mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-14 10:17:55 -06:00
SPE-2298: Fix crash caused by a numerical issue during testing if a Voronoi vertex is inside a corner of a polygon.
Cherry-picked from prusa3d/PrusaSlicer@669c931b77 Co-authored-by: Lukáš Hejl <hejl.lukas@gmail.com>
This commit is contained in:
parent
3a43050ad1
commit
862acea2af
9 changed files with 181 additions and 144 deletions
|
@ -9,63 +9,6 @@
|
|||
namespace Slic3r::Arachne::LinearAlg2D
|
||||
{
|
||||
|
||||
/*!
|
||||
* Test whether a point is inside a corner.
|
||||
* Whether point \p query_point is left of the corner abc.
|
||||
* Whether the \p query_point is in the circle half left of ab and left of bc, rather than to the right.
|
||||
*
|
||||
* Test whether the \p query_point is inside of a polygon w.r.t a single corner.
|
||||
*/
|
||||
inline static bool isInsideCorner(const Point &a, const Point &b, const Point &c, const Vec2i64 &query_point)
|
||||
{
|
||||
// Visualisation for the algorithm below:
|
||||
//
|
||||
// query
|
||||
// |
|
||||
// |
|
||||
// |
|
||||
// perp-----------b
|
||||
// / \ (note that the lines
|
||||
// / \ AB and AC are normalized
|
||||
// / \ to 10000 units length)
|
||||
// a c
|
||||
//
|
||||
|
||||
auto normal = [](const Point &p0, coord_t len) -> Point {
|
||||
int64_t _len = p0.norm();
|
||||
if (_len < 1)
|
||||
return {len, 0};
|
||||
return (p0.cast<int64_t>() * int64_t(len) / _len).cast<coord_t>();
|
||||
};
|
||||
|
||||
auto rotate_90_degree_ccw = [](const Vec2d &p) -> Vec2d {
|
||||
return {-p.y(), p.x()};
|
||||
};
|
||||
|
||||
constexpr coord_t normal_length = 10000; //Create a normal vector of reasonable length in order to reduce rounding error.
|
||||
const Point ba = normal(a - b, normal_length);
|
||||
const Point bc = normal(c - b, normal_length);
|
||||
const Vec2d bq = query_point.cast<double>() - b.cast<double>();
|
||||
const Vec2d perpendicular = rotate_90_degree_ccw(bq); //The query projects to this perpendicular to coordinate 0.
|
||||
|
||||
const double project_a_perpendicular = ba.cast<double>().dot(perpendicular); //Project vertex A on the perpendicular line.
|
||||
const double project_c_perpendicular = bc.cast<double>().dot(perpendicular); //Project vertex C on the perpendicular line.
|
||||
if ((project_a_perpendicular > 0.) != (project_c_perpendicular > 0.)) //Query is between A and C on the projection.
|
||||
{
|
||||
return project_a_perpendicular > 0.; //Due to the winding order of corner ABC, this means that the query is inside.
|
||||
}
|
||||
else //Beyond either A or C, but it could still be inside of the polygon.
|
||||
{
|
||||
const double project_a_parallel = ba.cast<double>().dot(bq); //Project not on the perpendicular, but on the original.
|
||||
const double project_c_parallel = bc.cast<double>().dot(bq);
|
||||
|
||||
//Either:
|
||||
// * A is to the right of B (project_a_perpendicular > 0) and C is below A (project_c_parallel < project_a_parallel), or
|
||||
// * A is to the left of B (project_a_perpendicular < 0) and C is above A (project_c_parallel > project_a_parallel).
|
||||
return (project_c_parallel < project_a_parallel) == (project_a_perpendicular > 0.);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the determinant of the 2D matrix defined by the the vectors ab and ap as rows.
|
||||
*
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue