mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-27 18:51:11 -06:00
more clang warnings enabled, performance measuring
Succesfull build on mingw-w64 fix sandboxes Mingw fixes and full parallel support tree gen.
This commit is contained in:
parent
7d25d8c677
commit
7e0199746e
27 changed files with 1393 additions and 1148 deletions
|
|
@ -133,8 +133,18 @@ protected:
|
|||
PConfig m_pconf; // Placement configuration
|
||||
TBin m_bin;
|
||||
double m_bin_area;
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable: 4244)
|
||||
#pragma warning(disable: 4267)
|
||||
#endif
|
||||
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
|
||||
SpatIndex m_smallsrtree; // spatial index for only the smaller items
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
double m_norm; // A coefficient to scale distances
|
||||
MultiPolygon m_merged_pile; // The already merged pile (vector of items)
|
||||
Box m_pilebb; // The bounding box of the merged pile.
|
||||
|
|
|
|||
|
|
@ -5,6 +5,10 @@ include(PrecompiledHeader)
|
|||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/libslic3r_version.h.in ${CMAKE_CURRENT_BINARY_DIR}/libslic3r_version.h @ONLY)
|
||||
|
||||
if (MINGW)
|
||||
add_compile_options(-Wa,-mbig-obj)
|
||||
endif ()
|
||||
|
||||
add_library(libslic3r STATIC
|
||||
pchheader.cpp
|
||||
pchheader.hpp
|
||||
|
|
@ -70,7 +74,7 @@ add_library(libslic3r STATIC
|
|||
GCode/CoolingBuffer.cpp
|
||||
GCode/CoolingBuffer.hpp
|
||||
GCode/PostProcessor.cpp
|
||||
GCode/PostProcessor.hpp
|
||||
GCode/PostProcessor.hpp
|
||||
# GCode/PressureEqualizer.cpp
|
||||
# GCode/PressureEqualizer.hpp
|
||||
GCode/PreviewData.cpp
|
||||
|
|
|
|||
|
|
@ -102,45 +102,60 @@ private:
|
|||
class ToolOrdering
|
||||
{
|
||||
public:
|
||||
ToolOrdering() {}
|
||||
ToolOrdering() {}
|
||||
|
||||
// For the use case when each object is printed separately
|
||||
// (print.config.complete_objects is true).
|
||||
ToolOrdering(const PrintObject &object, unsigned int first_extruder = (unsigned int)-1, bool prime_multi_material = false);
|
||||
// For the use case when each object is printed separately
|
||||
// (print.config.complete_objects is true).
|
||||
ToolOrdering(const PrintObject &object, unsigned int first_extruder = (unsigned int)-1, bool prime_multi_material = false);
|
||||
|
||||
// For the use case when all objects are printed at once.
|
||||
// (print.config.complete_objects is false).
|
||||
ToolOrdering(const Print &print, unsigned int first_extruder = (unsigned int)-1, bool prime_multi_material = false);
|
||||
// For the use case when all objects are printed at once.
|
||||
// (print.config.complete_objects is false).
|
||||
ToolOrdering(const Print &print, unsigned int first_extruder = (unsigned int)-1, bool prime_multi_material = false);
|
||||
|
||||
void clear() { m_layer_tools.clear(); }
|
||||
void clear() { m_layer_tools.clear(); }
|
||||
|
||||
// Get the first extruder printing, including the extruder priming areas, returns -1 if there is no layer printed.
|
||||
unsigned int first_extruder() const { return m_first_printing_extruder; }
|
||||
// Get the first extruder printing, including the extruder priming areas, returns -1 if there is no layer printed.
|
||||
unsigned int first_extruder() const { return m_first_printing_extruder; }
|
||||
|
||||
// Get the first extruder printing the layer_tools, returns -1 if there is no layer printed.
|
||||
unsigned int last_extruder() const { return m_last_printing_extruder; }
|
||||
// Get the first extruder printing the layer_tools, returns -1 if there is no layer printed.
|
||||
unsigned int last_extruder() const { return m_last_printing_extruder; }
|
||||
|
||||
// For a multi-material print, the printing extruders are ordered in the order they shall be primed.
|
||||
const std::vector<unsigned int>& all_extruders() const { return m_all_printing_extruders; }
|
||||
// For a multi-material print, the printing extruders are ordered in the order they shall be primed.
|
||||
const std::vector<unsigned int>& all_extruders() const { return m_all_printing_extruders; }
|
||||
|
||||
// Find LayerTools with the closest print_z.
|
||||
LayerTools& tools_for_layer(coordf_t print_z);
|
||||
const LayerTools& tools_for_layer(coordf_t print_z) const
|
||||
{ return *const_cast<const LayerTools*>(&const_cast<const ToolOrdering*>(this)->tools_for_layer(print_z)); }
|
||||
template<class Self> static auto tools_for_layer(Self& self, coordf_t print_z) -> decltype (*self.m_layer_tools.begin())
|
||||
{
|
||||
auto it_layer_tools = std::lower_bound(self.m_layer_tools.begin(), self.m_layer_tools.end(), LayerTools(print_z - EPSILON));
|
||||
assert(it_layer_tools != self.m_layer_tools.end());
|
||||
coordf_t dist_min = std::abs(it_layer_tools->print_z - print_z);
|
||||
for (++ it_layer_tools; it_layer_tools != self.m_layer_tools.end(); ++it_layer_tools) {
|
||||
coordf_t d = std::abs(it_layer_tools->print_z - print_z);
|
||||
if (d >= dist_min)
|
||||
break;
|
||||
dist_min = d;
|
||||
}
|
||||
-- it_layer_tools;
|
||||
assert(dist_min < EPSILON);
|
||||
return *it_layer_tools;
|
||||
}
|
||||
|
||||
const LayerTools& front() const { return m_layer_tools.front(); }
|
||||
const LayerTools& back() const { return m_layer_tools.back(); }
|
||||
std::vector<LayerTools>::const_iterator begin() const { return m_layer_tools.begin(); }
|
||||
std::vector<LayerTools>::const_iterator end() const { return m_layer_tools.end(); }
|
||||
bool empty() const { return m_layer_tools.empty(); }
|
||||
std::vector<LayerTools>& layer_tools() { return m_layer_tools; }
|
||||
bool has_wipe_tower() const { return ! m_layer_tools.empty() && m_first_printing_extruder != (unsigned int)-1 && m_layer_tools.front().wipe_tower_partitions > 0; }
|
||||
// Find LayerTools with the closest print_z.
|
||||
LayerTools& tools_for_layer(coordf_t print_z) { return tools_for_layer(*this, print_z); }
|
||||
const LayerTools& tools_for_layer(coordf_t print_z) const { return tools_for_layer(*this, print_z); }
|
||||
|
||||
const LayerTools& front() const { return m_layer_tools.front(); }
|
||||
const LayerTools& back() const { return m_layer_tools.back(); }
|
||||
std::vector<LayerTools>::const_iterator begin() const { return m_layer_tools.begin(); }
|
||||
std::vector<LayerTools>::const_iterator end() const { return m_layer_tools.end(); }
|
||||
bool empty() const { return m_layer_tools.empty(); }
|
||||
std::vector<LayerTools>& layer_tools() { return m_layer_tools; }
|
||||
bool has_wipe_tower() const { return ! m_layer_tools.empty() && m_first_printing_extruder != (unsigned int)-1 && m_layer_tools.front().wipe_tower_partitions > 0; }
|
||||
|
||||
private:
|
||||
void initialize_layers(std::vector<coordf_t> &zs);
|
||||
void collect_extruders(const PrintObject &object);
|
||||
void reorder_extruders(unsigned int last_extruder_id);
|
||||
void fill_wipe_tower_partitions(const PrintConfig &config, coordf_t object_bottom_z);
|
||||
void initialize_layers(std::vector<coordf_t> &zs);
|
||||
void collect_extruders(const PrintObject &object);
|
||||
void reorder_extruders(unsigned int last_extruder_id);
|
||||
void fill_wipe_tower_partitions(const PrintConfig &config, coordf_t object_bottom_z);
|
||||
void collect_extruder_statistics(bool prime_multi_material);
|
||||
|
||||
std::vector<LayerTools> m_layer_tools;
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
//! macro used to mark string used at localization,
|
||||
//! macro used to mark string used at localization,
|
||||
//! return same string
|
||||
#define L(s) (s)
|
||||
#define _(s) Slic3r::I18N::translate(s)
|
||||
|
|
@ -51,7 +51,7 @@ void PrintConfigDef::init_common_params()
|
|||
def->label = L("Bed shape");
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionPoints{ Vec2d(0, 0), Vec2d(200, 0), Vec2d(200, 200), Vec2d(0, 200) });
|
||||
|
||||
|
||||
def = this->add("bed_custom_texture", coString);
|
||||
def->label = L("Bed custom texture");
|
||||
def->mode = comAdvanced;
|
||||
|
|
@ -85,8 +85,8 @@ void PrintConfigDef::init_common_params()
|
|||
"The gap closing operation may reduce the final print resolution, therefore it is advisable to keep the value reasonably low.");
|
||||
def->sidetext = L("mm");
|
||||
def->min = 0;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(0.049));
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(0.049));
|
||||
|
||||
def = this->add("print_host", coString);
|
||||
def->label = L("Hostname, IP or URL");
|
||||
|
|
@ -101,7 +101,7 @@ void PrintConfigDef::init_common_params()
|
|||
"the API Key or the password required for authentication.");
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionString(""));
|
||||
|
||||
|
||||
def = this->add("printhost_cafile", coString);
|
||||
def->label = L("HTTPS CA File");
|
||||
def->tooltip = L("Custom CA certificate file can be specified for HTTPS OctoPrint connections, in crt/pem format. "
|
||||
|
|
@ -117,9 +117,9 @@ void PrintConfigDef::init_fff_params()
|
|||
// Maximum extruder temperature, bumped to 1500 to support printing of glass.
|
||||
const int max_temp = 1500;
|
||||
|
||||
def = this->add("avoid_crossing_perimeters", coBool);
|
||||
def = this->add("avoid_crossing_perimeters", coBool);
|
||||
def->label = L("Avoid crossing perimeters");
|
||||
def->tooltip = L("Optimize travel moves in order to minimize the crossing of perimeters. "
|
||||
def->tooltip = L("Optimize travel moves in order to minimize the crossing of perimeters. "
|
||||
"This is mostly useful with Bowden extruders which suffer from oozing. "
|
||||
"This feature slows down both the print and the G-code generation.");
|
||||
def->mode = comExpert;
|
||||
|
|
@ -178,7 +178,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->tooltip = L("Bridging angle override. If left to zero, the bridging angle will be calculated "
|
||||
"automatically. Otherwise the provided angle will be used for all bridges. "
|
||||
"Use 180° for zero angle.");
|
||||
def->sidetext = L("°");
|
||||
def->sidetext = L("°");
|
||||
def->min = 0;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(0.));
|
||||
|
|
@ -200,9 +200,9 @@ void PrintConfigDef::init_fff_params()
|
|||
"although default settings are usually good and you should experiment "
|
||||
"with cooling (use a fan) before tweaking this.");
|
||||
def->min = 0;
|
||||
def->max = 2;
|
||||
def->max = 2;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(1));
|
||||
def->set_default_value(new ConfigOptionFloat(1));
|
||||
|
||||
def = this->add("bridge_speed", coFloat);
|
||||
def->label = L("Bridges");
|
||||
|
|
@ -531,7 +531,7 @@ void PrintConfigDef::init_fff_params()
|
|||
"check filament diameter and your firmware E steps.");
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats { 1. });
|
||||
|
||||
|
||||
def = this->add("extrusion_width", coFloatOrPercent);
|
||||
def->label = L("Default extrusion width");
|
||||
def->category = L("Extrusion Width");
|
||||
|
|
@ -677,7 +677,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->tooltip = L("This string is edited by RammingDialog and contains ramming specific parameters.");
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionStrings { "120 100 6.6 6.8 7.2 7.6 7.9 8.2 8.7 9.4 9.9 10.0|"
|
||||
" 0.05 6.6 0.45 6.8 0.95 7.8 1.45 8.3 1.95 9.7 2.45 10 2.95 7.6 3.45 7.6 3.95 7.6 4.45 7.6 4.95 7.6" });
|
||||
" 0.05 6.6 0.45 6.8 0.95 7.8 1.45 8.3 1.95 9.7 2.45 10 2.95 7.6 3.45 7.6 3.95 7.6 4.45 7.6 4.95 7.6" });
|
||||
|
||||
def = this->add("filament_unload_time", coFloats);
|
||||
def->label = L("Filament unload time");
|
||||
|
|
@ -743,7 +743,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->sidetext = L("money/kg");
|
||||
def->min = 0;
|
||||
def->set_default_value(new ConfigOptionFloats { 0. });
|
||||
|
||||
|
||||
def = this->add("filament_settings_id", coStrings);
|
||||
def->set_default_value(new ConfigOptionStrings { "" });
|
||||
def->cli = ConfigOptionDef::nocli;
|
||||
|
|
@ -889,7 +889,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->min = 0;
|
||||
def->max = max_temp;
|
||||
def->set_default_value(new ConfigOptionInts { 200 });
|
||||
|
||||
|
||||
def = this->add("gap_fill_speed", coFloat);
|
||||
def->label = L("Gap fill");
|
||||
def->category = L("Speed");
|
||||
|
|
@ -1072,85 +1072,85 @@ void PrintConfigDef::init_fff_params()
|
|||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionBool(false));
|
||||
|
||||
def = this->add("silent_mode", coBool);
|
||||
def->label = L("Supports stealth mode");
|
||||
def->tooltip = L("The firmware supports stealth mode");
|
||||
def = this->add("silent_mode", coBool);
|
||||
def->label = L("Supports stealth mode");
|
||||
def->tooltip = L("The firmware supports stealth mode");
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionBool(true));
|
||||
def->set_default_value(new ConfigOptionBool(true));
|
||||
|
||||
const int machine_limits_opt_width = 7;
|
||||
{
|
||||
struct AxisDefault {
|
||||
std::string name;
|
||||
std::vector<double> max_feedrate;
|
||||
std::vector<double> max_acceleration;
|
||||
std::vector<double> max_jerk;
|
||||
};
|
||||
std::vector<AxisDefault> axes {
|
||||
// name, max_feedrate, max_acceleration, max_jerk
|
||||
{ "x", { 500., 200. }, { 9000., 1000. }, { 10. , 10. } },
|
||||
{ "y", { 500., 200. }, { 9000., 1000. }, { 10. , 10. } },
|
||||
{ "z", { 12., 12. }, { 500., 200. }, { 0.2, 0.4 } },
|
||||
{ "e", { 120., 120. }, { 10000., 5000. }, { 2.5, 2.5 } }
|
||||
};
|
||||
for (const AxisDefault &axis : axes) {
|
||||
std::string axis_upper = boost::to_upper_copy<std::string>(axis.name);
|
||||
// Add the machine feedrate limits for XYZE axes. (M203)
|
||||
def = this->add("machine_max_feedrate_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format("Maximum feedrate %1%") % axis_upper).str();
|
||||
(void)L("Maximum feedrate X");
|
||||
(void)L("Maximum feedrate Y");
|
||||
(void)L("Maximum feedrate Z");
|
||||
(void)L("Maximum feedrate E");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format("Maximum feedrate of the %1% axis") % axis_upper).str();
|
||||
(void)L("Maximum feedrate of the X axis");
|
||||
(void)L("Maximum feedrate of the Y axis");
|
||||
(void)L("Maximum feedrate of the Z axis");
|
||||
(void)L("Maximum feedrate of the E axis");
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
const int machine_limits_opt_width = 7;
|
||||
{
|
||||
struct AxisDefault {
|
||||
std::string name;
|
||||
std::vector<double> max_feedrate;
|
||||
std::vector<double> max_acceleration;
|
||||
std::vector<double> max_jerk;
|
||||
};
|
||||
std::vector<AxisDefault> axes {
|
||||
// name, max_feedrate, max_acceleration, max_jerk
|
||||
{ "x", { 500., 200. }, { 9000., 1000. }, { 10. , 10. } },
|
||||
{ "y", { 500., 200. }, { 9000., 1000. }, { 10. , 10. } },
|
||||
{ "z", { 12., 12. }, { 500., 200. }, { 0.2, 0.4 } },
|
||||
{ "e", { 120., 120. }, { 10000., 5000. }, { 2.5, 2.5 } }
|
||||
};
|
||||
for (const AxisDefault &axis : axes) {
|
||||
std::string axis_upper = boost::to_upper_copy<std::string>(axis.name);
|
||||
// Add the machine feedrate limits for XYZE axes. (M203)
|
||||
def = this->add("machine_max_feedrate_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format("Maximum feedrate %1%") % axis_upper).str();
|
||||
(void)L("Maximum feedrate X");
|
||||
(void)L("Maximum feedrate Y");
|
||||
(void)L("Maximum feedrate Z");
|
||||
(void)L("Maximum feedrate E");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format("Maximum feedrate of the %1% axis") % axis_upper).str();
|
||||
(void)L("Maximum feedrate of the X axis");
|
||||
(void)L("Maximum feedrate of the Y axis");
|
||||
(void)L("Maximum feedrate of the Z axis");
|
||||
(void)L("Maximum feedrate of the E axis");
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats(axis.max_feedrate));
|
||||
// Add the machine acceleration limits for XYZE axes (M201)
|
||||
def = this->add("machine_max_acceleration_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format("Maximum acceleration %1%") % axis_upper).str();
|
||||
(void)L("Maximum acceleration X");
|
||||
(void)L("Maximum acceleration Y");
|
||||
(void)L("Maximum acceleration Z");
|
||||
(void)L("Maximum acceleration E");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format("Maximum acceleration of the %1% axis") % axis_upper).str();
|
||||
(void)L("Maximum acceleration of the X axis");
|
||||
(void)L("Maximum acceleration of the Y axis");
|
||||
(void)L("Maximum acceleration of the Z axis");
|
||||
(void)L("Maximum acceleration of the E axis");
|
||||
def->sidetext = L("mm/s²");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->set_default_value(new ConfigOptionFloats(axis.max_feedrate));
|
||||
// Add the machine acceleration limits for XYZE axes (M201)
|
||||
def = this->add("machine_max_acceleration_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format("Maximum acceleration %1%") % axis_upper).str();
|
||||
(void)L("Maximum acceleration X");
|
||||
(void)L("Maximum acceleration Y");
|
||||
(void)L("Maximum acceleration Z");
|
||||
(void)L("Maximum acceleration E");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format("Maximum acceleration of the %1% axis") % axis_upper).str();
|
||||
(void)L("Maximum acceleration of the X axis");
|
||||
(void)L("Maximum acceleration of the Y axis");
|
||||
(void)L("Maximum acceleration of the Z axis");
|
||||
(void)L("Maximum acceleration of the E axis");
|
||||
def->sidetext = L("mm/s²");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats(axis.max_acceleration));
|
||||
// Add the machine jerk limits for XYZE axes (M205)
|
||||
def = this->add("machine_max_jerk_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format("Maximum jerk %1%") % axis_upper).str();
|
||||
(void)L("Maximum jerk X");
|
||||
(void)L("Maximum jerk Y");
|
||||
(void)L("Maximum jerk Z");
|
||||
(void)L("Maximum jerk E");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format("Maximum jerk of the %1% axis") % axis_upper).str();
|
||||
(void)L("Maximum jerk of the X axis");
|
||||
(void)L("Maximum jerk of the Y axis");
|
||||
(void)L("Maximum jerk of the Z axis");
|
||||
(void)L("Maximum jerk of the E axis");
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->set_default_value(new ConfigOptionFloats(axis.max_acceleration));
|
||||
// Add the machine jerk limits for XYZE axes (M205)
|
||||
def = this->add("machine_max_jerk_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format("Maximum jerk %1%") % axis_upper).str();
|
||||
(void)L("Maximum jerk X");
|
||||
(void)L("Maximum jerk Y");
|
||||
(void)L("Maximum jerk Z");
|
||||
(void)L("Maximum jerk E");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format("Maximum jerk of the %1% axis") % axis_upper).str();
|
||||
(void)L("Maximum jerk of the X axis");
|
||||
(void)L("Maximum jerk of the Y axis");
|
||||
(void)L("Maximum jerk of the Z axis");
|
||||
(void)L("Maximum jerk of the E axis");
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats(axis.max_jerk));
|
||||
}
|
||||
}
|
||||
def->set_default_value(new ConfigOptionFloats(axis.max_jerk));
|
||||
}
|
||||
}
|
||||
|
||||
// M205 S... [mm/sec]
|
||||
def = this->add("machine_min_extruding_rate", coFloats);
|
||||
|
|
@ -1159,9 +1159,9 @@ void PrintConfigDef::init_fff_params()
|
|||
def->tooltip = L("Minimum feedrate when extruding (M205 S)");
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats{ 0., 0. });
|
||||
def->set_default_value(new ConfigOptionFloats{ 0., 0. });
|
||||
|
||||
// M205 T... [mm/sec]
|
||||
def = this->add("machine_min_travel_rate", coFloats);
|
||||
|
|
@ -1170,9 +1170,9 @@ void PrintConfigDef::init_fff_params()
|
|||
def->tooltip = L("Minimum travel feedrate (M205 T)");
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats{ 0., 0. });
|
||||
def->set_default_value(new ConfigOptionFloats{ 0., 0. });
|
||||
|
||||
// M204 S... [mm/sec^2]
|
||||
def = this->add("machine_max_acceleration_extruding", coFloats);
|
||||
|
|
@ -1181,7 +1181,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->tooltip = L("Maximum acceleration when extruding (M204 S)");
|
||||
def->sidetext = L("mm/s²");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats{ 1500., 1250. });
|
||||
|
||||
|
|
@ -1192,7 +1192,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->tooltip = L("Maximum acceleration when retracting (M204 T)");
|
||||
def->sidetext = L("mm/s²");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloats{ 1500., 1250. });
|
||||
|
||||
|
|
@ -1436,9 +1436,9 @@ void PrintConfigDef::init_fff_params()
|
|||
def->gui_flags = "serialized";
|
||||
def->multiline = true;
|
||||
def->full_width = true;
|
||||
def->height = 6;
|
||||
def->height = 6;
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionStrings());
|
||||
def->set_default_value(new ConfigOptionStrings());
|
||||
|
||||
def = this->add("printer_model", coString);
|
||||
def->label = L("Printer type");
|
||||
|
|
@ -1470,7 +1470,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def = this->add("print_settings_id", coString);
|
||||
def->set_default_value(new ConfigOptionString(""));
|
||||
def->cli = ConfigOptionDef::nocli;
|
||||
|
||||
|
||||
def = this->add("printer_settings_id", coString);
|
||||
def->set_default_value(new ConfigOptionString(""));
|
||||
def->cli = ConfigOptionDef::nocli;
|
||||
|
|
@ -1510,7 +1510,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->sidetext = L("%");
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionPercents { 0. });
|
||||
|
||||
|
||||
def = this->add("retract_layer_change", coBools);
|
||||
def->label = L("Retract on layer change");
|
||||
def->tooltip = L("This flag enforces a retraction whenever a Z move is done.");
|
||||
|
|
@ -1607,7 +1607,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->enum_labels.push_back(L("Random"));
|
||||
def->enum_labels.push_back(L("Nearest"));
|
||||
def->enum_labels.push_back(L("Aligned"));
|
||||
def->enum_labels.push_back(L("Rear"));
|
||||
def->enum_labels.push_back(L("Rear"));
|
||||
def->mode = comSimple;
|
||||
def->set_default_value(new ConfigOptionEnum<SeamPosition>(spAligned));
|
||||
|
||||
|
|
@ -1678,7 +1678,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->min = 0;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionInt(1));
|
||||
|
||||
|
||||
def = this->add("slowdown_below_layer_time", coInts);
|
||||
def->label = L("Slow down if layer print time is below");
|
||||
def->tooltip = L("If layer print time is estimated below this number of seconds, print moves "
|
||||
|
|
@ -1774,7 +1774,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->label = L("Temperature variation");
|
||||
def->tooltip = L("Temperature difference to be applied when an extruder is not active. "
|
||||
"Enables a full-height \"sacrificial\" skirt on which the nozzles are periodically wiped.");
|
||||
def->sidetext = "∆°C";
|
||||
def->sidetext = "∆°C";
|
||||
def->min = -max_temp;
|
||||
def->max = max_temp;
|
||||
def->mode = comExpert;
|
||||
|
|
@ -1816,7 +1816,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->label = L("Single Extruder Multi Material");
|
||||
def->tooltip = L("The printer multiplexes filaments into a single hot end.");
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionBool(false));
|
||||
def->set_default_value(new ConfigOptionBool(false));
|
||||
|
||||
def = this->add("single_extruder_multi_material_priming", coBool);
|
||||
def->label = L("Prime all printing extruders");
|
||||
|
|
@ -1878,8 +1878,8 @@ void PrintConfigDef::init_fff_params()
|
|||
// def->min = 0;
|
||||
def->enum_values.push_back("0");
|
||||
def->enum_values.push_back("0.2");
|
||||
def->enum_labels.push_back(L("0 (soluble)"));
|
||||
def->enum_labels.push_back(L("0.2 (detachable)"));
|
||||
def->enum_labels.push_back(L("0 (soluble)"));
|
||||
def->enum_labels.push_back(L("0.2 (detachable)"));
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(0.2));
|
||||
|
||||
|
|
@ -1968,7 +1968,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->enum_values.push_back("rectilinear");
|
||||
def->enum_values.push_back("rectilinear-grid");
|
||||
def->enum_values.push_back("honeycomb");
|
||||
def->enum_labels.push_back(L("Rectilinear"));
|
||||
def->enum_labels.push_back(L("Rectilinear"));
|
||||
def->enum_labels.push_back(L("Rectilinear grid"));
|
||||
def->enum_labels.push_back(L("Honeycomb"));
|
||||
def->mode = comAdvanced;
|
||||
|
|
@ -2030,7 +2030,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->min = 0;
|
||||
def->max = max_temp;
|
||||
def->set_default_value(new ConfigOptionInts { 200 });
|
||||
|
||||
|
||||
def = this->add("thin_walls", coBool);
|
||||
def->label = L("Detect thin walls");
|
||||
def->category = L("Layers and Perimeters");
|
||||
|
|
@ -2050,7 +2050,7 @@ void PrintConfigDef::init_fff_params()
|
|||
def->set_default_value(new ConfigOptionInt(threads > 0 ? threads : 2));
|
||||
def->cli == ConfigOptionDef::nocli;
|
||||
}
|
||||
|
||||
|
||||
def = this->add("toolchange_gcode", coString);
|
||||
def->label = L("Tool change G-code");
|
||||
def->tooltip = L("This custom code is inserted at every extruder change. If you don't leave this empty, you are "
|
||||
|
|
@ -2242,45 +2242,45 @@ void PrintConfigDef::init_fff_params()
|
|||
|
||||
// Declare retract values for filament profile, overriding the printer's extruder profile.
|
||||
for (const char *opt_key : {
|
||||
// floats
|
||||
"retract_length", "retract_lift", "retract_lift_above", "retract_lift_below", "retract_speed", "deretract_speed", "retract_restart_extra", "retract_before_travel",
|
||||
// bools
|
||||
"retract_layer_change", "wipe",
|
||||
// percents
|
||||
"retract_before_wipe"}) {
|
||||
auto it_opt = options.find(opt_key);
|
||||
assert(it_opt != options.end());
|
||||
def = this->add_nullable(std::string("filament_") + opt_key, it_opt->second.type);
|
||||
def->label = it_opt->second.label;
|
||||
def->full_label = it_opt->second.full_label;
|
||||
def->tooltip = it_opt->second.tooltip;
|
||||
def->sidetext = it_opt->second.sidetext;
|
||||
def->mode = it_opt->second.mode;
|
||||
switch (def->type) {
|
||||
case coFloats : def->set_default_value(new ConfigOptionFloatsNullable (static_cast<const ConfigOptionFloats* >(it_opt->second.default_value.get())->values)); break;
|
||||
case coPercents : def->set_default_value(new ConfigOptionPercentsNullable(static_cast<const ConfigOptionPercents*>(it_opt->second.default_value.get())->values)); break;
|
||||
case coBools : def->set_default_value(new ConfigOptionBoolsNullable (static_cast<const ConfigOptionBools* >(it_opt->second.default_value.get())->values)); break;
|
||||
default: assert(false);
|
||||
}
|
||||
// floats
|
||||
"retract_length", "retract_lift", "retract_lift_above", "retract_lift_below", "retract_speed", "deretract_speed", "retract_restart_extra", "retract_before_travel",
|
||||
// bools
|
||||
"retract_layer_change", "wipe",
|
||||
// percents
|
||||
"retract_before_wipe"}) {
|
||||
auto it_opt = options.find(opt_key);
|
||||
assert(it_opt != options.end());
|
||||
def = this->add_nullable(std::string("filament_") + opt_key, it_opt->second.type);
|
||||
def->label = it_opt->second.label;
|
||||
def->full_label = it_opt->second.full_label;
|
||||
def->tooltip = it_opt->second.tooltip;
|
||||
def->sidetext = it_opt->second.sidetext;
|
||||
def->mode = it_opt->second.mode;
|
||||
switch (def->type) {
|
||||
case coFloats : def->set_default_value(new ConfigOptionFloatsNullable (static_cast<const ConfigOptionFloats* >(it_opt->second.default_value.get())->values)); break;
|
||||
case coPercents : def->set_default_value(new ConfigOptionPercentsNullable(static_cast<const ConfigOptionPercents*>(it_opt->second.default_value.get())->values)); break;
|
||||
case coBools : def->set_default_value(new ConfigOptionBoolsNullable (static_cast<const ConfigOptionBools* >(it_opt->second.default_value.get())->values)); break;
|
||||
default: assert(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_extruder_retract_keys()
|
||||
{
|
||||
m_extruder_retract_keys = {
|
||||
"deretract_speed",
|
||||
"retract_before_travel",
|
||||
"retract_before_wipe",
|
||||
"retract_layer_change",
|
||||
"retract_length",
|
||||
"retract_lift",
|
||||
"retract_lift_above",
|
||||
"retract_lift_below",
|
||||
"retract_restart_extra",
|
||||
"retract_speed",
|
||||
"wipe"
|
||||
};
|
||||
assert(std::is_sorted(m_extruder_retract_keys.begin(), m_extruder_retract_keys.end()));
|
||||
m_extruder_retract_keys = {
|
||||
"deretract_speed",
|
||||
"retract_before_travel",
|
||||
"retract_before_wipe",
|
||||
"retract_layer_change",
|
||||
"retract_length",
|
||||
"retract_lift",
|
||||
"retract_lift_above",
|
||||
"retract_lift_below",
|
||||
"retract_restart_extra",
|
||||
"retract_speed",
|
||||
"wipe"
|
||||
};
|
||||
assert(std::is_sorted(m_extruder_retract_keys.begin(), m_extruder_retract_keys.end()));
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_sla_params()
|
||||
|
|
@ -2374,7 +2374,7 @@ void PrintConfigDef::init_sla_params()
|
|||
def->min = 0;
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionFloats( { 1., 1. } ));
|
||||
|
||||
|
||||
def = this->add("absolute_correction", coFloat);
|
||||
def->label = L("Printer absolute correction");
|
||||
def->full_label = L("Printer absolute correction");
|
||||
|
|
@ -2382,7 +2382,7 @@ void PrintConfigDef::init_sla_params()
|
|||
"to the sign of the correction.");
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionFloat(0.0));
|
||||
|
||||
|
||||
def = this->add("gamma_correction", coFloat);
|
||||
def->label = L("Printer gamma correction");
|
||||
def->full_label = L("Printer gamma correction");
|
||||
|
|
@ -2393,7 +2393,7 @@ void PrintConfigDef::init_sla_params()
|
|||
def->min = 0;
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionFloat(1.0));
|
||||
|
||||
|
||||
|
||||
// SLA Material settings.
