1) New algorithm for connecting along the perimeters is now applied
   to Honeycomb, Hilbert and similar planar filling curves.
2) The old expensive path chaining is not applied if the new algorithm
   to connect along the perimeter lines is called afterwards.
This commit is contained in:
Vojtech Bubnik 2020-11-16 12:51:51 +01:00
parent e9fa36ea7d
commit 812cbade4d
7 changed files with 69 additions and 133 deletions

View file

@ -1,4 +1,5 @@
#include "../ClipperUtils.hpp"
#include "../ShortestPath.hpp"
#include "../Surface.hpp"
#include "FillPlanePath.hpp"
@ -23,14 +24,14 @@ void FillPlanePath::_fill_surface_single(
Point shift = this->_centered() ?
bounding_box.center() :
bounding_box.min;
expolygon.translate(-shift(0), -shift(1));
bounding_box.translate(-shift(0), -shift(1));
expolygon.translate(-shift.x(), -shift.y());
bounding_box.translate(-shift.x(), -shift.y());
Pointfs pts = _generate(
coord_t(ceil(coordf_t(bounding_box.min(0)) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.min(1)) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max(0)) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max(1)) / distance_between_lines)));
coord_t(ceil(coordf_t(bounding_box.min.x()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.min.y()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.x()) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.y()) / distance_between_lines)));
Polylines polylines;
if (pts.size() >= 2) {
@ -38,39 +39,24 @@ void FillPlanePath::_fill_surface_single(
polylines.push_back(Polyline());
Polyline &polyline = polylines.back();
polyline.points.reserve(pts.size());
for (Pointfs::iterator it = pts.begin(); it != pts.end(); ++ it)
for (const Vec2d &pt : pts)
polyline.points.push_back(Point(
coord_t(floor((*it)(0) * distance_between_lines + 0.5)),
coord_t(floor((*it)(1) * distance_between_lines + 0.5))));
coord_t(floor(pt.x() * distance_between_lines + 0.5)),
coord_t(floor(pt.y() * distance_between_lines + 0.5))));
// intersection(polylines_src, offset((Polygons)expolygon, scale_(0.02)), &polylines);
polylines = intersection_pl(polylines, to_polygons(expolygon));
/*
if (1) {
require "Slic3r/SVG.pm";
print "Writing fill.svg\n";
Slic3r::SVG::output("fill.svg",
no_arrows => 1,
polygons => \@$expolygon,
green_polygons => [ $bounding_box->polygon ],
polylines => [ $polyline ],
red_polylines => \@paths,
);
}
*/
polylines = intersection_pl(std::move(polylines), to_polygons(expolygon));
Polylines chained;
if (params.dont_connect || params.density > 0.5 || polylines.size() <= 1)
chained = chain_polylines(std::move(polylines));
else
connect_infill(std::move(polylines), expolygon, chained, this->spacing, params);
// paths must be repositioned and rotated back
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
it->translate(shift(0), shift(1));
it->rotate(direction.first);
for (Polyline &pl : chained) {
pl.translate(shift.x(), shift.y());
pl.rotate(direction.first);
}
append(polylines_out, std::move(chained));
}
// Move the polylines to the output, avoid a deep copy.
size_t j = polylines_out.size();
polylines_out.resize(j + polylines.size(), Polyline());
for (size_t i = 0; i < polylines.size(); ++ i)
std::swap(polylines_out[j ++], polylines[i]);
}
// Follow an Archimedean spiral, in polar coordinates: r=a+b\theta
@ -85,13 +71,13 @@ Pointfs FillArchimedeanChords::_generate(coord_t min_x, coord_t min_y, coord_t m
coordf_t r = 1;
Pointfs out;
//FIXME Vojtech: If used as a solid infill, there is a gap left at the center.
out.push_back(Vec2d(0, 0));
out.push_back(Vec2d(1, 0));
out.emplace_back(0, 0);
out.emplace_back(1, 0);
while (r < rmax) {
// Discretization angle to achieve a discretization error lower than RESOLUTION.
theta += 2. * acos(1. - RESOLUTION / r);
r = a + b * theta;
out.push_back(Vec2d(r * cos(theta), r * sin(theta)));
out.emplace_back(r * cos(theta), r * sin(theta));
}
return out;
}
@ -128,15 +114,12 @@ static inline Point hilbert_n_to_xy(const size_t n)
++ ndigits;
}
}
int state = (ndigits & 1) ? 4 : 0;
// int dirstate = (ndigits & 1) ? 0 : 4;
int state = (ndigits & 1) ? 4 : 0;
coord_t x = 0;
coord_t y = 0;
for (int i = (int)ndigits - 1; i >= 0; -- i) {
int digit = (n >> (i * 2)) & 3;
state += digit;
// if (digit != 3)
// dirstate = state; // lowest non-3 digit
x |= digit_to_x[state] << i;
y |= digit_to_y[state] << i;
state = next_state[state];
@ -162,7 +145,7 @@ Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x,
line.reserve(sz2);
for (size_t i = 0; i < sz2; ++ i) {
Point p = hilbert_n_to_xy(i);
line.push_back(Vec2d(p(0) + min_x, p(1) + min_y));
line.emplace_back(p.x() + min_x, p.y() + min_y);
}
return line;
}
@ -175,27 +158,27 @@ Pointfs FillOctagramSpiral::_generate(coord_t min_x, coord_t min_y, coord_t max_
coordf_t r = 0;
coordf_t r_inc = sqrt(2.);
Pointfs out;
out.push_back(Vec2d(0, 0));
out.emplace_back(0., 0.);
while (r < rmax) {
r += r_inc;
coordf_t rx = r / sqrt(2.);
coordf_t r2 = r + rx;
out.push_back(Vec2d( r, 0.));
out.push_back(Vec2d( r2, rx));
out.push_back(Vec2d( rx, rx));
out.push_back(Vec2d( rx, r2));
out.push_back(Vec2d(0., r));
out.push_back(Vec2d(-rx, r2));
out.push_back(Vec2d(-rx, rx));
out.push_back(Vec2d(-r2, rx));
out.push_back(Vec2d(-r, 0.));
out.push_back(Vec2d(-r2, -rx));
out.push_back(Vec2d(-rx, -rx));
out.push_back(Vec2d(-rx, -r2));
out.push_back(Vec2d(0., -r));
out.push_back(Vec2d( rx, -r2));
out.push_back(Vec2d( rx, -rx));
out.push_back(Vec2d( r2+r_inc, -rx));
out.emplace_back( r, 0.);
out.emplace_back( r2, rx);
out.emplace_back( rx, rx);
out.emplace_back( rx, r2);
out.emplace_back( 0., r);
out.emplace_back(-rx, r2);
out.emplace_back(-rx, rx);
out.emplace_back(-r2, rx);
out.emplace_back(- r, 0.);
out.emplace_back(-r2, -rx);
out.emplace_back(-rx, -rx);
out.emplace_back(-rx, -r2);
out.emplace_back( 0., -r);
out.emplace_back( rx, -r2);
out.emplace_back( rx, -rx);
out.emplace_back( r2+r_inc, -rx);
}
return out;
}