
|
||||
|
||||
has '_min_spacing' => (is => 'rw');
|
||||
has '_line_spacing' => (is => 'rw');
|
||||
has '_diagonal_distance' => (is => 'rw');
|
||||
has '_line_oscillation' => (is => 'rw');
|
||||
|
||||
use Slic3r::Geometry qw(scale unscale scaled_epsilon);
|
||||
use Slic3r::Geometry::Clipper qw(intersection_pl);
|
||||
|
||||
sub horizontal_lines { 0 }
|
||||
|
||||
sub fill_surface {
|
||||
my $self = shift;
|
||||
my ($surface, %params) = @_;
|
||||
|
||||
# rotate polygons so that we can work with vertical lines here
|
||||
my $expolygon = $surface->expolygon->clone;
|
||||
my $rotate_vector = $self->infill_direction($surface);
|
||||
$self->rotate_points($expolygon, $rotate_vector);
|
||||
|
||||
$self->_min_spacing(scale $self->spacing);
|
||||
$self->_line_spacing($self->_min_spacing / $params{density});
|
||||
$self->_diagonal_distance($self->_line_spacing * 2);
|
||||
$self->_line_oscillation($self->_line_spacing - $self->_min_spacing); # only for Line infill
|
||||
my $bounding_box = $expolygon->bounding_box;
|
||||
|
||||
# define flow spacing according to requested density
|
||||
if ($params{density} == 1 && !$params{dont_adjust}) {
|
||||
my $old_spacing = $self->spacing;
|
||||
$self->_line_spacing($self->adjust_solid_spacing(
|
||||
width => $bounding_box->size->x,
|
||||
distance => $self->_line_spacing,
|
||||
));
|
||||
$self->spacing(unscale $self->_line_spacing);
|
||||
if (abs($old_spacing - $self->spacing) > 0.3 * $old_spacing) {
|
||||
print "Infill2: Extreme spacing adjustment, from: ", $old_spacing, " to: ", $self->spacing, "\n";
|
||||
}
|
||||
} else {
|
||||
# extend bounding box so that our pattern will be aligned with other layers
|
||||
$bounding_box->merge_point(Slic3r::Point->new(
|
||||
$bounding_box->x_min - ($bounding_box->x_min % $self->_line_spacing),
|
||||
$bounding_box->y_min - ($bounding_box->y_min % $self->_line_spacing),
|
||||
));
|
||||
}
|
||||
|
||||
# generate the basic pattern
|
||||
my $x_max = $bounding_box->x_max + scaled_epsilon;
|
||||
my @lines = ();
|
||||
for (my $x = $bounding_box->x_min; $x <= $x_max; $x += $self->_line_spacing) {
|
||||
push @lines, $self->_line($#lines, $x, $bounding_box->y_min, $bounding_box->y_max);
|
||||
}
|
||||
if ($self->horizontal_lines) {
|
||||
my $y_max = $bounding_box->y_max + scaled_epsilon;
|
||||
for (my $y = $bounding_box->y_min; $y <= $y_max; $y += $self->_line_spacing) {
|
||||
push @lines, Slic3r::Polyline->new(
|
||||
[$bounding_box->x_min, $y],
|
||||
[$bounding_box->x_max, $y],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
# clip paths against a slightly larger expolygon, so that the first and last paths
|
||||
# are kept even if the expolygon has vertical sides
|
||||
# the minimum offset for preventing edge lines from being clipped is scaled_epsilon;
|
||||
# however we use a larger offset to support expolygons with slightly skewed sides and
|
||||
# not perfectly straight
|
||||
my @polylines = @{intersection_pl(\@lines, $expolygon->offset(+scale 0.02))};
|
||||
|
||||
my $extra = $self->_min_spacing * &Slic3r::INFILL_OVERLAP_OVER_SPACING;
|
||||
foreach my $polyline (@polylines) {
|
||||
my ($first_point, $last_point) = @$polyline[0,-1];
|
||||
if ($first_point->y > $last_point->y) { #>
|
||||
($first_point, $last_point) = ($last_point, $first_point);
|
||||
}
|
||||
$first_point->set_y($first_point->y - $extra); #--
|
||||
$last_point->set_y($last_point->y + $extra); #++
|
||||
}
|
||||
|
||||
# connect lines
|
||||
unless ($params{dont_connect} || !@polylines) { # prevent calling leftmost_point() on empty collections
|
||||
# offset the expolygon by max(min_spacing/2, extra)
|
||||
my ($expolygon_off) = @{$expolygon->offset_ex($self->_min_spacing/2)};
|
||||
my $collection = Slic3r::Polyline::Collection->new(@polylines);
|
||||
@polylines = ();
|
||||
|
||||
foreach my $polyline (@{$collection->chained_path_from($collection->leftmost_point, 0)}) {
|
||||
if (@polylines) {
|
||||
my $first_point = $polyline->first_point;
|
||||
my $last_point = $polylines[-1]->last_point;
|
||||
my @distance = map abs($first_point->$_ - $last_point->$_), qw(x y);
|
||||
|
||||
# TODO: we should also check that both points are on a fill_boundary to avoid
|
||||
# connecting paths on the boundaries of internal regions
|
||||
if ($self->_can_connect(@distance) && $expolygon_off->contains_line(Slic3r::Line->new($last_point, $first_point))) {
|
||||
$polylines[-1]->append_polyline($polyline);
|
||||
next;
|
||||
}
|
||||
}
|
||||
|
||||
# make a clone before $collection goes out of scope
|
||||
push @polylines, $polyline->clone;
|
||||
}
|
||||
}
|
||||
|
||||
# paths must be rotated back
|
||||
$self->rotate_points_back(\@polylines, $rotate_vector);
|
||||
|
||||
return @polylines;
|
||||
}
|
||||
|
||||
sub _line {
|
||||
my ($self, $i, $x, $y_min, $y_max) = @_;
|
||||
|
||||
return Slic3r::Polyline->new(
|
||||
[$x, $y_min],
|
||||
[$x, $y_max],
|
||||
);
|
||||
}
|
||||
|
||||
sub _can_connect {
|
||||
my ($self, $dist_X, $dist_Y) = @_;
|
||||
|
||||
return $dist_X <= $self->_diagonal_distance
|
||||
&& $dist_Y <= $self->_diagonal_distance;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::Line;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::Rectilinear';
|
||||
|
||||
use Slic3r::Geometry qw(scaled_epsilon);
|
||||
|
||||
sub _line {
|
||||
my ($self, $i, $x, $y_min, $y_max) = @_;
|
||||
|
||||
if ($i % 2) {
|
||||
return Slic3r::Polyline->new(
|
||||
[$x - $self->_line_oscillation, $y_min],
|
||||
[$x + $self->_line_oscillation, $y_max],
|
||||
);
|
||||
} else {
|
||||
return Slic3r::Polyline->new(
|
||||
[$x, $y_min],
|
||||
[$x, $y_max],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
sub _can_connect {
|
||||
my ($self, $dist_X, $dist_Y) = @_;
|
||||
|
||||
my $TOLERANCE = 10 * scaled_epsilon;
|
||||
return ($dist_X >= ($self->_line_spacing - $self->_line_oscillation) - $TOLERANCE)
|
||||
&& ($dist_X <= ($self->_line_spacing + $self->_line_oscillation) + $TOLERANCE)
|
||||
&& $dist_Y <= $self->_diagonal_distance;
|
||||
}
|
||||
|
||||
|
||||
package Slic3r::Fill::Grid;
|
||||
use Moo;
|
||||
extends 'Slic3r::Fill::Rectilinear';
|
||||
|
||||
sub angles () { [0] }
|
||||
sub horizontal_lines { 1 }
|
||||
|
||||
1;
|
||||
|
|
@ -1,294 +0,0 @@
|
|||
# This is derived from Fill.pm
|
||||
# and it uses the C++ fillers.
|
||||
package Slic3r::Fill2;
|
||||
use Moo;
|
||||
|
||||
use List::Util qw(max);
|
||||
use Slic3r::ExtrusionPath ':roles';
|
||||
|
||||
use Slic3r::Flow ':roles';
|
||||
use Slic3r::Geometry qw(X Y PI scale chained_path deg2rad);
|
||||
use Slic3r::Geometry::Clipper qw(union union_ex diff diff_ex intersection_ex offset offset2);
|
||||
use Slic3r::Surface ':types';
|
||||
|
||||
has 'bounding_box' => (is => 'ro', required => 0);
|
||||
has 'fillers' => (is => 'rw', default => sub { {} });
|
||||
|
||||
sub filler {
|
||||
my $self = shift;
|
||||
my ($filler) = @_;
|
||||
|
||||
if (!ref $self) {
|
||||
return Slic3r::Filler->new_from_type($filler);
|
||||
}
|
||||
|
||||
#print "Filler: ", $filler, "\n";
|
||||
$self->fillers->{$filler} ||= Slic3r::Filler->new_from_type($filler);
|
||||
$self->fillers->{$filler}->set_bounding_box($self->bounding_box);
|
||||
return $self->fillers->{$filler};
|
||||
}
|
||||
|
||||
|
||||
# Generate infills for Slic3r::Layer::Region.
|
||||
# The Slic3r::Layer::Region at this point of time may contain
|
||||
# surfaces of various types (internal/bridge/top/bottom/solid).
|
||||
# The infills are generated on the groups of surfaces with a compatible type.
|
||||
# Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
|
||||
# and the thin fills generated by generate_perimeters().
|
||||
sub make_fill {
|
||||
my $self = shift;
|
||||
# of type - C++: LayerRegion, Perl: Slic3r::Layer::Region
|
||||
my ($layerm) = @_;
|
||||
|
||||
Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
|
||||
|
||||
my $fill_density = $layerm->region->config->fill_density;
|
||||
my $infill_flow = $layerm->flow(FLOW_ROLE_INFILL);
|
||||
my $solid_infill_flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL);
|
||||
my $top_solid_infill_flow = $layerm->flow(FLOW_ROLE_TOP_SOLID_INFILL);
|
||||
|
||||
# Surfaces are of the type Slic3r::Surface
|
||||
my @surfaces = ();
|
||||
|
||||
# merge adjacent surfaces
|
||||
# in case of bridge surfaces, the ones with defined angle will be attached to the ones
|
||||
# without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||||
{
|
||||
my @surfaces_with_bridge_angle = grep { $_->bridge_angle >= 0 } @{$layerm->fill_surfaces};
|
||||
|
||||
# group surfaces by distinct properties
|
||||
# group is of type Slic3r::SurfaceCollection
|
||||
my @groups = @{$layerm->fill_surfaces->group};
|
||||
|
||||
# merge compatible groups (we can generate continuous infill for them)
|
||||
{
|
||||
# cache flow widths and patterns used for all solid groups
|
||||
# (we'll use them for comparing compatible groups)
|
||||
my @is_solid = my @fw = my @pattern = ();
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
# we can only merge solid non-bridge surfaces, so discard
|
||||
# non-solid surfaces
|
||||
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||||
$is_solid[$i] = 1;
|
||||
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||||
? $top_solid_infill_flow->width
|
||||
: $solid_infill_flow->width;
|
||||
$pattern[$i] = $groups[$i][0]->is_external
|
||||
? $layerm->region->config->external_fill_pattern
|
||||
: 'rectilinear';
|
||||
} else {
|
||||
$is_solid[$i] = 0;
|
||||
$fw[$i] = 0;
|
||||
$pattern[$i] = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
# loop through solid groups
|
||||
for (my $i = 0; $i <= $#groups; $i++) {
|
||||
next if !$is_solid[$i];
|
||||
|
||||
# find compatible groups and append them to this one
|
||||
for (my $j = $i+1; $j <= $#groups; $j++) {
|
||||
next if !$is_solid[$j];
|
||||
|
||||
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||||
# groups are compatible, merge them
|
||||
push @{$groups[$i]}, @{$groups[$j]};
|
||||
splice @groups, $j, 1;
|
||||
splice @is_solid, $j, 1;
|
||||
splice @fw, $j, 1;
|
||||
splice @pattern, $j, 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# give priority to bridges
|
||||