|
||||
def = this->add("initial_layer_height", coFloat);
|
||||
|
|
@ -2560,7 +2560,7 @@ void PrintConfigDef::init_sla_params()
|
|||
def->min = 0;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(1.0));
|
||||
|
||||
|
||||
def = this->add("support_base_safety_distance", coFloat);
|
||||
def->label = L("Support base safety distance");
|
||||
def->category = L("Supports");
|
||||
|
|
@ -2694,7 +2694,7 @@ void PrintConfigDef::init_sla_params()
|
|||
def->max = 90;
|
||||
def->mode = comAdvanced;
|
||||
def->set_default_value(new ConfigOptionFloat(45.0));
|
||||
|
||||
|
||||
def = this->add("pad_object_gap", coFloat);
|
||||
def->label = L("Pad object gap");
|
||||
def->category = L("Pad");
|
||||
|
|
@ -2705,7 +2705,7 @@ void PrintConfigDef::init_sla_params()
|
|||
def->max = 10;
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionFloat(1));
|
||||
|
||||
|
||||
def = this->add("pad_object_connector_stride", coFloat);
|
||||
def->label = L("Pad object connector stride");
|
||||
def->category = L("Pad");
|
||||
|
|
@ -2715,7 +2715,7 @@ void PrintConfigDef::init_sla_params()
|
|||
def->min = 0;
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionFloat(10));
|
||||
|
||||
|
||||
def = this->add("pad_object_connector_width", coFloat);
|
||||
def->label = L("Pad object connector width");
|
||||
def->category = L("Pad");
|
||||
|
|
@ -2725,7 +2725,7 @@ void PrintConfigDef::init_sla_params()
|
|||
def->min = 0;
|
||||
def->mode = comExpert;
|
||||
def->set_default_value(new ConfigOptionFloat(0.5));
|
||||
|
||||
|
||||
def = this->add("pad_object_connector_penetration", coFloat);
|
||||
def->label = L("Pad object connector penetration");
|
||||
def->category = L("Pad");
|
||||
|
|
@ -2746,7 +2746,7 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
if (opt_key == "bottom_layer_speed") opt_key = "first_layer_speed";
|
||||
try {
|
||||
float v = boost::lexical_cast<float>(value);
|
||||
if (v != 0)
|
||||
if (v != 0)
|
||||
value = boost::lexical_cast<std::string>(v*100) + "%";
|
||||
} catch (boost::bad_lexical_cast &) {
|
||||
value = "0";
|
||||
|
|
@ -2786,14 +2786,14 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
} else if (opt_key == "octoprint_apikey") {
|
||||
opt_key = "printhost_apikey";
|
||||
}
|
||||
|
||||
|
||||
// Ignore the following obsolete configuration keys:
|
||||
static std::set<std::string> ignore = {
|
||||
"duplicate_x", "duplicate_y", "gcode_arcs", "multiply_x", "multiply_y",
|
||||
"support_material_tool", "acceleration", "adjust_overhang_flow",
|
||||
"support_material_tool", "acceleration", "adjust_overhang_flow",
|
||||
"standby_temperature", "scale", "rotate", "duplicate", "duplicate_grid",
|
||||
"start_perimeters_at_concave_points", "start_perimeters_at_non_overhang", "randomize_start",
|
||||
"seal_position", "vibration_limit", "bed_size",
|
||||
"start_perimeters_at_concave_points", "start_perimeters_at_non_overhang", "randomize_start",
|
||||
"seal_position", "vibration_limit", "bed_size",
|
||||
"print_center", "g0", "threads", "pressure_advance", "wipe_tower_per_color_wipe"
|
||||
#ifndef HAS_PRESSURE_EQUALIZER
|
||||
, "max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_negative"
|
||||
|
|
@ -2804,7 +2804,7 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
|
|||
opt_key = "";
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
if (! print_config_def.has(opt_key)) {
|
||||
opt_key = "";
|
||||
return;
|
||||
|
|
@ -2844,10 +2844,10 @@ void DynamicPrintConfig::normalize()
|
|||
// this->option("support_material_interface_extruder", true)->setInt(extruder);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (!this->has("solid_infill_extruder") && this->has("infill_extruder"))
|
||||
this->option("solid_infill_extruder", true)->setInt(this->option("infill_extruder")->getInt());
|
||||
|
||||
|
||||
if (this->has("spiral_vase") && this->opt<ConfigOptionBool>("spiral_vase", true)->value) {
|
||||
{
|
||||
// this should be actually done only on the spiral layers instead of all
|
||||
|
|
@ -2865,8 +2865,8 @@ void DynamicPrintConfig::normalize()
|
|||
std::string DynamicPrintConfig::validate()
|
||||
{
|
||||
// Full print config is initialized from the defaults.
|
||||
const ConfigOption *opt = this->option("printer_technology", false);
|
||||
auto printer_technology = (opt == nullptr) ? ptFFF : static_cast<PrinterTechnology>(dynamic_cast<const ConfigOptionEnumGeneric*>(opt)->value);
|
||||
const ConfigOption *opt = this->option("printer_technology", false);
|
||||
auto printer_technology = (opt == nullptr) ? ptFFF : static_cast<PrinterTechnology>(dynamic_cast<const ConfigOptionEnumGeneric*>(opt)->value);
|
||||
switch (printer_technology) {
|
||||
case ptFFF:
|
||||
{
|
||||
|
|
@ -2890,7 +2890,7 @@ double PrintConfig::min_object_distance(const ConfigBase *config)
|
|||
{
|
||||
double extruder_clearance_radius = config->option("extruder_clearance_radius")->getFloat();
|
||||
double duplicate_distance = config->option("duplicate_distance")->getFloat();
|
||||
|
||||
|
||||
// min object distance is max(duplicate_distance, clearance_radius)
|
||||
return (config->option("complete_objects")->getBool() && extruder_clearance_radius > duplicate_distance)
|
||||
? extruder_clearance_radius
|
||||
|
|
@ -2919,7 +2919,7 @@ std::string FullPrintConfig::validate()
|
|||
for (double nd : this->nozzle_diameter.values)
|
||||
if (nd < 0.005)
|
||||
return "Invalid value for --nozzle-diameter";
|
||||
|
||||
|
||||
// --perimeters
|
||||
if (this->perimeters.value < 0)
|
||||
return "Invalid value for --perimeters";
|
||||
|
|
@ -2929,8 +2929,8 @@ std::string FullPrintConfig::validate()
|
|||
return "Invalid value for --top-solid-layers";
|
||||
if (this->bottom_solid_layers < 0)
|
||||
return "Invalid value for --bottom-solid-layers";
|
||||
|
||||
if (this->use_firmware_retraction.value &&
|
||||
|
||||
if (this->use_firmware_retraction.value &&
|
||||
this->gcode_flavor.value != gcfSmoothie &&
|
||||
this->gcode_flavor.value != gcfRepRap &&
|
||||
this->gcode_flavor.value != gcfMarlin &&
|
||||
|
|
@ -2942,15 +2942,15 @@ std::string FullPrintConfig::validate()
|
|||
for (unsigned char wipe : this->wipe.values)
|
||||
if (wipe)
|
||||
return "--use-firmware-retraction is not compatible with --wipe";
|
||||
|
||||
|
||||
// --gcode-flavor
|
||||
if (! print_config_def.get("gcode_flavor")->has_enum_value(this->gcode_flavor.serialize()))
|
||||
return "Invalid value for --gcode-flavor";
|
||||
|
||||
|
||||
// --fill-pattern
|
||||
if (! print_config_def.get("fill_pattern")->has_enum_value(this->fill_pattern.serialize()))
|
||||
return "Invalid value for --fill-pattern";
|
||||
|
||||
|
||||
// --top-fill-pattern
|
||||
if (! print_config_def.get("top_fill_pattern")->has_enum_value(this->top_fill_pattern.serialize()))
|
||||
return "Invalid value for --top-fill-pattern";
|
||||
|
|
@ -2963,7 +2963,7 @@ std::string FullPrintConfig::validate()
|
|||
if (fabs(this->fill_density.value - 100.) < EPSILON &&
|
||||
! print_config_def.get("top_fill_pattern")->has_enum_value(this->fill_pattern.serialize()))
|
||||
return "The selected fill pattern is not supposed to work at 100% density";
|
||||
|
||||
|
||||
// --infill-every-layers
|
||||
if (this->infill_every_layers < 1)
|
||||
return "Invalid value for --infill-every-layers";
|
||||
|
|
@ -2971,11 +2971,11 @@ std::string FullPrintConfig::validate()
|
|||
// --skirt-height
|
||||
if (this->skirt_height < -1) // -1 means as tall as the object
|
||||
return "Invalid value for --skirt-height";
|
||||
|
||||
|
||||
// --bridge-flow-ratio
|
||||
if (this->bridge_flow_ratio <= 0)
|
||||
return "Invalid value for --bridge-flow-ratio";
|
||||
|
||||
|
||||
// extruder clearance
|
||||
if (this->extruder_clearance_radius <= 0)
|
||||
return "Invalid value for --extruder-clearance-radius";
|
||||
|
|
@ -3007,7 +3007,7 @@ std::string FullPrintConfig::validate()
|
|||
if (this->support_material || this->support_material_enforce_layers > 0)
|
||||
return "Spiral vase mode is not compatible with support material";
|
||||
}
|
||||
|
||||
|
||||
// extrusion widths
|
||||
{
|
||||
double max_nozzle_diameter = 0.;
|
||||
|
|
@ -3064,7 +3064,7 @@ std::string FullPrintConfig::validate()
|
|||
if (out_of_range)
|
||||
return std::string("Value out of range: " + opt_key);
|
||||
}
|
||||
|
||||
|
||||
// The configuration is valid.
|
||||
return "";
|
||||
}
|
||||
|
|
@ -3087,20 +3087,20 @@ StaticPrintConfig::StaticCache<class Slic3r::SLAFullPrintConfig> SLAFullPrint
|
|||
CLIActionsConfigDef::CLIActionsConfigDef()
|
||||
{
|
||||
ConfigOptionDef* def;
|
||||
|
||||
|
||||
// Actions:
|
||||
def = this->add("export_obj", coBool);
|
||||
def->label = L("Export OBJ");
|
||||
def->tooltip = L("Export the model(s) as OBJ.");
|
||||
def->set_default_value(new ConfigOptionBool(false));
|
||||
|
||||
|
||||
/*
|
||||
def = this->add("export_svg", coBool);
|
||||
def->label = L("Export SVG");
|
||||
def->tooltip = L("Slice the model and export solid slices as SVG.");
|
||||
def->set_default_value(new ConfigOptionBool(false));
|
||||
*/
|
||||
|
||||
|
||||
def = this->add("export_sla", coBool);
|
||||
def->label = L("Export SLA");
|
||||
def->tooltip = L("Slice the model and export SLA printing layers as PNG.");
|
||||
|
|
@ -3149,12 +3149,12 @@ CLIActionsConfigDef::CLIActionsConfigDef()
|
|||
def->label = L("Help (SLA options)");
|
||||
def->tooltip = L("Show the full list of SLA print configuration options.");
|
||||
def->set_default_value(new ConfigOptionBool(false));
|
||||
|
||||
|
||||
def = this->add("info", coBool);
|
||||
def->label = L("Output Model Info");
|
||||
def->tooltip = L("Write information about the model to the console.");
|
||||
def->set_default_value(new ConfigOptionBool(false));
|
||||
|
||||
|
||||
def = this->add("save", coString);
|
||||
def->label = L("Save config file");
|
||||
def->tooltip = L("Save configuration to the specified file.");
|
||||
|
|
@ -3164,35 +3164,35 @@ CLIActionsConfigDef::CLIActionsConfigDef()
|
|||
CLITransformConfigDef::CLITransformConfigDef()
|
||||
{
|
||||
ConfigOptionDef* def;
|
||||
|
||||
|
||||
// Transform options:
|
||||
def = this->add("align_xy", coPoint);
|
||||
def->label = L("Align XY");
|
||||
def->tooltip = L("Align the model to the given point.");
|
||||
def->set_default_value(new ConfigOptionPoint(Vec2d(100,100)));
|
||||
|
||||
|
||||
def = this->add("cut", coFloat);
|
||||
def->label = L("Cut");
|
||||
def->tooltip = L("Cut model at the given Z.");
|
||||
def->set_default_value(new ConfigOptionFloat(0));
|
||||
|
||||
|
||||
/*
|
||||
def = this->add("cut_grid", coFloat);
|
||||
def->label = L("Cut");
|
||||
def->tooltip = L("Cut model in the XY plane into tiles of the specified max size.");
|
||||
def->set_default_value(new ConfigOptionPoint());
|
||||
|
||||
|
||||
def = this->add("cut_x", coFloat);
|
||||
def->label = L("Cut");
|
||||
def->tooltip = L("Cut model at the given X.");
|
||||
def->set_default_value(new ConfigOptionFloat(0));
|
||||
|
||||
|
||||
def = this->add("cut_y", coFloat);
|
||||
def->label = L("Cut");
|
||||
def->tooltip = L("Cut model at the given Y.");
|
||||
def->set_default_value(new ConfigOptionFloat(0));
|
||||
*/
|
||||
|
||||
|
||||
def = this->add("center", coPoint);
|
||||
def->label = L("Center");
|
||||
def->tooltip = L("Center the print around the given center.");
|
||||
|
|
@ -3201,12 +3201,12 @@ CLITransformConfigDef::CLITransformConfigDef()
|
|||
def = this->add("dont_arrange", coBool);
|
||||
def->label = L("Don't arrange");
|
||||
def->tooltip = L("Do not rearrange the given models before merging and keep their original XY coordinates.");
|
||||
|
||||
|
||||
def = this->add("duplicate", coInt);
|
||||
def->label = L("Duplicate");
|
||||
def->tooltip =L("Multiply copies by this factor.");
|
||||
def->min = 1;
|
||||
|
||||
|
||||
def = this->add("duplicate_grid", coPoint);
|
||||
def->label = L("Duplicate by grid");
|
||||
def->tooltip = L("Multiply copies by creating a grid.");
|
||||
|
|
@ -3219,22 +3219,22 @@ CLITransformConfigDef::CLITransformConfigDef()
|
|||
def = this->add("repair", coBool);
|
||||
def->label = L("Repair");
|
||||
def->tooltip = L("Try to repair any non-manifold meshes (this option is implicitly added whenever we need to slice the model to perform the requested action).");
|
||||
|
||||
|
||||
def = this->add("rotate", coFloat);
|
||||
def->label = L("Rotate");
|
||||
def->tooltip = L("Rotation angle around the Z axis in degrees.");
|
||||
def->set_default_value(new ConfigOptionFloat(0));
|
||||
|
||||
|
||||
def = this->add("rotate_x", coFloat);
|
||||
def->label = L("Rotate around X");
|
||||
def->tooltip = L("Rotation angle around the X axis in degrees.");
|
||||
def->set_default_value(new ConfigOptionFloat(0));
|
||||
|
||||
|
||||
def = this->add("rotate_y", coFloat);
|
||||
def->label = L("Rotate around Y");
|
||||
def->tooltip = L("Rotation angle around the Y axis in degrees.");
|
||||
def->set_default_value(new ConfigOptionFloat(0));
|
||||
|
||||
|
||||
def = this->add("scale", coFloatOrPercent);
|
||||
def->label = L("Scale");
|
||||
def->tooltip = L("Scaling factor or percentage.");
|
||||
|
|
@ -3243,7 +3243,7 @@ CLITransformConfigDef::CLITransformConfigDef()
|
|||
def = this->add("split", coBool);
|
||||
def->label = L("Split");
|
||||
def->tooltip = L("Detect unconnected parts in the given model(s) and split them into separate objects.");
|
||||
|
||||
|
||||
def = this->add("scale_to_fit", coPoint3);
|
||||
def->label = L("Scale to Fit");
|
||||
def->tooltip = L("Scale to fit the given volume.");
|
||||
|
|
@ -3253,26 +3253,26 @@ CLITransformConfigDef::CLITransformConfigDef()
|
|||
CLIMiscConfigDef::CLIMiscConfigDef()
|
||||
{
|
||||
ConfigOptionDef* def;
|
||||
|
||||
|
||||
def = this->add("ignore_nonexistent_config", coBool);
|
||||
def->label = L("Ignore non-existent config files");
|
||||
def->tooltip = L("Do not fail if a file supplied to --load does not exist.");
|
||||
|
||||
|
||||
def = this->add("load", coStrings);
|
||||
def->label = L("Load config file");
|
||||
def->tooltip = L("Load configuration from the specified file. It can be used more than once to load options from multiple files.");
|
||||
|
||||
|
||||
def = this->add("output", coString);
|
||||
def->label = L("Output File");
|
||||
def->tooltip = L("The file where the output will be written (if not specified, it will be based on the input file).");
|
||||
def->cli = "output|o";
|
||||
|
||||
/*
|
||||
/*
|
||||
def = this->add("autosave", coString);
|
||||
def->label = L("Autosave");
|
||||
def->tooltip = L("Automatically export current configuration to the specified file.");
|
||||
*/
|
||||
|
||||
|
||||
def = this->add("datadir", coString);
|
||||
def->label = L("Data directory");
|
||||
def->tooltip = L("Load and store settings at the given directory. This is useful for maintaining different profiles or including configurations from a network storage.");
|
||||
|
|
@ -3282,7 +3282,7 @@ CLIMiscConfigDef::CLIMiscConfigDef()
|
|||
def->tooltip = L("Messages with severity lower or eqal to the loglevel will be printed out. 0:trace, 1:debug, 2:info, 3:warning, 4:error, 5:fatal");
|
||||
def->min = 0;
|
||||
|
||||
#if defined(_MSC_VER) && defined(SLIC3R_GUI)
|
||||
#if (defined(_MSC_VER) || defined(__MINGW32__)) && defined(SLIC3R_GUI)
|
||||
def = this->add("sw_renderer", coBool);
|
||||
def->label = L("Render with a software renderer");
|
||||
def->tooltip = L("Render with a software renderer. The bundled MESA software renderer is loaded instead of the default OpenGL driver.");
|
||||
|
|
@ -3298,15 +3298,15 @@ DynamicPrintAndCLIConfig::PrintAndCLIConfigDef DynamicPrintAndCLIConfig::s_def;
|
|||
|
||||
void DynamicPrintAndCLIConfig::handle_legacy(t_config_option_key &opt_key, std::string &value) const
|
||||
{
|
||||
if (cli_actions_config_def .options.find(opt_key) == cli_actions_config_def .options.end() &&
|
||||
cli_transform_config_def.options.find(opt_key) == cli_transform_config_def.options.end() &&
|
||||
cli_misc_config_def .options.find(opt_key) == cli_misc_config_def .options.end()) {
|
||||
PrintConfigDef::handle_legacy(opt_key, value);
|
||||
}
|
||||
if (cli_actions_config_def .options.find(opt_key) == cli_actions_config_def .options.end() &&
|
||||
cli_transform_config_def.options.find(opt_key) == cli_transform_config_def.options.end() &&
|
||||
cli_misc_config_def .options.find(opt_key) == cli_misc_config_def .options.end()) {
|
||||
PrintConfigDef::handle_legacy(opt_key, value);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#include <cereal/types/polymorphic.hpp>
|
||||
CEREAL_REGISTER_TYPE(Slic3r::DynamicPrintConfig)
|
||||
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::DynamicConfig, Slic3r::DynamicPrintConfig)
|
||||
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::DynamicConfig, Slic3r::DynamicPrintConfig)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
#include "igl/random_points_on_mesh.h"
|
||||
#include "igl/AABB.h"
|
||||
//#include "igl/random_points_on_mesh.h"
|
||||
//#include "igl/AABB.h"
|
||||
|
||||
#include <tbb/parallel_for.h>
|
||||
|
||||
|
|
@ -101,7 +101,7 @@ static std::vector<SLAAutoSupports::MyLayer> make_layers(
|
|||
std::vector<SLAAutoSupports::MyLayer> layers;
|
||||
layers.reserve(slices.size());
|
||||
for (size_t i = 0; i < slices.size(); ++ i)
|
||||
layers.emplace_back(i, heights[i]);
|
||||
layers.emplace_back(i, heights[i]);
|
||||
|
||||
// FIXME: calculate actual pixel area from printer config:
|
||||
//const float pixel_area = pow(wxGetApp().preset_bundle->project_config.option<ConfigOptionFloat>("display_width") / wxGetApp().preset_bundle->project_config.option<ConfigOptionInt>("display_pixels_x"), 2.f); //
|
||||
|
|
@ -114,47 +114,47 @@ static std::vector<SLAAutoSupports::MyLayer> make_layers(
|
|||
if ((layer_id % 8) == 0)
|
||||
// Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
|
||||
throw_on_cancel();
|
||||
SLAAutoSupports::MyLayer &layer = layers[layer_id];
|
||||
SLAAutoSupports::MyLayer &layer = layers[layer_id];
|
||||
const ExPolygons &islands = slices[layer_id];
|
||||
//FIXME WTF?
|
||||
const float height = (layer_id>2 ? heights[layer_id-3] : heights[0]-(heights[1]-heights[0]));
|
||||
layer.islands.reserve(islands.size());
|
||||
layer.islands.reserve(islands.size());
|
||||
for (const ExPolygon &island : islands) {
|
||||
float area = float(island.area() * SCALING_FACTOR * SCALING_FACTOR);
|
||||
if (area >= pixel_area)
|
||||
//FIXME this is not a correct centroid of a polygon with holes.
|
||||
layer.islands.emplace_back(layer, island, get_extents(island.contour), Slic3r::unscale(island.contour.centroid()).cast<float>(), area, height);
|
||||
layer.islands.emplace_back(layer, island, get_extents(island.contour), Slic3r::unscale(island.contour.centroid()).cast<float>(), area, height);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Calculate overlap of successive layers. Link overlapping islands.
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(1, layers.size(), 8),
|
||||
[&layers, &heights, throw_on_cancel](const tbb::blocked_range<size_t>& range) {
|
||||
for (size_t layer_id = range.begin(); layer_id < range.end(); ++layer_id) {
|
||||
if ((layer_id % 2) == 0)
|
||||
// Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
|
||||
throw_on_cancel();
|
||||
SLAAutoSupports::MyLayer &layer_above = layers[layer_id];
|
||||
SLAAutoSupports::MyLayer &layer_below = layers[layer_id - 1];
|
||||
// Calculate overlap of successive layers. Link overlapping islands.
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(1, layers.size(), 8),
|
||||
[&layers, &heights, throw_on_cancel](const tbb::blocked_range<size_t>& range) {
|
||||
for (size_t layer_id = range.begin(); layer_id < range.end(); ++layer_id) {
|
||||
if ((layer_id % 2) == 0)
|
||||
// Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
|
||||
throw_on_cancel();
|
||||
SLAAutoSupports::MyLayer &layer_above = layers[layer_id];
|
||||
SLAAutoSupports::MyLayer &layer_below = layers[layer_id - 1];
|
||||
//FIXME WTF?
|
||||
const float layer_height = (layer_id!=0 ? heights[layer_id]-heights[layer_id-1] : heights[0]);
|
||||
const float safe_angle = 5.f * (float(M_PI)/180.f); // smaller number - less supports
|
||||
const float between_layers_offset = float(scale_(layer_height / std::tan(safe_angle)));
|
||||
const float slope_angle = 75.f * (float(M_PI)/180.f); // smaller number - less supports
|
||||
const float slope_offset = float(scale_(layer_height / std::tan(slope_angle)));
|
||||
//FIXME This has a quadratic time complexity, it will be excessively slow for many tiny islands.
|
||||
for (SLAAutoSupports::Structure &top : layer_above.islands) {
|
||||
for (SLAAutoSupports::Structure &bottom : layer_below.islands) {
|
||||
//FIXME This has a quadratic time complexity, it will be excessively slow for many tiny islands.
|
||||
for (SLAAutoSupports::Structure &top : layer_above.islands) {
|
||||
for (SLAAutoSupports::Structure &bottom : layer_below.islands) {
|
||||
float overlap_area = top.overlap_area(bottom);
|
||||
if (overlap_area > 0) {
|
||||
top.islands_below.emplace_back(&bottom, overlap_area);
|
||||
top.islands_below.emplace_back(&bottom, overlap_area);
|
||||
bottom.islands_above.emplace_back(&top, overlap_area);
|
||||
}
|
||||
}
|
||||
if (! top.islands_below.empty()) {
|
||||
Polygons top_polygons = to_polygons(*top.polygon);
|
||||
Polygons bottom_polygons = top.polygons_below();
|
||||
Polygons bottom_polygons = top.polygons_below();
|
||||
top.overhangs = diff_ex(top_polygons, bottom_polygons);
|
||||
if (! top.overhangs.empty()) {
|
||||
top.overhangs_area = 0.f;
|
||||
|
|
@ -164,21 +164,21 @@ static std::vector<SLAAutoSupports::MyLayer> make_layers(
|
|||
expolys_with_areas.emplace_back(&ex, area);
|
||||
top.overhangs_area += area;
|
||||
}
|
||||
std::sort(expolys_with_areas.begin(), expolys_with_areas.end(),
|
||||
std::sort(expolys_with_areas.begin(), expolys_with_areas.end(),
|
||||
[](const std::pair<ExPolygon*, float> &p1, const std::pair<ExPolygon*, float> &p2)
|
||||
{ return p1.second > p2.second; });
|
||||
ExPolygons overhangs_sorted;
|
||||
for (auto &p : expolys_with_areas)
|
||||
overhangs_sorted.emplace_back(std::move(*p.first));
|
||||
top.overhangs = std::move(overhangs_sorted);
|
||||
top.overhangs = std::move(overhangs_sorted);
|
||||
top.overhangs_area *= float(SCALING_FACTOR * SCALING_FACTOR);
|
||||
top.overhangs_slopes = diff_ex(top_polygons, offset(bottom_polygons, slope_offset));
|
||||
top.dangling_areas = diff_ex(top_polygons, offset(bottom_polygons, between_layers_offset));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
return layers;
|
||||
}
|
||||
|
|
@ -207,14 +207,14 @@ void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::
|
|||
support_force_bottom[i] = layer_bottom->islands[i].supports_force_total();
|
||||
}
|
||||
for (Structure &top : layer_top->islands)
|
||||
for (Structure::Link &bottom_link : top.islands_below) {
|
||||
for (Structure::Link &bottom_link : top.islands_below) {
|
||||
Structure &bottom = *bottom_link.island;
|
||||
//float centroids_dist = (bottom.centroid - top.centroid).norm();
|
||||
// Penalization resulting from centroid offset:
|
||||
// bottom.supports_force *= std::min(1.f, 1.f - std::min(1.f, (1600.f * layer_height) * centroids_dist * centroids_dist / bottom.area));
|
||||
float &support_force = support_force_bottom[&bottom - layer_bottom->islands.data()];
|
||||
//FIXME this condition does not reflect a bifurcation into a one large island and one tiny island well, it incorrectly resets the support force to zero.
|
||||
// One should rather work with the overlap area vs overhang area.
|
||||
// One should rather work with the overlap area vs overhang area.
|
||||
// support_force *= std::min(1.f, 1.f - std::min(1.f, 0.1f * centroids_dist * centroids_dist / bottom.area));
|
||||
// Penalization resulting from increasing polygon area:
|
||||
support_force *= std::min(1.f, 20.f * bottom.area / top.area);
|
||||
|
|
@ -224,10 +224,10 @@ void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::
|
|||
for (Structure &below : layer_bottom->islands) {
|
||||
float below_support_force = support_force_bottom[&below - layer_bottom->islands.data()];
|
||||
float above_overlap_area = 0.f;
|
||||
for (Structure::Link &above_link : below.islands_above)
|
||||
above_overlap_area += above_link.overlap_area;
|
||||
for (Structure::Link &above_link : below.islands_above)
|
||||
above_link.island->supports_force_inherited += below_support_force * above_link.overlap_area / above_overlap_area;
|
||||
for (Structure::Link &above_link : below.islands_above)
|
||||
above_overlap_area += above_link.overlap_area;
|
||||
for (Structure::Link &above_link : below.islands_above)
|
||||
above_link.island->supports_force_inherited += below_support_force * above_link.overlap_area / above_overlap_area;
|
||||
}
|
||||
}
|
||||
// Now iterate over all polygons and append new points if needed.
|
||||
|
|
@ -266,7 +266,7 @@ void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::
|
|||
}
|
||||
|
||||
std::vector<Vec2f> sample_expolygon(const ExPolygon &expoly, float samples_per_mm2, std::mt19937 &rng)
|
||||
{
|
||||
{
|
||||
// Triangulate the polygon with holes into triplets of 3D points.
|
||||
std::vector<Vec2f> triangles = Slic3r::triangulate_expolygon_2f(expoly);
|
||||
|
||||
|
|
@ -347,7 +347,7 @@ static inline std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec
|
|||
sample.cell_id = ((pt - corner_min) / radius).cast<int>();
|
||||
raw_samples_sorted.emplace_back(sample);
|
||||
}
|
||||
std::sort(raw_samples_sorted.begin(), raw_samples_sorted.end(), [](const RawSample &lhs, const RawSample &rhs)
|
||||
std::sort(raw_samples_sorted.begin(), raw_samples_sorted.end(), [](const RawSample &lhs, const RawSample &rhs)
|
||||
{ return lhs.cell_id.x() < rhs.cell_id.x() || (lhs.cell_id.x() == rhs.cell_id.x() && lhs.cell_id.y() < rhs.cell_id.y()); });
|
||||
|
||||
struct PoissonDiskGridEntry {
|
||||
|
|
@ -464,10 +464,10 @@ void SLAAutoSupports::uniformly_cover(const ExPolygons& islands, Structure& stru
|
|||
//FIXME share the random generator. The random generator may be not so cheap to initialize, also we don't want the random generator to be restarted for each polygon.
|
||||
std::random_device rd;
|
||||
std::mt19937 rng(rd());
|
||||
std::vector<Vec2f> raw_samples = sample_expolygon_with_boundary(islands, samples_per_mm2, 5.f / poisson_radius, rng);
|
||||
std::vector<Vec2f> raw_samples = sample_expolygon_with_boundary(islands, samples_per_mm2, 5.f / poisson_radius, rng);
|
||||
std::vector<Vec2f> poisson_samples;
|
||||
for (size_t iter = 0; iter < 4; ++ iter) {
|
||||
poisson_samples = poisson_disk_from_samples(raw_samples, poisson_radius,
|
||||
poisson_samples = poisson_disk_from_samples(raw_samples, poisson_radius,
|
||||
[&structure, &grid3d, min_spacing](const Vec2f &pos) {
|
||||
return grid3d.collides_with(pos, &structure, min_spacing);
|
||||
});
|
||||
|
|
@ -481,21 +481,21 @@ void SLAAutoSupports::uniformly_cover(const ExPolygons& islands, Structure& stru
|
|||
}
|
||||
|
||||
#ifdef SLA_AUTOSUPPORTS_DEBUG
|
||||
{
|
||||
static int irun = 0;
|
||||
Slic3r::SVG svg(debug_out_path("SLA_supports-uniformly_cover-%d.svg", irun ++), get_extents(islands));
|
||||
{
|
||||
static int irun = 0;
|
||||
Slic3r::SVG svg(debug_out_path("SLA_supports-uniformly_cover-%d.svg", irun ++), get_extents(islands));
|
||||
for (const ExPolygon &island : islands)
|
||||
svg.draw(island);
|
||||
for (const Vec2f &pt : raw_samples)
|
||||
svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "red");
|
||||
for (const Vec2f &pt : poisson_samples)
|
||||
svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "blue");
|
||||
}
|
||||
for (const Vec2f &pt : raw_samples)
|
||||
svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "red");
|
||||
for (const Vec2f &pt : poisson_samples)
|
||||
svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "blue");
|
||||
}
|
||||
#endif /* NDEBUG */
|
||||
|
||||
// assert(! poisson_samples.empty());
|
||||
if (poisson_samples_target < poisson_samples.size()) {
|
||||
std::shuffle(poisson_samples.begin(), poisson_samples.end(), rng);
|
||||
std::shuffle(poisson_samples.begin(), poisson_samples.end(), rng);
|
||||
poisson_samples.erase(poisson_samples.begin() + poisson_samples_target, poisson_samples.end());
|
||||
}
|
||||
for (const Vec2f &pt : poisson_samples) {
|
||||
|
|
|
|||
|
|
@ -85,7 +85,7 @@ using Portion = std::tuple<double, double>;
|
|||
|
||||
// Set this to true to enable full parallelism in this module.
|
||||
// Only the well tested parts will be concurrent if this is set to false.
|
||||
const constexpr bool USE_FULL_CONCURRENCY = false;
|
||||
const constexpr bool USE_FULL_CONCURRENCY = true;
|
||||
|
||||
template<bool> struct _ccr {};
|
||||
|
||||
|
|
@ -580,13 +580,13 @@ struct CompactBridge {
|
|||
double fa = 2*PI/steps;
|
||||
auto upperball = sphere(r, Portion{PI / 2 - fa, PI}, fa);
|
||||
for(auto& p : upperball.points) p += startp;
|
||||
|
||||
|
||||
if(endball) {
|
||||
auto lowerball = sphere(r, Portion{0, PI/2 + 2*fa}, fa);
|
||||
for(auto& p : lowerball.points) p += endp;
|
||||
mesh.merge(lowerball);
|
||||
}
|
||||
|
||||
|
||||
mesh.merge(upperball);
|
||||
}
|
||||
};
|
||||
|
|
@ -604,15 +604,15 @@ struct Pad {
|
|||
double ground_level,
|
||||
const PoolConfig& pcfg) :
|
||||
cfg(pcfg),
|
||||
zlevel(ground_level +
|
||||
zlevel(ground_level +
|
||||
sla::get_pad_fullheight(pcfg) -
|
||||
sla::get_pad_elevation(pcfg))
|
||||
{
|
||||
Polygons basep;
|
||||
auto &thr = cfg.throw_on_cancel;
|
||||
|
||||
|
||||
thr();
|
||||
|
||||
|
||||
// Get a sample for the pad from the support mesh
|
||||
{
|
||||
ExPolygons platetmp;
|
||||
|
|
@ -626,20 +626,20 @@ struct Pad {
|
|||
for (const ExPolygon &bp : platetmp)
|
||||
basep.emplace_back(std::move(bp.contour));
|
||||
}
|
||||
|
||||
|
||||
if(pcfg.embed_object) {
|
||||
|
||||
|
||||
// If the zero elevation mode is ON, we need to process the model
|
||||
// base silhouette. Create the offsetted version and punch the
|
||||
// breaksticks across its perimeter.
|
||||
|
||||
|
||||
ExPolygons modelbase_offs = modelbase;
|
||||
|
||||
|
||||
if (pcfg.embed_object.object_gap_mm > 0.0)
|
||||
modelbase_offs
|
||||
= offset_ex(modelbase_offs,
|
||||
float(scaled(pcfg.embed_object.object_gap_mm)));
|
||||
|
||||
|
||||
// Create a spatial index of the support silhouette polygons.
|
||||
// This will be used to check for intersections with the model
|
||||
// silhouette polygons. If there is no intersection, then a certain
|
||||
|
|
@ -653,35 +653,35 @@ struct Pad {
|
|||
bindex.insert(bb, idx++);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
ExPolygons concaveh = offset_ex(
|
||||
concave_hull(basep, pcfg.max_merge_distance_mm, thr),
|
||||
scaled<float>(pcfg.min_wall_thickness_mm));
|
||||
|
||||
|
||||
// Punching the breaksticks across the offsetted polygon perimeters
|
||||
auto pad_stickholes = reserve_vector<ExPolygon>(modelbase.size());
|
||||
for(auto& poly : modelbase_offs) {
|
||||
|
||||
|
||||
bool overlap = false;
|
||||
for (const ExPolygon &p : concaveh)
|
||||
overlap = overlap || poly.overlaps(p);
|
||||
|
||||
|
||||
auto bb = poly.contour.bounding_box();
|
||||
bb.offset(scaled<float>(pcfg.min_wall_thickness_mm));
|
||||
|
||||
|
||||
std::vector<BoxIndexEl> qres =
|
||||
bindex.query(bb, BoxIndex::qtIntersects);
|
||||
|
||||
|
||||
if (!qres.empty() || overlap) {
|
||||
|
||||
|
||||
// The model silhouette polygon 'poly' HAS an intersection
|
||||
// with the support silhouettes. Include this polygon
|
||||
// in the pad holes with the breaksticks and merge the
|
||||
// original (offsetted) version with the rest of the pad
|
||||
// base plate.
|
||||
|
||||
|
||||
basep.emplace_back(poly.contour);
|
||||
|
||||
|
||||
// The holes of 'poly' will become positive parts of the
|
||||
// pad, so they has to be checked for intersections as well
|
||||
// and erased if there is no intersection with the supports
|
||||
|
|
@ -693,7 +693,7 @@ struct Pad {
|
|||
else
|
||||
++it;
|
||||
}
|
||||
|
||||
|
||||
// Punch the breaksticks
|
||||
sla::breakstick_holes(
|
||||
poly,
|
||||
|
|
@ -701,11 +701,11 @@ struct Pad {
|
|||
pcfg.embed_object.stick_stride_mm,
|
||||
pcfg.embed_object.stick_width_mm,
|
||||
pcfg.embed_object.stick_penetration_mm);
|
||||
|
||||
|
||||
pad_stickholes.emplace_back(poly);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
create_base_pool(basep, tmesh, pad_stickholes, cfg);
|
||||
} else {
|
||||
for (const ExPolygon &bp : modelbase) basep.emplace_back(bp.contour);
|
||||
|
|
@ -775,78 +775,78 @@ class SLASupportTree::Impl {
|
|||
// For heads it is beneficial to use the same IDs as for the support points.
|
||||
std::vector<Head> m_heads;
|
||||
std::vector<size_t> m_head_indices;
|
||||
|
||||
|
||||
std::vector<Pillar> m_pillars;
|
||||
std::vector<Junction> m_junctions;
|
||||
std::vector<Bridge> m_bridges;
|
||||
std::vector<CompactBridge> m_compact_bridges;
|
||||
Controller m_ctl;
|
||||
|
||||
|
||||
Pad m_pad;
|
||||
|
||||
|
||||
using Mutex = ccr::Mutex;
|
||||
|
||||
|
||||
mutable Mutex m_mutex;
|
||||
mutable TriangleMesh meshcache; mutable bool meshcache_valid = false;
|
||||
mutable double model_height = 0; // the full height of the model
|
||||
|
||||
|
||||
public:
|
||||
double ground_level = 0;
|
||||
|
||||
|
||||
Impl() = default;
|
||||
inline Impl(const Controller& ctl): m_ctl(ctl) {}
|
||||
|
||||
|
||||
const Controller& ctl() const { return m_ctl; }
|
||||
|
||||
|
||||
template<class...Args> Head& add_head(unsigned id, Args&&... args)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
m_heads.emplace_back(std::forward<Args>(args)...);
|
||||
m_heads.back().id = id;
|
||||
|
||||
|
||||
if (id >= m_head_indices.size()) m_head_indices.resize(id + 1);
|
||||
m_head_indices[id] = m_heads.size() - 1;
|
||||
|
||||
|
||||
meshcache_valid = false;
|
||||
return m_heads.back();
|
||||
}
|
||||
|
||||
|
||||
template<class...Args> Pillar& add_pillar(unsigned headid, Args&&... args)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
|
||||
|
||||
assert(headid < m_head_indices.size());
|
||||
Head &head = m_heads[m_head_indices[headid]];
|
||||
|
||||
|
||||
m_pillars.emplace_back(head, std::forward<Args>(args)...);
|
||||
Pillar& pillar = m_pillars.back();
|
||||
pillar.id = long(m_pillars.size() - 1);
|
||||
head.pillar_id = pillar.id;
|
||||
pillar.start_junction_id = head.id;
|
||||
pillar.starts_from_head = true;
|
||||
|
||||
|
||||
meshcache_valid = false;
|
||||
return m_pillars.back();
|
||||
}
|
||||
|
||||
|
||||
void increment_bridges(const Pillar& pillar)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
assert(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size());
|
||||
|
||||
if(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size())
|
||||
|
||||
if(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size())
|
||||
m_pillars[size_t(pillar.id)].bridges++;
|
||||
}
|
||||
|
||||
|
||||
void increment_links(const Pillar& pillar)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
assert(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size());
|
||||
|
||||
|
||||
if(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size())
|
||||
m_pillars[size_t(pillar.id)].links++;
|
||||
m_pillars[size_t(pillar.id)].links++;
|
||||
}
|
||||
|
||||
|
||||
template<class...Args> Pillar& add_pillar(Args&&...args)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
|
|
@ -857,30 +857,30 @@ public:
|
|||
meshcache_valid = false;
|
||||
return m_pillars.back();
|
||||
}
|
||||
|
||||
|
||||
const Head& pillar_head(long pillar_id) const
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
assert(pillar_id >= 0 && pillar_id < long(m_pillars.size()));
|
||||
|
||||
|
||||
const Pillar& p = m_pillars[size_t(pillar_id)];
|
||||
assert(p.starts_from_head && p.start_junction_id >= 0);
|
||||
assert(size_t(p.start_junction_id) < m_head_indices.size());
|
||||
|
||||
|
||||
return m_heads[m_head_indices[p.start_junction_id]];
|
||||
}
|
||||
|
||||
|
||||
const Pillar& head_pillar(unsigned headid) const
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
assert(headid < m_head_indices.size());
|
||||
|
||||
|
||||
const Head& h = m_heads[m_head_indices[headid]];
|
||||
assert(h.pillar_id >= 0 && h.pillar_id < long(m_pillars.size()));
|
||||
|
||||
|
||||
return m_pillars[size_t(h.pillar_id)];
|
||||
}
|
||||
|
||||
|
||||
template<class...Args> const Junction& add_junction(Args&&... args)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
|
|
@ -889,7 +889,7 @@ public:
|
|||
meshcache_valid = false;
|
||||
return m_junctions.back();
|
||||
}
|
||||
|
||||
|
||||
template<class...Args> const Bridge& add_bridge(Args&&... args)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
|
|
@ -898,7 +898,7 @@ public:
|
|||
meshcache_valid = false;
|
||||
return m_bridges.back();
|
||||
}
|
||||
|
||||
|
||||
template<class...Args> const CompactBridge& add_compact_bridge(Args&&...args)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
|
|
@ -907,30 +907,30 @@ public:
|
|||
meshcache_valid = false;
|
||||
return m_compact_bridges.back();
|
||||
}
|
||||
|
||||
|
||||
Head &head(unsigned id)
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
assert(id < m_head_indices.size());
|
||||
|
||||
|
||||
meshcache_valid = false;
|
||||
return m_heads[m_head_indices[id]];
|
||||
}
|
||||
|
||||
|
||||
inline size_t pillarcount() const {
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
return m_pillars.size();
|
||||
}
|
||||
|
||||
|
||||
template<class T> inline IntegerOnly<T, const Pillar&> pillar(T id) const
|
||||
{
|
||||
std::lock_guard<Mutex> lk(m_mutex);
|
||||
assert(id >= 0 && size_t(id) < m_pillars.size() &&
|
||||
size_t(id) < std::numeric_limits<size_t>::max());
|
||||
|
||||
|
||||
return m_pillars[size_t(id)];
|
||||
}
|
||||
|
||||
|
||||
const Pad &create_pad(const TriangleMesh &object_supports,
|
||||
const ExPolygons & modelbase,
|
||||
const PoolConfig & cfg)
|
||||
|
|
@ -938,86 +938,88 @@ public:
|
|||
m_pad = Pad(object_supports, modelbase, ground_level, cfg);
|
||||
return m_pad;
|
||||
}
|
||||
|
||||
|
||||
void remove_pad() { m_pad = Pad(); }
|
||||
|
||||
|
||||
const Pad& pad() const { return m_pad; }
|
||||
|
||||
|
||||
// WITHOUT THE PAD!!!
|
||||
const TriangleMesh &merged_mesh() const
|
||||
{
|
||||
if (meshcache_valid) return meshcache;
|
||||
|
||||
|
||||
std::cout << "merging mesh" << std::endl;
|
||||
|
||||
Contour3D merged;
|
||||
|
||||
|
||||
for (auto &head : m_heads) {
|
||||
if (m_ctl.stopcondition()) break;
|
||||
if (head.is_valid()) merged.merge(head.mesh);
|
||||
}
|
||||
|
||||
|
||||
for (auto &stick : m_pillars) {
|
||||
if (m_ctl.stopcondition()) break;
|
||||
merged.merge(stick.mesh);
|
||||
merged.merge(stick.base);
|
||||
}
|
||||
|
||||
|
||||
for (auto &j : m_junctions) {
|
||||
if (m_ctl.stopcondition()) break;
|
||||
merged.merge(j.mesh);
|
||||
}
|
||||
|
||||
|
||||
for (auto &cb : m_compact_bridges) {
|
||||
if (m_ctl.stopcondition()) break;
|
||||
merged.merge(cb.mesh);
|
||||
}
|
||||
|
||||
|
||||
for (auto &bs : m_bridges) {
|
||||
if (m_ctl.stopcondition()) break;
|
||||
merged.merge(bs.mesh);
|
||||
}
|
||||
|
||||
|
||||
if (m_ctl.stopcondition()) {
|
||||
// In case of failure we have to return an empty mesh
|
||||
meshcache = TriangleMesh();
|
||||
return meshcache;
|
||||
}
|
||||
|
||||
|
||||
meshcache = mesh(merged);
|
||||
|
||||
|
||||
// The mesh will be passed by const-pointer to TriangleMeshSlicer,
|
||||
// which will need this.
|
||||
if (!meshcache.empty()) meshcache.require_shared_vertices();
|
||||
|
||||
|
||||
BoundingBoxf3 &&bb = meshcache.bounding_box();
|
||||
model_height = bb.max(Z) - bb.min(Z);
|
||||
|
||||
|
||||
meshcache_valid = true;
|
||||
return meshcache;
|
||||
}
|
||||
|
||||
|
||||
// WITH THE PAD
|
||||
double full_height() const
|
||||
{
|
||||
if (merged_mesh().empty() && !pad().empty())
|
||||
return get_pad_fullheight(pad().cfg);
|
||||
|
||||
|
||||
double h = mesh_height();
|
||||
if (!pad().empty()) h += sla::get_pad_elevation(pad().cfg);
|
||||
return h;
|
||||
}
|
||||
|
||||
|
||||
// WITHOUT THE PAD!!!
|
||||
double mesh_height() const
|
||||
{
|
||||
if (!meshcache_valid) merged_mesh();
|
||||
return model_height;
|
||||
}
|
||||
|
||||
|
||||
// Intended to be called after the generation is fully complete
|
||||
void merge_and_cleanup()
|
||||
{
|
||||
merged_mesh(); // in case the mesh is not generated, it should be...
|
||||
|
||||
|
||||
// Doing clear() does not garantee to release the memory.
|
||||
m_heads = {};
|
||||
m_head_indices = {};
|
||||
|
|
@ -1194,7 +1196,7 @@ class SLASupportTree::Algorithm {
|
|||
// Now a and b vectors are perpendicular to v and to each other.
|
||||
// Together they define the plane where we have to iterate with the
|
||||
// given angles in the 'phis' vector
|
||||
ccr_par::enumerate(phis.begin(), phis.end(),
|
||||
ccr_seq::enumerate(phis.begin(), phis.end(),
|
||||
[&hits, &m, sd, r_pin, r_back, s, a, b, c]
|
||||
(double phi, size_t i)
|
||||
{
|
||||
|
|
@ -1296,8 +1298,8 @@ class SLASupportTree::Algorithm {
|
|||
|
||||
// Hit results
|
||||
std::array<HitResult, SAMPLES> hits;
|
||||
|
||||
ccr_par::enumerate(phis.begin(), phis.end(),
|
||||
|
||||
ccr_seq::enumerate(phis.begin(), phis.end(),
|
||||
[&m, a, b, sd, dir, r, s, ins_check, &hits]
|
||||
(double phi, size_t i)
|
||||
{
|
||||
|
|
@ -1431,11 +1433,11 @@ class SLASupportTree::Algorithm {
|
|||
|
||||
// For connecting a head to a nearby pillar.
|
||||
bool connect_to_nearpillar(const Head& head, long nearpillar_id) {
|
||||
|
||||
|
||||
auto nearpillar = [this, nearpillar_id]() {
|
||||
return m_result.pillar(nearpillar_id);
|
||||
};
|
||||
|
||||
|
||||
if (nearpillar().bridges > m_cfg.max_bridges_on_pillar) return false;
|
||||
|
||||
Vec3d headjp = head.junction_point();
|
||||
|
|
@ -1539,7 +1541,7 @@ class SLASupportTree::Algorithm {
|
|||
|
||||
return nearest_id >= 0;
|
||||
}
|
||||
|
||||
|
||||
// This is a proxy function for pillar creation which will mind the gap
|
||||
// between the pad and the model bottom in zero elevation mode.
|
||||
void create_ground_pillar(const Vec3d &jp,
|
||||
|
|
@ -1594,7 +1596,7 @@ class SLASupportTree::Algorithm {
|
|||
endp = jp + SQR2 * mv * dir;
|
||||
Vec3d pgnd = {endp(X), endp(Y), gndlvl};
|
||||
can_add_base = result.score > min_dist;
|
||||
|
||||
|
||||
double gnd_offs = m_mesh.ground_level_offset();
|
||||
auto abort_in_shame =
|
||||
[gnd_offs, &normal_mode, &can_add_base, &endp, jp, gndlvl]()
|
||||
|
|
@ -1612,7 +1614,7 @@ class SLASupportTree::Algorithm {
|
|||
if (endp(Z) < gndlvl)
|
||||
endp = endp - SQR2 * (gndlvl - endp(Z)) * dir; // back off
|
||||
else {
|
||||
|
||||
|
||||
auto hit = bridge_mesh_intersect(endp, DOWN, radius);
|
||||
if (!std::isinf(hit.distance())) abort_in_shame();
|
||||
|
||||
|
|
@ -1636,7 +1638,7 @@ class SLASupportTree::Algorithm {
|
|||
m_result.add_pillar(unsigned(head_id), jp, radius);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (normal_mode) {
|
||||
Pillar &plr = head_id >= 0
|
||||
? m_result.add_pillar(unsigned(head_id),
|
||||
|
|
@ -1648,8 +1650,8 @@ class SLASupportTree::Algorithm {
|
|||
plr.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
|
||||
|
||||
pillar_id = plr.id;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if(pillar_id >= 0) // Save the pillar endpoint in the spatial index
|
||||
m_pillar_index.insert(endp, pillar_id);
|
||||
}
|
||||
|
|
@ -1716,52 +1718,52 @@ public:
|
|||
using libnest2d::opt::initvals;
|
||||
using libnest2d::opt::GeneticOptimizer;
|
||||
using libnest2d::opt::StopCriteria;
|
||||
|
||||
|
||||
ccr::Mutex mutex;
|
||||
auto addfn = [&mutex](PtIndices &container, unsigned val) {
|
||||
std::lock_guard<ccr::Mutex> lk(mutex);
|
||||
container.emplace_back(val);
|
||||
};
|
||||
|
||||
|
||||
ccr::enumerate(filtered_indices.begin(), filtered_indices.end(),
|
||||
[this, &nmls, addfn](unsigned fidx, size_t i)
|
||||
{
|
||||
m_thr();
|
||||
|
||||
|
||||
auto n = nmls.row(i);
|
||||
|
||||
|
||||
// for all normals we generate the spherical coordinates and
|
||||
// saturate the polar angle to 45 degrees from the bottom then
|
||||
// convert back to standard coordinates to get the new normal.
|
||||
// Then we just create a quaternion from the two normals
|
||||
// (Quaternion::FromTwoVectors) and apply the rotation to the
|
||||
// arrow head.
|
||||
|
||||
|
||||
double z = n(2);
|
||||
double r = 1.0; // for normalized vector
|
||||
double polar = std::acos(z / r);
|
||||
double azimuth = std::atan2(n(1), n(0));
|
||||
|
||||
|
||||
// skip if the tilt is not sane
|
||||
if(polar >= PI - m_cfg.normal_cutoff_angle) {
|
||||
|
||||
|
||||
// We saturate the polar angle to 3pi/4
|
||||
polar = std::max(polar, 3*PI / 4);
|
||||
|
||||
|
||||
// save the head (pinpoint) position
|
||||
Vec3d hp = m_points.row(fidx);
|
||||
|
||||
|
||||
double w = m_cfg.head_width_mm +
|
||||
m_cfg.head_back_radius_mm +
|
||||
2*m_cfg.head_front_radius_mm;
|
||||
|
||||
|
||||
double pin_r = double(m_support_pts[fidx].head_front_radius);
|
||||
|
||||
|
||||
// Reassemble the now corrected normal
|
||||
auto nn = Vec3d(std::cos(azimuth) * std::sin(polar),
|
||||
std::sin(azimuth) * std::sin(polar),
|
||||
std::cos(polar)).normalized();
|
||||
|
||||
|
||||
// check available distance
|
||||
EigenMesh3D::hit_result t
|
||||
= pinhead_mesh_intersect(hp, // touching point
|
||||
|
|
@ -1769,20 +1771,20 @@ public:
|
|||
pin_r,
|
||||
m_cfg.head_back_radius_mm,
|
||||
w);
|
||||
|
||||
|
||||
if(t.distance() <= w) {
|
||||
|
||||
|
||||
// Let's try to optimize this angle, there might be a
|
||||
// viable normal that doesn't collide with the model
|
||||
// geometry and its very close to the default.
|
||||
|
||||
|
||||
StopCriteria stc;
|
||||
stc.max_iterations = m_cfg.optimizer_max_iterations;
|
||||
stc.relative_score_difference = m_cfg.optimizer_rel_score_diff;
|
||||
stc.stop_score = w; // space greater than w is enough
|
||||
GeneticOptimizer solver(stc);
|
||||
solver.seed(0); // we want deterministic behavior
|
||||
|
||||
|
||||
auto oresult = solver.optimize_max(
|
||||
[this, pin_r, w, hp](double plr, double azm)
|
||||
{
|
||||
|
|
@ -1799,7 +1801,7 @@ public:
|
|||
bound(3*PI/4, PI), // Must not exceed the tilt limit
|
||||
bound(-PI, PI) // azimuth can be a full search
|
||||
);
|
||||
|
||||
|
||||
if(oresult.score > w) {
|
||||
polar = std::get<0>(oresult.optimum);
|
||||
azimuth = std::get<1>(oresult.optimum);
|
||||
|
|
@ -1809,10 +1811,10 @@ public:
|
|||
t = oresult.score;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// save the verified and corrected normal
|
||||
m_support_nmls.row(fidx) = nn;
|
||||
|
||||
|
||||
if (t.distance() > w) {
|
||||
// Check distance from ground, we might have zero elevation.
|
||||
if (hp(Z) + w * nn(Z) < m_result.ground_level) {
|
||||
|
|
@ -1889,7 +1891,7 @@ public:
|
|||
// from each other in the XY plane to not cross their pillar bases
|
||||
// These clusters of support points will join in one pillar,
|
||||
// possibly in their centroid support point.
|
||||
|
||||
|
||||
auto pointfn = [this](unsigned i) {
|
||||
return m_result.head(i).junction_point();
|
||||
};
|
||||
|
|
@ -2178,7 +2180,7 @@ public:
|
|||
m_pillar_index.insert(pillar.endpoint(), pillid);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Helper function for interconnect_pillars where pairs of already connected
|
||||
// pillars should be checked for not to be processed again. This can be done
|
||||
// in O(log) or even constant time with a set or an unordered set of hash
|
||||
|
|
@ -2187,17 +2189,17 @@ public:
|
|||
template<class I> static I pairhash(I a, I b)
|
||||
{
|
||||
using std::ceil; using std::log2; using std::max; using std::min;
|
||||
|
||||
|
||||
static_assert(std::is_integral<I>::value,
|
||||
"This function works only for integral types.");
|
||||
|
||||
I g = min(a, b), l = max(a, b);
|
||||
|
||||
|
||||
auto bits_g = g ? int(ceil(log2(g))) : 0;
|
||||
|
||||
// Assume the hash will fit into the output variable
|
||||
assert((l ? (ceil(log2(l))) : 0) + bits_g < int(sizeof(I) * CHAR_BIT));
|
||||
|
||||
|
||||
return (l << bits_g) + g;
|
||||
}
|
||||
|
||||
|
|
@ -2217,7 +2219,7 @@ public:
|
|||
double min_height_ratio = 0.5;
|
||||
|
||||
std::set<unsigned long> pairs;
|
||||
|
||||
|
||||
// A function to connect one pillar with its neighbors. THe number of
|
||||
// neighbors is given in the configuration. This function if called
|
||||
// for every pillar in the pillar index. A pair of pillar will not
|
||||
|
|
@ -2229,7 +2231,7 @@ public:
|
|||
Vec3d qp = el.first; // endpoint of the pillar
|
||||
|
||||
const Pillar& pillar = m_result.pillar(el.second); // actual pillar
|
||||
|
||||
|
||||
// Get the max number of neighbors a pillar should connect to
|
||||
unsigned neighbors = m_cfg.pillar_cascade_neighbors;
|
||||
|
||||
|
|
@ -2255,10 +2257,10 @@ public:
|
|||
|
||||
// Get unique hash for the given pair (order doesn't matter)
|
||||
auto hashval = pairhash(a, b);
|
||||
|
||||
|
||||
// Search for the pair amongst the remembered pairs
|
||||
if(pairs.find(hashval) != pairs.end()) continue;
|
||||
|
||||
|
||||
const Pillar& neighborpillar = m_result.pillar(re.second);
|
||||
|
||||
// this neighbor is occupied, skip
|
||||
|
|
@ -2283,10 +2285,10 @@ public:
|
|||
if(pillar.links >= neighbors) break;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Run the cascade for the pillars in the index
|
||||
m_pillar_index.foreach(cascadefn);
|
||||
|
||||
|
||||
// We would be done here if we could allow some pillars to not be
|
||||
// connected with any neighbors. But this might leave the support tree
|
||||
// unprintable.
|
||||
|
|
@ -2294,16 +2296,16 @@ public:
|
|||
// The current solution is to insert additional pillars next to these
|
||||
// lonely pillars. One or even two additional pillar might get inserted
|
||||
// depending on the length of the lonely pillar.
|
||||
|
||||
|
||||
size_t pillarcount = m_result.pillarcount();
|
||||
|
||||
|
||||
// Again, go through all pillars, this time in the whole support tree
|
||||
// not just the index.
|
||||
for(size_t pid = 0; pid < pillarcount; pid++) {
|
||||
auto pillar = [this, pid]() { return m_result.pillar(pid); };
|
||||
|
||||
|
||||
// Decide how many additional pillars will be needed:
|
||||
|
||||
|
||||
unsigned needpillars = 0;
|
||||
if (pillar().bridges > m_cfg.max_bridges_on_pillar)
|
||||
needpillars = 3;
|
||||
|
|
@ -2332,7 +2334,7 @@ public:
|
|||
double gnd = m_result.ground_level;
|
||||
double min_dist = m_cfg.pillar_base_safety_distance_mm +
|
||||
m_cfg.base_radius_mm + EPSILON;
|
||||
|
||||
|
||||
while(!found && alpha < 2*PI) {
|
||||
for (unsigned n = 0;
|
||||
n < needpillars && (!n || canplace[n - 1]);
|
||||
|
|
@ -2343,11 +2345,11 @@ public:
|
|||
s(X) += std::cos(a) * r;
|
||||
s(Y) += std::sin(a) * r;
|
||||
spts[n] = s;
|
||||
|
||||
// Check the path vertically down
|
||||
|
||||
// Check the path vertically down
|
||||
auto hr = bridge_mesh_intersect(s, {0, 0, -1}, pillar().r);
|
||||
Vec3d gndsp{s(X), s(Y), gnd};
|
||||
|
||||
|
||||
// If the path is clear, check for pillar base collisions
|
||||
canplace[n] = std::isinf(hr.distance()) &&
|
||||
std::sqrt(m_mesh.squared_distance(gndsp)) >
|
||||
|
|
@ -2365,7 +2367,7 @@ public:
|
|||
newpills.reserve(needpillars);
|
||||
|
||||
if(found) for(unsigned n = 0; n < needpillars; n++) {
|
||||
Vec3d s = spts[n];
|
||||
Vec3d s = spts[n];
|
||||
Pillar p(s, Vec3d(s(X), s(Y), gnd), pillar().r);
|
||||
p.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
|
||||
|
||||
|
|
@ -2447,8 +2449,8 @@ public:
|
|||
m_result.add_compact_bridge(sp, ej, n, R, !std::isinf(dist));
|
||||
}
|
||||
}
|
||||
|
||||
void merge_result() { m_result.merge_and_cleanup(); }
|
||||
|
||||
void merge_result() { /*m_result.merge_and_cleanup();*/ }
|
||||
};
|
||||
|
||||
bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
||||
|
|
@ -2457,9 +2459,9 @@ bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
|||
const Controller &ctl)
|
||||
{
|
||||
if(support_points.empty()) return false;
|
||||
|
||||
|
||||
Algorithm alg(cfg, mesh, support_points, *m_impl, ctl.cancelfn);
|
||||
|
||||
|
||||
// Let's define the individual steps of the processing. We can experiment
|
||||
// later with the ordering and the dependencies between them.
|
||||
enum Steps {
|
||||
|
|
@ -2477,41 +2479,41 @@ bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
|||
NUM_STEPS
|
||||
//...
|
||||
};
|
||||
|
||||
|
||||
// Collect the algorithm steps into a nice sequence
|
||||
std::array<std::function<void()>, NUM_STEPS> program = {
|
||||
[] () {
|
||||
// Begin...
|
||||
// Potentially clear up the shared data (not needed for now)
|
||||
},
|
||||
|
||||
|
||||
std::bind(&Algorithm::filter, &alg),
|
||||
|
||||
|
||||
std::bind(&Algorithm::add_pinheads, &alg),
|
||||
|
||||
|
||||
std::bind(&Algorithm::classify, &alg),
|
||||
|
||||
|
||||
std::bind(&Algorithm::routing_to_ground, &alg),
|
||||
|
||||
|
||||
std::bind(&Algorithm::routing_to_model, &alg),
|
||||
|
||||
|
||||
std::bind(&Algorithm::interconnect_pillars, &alg),
|
||||
|
||||
|
||||
std::bind(&Algorithm::routing_headless, &alg),
|
||||
|
||||
|
||||
std::bind(&Algorithm::merge_result, &alg),
|
||||
|
||||
|
||||
[] () {
|
||||
// Done
|
||||
},
|
||||
|
||||
|
||||
[] () {
|
||||
// Abort
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
Steps pc = BEGIN;
|
||||
|
||||
|
||||
if(cfg.ground_facing_only) {
|
||||
program[ROUTING_NONGROUND] = []() {
|
||||
BOOST_LOG_TRIVIAL(info)
|
||||
|
|
@ -2522,7 +2524,7 @@ bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
|||
" requested.";
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
// Let's define a simple automaton that will run our program.
|
||||
auto progress = [&ctl, &pc] () {
|
||||
static const std::array<std::string, NUM_STEPS> stepstr {
|
||||
|
|
@ -2538,7 +2540,7 @@ bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
|||
"Done",
|
||||
"Abort"
|
||||
};
|
||||
|
||||
|
||||
static const std::array<unsigned, NUM_STEPS> stepstate {
|
||||
0,
|
||||
10,
|
||||
|
|
@ -2552,9 +2554,9 @@ bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
|||
100,
|
||||
0
|
||||
};
|
||||
|
||||
|
||||
if(ctl.stopcondition()) pc = ABORT;
|
||||
|
||||
|
||||
switch(pc) {
|
||||
case BEGIN: pc = FILTER; break;
|
||||
case FILTER: pc = PINHEADS; break;
|
||||
|
|
@ -2569,16 +2571,16 @@ bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
|||
case ABORT: break;
|
||||
default: ;
|
||||
}
|
||||
|
||||
|
||||
ctl.statuscb(stepstate[pc], stepstr[pc]);
|
||||
};
|
||||
|
||||
|
||||
// Just here we run the computation...
|
||||
while(pc < DONE) {
|
||||
progress();
|
||||
program[pc]();
|
||||
}
|
||||
|
||||
|
||||
return pc == ABORT;
|
||||
}
|
||||
|
||||
|
|
@ -2588,7 +2590,7 @@ SLASupportTree::SLASupportTree(double gnd_lvl): m_impl(new Impl()) {
|
|||
|
||||
const TriangleMesh &SLASupportTree::merged_mesh() const
|
||||
{
|
||||
return get().merged_mesh();
|
||||
return m_impl->merged_mesh();
|
||||
}
|
||||
|
||||
void SLASupportTree::merged_mesh_with_pad(TriangleMesh &outmesh) const {
|
||||
|
|
@ -2601,34 +2603,34 @@ std::vector<ExPolygons> SLASupportTree::slice(
|
|||
{
|
||||
const TriangleMesh &sup_mesh = m_impl->merged_mesh();
|
||||
const TriangleMesh &pad_mesh = get_pad();
|
||||
|
||||
|
||||
std::vector<ExPolygons> sup_slices;
|
||||
if (!sup_mesh.empty()) {
|
||||
if (!sup_mesh.empty()) {
|
||||
TriangleMeshSlicer sup_slicer(&sup_mesh);
|
||||
sup_slicer.slice(heights, cr, &sup_slices, m_impl->ctl().cancelfn);
|
||||
}
|
||||
|
||||
|
||||
auto bb = pad_mesh.bounding_box();
|
||||
auto maxzit = std::upper_bound(heights.begin(), heights.end(), bb.max.z());
|
||||
|
||||
|
||||
auto padgrid = reserve_vector<float>(heights.end() - maxzit);
|
||||
std::copy(heights.begin(), maxzit, std::back_inserter(padgrid));
|
||||
|
||||
|
||||
std::vector<ExPolygons> pad_slices;
|
||||
if (!pad_mesh.empty()) {
|
||||
if (!pad_mesh.empty()) {
|
||||
TriangleMeshSlicer pad_slicer(&pad_mesh);
|
||||
pad_slicer.slice(padgrid, cr, &pad_slices, m_impl->ctl().cancelfn);
|
||||
}
|
||||
|
||||
|
||||
size_t len = std::min(heights.size(), pad_slices.size());
|
||||
len = std::min(len, sup_slices.size());
|
||||
|
||||
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
std::copy(pad_slices[i].begin(), pad_slices[i].end(),
|
||||
std::back_inserter(sup_slices[i]));
|
||||
pad_slices[i] = {};
|
||||
pad_slices[i] = {};
|
||||
}
|
||||
|
||||
|
||||
return sup_slices;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -148,9 +148,9 @@ std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
|
|||
BoxIndex::QueryType qt)
|
||||
{
|
||||
namespace bgi = boost::geometry::index;
|
||||
|
||||
|
||||
std::vector<BoxIndexEl> ret; ret.reserve(m_impl->m_store.size());
|
||||
|
||||
|
||||
switch (qt) {
|
||||
case qtIntersects:
|
||||
m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret));
|
||||
|
|
@ -158,7 +158,7 @@ std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
|
|||
case qtWithin:
|
||||
m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret));
|
||||
}
|
||||
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
@ -198,9 +198,9 @@ EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
|
|||
F.resize(stl.stats.number_of_facets, 3);
|
||||
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
|
||||
const stl_facet &facet = stl.facet_start[i];
|
||||
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
|
||||
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
|
||||
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
|
||||
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
|
||||
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
|
||||
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
|
||||
F(i, 0) = int(3*i+0);
|
||||
F(i, 1) = int(3*i+1);
|
||||
F(i, 2) = int(3*i+2);
|
||||
|
|
@ -306,6 +306,7 @@ PointSet normals(const PointSet& points,
|
|||
|
||||
PointSet ret(range.size(), 3);
|
||||
|
||||
// for (size_t ridx = 0; ridx < range.size(); ++ridx)
|
||||
tbb::parallel_for(size_t(0), range.size(),
|
||||
[&ret, &range, &mesh, &points, thr, eps](size_t ridx)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -16,6 +16,12 @@
|
|||
// For geometry algorithms with native Clipper types (no copies and conversions)
|
||||
#include <libnest2d/backends/clipper/geometries.hpp>
|
||||
|
||||
#define SLAPRINT_DO_BENCHMARK
|
||||
|
||||
#ifdef SLAPRINT_DO_BENCHMARK
|
||||
#include <libnest2d/tools/benchmark.h>
|
||||
#endif
|
||||
|
||||
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
|
||||
|
||||
#include "I18N.hpp"
|
||||
|
|
@ -52,7 +58,7 @@ const std::array<unsigned, slaposCount> OBJ_STEP_LEVELS =
|
|||
};
|
||||
|
||||
// Object step to status label. The labels are localized at the time of calling, thus supporting language switching.
|
||||
std::string OBJ_STEP_LABELS(size_t idx)
|
||||
std::string OBJ_STEP_LABELS(size_t idx)
|
||||
{
|
||||
switch (idx) {
|
||||
case slaposObjectSlice: return L("Slicing model");
|
||||
|
|
@ -365,7 +371,7 @@ SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig con
|
|||
// Synchronize Object's config.
|
||||
bool object_config_changed = model_object.config != model_object_new.config;
|
||||
if (object_config_changed)
|
||||
static_cast<DynamicPrintConfig&>(model_object.config) = static_cast<const DynamicPrintConfig&>(model_object_new.config);
|
||||
static_cast<DynamicPrintConfig&>(model_object.config) = static_cast<const DynamicPrintConfig&>(model_object_new.config);
|
||||
if (! object_diff.empty() || object_config_changed) {
|
||||
SLAPrintObjectConfig new_config = m_default_object_config;
|
||||
normalize_and_apply_config(new_config, model_object.config);
|
||||
|
|
@ -424,10 +430,10 @@ SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig con
|
|||
print_object->set_trafo(sla_trafo(*this, model_object), model_object.instances.front()->is_left_handed());
|
||||
|
||||
print_object->set_instances(std::move(new_instances));
|
||||
|
||||
SLAPrintObjectConfig new_config = m_default_object_config;
|
||||
normalize_and_apply_config(new_config, model_object.config);
|
||||
print_object->config_apply(new_config, true);
|
||||
|
||||
SLAPrintObjectConfig new_config = m_default_object_config;
|
||||
normalize_and_apply_config(new_config, model_object.config);
|
||||
print_object->config_apply(new_config, true);
|
||||
print_objects_new.emplace_back(print_object);
|
||||
new_objects = true;
|
||||
}
|
||||
|
|
@ -446,7 +452,7 @@ SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig con
|
|||
if (new_objects)
|
||||
update_apply_status(false);
|
||||
}
|
||||
|
||||
|
||||
if(m_objects.empty()) {
|
||||
m_printer.release();
|
||||
m_printer_input.clear();
|
||||
|
|
@ -596,16 +602,16 @@ sla::SupportConfig make_support_cfg(const SLAPrintObjectConfig& c) {
|
|||
scfg.pillar_base_safety_distance_mm =
|
||||
c.support_base_safety_distance.getFloat() < EPSILON ?
|
||||
scfg.safety_distance_mm : c.support_base_safety_distance.getFloat();
|
||||
|
||||
|
||||
return scfg;
|
||||
}
|
||||
|
||||
sla::PoolConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c) {
|
||||
sla::PoolConfig::EmbedObject ret;
|
||||
|
||||
|
||||
ret.enabled = c.support_object_elevation.getFloat() <= EPSILON &&
|
||||
c.pad_enable.getBool() && c.supports_enable.getBool();
|
||||
|
||||
|
||||
if(ret.enabled) {
|
||||
ret.object_gap_mm = c.pad_object_gap.getFloat();
|
||||
ret.stick_width_mm = c.pad_object_connector_width.getFloat();
|
||||
|
|
@ -613,7 +619,7 @@ sla::PoolConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c) {
|
|||
ret.stick_penetration_mm = c.pad_object_connector_penetration
|
||||
.getFloat();
|
||||
}
|
||||
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
@ -622,16 +628,16 @@ sla::PoolConfig make_pool_config(const SLAPrintObjectConfig& c) {
|
|||
|
||||
pcfg.min_wall_thickness_mm = c.pad_wall_thickness.getFloat();
|
||||
pcfg.wall_slope = c.pad_wall_slope.getFloat() * PI / 180.0;
|
||||
|
||||
|
||||
// We do not support radius for now
|
||||
pcfg.edge_radius_mm = 0.0; //c.pad_edge_radius.getFloat();
|
||||
|
||||
|
||||
pcfg.max_merge_distance_mm = c.pad_max_merge_distance.getFloat();
|
||||
pcfg.min_wall_height_mm = c.pad_wall_height.getFloat();
|
||||
|
||||
// set builtin pad implicitly ON
|
||||
pcfg.embed_object = builtin_pad_cfg(c);
|
||||
|
||||
|
||||
return pcfg;
|
||||
}
|
||||
|
||||
|
|
@ -657,12 +663,12 @@ std::string SLAPrint::validate() const
|
|||
cfg.head_width_mm +
|
||||
2 * cfg.head_back_radius_mm -
|
||||
cfg.head_penetration_mm;
|
||||
|
||||
|
||||
double elv = cfg.object_elevation_mm;
|
||||
|
||||
if(supports_en && elv > EPSILON && elv < pinhead_width )
|
||||
return L("Elevation is too low for object.");
|
||||
|
||||
|
||||
sla::PoolConfig::EmbedObject builtinpad = builtin_pad_cfg(po->config());
|
||||
if(supports_en && builtinpad.enabled &&
|
||||
cfg.pillar_base_safety_distance_mm < builtinpad.object_gap_mm) {
|
||||
|
|
@ -740,15 +746,15 @@ void SLAPrint::process()
|
|||
coord_t maxZs = scaled(maxZ);
|
||||
|
||||
po.m_slice_index.clear();
|
||||
|
||||
|
||||
size_t cap = size_t(1 + (maxZs - minZs - ilhs) / lhs);
|
||||
po.m_slice_index.reserve(cap);
|
||||
|
||||
|
||||
po.m_slice_index.emplace_back(minZs + ilhs, minZf + ilh / 2.f, ilh);
|
||||
|
||||
for(coord_t h = minZs + ilhs + lhs; h <= maxZs; h += lhs)
|
||||
po.m_slice_index.emplace_back(h, unscaled<float>(h) - lh / 2.f, lh);
|
||||
|
||||
|
||||
// Just get the first record that is form the model:
|
||||
auto slindex_it =
|
||||
po.closest_slice_record(po.m_slice_index, float(bb3d.min(Z)));
|
||||
|
|
@ -781,9 +787,9 @@ void SLAPrint::process()
|
|||
{
|
||||
// We apply the printer correction offset here.
|
||||
if(clpr_offs != 0)
|
||||
po.m_model_slices[id] =
|
||||
po.m_model_slices[id] =
|
||||
offset_ex(po.m_model_slices[id], float(clpr_offs));
|
||||
|
||||
|
||||
mit->set_model_slice_idx(po, id); ++mit;
|
||||
}
|
||||
|
||||
|
|
@ -876,7 +882,7 @@ void SLAPrint::process()
|
|||
// removed them on purpose. No calculation will be done.
|
||||
po.m_supportdata->support_points = po.transformed_support_points();
|
||||
}
|
||||
|
||||
|
||||
// If the zero elevation mode is engaged, we have to filter out all the
|
||||
// points that are on the bottom of the object
|
||||
if (po.config().support_object_elevation.getFloat() <= EPSILON) {
|
||||
|
|
@ -894,7 +900,7 @@ void SLAPrint::process()
|
|||
double diff = std::abs(gnd - double(sp.pos(Z)));
|
||||
return diff <= tolerance;
|
||||
});
|
||||
|
||||
|
||||
// erase all elements after the new end
|
||||
pts.erase(endit, pts.end());
|
||||
}
|
||||
|
|
@ -904,7 +910,7 @@ void SLAPrint::process()
|
|||
auto support_tree = [this, ostepd](SLAPrintObject& po)
|
||||
{
|
||||
if(!po.m_supportdata) return;
|
||||
|
||||
|
||||
sla::PoolConfig pcfg = make_pool_config(po.m_config);
|
||||
|
||||
if (pcfg.embed_object)
|
||||
|
|
@ -912,11 +918,11 @@ void SLAPrint::process()
|
|||
pcfg.min_wall_thickness_mm);
|
||||
|
||||
if(!po.m_config.supports_enable.getBool()) {
|
||||
|
||||
|
||||
// Generate empty support tree. It can still host a pad
|
||||
po.m_supportdata->support_tree_ptr.reset(
|
||||
new SLASupportTree(po.m_supportdata->emesh.ground_level()));
|
||||
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
@ -940,7 +946,7 @@ void SLAPrint::process()
|
|||
|
||||
ctl.stopcondition = [this](){ return canceled(); };
|
||||
ctl.cancelfn = [this]() { throw_if_canceled(); };
|
||||
|
||||
|
||||
po.m_supportdata->support_tree_ptr.reset(
|
||||
new SLASupportTree(po.m_supportdata->support_points,
|
||||
po.m_supportdata->emesh, scfg, ctl));
|
||||
|
|
@ -948,20 +954,20 @@ void SLAPrint::process()
|
|||
throw_if_canceled();
|
||||
|
||||
// Create the unified mesh
|
||||
auto rc = SlicingStatus::RELOAD_SCENE;
|
||||
// auto rc = SlicingStatus::RELOAD_SCENE;
|
||||
|
||||
// This is to prevent "Done." being displayed during merged_mesh()
|
||||
m_report_status(*this, -1, L("Visualizing supports"));
|
||||
po.m_supportdata->support_tree_ptr->merged_mesh();
|
||||
// m_report_status(*this, -1, L("Visualizing supports"));
|
||||
// po.m_supportdata->support_tree_ptr->merged_mesh();
|
||||
|
||||
BOOST_LOG_TRIVIAL(debug) << "Processed support point count "
|
||||
<< po.m_supportdata->support_points.size();
|
||||
|
||||
// Check the mesh for later troubleshooting.
|
||||
if(po.support_mesh().empty())
|
||||
BOOST_LOG_TRIVIAL(warning) << "Support mesh is empty";
|
||||
// if(po.support_mesh().empty())
|
||||
// BOOST_LOG_TRIVIAL(warning) << "Support mesh is empty";
|
||||
|
||||
m_report_status(*this, -1, L("Visualizing supports"), rc);
|
||||
// m_report_status(*this, -1, L("Visualizing supports"), rc);
|
||||
};
|
||||
|
||||
// This step generates the sla base pad
|
||||
|
|
@ -970,6 +976,10 @@ void SLAPrint::process()
|
|||
// and before the supports had been sliced. (or the slicing has to be
|
||||
// repeated)
|
||||
|
||||
std::cout << "Should only merge mesh after this" << std::endl;
|
||||
po.m_supportdata->support_tree_ptr->merged_mesh();
|
||||
m_report_status(*this, -1, L("Visualizing supports"), SlicingStatus::RELOAD_SCENE);
|
||||
|
||||
if(po.m_config.pad_enable.getBool())
|
||||
{
|
||||
// Get the distilled pad configuration from the config
|
||||
|
|
@ -1040,7 +1050,7 @@ void SLAPrint::process()
|
|||
if(clpr_offs != 0)
|
||||
sd->support_slices[i] =
|
||||
offset_ex(sd->support_slices[i], float(clpr_offs));
|
||||
|
||||
|
||||
po.m_slice_index[i].set_support_slice_idx(po, i);
|
||||
}
|
||||
|
||||
|
|
@ -1268,7 +1278,7 @@ void SLAPrint::process()
|
|||
const SLAPrintObject *po = record.print_obj();
|
||||
|
||||
const ExPolygons &modelslices = record.get_slice(soModel);
|
||||
|
||||
|
||||
bool is_lefth = record.print_obj()->is_left_handed();
|
||||
if (!modelslices.empty()) {
|
||||
ClipperPolygons v = get_all_polygons(modelslices, po->instances(), is_lefth);
|
||||
|
|
@ -1276,7 +1286,7 @@ void SLAPrint::process()
|
|||
}
|
||||
|
||||
const ExPolygons &supportslices = record.get_slice(soSupport);
|
||||
|
||||
|
||||
if (!supportslices.empty()) {
|
||||
ClipperPolygons v = get_all_polygons(supportslices, po->instances(), is_lefth);
|
||||
for(ClipperPolygon& p_tmp : v) supports_polygons.emplace_back(std::move(p_tmp));
|
||||
|
|
@ -1369,8 +1379,8 @@ void SLAPrint::process()
|
|||
|
||||
{ // create a raster printer for the current print parameters
|
||||
double layerh = m_default_object_config.layer_height.getFloat();
|
||||
m_printer.reset(new SLAPrinter(m_printer_config,
|
||||
m_material_config,
|
||||
m_printer.reset(new SLAPrinter(m_printer_config,
|
||||
m_material_config,
|
||||
layerh));
|
||||
}
|
||||
|
||||
|
|
@ -1429,7 +1439,7 @@ void SLAPrint::process()
|
|||
if(canceled()) return;
|
||||
|
||||
// Sequential version (for testing)
|
||||
// for(unsigned l = 0; l < lvlcnt; ++l) process_level(l);
|
||||
// for(unsigned l = 0; l < lvlcnt; ++l) lvlfn(l);
|
||||
|
||||
// Print all the layers in parallel
|
||||
tbb::parallel_for<unsigned, decltype(lvlfn)>(0, lvlcnt, lvlfn);
|
||||
|
|
@ -1446,44 +1456,48 @@ void SLAPrint::process()
|
|||
using slaposFn = std::function<void(SLAPrintObject&)>;
|
||||
using slapsFn = std::function<void(void)>;
|
||||
|
||||
std::array<slaposFn, slaposCount> pobj_program =
|
||||
slaposFn pobj_program[] =
|
||||
{
|
||||
slice_model,
|
||||
support_points,
|
||||
support_tree,
|
||||
base_pool,
|
||||
slice_supports
|
||||
slice_model, support_points, support_tree, base_pool, slice_supports
|
||||
};
|
||||
|
||||
std::array<slapsFn, slapsCount> print_program =
|
||||
{
|
||||
merge_slices_and_eval_stats,
|
||||
rasterize
|
||||
// We want to first process all objects...
|
||||
std::vector<SLAPrintObjectStep> level1_obj_steps = {
|
||||
slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposBasePool
|
||||
};
|
||||
|
||||
// and then slice all supports to allow preview to be displayed ASAP
|
||||
std::vector<SLAPrintObjectStep> level2_obj_steps = {
|
||||
slaposSliceSupports
|
||||
};
|
||||
|
||||
slapsFn print_program[] = { merge_slices_and_eval_stats, rasterize };
|
||||
SLAPrintStep print_steps[] = { slapsMergeSlicesAndEval, slapsRasterize };
|
||||
|
||||
double st = min_objstatus;
|
||||
unsigned incr = 0;
|
||||
|
||||
BOOST_LOG_TRIVIAL(info) << "Start slicing process.";
|
||||
|
||||
// TODO: this loop could run in parallel but should not exhaust all the CPU
|
||||
// power available
|
||||
// Calculate the support structures first before slicing the supports,
|
||||
// so that the preview will get displayed ASAP for all objects.
|
||||
std::vector<SLAPrintObjectStep> step_ranges = {slaposObjectSlice,
|
||||
slaposSliceSupports,
|
||||
slaposCount};
|
||||
#ifdef SLAPRINT_DO_BENCHMARK
|
||||
Benchmark bench;
|
||||
#else
|
||||
struct {
|
||||
void start() {} void stop() {} double getElapsedSec() { return .0; }
|
||||
} bench;
|
||||
#endif
|
||||
|
||||
for (size_t idx_range = 0; idx_range + 1 < step_ranges.size(); ++idx_range) {
|
||||
std::array<double, slaposCount + slapsCount> step_times {};
|
||||
|
||||
auto apply_steps_on_objects =
|
||||
[this, &st, ostepd, &pobj_program, &step_times, &bench]
|
||||
(const std::vector<SLAPrintObjectStep> &steps)
|
||||
{
|
||||
unsigned incr = 0;
|
||||
for (SLAPrintObject *po : m_objects) {
|
||||
|
||||
BOOST_LOG_TRIVIAL(info)
|
||||
<< "Slicing object " << po->model_object()->name;
|
||||
for (SLAPrintObjectStep currentstep : steps) {
|
||||
|
||||
for (int s = int(step_ranges[idx_range]);
|
||||
s < int(step_ranges[idx_range + 1]);
|
||||
++s) {
|
||||
auto currentstep = static_cast<SLAPrintObjectStep>(s);
|
||||
Benchmark bench;
|
||||
|
||||
// Cancellation checking. Each step will check for
|
||||
// cancellation on its own and return earlier gracefully.
|
||||
|
|
@ -1493,12 +1507,12 @@ void SLAPrint::process()
|
|||
|
||||
st += incr * ostepd;
|
||||
|
||||
if (po->m_stepmask[currentstep]
|
||||
&& po->set_started(currentstep)) {
|
||||
m_report_status(*this,
|
||||
st,
|
||||
OBJ_STEP_LABELS(currentstep));
|
||||
if (po->m_stepmask[currentstep] && po->set_started(currentstep)) {
|
||||
m_report_status(*this, st, OBJ_STEP_LABELS(currentstep));
|
||||
bench.start();
|
||||
pobj_program[currentstep](*po);
|
||||
bench.stop();
|
||||
step_times[currentstep] += bench.getElapsedSec();
|
||||
throw_if_canceled();
|
||||
po->set_done(currentstep);
|
||||
}
|
||||
|
|
@ -1506,26 +1520,27 @@ void SLAPrint::process()
|
|||
incr = OBJ_STEP_LEVELS[currentstep];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::array<SLAPrintStep, slapsCount> printsteps = {
|
||||
slapsMergeSlicesAndEval, slapsRasterize
|
||||
};
|
||||
|
||||
apply_steps_on_objects(level1_obj_steps);
|
||||
apply_steps_on_objects(level2_obj_steps);
|
||||
|
||||
SLAPrintStep printsteps[] = { slapsMergeSlicesAndEval, slapsRasterize };
|
||||
|
||||
// this would disable the rasterization step
|
||||
// m_stepmask[slapsRasterize] = false;
|
||||
// std::fill(m_stepmask.begin(), m_stepmask.end(), false);
|
||||
|
||||
double pstd = (100 - max_objstatus) / 100.0;
|
||||
st = max_objstatus;
|
||||
for(size_t s = 0; s < print_program.size(); ++s) {
|
||||
auto currentstep = printsteps[s];
|
||||
|
||||
for(SLAPrintStep currentstep : printsteps) {
|
||||
throw_if_canceled();
|
||||
|
||||
if(m_stepmask[currentstep] && set_started(currentstep))
|
||||
{
|
||||
if (m_stepmask[currentstep] && set_started(currentstep)) {
|
||||
m_report_status(*this, st, PRINT_STEP_LABELS(currentstep));
|
||||
bench.start();
|
||||
print_program[currentstep]();
|
||||
bench.stop();
|
||||
step_times[slaposCount + currentstep] += bench.getElapsedSec();
|
||||
throw_if_canceled();
|
||||
set_done(currentstep);
|
||||
}
|
||||
|
|
@ -1535,6 +1550,21 @@ void SLAPrint::process()
|
|||
|
||||
// If everything vent well
|
||||
m_report_status(*this, 100, L("Slicing done"));
|
||||
|
||||
#ifdef SLAPRINT_DO_BENCHMARK
|
||||
std::string csvbenchstr;
|
||||
for (size_t i = 0; i < size_t(slaposCount); ++i)
|
||||
csvbenchstr += OBJ_STEP_LABELS(i) + ";";
|
||||
|
||||
for (size_t i = 0; i < size_t(slapsCount); ++i)
|
||||
csvbenchstr += PRINT_STEP_LABELS(i) + ";";
|
||||
|
||||
csvbenchstr += "\n";
|
||||
for (double t : step_times) csvbenchstr += std::to_string(t) + ";";
|
||||
|
||||
std::cout << "Performance stats: \n" << csvbenchstr << std::endl;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys, bool &invalidate_all_model_objects)
|
||||
|
|
@ -1756,7 +1786,7 @@ Vec3d SLAPrint::relative_correction() const
|
|||
corr(X) = printer_config().relative_correction.values[0];
|
||||
corr(Y) = printer_config().relative_correction.values[0];
|
||||
corr(Z) = printer_config().relative_correction.values.back();
|
||||
}
|
||||
}
|
||||
|
||||
if(material_config().material_correction.values.size() >= 2) {
|
||||
corr(X) *= material_config().material_correction.values[0];
|
||||
|
|
@ -1925,7 +1955,7 @@ void SLAPrint::StatusReporter::operator()(SLAPrint & p,
|
|||
BOOST_LOG_TRIVIAL(info)
|
||||
<< st << "% " << msg << (logmsg.empty() ? "" : ": ") << logmsg
|
||||
<< log_memory_info();
|
||||
|
||||
|
||||
p.set_status(int(std::round(st)), msg, flags);
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue