Changing the internal representation of Point / Pointf / Point3 / Pointf3 to Eigen Matrix types, first step

This commit is contained in:
bubnikv 2018-08-14 18:33:26 +02:00
parent 077680b806
commit 86da661097
60 changed files with 1228 additions and 1206 deletions

View file

@ -2,12 +2,15 @@
#define slic3r_Point_hpp_
#include "libslic3r.h"
#include <cstddef>
#include <vector>
#include <math.h>
#include <cmath>
#include <string>
#include <sstream>
#include <unordered_map>
#include <Eigen/Geometry>
namespace Slic3r {
class Line;
@ -28,24 +31,37 @@ typedef std::vector<Point3> Points3;
typedef std::vector<Pointf> Pointfs;
typedef std::vector<Pointf3> Pointf3s;
// Eigen types, to replace the Slic3r's own types in the future.
// Vector types with a fixed point coordinate base type.
typedef Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign> Vec2crd;
typedef Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign> Vec3crd;
// Vector types with a double coordinate base type.
typedef Eigen::Matrix<coordf_t, 2, 1, Eigen::DontAlign> Vec2d;
typedef Eigen::Matrix<coordf_t, 3, 1, Eigen::DontAlign> Vec3d;
class Point
{
public:
typedef coord_t coord_type;
coord_t x;
coord_t y;
Point(coord_t _x = 0, coord_t _y = 0): x(_x), y(_y) {};
Point(int64_t _x, int64_t _y): x(coord_t(_x)), y(coord_t(_y)) {}; // for Clipper
Point(double x, double y);
Vec2crd data;
Point(coord_t x = 0, coord_t y = 0) { data(0) = x; data(1) = y; }
Point(int64_t x, int64_t y) : Point(coord_t(x), coord_t(y)) {} // for Clipper
Point(double x, double y) : Point(lrint(x), lrint(y)) {}
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
bool operator==(const Point& rhs) const { return this->x == rhs.x && this->y == rhs.y; }
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
bool operator<(const Point& rhs) const { return this->x < rhs.x || (this->x == rhs.x && this->y < rhs.y); }
const coord_t& x() const { return this->data[0]; }
coord_t& x() { return this->data[0]; }
const coord_t& y() const { return this->data[1]; }
coord_t& y() { return this->data[1]; }
Point& operator+=(const Point& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
Point& operator-=(const Point& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
Point& operator*=(const coord_t& rhs) { this->x *= rhs; this->y *= rhs; return *this; }
bool operator==(const Point& rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
bool operator<(const Point& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
Point& operator*=(const coord_t& rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
std::string wkt() const;
std::string dump_perl() const;
@ -56,14 +72,14 @@ public:
void rotate(double angle, const Point &center);
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
bool coincides_with(const Point &point) const { return this->x == point.x && this->y == point.y; }
bool coincides_with(const Point &point) const { return this->x() == point.x() && this->y() == point.y(); }
bool coincides_with_epsilon(const Point &point) const;
int nearest_point_index(const Points &points) const;
int nearest_point_index(const PointConstPtrs &points) const;
int nearest_point_index(const PointPtrs &points) const;
bool nearest_point(const Points &points, Point* point) const;
double distance_to(const Point &point) const { return sqrt(distance_to_sq(point)); }
double distance_to_sq(const Point &point) const { double dx = double(point.x - this->x); double dy = double(point.y - this->y); return dx*dx + dy*dy; }
double distance_to_sq(const Point &point) const { double dx = double(point.x() - this->x()); double dy = double(point.y() - this->y()); return dx*dx + dy*dy; }
double distance_to(const Line &line) const;
double perp_distance_to(const Line &line) const;
double ccw(const Point &p1, const Point &p2) const;
@ -75,11 +91,11 @@ public:
Vector vector_to(const Point &point) const;
};
inline Point operator+(const Point& point1, const Point& point2) { return Point(point1.x + point2.x, point1.y + point2.y); }
inline Point operator-(const Point& point1, const Point& point2) { return Point(point1.x - point2.x, point1.y - point2.y); }
inline Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x, scalar * point2.y); }
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.y) - int64_t(v1.y) * int64_t(v2.x); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y); }
inline Point operator+(const Point& point1, const Point& point2) { return Point(point1.x() + point2.x(), point1.y() + point2.y()); }
inline Point operator-(const Point& point1, const Point& point2) { return Point(point1.x() - point2.x(), point1.y() - point2.y()); }
inline Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x(), scalar * point2.y()); }
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x()) * int64_t(v2.y()) - int64_t(v1.y()) * int64_t(v2.x()); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x()) * int64_t(v2.x()) + int64_t(v1.y()) * int64_t(v2.y()); }
namespace int128 {
@ -95,7 +111,7 @@ int cross(const Point &v1, const Slic3r::Point &v2);
// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
size_t operator()(const Point &pt) const {
return std::hash<coord_t>()(pt.x) ^ std::hash<coord_t>()(pt.y);
return std::hash<coord_t>()(pt.x()) ^ std::hash<coord_t>()(pt.y());
}
};
@ -141,13 +157,13 @@ public:
void insert(const ValueType &value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), value));
m_map.emplace(std::make_pair(Point(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
}
void insert(ValueType &&value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), std::move(value)));
m_map.emplace(std::make_pair(Point(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
}
// Return a pair of <ValueType*, distance_squared>
@ -157,12 +173,12 @@ public:
const ValueType *value_min = nullptr;
double dist_min = std::numeric_limits<double>::max();
// Round pt to a closest grid_cell corner.
Point grid_corner((pt.x+(m_grid_resolution>>1))>>m_grid_log2, (pt.y+(m_grid_resolution>>1))>>m_grid_log2);
Point grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
// For four neighbors of grid_corner:
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
// Range of fragment starts around grid_corner, close to pt.
auto range = m_map.equal_range(Point(grid_corner.x + neighbor_x, grid_corner.y + neighbor_y));
auto range = m_map.equal_range(Point(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
// Find the map entry closest to pt.
for (auto it = range.first; it != range.second; ++it) {
const ValueType &value = it->second;
@ -194,12 +210,16 @@ private:
class Point3 : public Point
{
public:
coord_t z;
explicit Point3(coord_t _x = 0, coord_t _y = 0, coord_t _z = 0): Point(_x, _y), z(_z) {};
coord_t m_z;
const coord_t& z() const { return this->m_z; }
coord_t& z() { return this->m_z; }
explicit Point3(coord_t _x = 0, coord_t _y = 0, coord_t _z = 0): Point(_x, _y), m_z(_z) {};
static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }
bool operator==(const Point3 &rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool operator==(const Point3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
bool operator!=(const Point3 &rhs) const { return ! (*this == rhs); }
bool coincides_with(const Point3& rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool coincides_with(const Point3& rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
private:
// Hide the following inherited methods:
bool operator==(const Point &rhs) const;
@ -212,15 +232,17 @@ class Pointf
{
public:
typedef coordf_t coord_type;
coordf_t x;
coordf_t y;
explicit Pointf(coordf_t _x = 0, coordf_t _y = 0): x(_x), y(_y) {};
static Pointf new_unscale(coord_t x, coord_t y) {
return Pointf(unscale(x), unscale(y));
};
static Pointf new_unscale(const Point &p) {
return Pointf(unscale(p.x), unscale(p.y));
};
Vec2d data;
explicit Pointf(coordf_t x = 0, coordf_t y = 0) { data(0) = x; data(1) = y; }
static Pointf new_unscale(coord_t x, coord_t y) { return Pointf(unscale(x), unscale(y)); }
static Pointf new_unscale(const Point &p) { return Pointf(unscale(p.x()), unscale(p.y())); }
const coordf_t& x() const { return this->data[0]; }
coordf_t& x() { return this->data[0]; }
const coordf_t& y() const { return this->data[1]; }
coordf_t& y() { return this->data[1]; }
std::string wkt() const;
std::string dump_perl() const;
void scale(double factor);
@ -231,39 +253,41 @@ public:
Pointf negative() const;
Vectorf vector_to(const Pointf &point) const;
Pointf& operator+=(const Pointf& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
Pointf& operator-=(const Pointf& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
Pointf& operator*=(const coordf_t& rhs) { this->x *= rhs; this->y *= rhs; return *this; }
Pointf& operator+=(const Pointf& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
Pointf& operator-=(const Pointf& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
Pointf& operator*=(const coordf_t& rhs) { this->x() *= rhs; this->y() *= rhs; return *this; }
bool operator==(const Pointf &rhs) const { return this->x == rhs.x && this->y == rhs.y; }
bool operator==(const Pointf &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y(); }
bool operator!=(const Pointf &rhs) const { return ! (*this == rhs); }
bool operator< (const Pointf& rhs) const { return this->x < rhs.x || (this->x == rhs.x && this->y < rhs.y); }
bool operator< (const Pointf& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); }
};
inline Pointf operator+(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x + point2.x, point1.y + point2.y); }
inline Pointf operator-(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x - point2.x, point1.y - point2.y); }
inline Pointf operator*(double scalar, const Pointf& point2) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline Pointf operator*(const Pointf& point2, double scalar) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline coordf_t cross(const Pointf &v1, const Pointf &v2) { return v1.x * v2.y - v1.y * v2.x; }
inline coordf_t dot(const Pointf &v1, const Pointf &v2) { return v1.x * v2.x + v1.y * v2.y; }
inline coordf_t dot(const Pointf &v) { return v.x * v.x + v.y * v.y; }
inline Pointf operator+(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x() + point2.x(), point1.y() + point2.y()); }
inline Pointf operator-(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x() - point2.x(), point1.y() - point2.y()); }
inline Pointf operator*(double scalar, const Pointf& point2) { return Pointf(scalar * point2.x(), scalar * point2.y()); }
inline Pointf operator*(const Pointf& point2, double scalar) { return Pointf(scalar * point2.x(), scalar * point2.y()); }
inline coordf_t cross(const Pointf &v1, const Pointf &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); }
inline coordf_t dot(const Pointf &v1, const Pointf &v2) { return v1.x() * v2.x() + v1.y() * v2.y(); }
inline coordf_t dot(const Pointf &v) { return v.x() * v.x() + v.y() * v.y(); }
inline double length(const Vectorf &v) { return sqrt(dot(v)); }
inline double l2(const Vectorf &v) { return dot(v); }
inline Vectorf normalize(const Vectorf& v)
{
coordf_t len = ::sqrt(sqr(v.x) + sqr(v.y));
coordf_t len = ::sqrt(sqr(v.x()) + sqr(v.y()));
return (len != 0.0) ? 1.0 / len * v : Vectorf(0.0, 0.0);
}
class Pointf3 : public Pointf
{
public:
coordf_t z;
explicit Pointf3(coordf_t _x = 0, coordf_t _y = 0, coordf_t _z = 0): Pointf(_x, _y), z(_z) {};
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) {
return Pointf3(unscale(x), unscale(y), unscale(z));
};
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p.x), unscale(p.y), unscale(p.z)); }
coordf_t m_z;
const coordf_t& z() const { return this->m_z; }
coordf_t& z() { return this->m_z; }
explicit Pointf3(coordf_t _x = 0, coordf_t _y = 0, coordf_t _z = 0): Pointf(_x, _y), m_z(_z) {};
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) { return Pointf3(unscale(x), unscale(y), unscale(z)); }
static Pointf3 new_unscale(const Point3& p) { return Pointf3(unscale(p.x()), unscale(p.y()), unscale(p.z())); }
void scale(double factor);
void translate(const Vectorf3 &vector);
void translate(double x, double y, double z);
@ -271,7 +295,7 @@ public:
Pointf3 negative() const;
Vectorf3 vector_to(const Pointf3 &point) const;
bool operator==(const Pointf3 &rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool operator==(const Pointf3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); }
bool operator!=(const Pointf3 &rhs) const { return ! (*this == rhs); }
private:
@ -280,23 +304,23 @@ private:
bool operator!=(const Pointf &rhs) const;
};
inline Pointf3 operator+(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); }
inline Pointf3 operator-(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
inline Pointf3 operator-(const Pointf3& p) { return Pointf3(-p.x, -p.y, -p.z); }
inline Pointf3 operator*(double scalar, const Pointf3& p) { return Pointf3(scalar * p.x, scalar * p.y, scalar * p.z); }
inline Pointf3 operator*(const Pointf3& p, double scalar) { return Pointf3(scalar * p.x, scalar * p.y, scalar * p.z); }
inline Pointf3 cross(const Pointf3& v1, const Pointf3& v2) { return Pointf3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x); }
inline coordf_t dot(const Pointf3& v1, const Pointf3& v2) { return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; }
inline Pointf3 operator+(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x() + p2.x(), p1.y() + p2.y(), p1.z() + p2.z()); }
inline Pointf3 operator-(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x() - p2.x(), p1.y() - p2.y(), p1.z() - p2.z()); }
inline Pointf3 operator-(const Pointf3& p) { return Pointf3(-p.x(), -p.y(), -p.z()); }
inline Pointf3 operator*(double scalar, const Pointf3& p) { return Pointf3(scalar * p.x(), scalar * p.y(), scalar * p.z()); }
inline Pointf3 operator*(const Pointf3& p, double scalar) { return Pointf3(scalar * p.x(), scalar * p.y(), scalar * p.z()); }
inline Pointf3 cross(const Pointf3& v1, const Pointf3& v2) { return Pointf3(v1.y() * v2.z() - v1.z() * v2.y(), v1.z() * v2.x() - v1.x() * v2.z(), v1.x() * v2.y() - v1.y() * v2.x()); }
inline coordf_t dot(const Pointf3& v1, const Pointf3& v2) { return v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z(); }
inline Pointf3 normalize(const Pointf3& v)
{
coordf_t len = ::sqrt(sqr(v.x) + sqr(v.y) + sqr(v.z));
coordf_t len = ::sqrt(sqr(v.x()) + sqr(v.y()) + sqr(v.z()));
return (len != 0.0) ? 1.0 / len * v : Pointf3(0.0, 0.0, 0.0);
}
template<typename TO> inline TO convert_to(const Point &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Pointf &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Point3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }
template<typename TO> inline TO convert_to(const Pointf3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }
template<typename TO> inline TO convert_to(const Point &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y())); }
template<typename TO> inline TO convert_to(const Pointf &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y())); }
template<typename TO> inline TO convert_to(const Point3 &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y()), typename TO::coord_type(src.z())); }
template<typename TO> inline TO convert_to(const Pointf3 &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y()), typename TO::coord_type(src.z())); }
} // namespace Slic3r
@ -312,7 +336,7 @@ namespace boost { namespace polygon {
typedef coord_t coordinate_type;
static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
return (orient == HORIZONTAL) ? point.x : point.y;
return (orient == HORIZONTAL) ? (coordinate_type)point.x() : (coordinate_type)point.y();
}
};
@ -321,14 +345,14 @@ namespace boost { namespace polygon {
typedef coord_t coordinate_type;
static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
if (orient == HORIZONTAL)
point.x = value;
point.x() = value;
else
point.y = value;
point.y() = value;
}
static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
Slic3r::Point retval;
retval.x = x_value;
retval.y = y_value;
retval.x() = x_value;
retval.y() = y_value;
return retval;
}
};