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||||
|
||||
foreach my $group (@groups) {
|
||||
# Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||||
my $union_p = union([ map $_->p, @$group ], 1);
|
||||
|
||||
# Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||||
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||||
$union_p = diff(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces_with_bridge_angle ],
|
||||
1,
|
||||
);
|
||||
}
|
||||
|
||||
# subtract any other surface already processed
|
||||
#FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||||
my $union = diff_ex(
|
||||
$union_p,
|
||||
[ map $_->p, @surfaces ],
|
||||
1,
|
||||
);
|
||||
|
||||
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||||
}
|
||||
}
|
||||
|
||||
# we need to detect any narrow surfaces that might collapse
|
||||
# when adding spacing below
|
||||
# such narrow surfaces are often generated in sloping walls
|
||||
# by bridge_over_infill() and combine_infill() as a result of the
|
||||
# subtraction of the combinable area from the layer infill area,
|
||||
# which leaves small areas near the perimeters
|
||||
# we are going to grow such regions by overlapping them with the void (if any)
|
||||
# TODO: detect and investigate whether there could be narrow regions without
|
||||
# any void neighbors
|
||||
{
|
||||
my $distance_between_surfaces = max(
|
||||
$infill_flow->scaled_spacing,
|
||||
$solid_infill_flow->scaled_spacing,
|
||||
$top_solid_infill_flow->scaled_spacing,
|
||||
);
|
||||
my $collapsed = diff(
|
||||
[ map @{$_->expolygon}, @surfaces ],
|
||||
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||||
1,
|
||||
);
|
||||
push @surfaces, map Slic3r::Surface->new(
|
||||
expolygon => $_,
|
||||
surface_type => S_TYPE_INTERNALSOLID,
|
||||
), @{intersection_ex(
|
||||
offset($collapsed, $distance_between_surfaces),
|
||||
[
|
||||
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||||
(@$collapsed),
|
||||
],
|
||||
1,
|
||||
)};
|
||||
}
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||||
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||||
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||||
);
|
||||
}
|
||||
|
||||
# Fills are of perl type Slic3r::ExtrusionPath::Collection, c++ type ExtrusionEntityCollection
|
||||
my @fills = ();
|
||||
SURFACE: foreach my $surface (@surfaces) {
|
||||
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||||
my $filler = $layerm->region->config->fill_pattern;
|
||||
my $density = $fill_density;
|
||||
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||||
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||||
: FLOW_ROLE_INFILL;
|
||||
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||||
my $is_solid = $surface->is_solid;
|
||||
|
||||
if ($surface->is_solid) {
|
||||
$density = 100;
|
||||
$filler = 'rectilinear';
|
||||
if ($surface->is_external && !$is_bridge) {
|
||||
$filler = $layerm->region->config->external_fill_pattern;
|
||||
}
|
||||
} else {
|
||||
next SURFACE unless $density > 0;
|
||||
}
|
||||
|
||||
# get filler object
|
||||
my $f = $self->filler($filler);
|
||||
|
||||
# calculate the actual flow we'll be using for this infill
|
||||
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||||
my $flow = $layerm->region->flow(
|
||||
$role,
|
||||
$h,
|
||||
$is_bridge || $f->use_bridge_flow,
|
||||
$layerm->layer->id == 0,
|
||||
-1,
|
||||
$layerm->layer->object,
|
||||
);
|
||||
|
||||
# calculate flow spacing for infill pattern generation
|
||||
my $using_internal_flow = 0;
|
||||
if (!$is_solid && !$is_bridge) {
|
||||
# it's internal infill, so we can calculate a generic flow spacing
|
||||
# for all layers, for avoiding the ugly effect of
|
||||
# misaligned infill on first layer because of different extrusion width and
|
||||
# layer height
|
||||
my $internal_flow = $layerm->region->flow(
|
||||
FLOW_ROLE_INFILL,
|
||||
$layerm->layer->object->config->layer_height, # TODO: handle infill_every_layers?
|
||||
0, # no bridge
|
||||
0, # no first layer
|
||||
-1, # auto width
|
||||
$layerm->layer->object,
|
||||
);
|
||||
$f->set_spacing($internal_flow->spacing);
|
||||
$using_internal_flow = 1;
|
||||
} else {
|
||||
$f->set_spacing($flow->spacing);
|
||||
}
|
||||
|
||||
$f->set_layer_id($layerm->layer->id);
|
||||
$f->set_z($layerm->layer->print_z);
|
||||
$f->set_angle(deg2rad($layerm->region->config->fill_angle));
|
||||
$f->set_loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||||
|
||||
# apply half spacing using this flow's own spacing and generate infill
|
||||
my @polylines = $f->fill_surface(
|
||||
$surface,
|
||||
density => $density/100,
|
||||
layer_height => $h,
|
||||
);
|
||||
next unless @polylines;
|
||||
|
||||
|
||||
# calculate actual flow from spacing (which might have been adjusted by the infill
|
||||
# pattern generator)
|
||||
if ($using_internal_flow) {
|
||||
# if we used the internal flow we're not doing a solid infill
|
||||
# so we can safely ignore the slight variation that might have
|
||||
# been applied to $f->flow_spacing
|
||||
} else {
|
||||
$flow = Slic3r::Flow->new_from_spacing(
|
||||
spacing => $f->spacing,
|
||||
nozzle_diameter => $flow->nozzle_diameter,
|
||||
layer_height => $h,
|
||||
bridge => $is_bridge || $f->use_bridge_flow,
|
||||
);
|
||||
}
|
||||
|
||||
# save into layer
|
||||
{
|
||||
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||||
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||||
: EXTR_ROLE_FILL;
|
||||
|
||||
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||||
# Only concentric fills are not sorted.
|
||||
$collection->no_sort($f->no_sort);
|
||||
$collection->append(
|
||||
map Slic3r::ExtrusionPath->new(
|
||||
polyline => $_,
|
||||
role => $role,
|
||||
mm3_per_mm => $flow->mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $flow->height,
|
||||
), map @$_, @polylines,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
# add thin fill regions
|
||||
# thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
|
||||
# Unpacks the collection, creates multiple collections per path.
|
||||
# The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||||
# Why the paths are unpacked?
|
||||
foreach my $thin_fill (@{$layerm->thin_fills}) {
|
||||
push @fills, Slic3r::ExtrusionPath::Collection->new($thin_fill);
|
||||
}
|
||||
|
||||
return @fills;
|
||||
}
|
||||
|
||||
1;
|
||||
|
|
@ -31,17 +31,6 @@ sub regions {
|
|||
return [ map $self->get_region($_), 0..($self->region_count-1) ];
|
||||
}
|
||||
|
||||
sub make_fill {
|
||||
my ($self) = @_;
|
||||
|
||||
foreach my $layerm (@{$self->regions}) {
|
||||
$layerm->fills->clear;
|
||||
# Fearlessly enable the C++ fillers.
|
||||
$layerm->fills->append($_) for $self->object->fill_maker2->make_fill($layerm);
|
||||
# $layerm->fills->append($_) for $self->object->fill_maker->make_fill($layerm);
|
||||
}
|
||||
}
|
||||
|
||||
package Slic3r::Layer::Support;
|
||||
our @ISA = qw(Slic3r::Layer);
|
||||
|
||||
|
|
|
|||
|
|
@ -544,8 +544,8 @@ sub process_layer {
|
|||
}
|
||||
|
||||
# process infill
|
||||
# $layerm->fills is a collection of ExtrusionPath::Collection objects, each one containing
|
||||
# the ExtrusionPath objects of a certain infill "group" (also called "surface"
|
||||
# $layerm->fills is a collection of Slic3r::ExtrusionPath::Collection objects (C++ class ExtrusionEntityCollection),
|
||||
# each one containing the ExtrusionPath objects of a certain infill "group" (also called "surface"
|
||||
# throughout the code). We can redefine the order of such Collections but we have to
|
||||
# do each one completely at once.
|
||||
foreach my $fill (@{$layerm->fills}) {
|
||||
|
|
|
|||
|
|
@ -14,19 +14,6 @@ use Slic3r::Surface ':types';
|
|||
# If enabled, phases of prepare_infill will be written into SVG files to an "out" directory.
|
||||
our $SLIC3R_DEBUG_SLICE_PROCESSING = 0;
|
||||
|
||||
# TODO: lazy
|
||||
sub fill_maker {
|
||||
my $self = shift;
|
||||
return Slic3r::Fill->new(bounding_box => $self->bounding_box);
|
||||
}
|
||||
|
||||
# Vojtech's implementation: Create the C++ filler.
|
||||
# TODO: lazy
|
||||
sub fill_maker2 {
|
||||
my $self = shift;
|
||||
return Slic3r::Fill2->new(bounding_box => $self->bounding_box);
|
||||
}
|
||||
|
||||
sub region_volumes {
|
||||
my $self = shift;
|
||||
return [ map $self->get_region_volumes($_), 0..($self->region_count - 1) ];
|
||||
|
|
@ -617,12 +604,12 @@ sub infill {
|
|||
thread_cb => sub {
|
||||
my $q = shift;
|
||||
while (defined (my $i = $q->dequeue)) {
|
||||
$self->get_layer($i)->make_fill;
|
||||
$self->get_layer($i)->make_fills;
|
||||
}
|
||||
},
|
||||
no_threads_cb => sub {
|
||||
foreach my $layer (@{$self->layers}) {
|
||||
$layer->make_fill;
|
||||
$layer->make_fills;
|
||||
}
|
||||
},
|
||||
);
|
||||
|
|
@ -678,14 +665,7 @@ sub _support_material {
|
|||
);
|
||||
} else {
|
||||
# New supports, C++ implementation.
|
||||
return Slic3r::Print::SupportMaterial2->new(
|
||||
print_config => $self->print->config,
|
||||
object_config => $self->config,
|
||||
first_layer_flow => $first_layer_flow,
|
||||
flow => $self->support_material_flow,
|
||||
interface_flow => $self->support_material_flow(FLOW_ROLE_SUPPORT_MATERIAL_INTERFACE),
|
||||
soluble_interface => ($self->config->support_material_contact_distance == 0),
|
||||
);
|
||||
return Slic3r::Print::SupportMaterial2->new($self);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -761,10 +761,13 @@ sub generate_toolpaths {
|
|||
# Allocate the fillers exclusively in the worker threads! Don't allocate them at the main thread,
|
||||
# as Perl copies the C++ pointers by default, so then the C++ objects are shared between threads!
|
||||
my %fillers = (
|
||||
interface => $object->fill_maker2->filler('rectilinear'),
|
||||
support => $object->fill_maker2->filler($pattern),
|
||||
interface => Slic3r::Filler->new_from_type('rectilinear'),
|
||||
support => Slic3r::Filler->new_from_type($pattern),
|
||||
);
|
||||
|
||||
my $bounding_box = $object->bounding_box;
|
||||
$fillers{interface}->set_bounding_box($object->bounding_box);
|
||||
$fillers{support}->set_bounding_box($object->bounding_box);
|
||||
|
||||
# interface and contact infill
|
||||
if (@$interface || @$contact_infill) {
|
||||
$fillers{interface}->set_angle($interface_angle);
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue