Lots of improvements to MotionPlanner/avoid_crossing_perimeters. Smoother paths and several edge cases now handled better

This commit is contained in:
Alessandro Ranellucci 2015-01-06 20:52:36 +01:00
parent 5e100abe25
commit 8f4cbefd0d
17 changed files with 386 additions and 113 deletions

View file

@ -72,11 +72,23 @@ MotionPlanner::initialize()
this->initialized = true;
}
ExPolygonCollection
MotionPlanner::get_env(size_t island_idx) const
{
if (island_idx == -1) {
return ExPolygonCollection(this->outer);
} else {
return this->inner[island_idx];
}
}
void
MotionPlanner::shortest_path(const Point &from, const Point &to, Polyline* polyline)
{
// lazy generation of configuration space
if (!this->initialized) this->initialize();
// if we have an empty configuration space, return a straight move
if (this->islands.empty()) {
polyline->points.push_back(from);
polyline->points.push_back(to);
@ -103,111 +115,163 @@ MotionPlanner::shortest_path(const Point &from, const Point &to, Polyline* polyl
Point inner_from = from;
Point inner_to = to;
bool from_is_inside, to_is_inside;
if (island_idx == -1) {
if (!(from_is_inside = this->outer.contains(from))) {
// Find the closest inner point to start from.
from.nearest_point(this->outer, &inner_from);
}
if (!(to_is_inside = this->outer.contains(to))) {
// Find the closest inner point to start from.
to.nearest_point(this->outer, &inner_to);
}
} else {
if (!(from_is_inside = this->inner[island_idx].contains(from))) {
// Find the closest inner point to start from.
from.nearest_point(this->inner[island_idx], &inner_from);
}
if (!(to_is_inside = this->inner[island_idx].contains(to))) {
// Find the closest inner point to start from.
to.nearest_point(this->inner[island_idx], &inner_to);
}
ExPolygonCollection env = this->get_env(island_idx);
if (!(from_is_inside = env.contains(from))) {
// Find the closest inner point to start from.
inner_from = this->nearest_env_point(env, from, to);
}
if (!(to_is_inside = env.contains(to))) {
// Find the closest inner point to start from.
inner_to = this->nearest_env_point(env, to, inner_from);
}
// perform actual path search
MotionPlannerGraph* graph = this->init_graph(island_idx);
graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to), polyline);
polyline->points.insert(polyline->points.begin(), from);
polyline->points.push_back(to);
if (!from_is_inside)
polyline->points.insert(polyline->points.begin(), from);
if (!to_is_inside)
polyline->points.push_back(to);
{
// grow our environment slightly in order for simplify_by_visibility()
// to work best by considering moves on boundaries valid as well
ExPolygonCollection grown_env;
offset(env, &grown_env.expolygons, +SCALED_EPSILON);
// remove unnecessary vertices
polyline->simplify_by_visibility(grown_env);
}
/*
SVG svg("shortest_path.svg");
svg.draw(this->outer);
svg.arrows = false;
for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
Point a = graph->nodes[it - graph->adjacency_list.begin()];
for (std::vector<MotionPlannerGraph::neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
Point b = graph->nodes[n->target];
svg.draw(Line(a, b));
}
}
svg.arrows = true;
svg.draw(from);
svg.draw(inner_from, "red");
svg.draw(to);
svg.draw(inner_to, "red");
svg.draw(*polyline, "red");
svg.Close();
*/
}
Point
MotionPlanner::nearest_env_point(const ExPolygonCollection &env, const Point &from, const Point &to) const
{
/* In order to ensure that the move between 'from' and the initial env point does
not violate any of the configuration space boundaries, we limit our search to
the points that satisfy this condition. */
/* Assume that this method is never called when 'env' contains 'from';
so 'from' is either inside a hole or outside all contours */
// get the points of the hole containing 'from', if any
Points pp;
for (ExPolygons::const_iterator ex = env.expolygons.begin(); ex != env.expolygons.end(); ++ex) {
for (Polygons::const_iterator h = ex->holes.begin(); h != ex->holes.end(); ++h) {
if (h->contains(from)) {
pp = *h;
}
}
if (!pp.empty()) break;
}
/* If 'from' is not inside a hole, it's outside of all contours, so take all
contours' points */
if (pp.empty()) {
for (ExPolygons::const_iterator ex = env.expolygons.begin(); ex != env.expolygons.end(); ++ex) {
Points contour_pp = ex->contour;
pp.insert(pp.end(), contour_pp.begin(), contour_pp.end());
}
}
/* Find the candidate result and check that it doesn't cross any boundary.
(We could skip all of the above polygon finding logic and directly test all points
in env, but this way we probably reduce complexity). */
Polygons env_pp = env;
while (pp.size() >= 2) {
// find the point in pp that is closest to both 'from' and 'to'
size_t result = from.nearest_waypoint_index(pp, to);
if (intersects((Lines)Line(from, pp[result]), env_pp)) {
// discard result
pp.erase(pp.begin() + result);
} else {
return pp[result];
}
}
// if we're here, return last point (better than nothing)
return pp.front();
}
MotionPlannerGraph*
MotionPlanner::init_graph(int island_idx)
{
if (this->graphs[island_idx + 1] == NULL) {
Polygons pp;
if (island_idx == -1) {
pp = this->outer;
} else {
pp = this->inner[island_idx];
}
// if this graph doesn't exist, initialize it
MotionPlannerGraph* graph = this->graphs[island_idx + 1] = new MotionPlannerGraph();
// add polygon boundaries as edges
size_t node_idx = 0;
Lines lines;
for (Polygons::const_iterator polygon = pp.begin(); polygon != pp.end(); ++polygon) {
graph->nodes.push_back(polygon->points.back());
node_idx++;
for (Points::const_iterator p = polygon->points.begin(); p != polygon->points.end(); ++p) {
graph->nodes.push_back(*p);
double dist = graph->nodes[node_idx-1].distance_to(*p);
graph->add_edge(node_idx-1, node_idx, dist);
graph->add_edge(node_idx, node_idx-1, dist);
node_idx++;
}
polygon->lines(&lines);
}
/* We don't add polygon boundaries as graph edges, because we'd need to connect
them to the Voronoi-generated edges by recognizing coinciding nodes. */
// add Voronoi edges as internal edges
{
typedef voronoi_diagram<double> VD;
typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices;
VD vd;
t_vd_vertices vd_vertices;
typedef voronoi_diagram<double> VD;
VD vd;
// mapping between Voronoi vertices and graph nodes
typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices;
t_vd_vertices vd_vertices;
// get boundaries as lines
ExPolygonCollection env = this->get_env(island_idx);
Lines lines = env.lines();
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
// traverse the Voronoi diagram and generate graph nodes and edges
for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
if (edge->is_infinite()) continue;
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
if (edge->is_infinite()) continue;
const VD::vertex_type* v0 = edge->vertex0();
const VD::vertex_type* v1 = edge->vertex1();
Point p0 = Point(v0->x(), v0->y());
Point p1 = Point(v1->x(), v1->y());
// contains() should probably be faster than contains(),
// and should it fail on any boundary points it's not a big problem
if (island_idx == -1) {
if (!this->outer.contains(p0) || !this->outer.contains(p1)) continue;
} else {
if (!this->inner[island_idx].contains(p0) || !this->inner[island_idx].contains(p1)) continue;
}
t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
size_t v0_idx;
if (i_v0 == vd_vertices.end()) {
graph->nodes.push_back(p0);
v0_idx = node_idx;
vd_vertices[v0] = node_idx;
node_idx++;
} else {
v0_idx = i_v0->second;
}
t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1);
size_t v1_idx;
if (i_v1 == vd_vertices.end()) {
graph->nodes.push_back(p1);
v1_idx = node_idx;
vd_vertices[v1] = node_idx;
node_idx++;
} else {
v1_idx = i_v1->second;
}
double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
graph->add_edge(v0_idx, v1_idx, dist);
const VD::vertex_type* v0 = edge->vertex0();
const VD::vertex_type* v1 = edge->vertex1();
Point p0 = Point(v0->x(), v0->y());
Point p1 = Point(v1->x(), v1->y());
// skip edge if any of its endpoints is outside our configuration space
if (!env.contains_b(p0) || !env.contains_b(p1)) continue;
t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
size_t v0_idx;
if (i_v0 == vd_vertices.end()) {
graph->nodes.push_back(p0);
vd_vertices[v0] = v0_idx = graph->nodes.size()-1;
} else {
v0_idx = i_v0->second;
}
t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1);
size_t v1_idx;
if (i_v1 == vd_vertices.end()) {
graph->nodes.push_back(p1);
vd_vertices[v1] = v1_idx = graph->nodes.size()-1;
} else {
v1_idx = i_v1->second;
}
// Euclidean distance is used as weight for the graph edge
double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
graph->add_edge(v0_idx, v1_idx, dist);
}
return graph;
@ -244,38 +308,61 @@ MotionPlannerGraph::shortest_path(size_t from, size_t to, Polyline* polyline)
const weight_t max_weight = std::numeric_limits<weight_t>::infinity();
std::vector<weight_t> min_distance;
std::vector<weight_t> dist;
std::vector<node_t> previous;
{
int n = this->adjacency_list.size();
min_distance.clear();
min_distance.resize(n, max_weight);
min_distance[from] = 0;
// number of nodes
size_t n = this->adjacency_list.size();
// initialize dist and previous
dist.clear();
dist.resize(n, max_weight);
dist[from] = 0; // distance from 'from' to itself
previous.clear();
previous.resize(n, -1);
std::set<std::pair<weight_t, node_t> > vertex_queue;
vertex_queue.insert(std::make_pair(min_distance[from], from));
while (!vertex_queue.empty())
// initialize the Q with all nodes
std::set<node_t> Q;
for (node_t i = 0; i < n; ++i) Q.insert(i);
while (!Q.empty())
{
weight_t dist = vertex_queue.begin()->first;
node_t u = vertex_queue.begin()->second;
vertex_queue.erase(vertex_queue.begin());
// Visit each edge exiting u
// get node in Q having the minimum dist ('from' in the first loop)
node_t u;
{
double min_dist = -1;
for (std::set<node_t>::const_iterator n = Q.begin(); n != Q.end(); ++n) {
if (dist[*n] < min_dist || min_dist == -1) {
u = *n;
min_dist = dist[*n];
}
}
}
Q.erase(u);
// stop searching if we reached our destination
if (u == to) break;
// Visit each edge starting from node u
const std::vector<neighbor> &neighbors = this->adjacency_list[u];
for (std::vector<neighbor>::const_iterator neighbor_iter = neighbors.begin();
neighbor_iter != neighbors.end();
neighbor_iter++)
{
// neighbor node is v
node_t v = neighbor_iter->target;
weight_t weight = neighbor_iter->weight;
weight_t distance_through_u = dist + weight;
if (distance_through_u < min_distance[v]) {
vertex_queue.erase(std::make_pair(min_distance[v], v));
min_distance[v] = distance_through_u;
// skip if we already visited this
if (Q.find(v) == Q.end()) continue;
// calculate total distance
weight_t alt = dist[u] + neighbor_iter->weight;
// if total distance through u is shorter than the previous
// distance (if any) between 'from' and 'v', replace it
if (alt < dist[v]) {
dist[v] = alt;
previous[v] = u;
vertex_queue.insert(std::make_pair(min_distance[v], v));
}
}
@ -284,6 +371,7 @@ MotionPlannerGraph::shortest_path(size_t from, size_t to, Polyline* polyline)
for (node_t vertex = to; vertex != -1; vertex = previous[vertex])
polyline->points.push_back(this->nodes[vertex]);
polyline->points.push_back(this->nodes[from]);
polyline->reverse();
}