mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-25 15:44:12 -06:00
Merge branch 'tm_rotfinder'
This commit is contained in:
commit
7766c6ebc4
15 changed files with 929 additions and 293 deletions
|
@ -215,7 +215,9 @@ add_library(libslic3r STATIC
|
|||
SimplifyMeshImpl.hpp
|
||||
SimplifyMesh.cpp
|
||||
MarchingSquares.hpp
|
||||
Optimizer.hpp
|
||||
Optimize/Optimizer.hpp
|
||||
Optimize/NLoptOptimizer.hpp
|
||||
Optimize/BruteforceOptimizer.hpp
|
||||
${OpenVDBUtils_SOURCES}
|
||||
SLA/Pad.hpp
|
||||
SLA/Pad.cpp
|
||||
|
|
140
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
140
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
|
@ -0,0 +1,140 @@
|
|||
#ifndef BRUTEFORCEOPTIMIZER_HPP
|
||||
#define BRUTEFORCEOPTIMIZER_HPP
|
||||
|
||||
#include <libslic3r/Optimize/Optimizer.hpp>
|
||||
|
||||
namespace Slic3r { namespace opt {
|
||||
|
||||
namespace detail {
|
||||
// Implementing a bruteforce optimizer
|
||||
|
||||
// Return the number of iterations needed to reach a specific grid position (idx)
|
||||
template<size_t N>
|
||||
long num_iter(const std::array<size_t, N> &idx, size_t gridsz)
|
||||
{
|
||||
long ret = 0;
|
||||
for (size_t i = 0; i < N; ++i) ret += idx[i] * std::pow(gridsz, i);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Implementation of a grid search where the search interval is sampled in
|
||||
// equidistant points for each dimension. Grid size determines the number of
|
||||
// samples for one dimension so the number of function calls is gridsize ^ dimension.
|
||||
struct AlgBurteForce {
|
||||
bool to_min;
|
||||
StopCriteria stc;
|
||||
size_t gridsz;
|
||||
|
||||
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
|
||||
|
||||
// This function is called recursively for each dimension and generates
|
||||
// the grid values for the particular dimension. If D is less than zero,
|
||||
// the object function input values are generated for each dimension and it
|
||||
// can be evaluated. The current best score is compared with the newly
|
||||
// returned score and changed appropriately.
|
||||
template<int D, size_t N, class Fn, class Cmp>
|
||||
bool run(std::array<size_t, N> &idx,
|
||||
Result<N> &result,
|
||||
const Bounds<N> &bounds,
|
||||
Fn &&fn,
|
||||
Cmp &&cmp)
|
||||
{
|
||||
if (stc.stop_condition()) return false;
|
||||
|
||||
if constexpr (D < 0) { // Let's evaluate fn
|
||||
Input<N> inp;
|
||||
|
||||
auto max_iter = stc.max_iterations();
|
||||
if (max_iter && num_iter(idx, gridsz) >= max_iter)
|
||||
return false;
|
||||
|
||||
for (size_t d = 0; d < N; ++d) {
|
||||
const Bound &b = bounds[d];
|
||||
double step = (b.max() - b.min()) / (gridsz - 1);
|
||||
inp[d] = b.min() + idx[d] * step;
|
||||
}
|
||||
|
||||
auto score = fn(inp);
|
||||
if (cmp(score, result.score)) { // Change current score to the new
|
||||
double absdiff = std::abs(score - result.score);
|
||||
|
||||
result.score = score;
|
||||
result.optimum = inp;
|
||||
|
||||
// Check if the required precision is reached.
|
||||
if (absdiff < stc.abs_score_diff() ||
|
||||
absdiff < stc.rel_score_diff() * std::abs(score))
|
||||
return false;
|
||||
}
|
||||
|
||||
} else {
|
||||
for (size_t i = 0; i < gridsz; ++i) {
|
||||
idx[D] = i; // Mark the current grid position and dig down
|
||||
if (!run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::forward<Cmp>(cmp)))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class Fn, size_t N>
|
||||
Result<N> optimize(Fn&& fn,
|
||||
const Input<N> &/*initvals*/,
|
||||
const Bounds<N>& bounds)
|
||||
{
|
||||
std::array<size_t, N> idx = {};
|
||||
Result<N> result;
|
||||
|
||||
if (to_min) {
|
||||
result.score = std::numeric_limits<double>::max();
|
||||
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::less<double>{});
|
||||
}
|
||||
else {
|
||||
result.score = std::numeric_limits<double>::lowest();
|
||||
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::greater<double>{});
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
using AlgBruteForce = detail::AlgBurteForce;
|
||||
|
||||
template<>
|
||||
class Optimizer<AlgBruteForce> {
|
||||
AlgBruteForce m_alg;
|
||||
|
||||
public:
|
||||
|
||||
Optimizer(const StopCriteria &cr = {}, size_t gridsz = 100)
|
||||
: m_alg{cr, gridsz}
|
||||
{}
|
||||
|
||||
Optimizer& to_max() { m_alg.to_min = false; return *this; }
|
||||
Optimizer& to_min() { m_alg.to_min = true; return *this; }
|
||||
|
||||
template<class Func, size_t N>
|
||||
Result<N> optimize(Func&& func,
|
||||
const Input<N> &initvals,
|
||||
const Bounds<N>& bounds)
|
||||
{
|
||||
return m_alg.optimize(std::forward<Func>(func), initvals, bounds);
|
||||
}
|
||||
|
||||
Optimizer &set_criteria(const StopCriteria &cr)
|
||||
{
|
||||
m_alg.stc = cr; return *this;
|
||||
}
|
||||
|
||||
const StopCriteria &get_criteria() const { return m_alg.stc; }
|
||||
};
|
||||
|
||||
}} // namespace Slic3r::opt
|
||||
|
||||
#endif // BRUTEFORCEOPTIMIZER_HPP
|
|
@ -12,134 +12,11 @@
|
|||
#endif
|
||||
|
||||
#include <utility>
|
||||
#include <tuple>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
#include <libslic3r/Optimize/Optimizer.hpp>
|
||||
|
||||
namespace Slic3r { namespace opt {
|
||||
|
||||
// A type to hold the complete result of the optimization.
|
||||
template<size_t N> struct Result {
|
||||
int resultcode;
|
||||
std::array<double, N> optimum;
|
||||
double score;
|
||||
};
|
||||
|
||||
// An interval of possible input values for optimization
|
||||
class Bound {
|
||||
double m_min, m_max;
|
||||
|
||||
public:
|
||||
Bound(double min = std::numeric_limits<double>::min(),
|
||||
double max = std::numeric_limits<double>::max())
|
||||
: m_min(min), m_max(max)
|
||||
{}
|
||||
|
||||
double min() const noexcept { return m_min; }
|
||||
double max() const noexcept { return m_max; }
|
||||
};
|
||||
|
||||
// Helper types for optimization function input and bounds
|
||||
template<size_t N> using Input = std::array<double, N>;
|
||||
template<size_t N> using Bounds = std::array<Bound, N>;
|
||||
|
||||
// A type for specifying the stop criteria. Setter methods can be concatenated
|
||||
class StopCriteria {
|
||||
|
||||
// If the absolute value difference between two scores.
|
||||
double m_abs_score_diff = std::nan("");
|
||||
|
||||
// If the relative value difference between two scores.
|
||||
double m_rel_score_diff = std::nan("");
|
||||
|
||||
// Stop if this value or better is found.
|
||||
double m_stop_score = std::nan("");
|
||||
|
||||
// A predicate that if evaluates to true, the optimization should terminate
|
||||
// and the best result found prior to termination should be returned.
|
||||
std::function<bool()> m_stop_condition = [] { return false; };
|
||||
|
||||
// The max allowed number of iterations.
|
||||
unsigned m_max_iterations = 0;
|
||||
|
||||
public:
|
||||
|
||||
StopCriteria & abs_score_diff(double val)
|
||||
{
|
||||
m_abs_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double abs_score_diff() const { return m_abs_score_diff; }
|
||||
|
||||
StopCriteria & rel_score_diff(double val)
|
||||
{
|
||||
m_rel_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double rel_score_diff() const { return m_rel_score_diff; }
|
||||
|
||||
StopCriteria & stop_score(double val)
|
||||
{
|
||||
m_stop_score = val; return *this;
|
||||
}
|
||||
|
||||
double stop_score() const { return m_stop_score; }
|
||||
|
||||
StopCriteria & max_iterations(double val)
|
||||
{
|
||||
m_max_iterations = val; return *this;
|
||||
}
|
||||
|
||||
double max_iterations() const { return m_max_iterations; }
|
||||
|
||||
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
|
||||
{
|
||||
m_stop_condition = cond; return *this;
|
||||
}
|
||||
|
||||
bool stop_condition() { return m_stop_condition(); }
|
||||
};
|
||||
|
||||
// Helper class to use optimization methods involving gradient.
|
||||
template<size_t N> struct ScoreGradient {
|
||||
double score;
|
||||
std::optional<std::array<double, N>> gradient;
|
||||
|
||||
ScoreGradient(double s, const std::array<double, N> &grad)
|
||||
: score{s}, gradient{grad}
|
||||
{}
|
||||
};
|
||||
|
||||
// Helper to be used in static_assert.
|
||||
template<class T> struct always_false { enum { value = false }; };
|
||||
|
||||
// Basic interface to optimizer object
|
||||
template<class Method, class Enable = void> class Optimizer {
|
||||
public:
|
||||
|
||||
Optimizer(const StopCriteria &)
|
||||
{
|
||||
static_assert (always_false<Method>::value,
|
||||
"Optimizer unimplemented for given method!");
|
||||
}
|
||||
|
||||
Optimizer<Method> &to_min() { return *this; }
|
||||
Optimizer<Method> &to_max() { return *this; }
|
||||
Optimizer<Method> &set_criteria(const StopCriteria &) { return *this; }
|
||||
StopCriteria get_criteria() const { return {}; };
|
||||
|
||||
template<class Func, size_t N>
|
||||
Result<N> optimize(Func&& func,
|
||||
const Input<N> &initvals,
|
||||
const Bounds<N>& bounds) { return {}; }
|
||||
|
||||
// optional for randomized methods:
|
||||
void seed(long /*s*/) {}
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// Helper types for NLopt algorithm selection in template contexts
|
||||
|
@ -166,19 +43,6 @@ struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
|
|||
template<class M, class T = void>
|
||||
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
|
||||
|
||||
// Helper to convert C style array to std::array. The copy should be optimized
|
||||
// away with modern compilers.
|
||||
template<size_t N, class T> auto to_arr(const T *a)
|
||||
{
|
||||
std::array<T, N> r;
|
||||
std::copy(a, a + N, std::begin(r));
|
||||
return r;
|
||||
}
|
||||
|
||||
template<size_t N, class T> auto to_arr(const T (&a) [N])
|
||||
{
|
||||
return to_arr<N>(static_cast<const T *>(a));
|
||||
}
|
||||
|
||||
enum class OptDir { MIN, MAX }; // Where to optimize
|
||||
|
||||
|
@ -357,23 +221,12 @@ public:
|
|||
void seed(long s) { m_opt.seed(s); }
|
||||
};
|
||||
|
||||
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
|
||||
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
|
||||
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
|
||||
{
|
||||
return ScoreGradient<N>(s, detail::to_arr(grad));
|
||||
}
|
||||
|
||||
// Predefinded NLopt algorithms that are used in the codebase
|
||||
// Predefinded NLopt algorithms
|
||||
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
|
||||
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
|
||||
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
|
||||
|
||||
// TODO: define others if needed...
|
||||
|
||||
// Helper defs for pre-crafted global and local optimizers that work well.
|
||||
using DefaultGlobalOptimizer = Optimizer<AlgNLoptGenetic>;
|
||||
using DefaultLocalOptimizer = Optimizer<AlgNLoptSubplex>;
|
||||
using AlgNLoptDIRECT = detail::NLoptAlg<NLOPT_GN_DIRECT>;
|
||||
using AlgNLoptMLSL = detail::NLoptAlg<NLOPT_GN_MLSL>;
|
||||
|
||||
}} // namespace Slic3r::opt
|
||||
|
182
src/libslic3r/Optimize/Optimizer.hpp
Normal file
182
src/libslic3r/Optimize/Optimizer.hpp
Normal file
|
@ -0,0 +1,182 @@
|
|||
#ifndef OPTIMIZER_HPP
|
||||
#define OPTIMIZER_HPP
|
||||
|
||||
#include <utility>
|
||||
#include <tuple>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
namespace Slic3r { namespace opt {
|
||||
|
||||
// A type to hold the complete result of the optimization.
|
||||
template<size_t N> struct Result {
|
||||
int resultcode; // Method dependent
|
||||
std::array<double, N> optimum;
|
||||
double score;
|
||||
};
|
||||
|
||||
// An interval of possible input values for optimization
|
||||
class Bound {
|
||||
double m_min, m_max;
|
||||
|
||||
public:
|
||||
Bound(double min = std::numeric_limits<double>::min(),
|
||||
double max = std::numeric_limits<double>::max())
|
||||
: m_min(min), m_max(max)
|
||||
{}
|
||||
|
||||
double min() const noexcept { return m_min; }
|
||||
double max() const noexcept { return m_max; }
|
||||
};
|
||||
|
||||
// Helper types for optimization function input and bounds
|
||||
template<size_t N> using Input = std::array<double, N>;
|
||||
template<size_t N> using Bounds = std::array<Bound, N>;
|
||||
|
||||
// A type for specifying the stop criteria. Setter methods can be concatenated
|
||||
class StopCriteria {
|
||||
|
||||
// If the absolute value difference between two scores.
|
||||
double m_abs_score_diff = std::nan("");
|
||||
|
||||
// If the relative value difference between two scores.
|
||||
double m_rel_score_diff = std::nan("");
|
||||
|
||||
// Stop if this value or better is found.
|
||||
double m_stop_score = std::nan("");
|
||||
|
||||
// A predicate that if evaluates to true, the optimization should terminate
|
||||
// and the best result found prior to termination should be returned.
|
||||
std::function<bool()> m_stop_condition = [] { return false; };
|
||||
|
||||
// The max allowed number of iterations.
|
||||
unsigned m_max_iterations = 0;
|
||||
|
||||
public:
|
||||
|
||||
StopCriteria & abs_score_diff(double val)
|
||||
{
|
||||
m_abs_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double abs_score_diff() const { return m_abs_score_diff; }
|
||||
|
||||
StopCriteria & rel_score_diff(double val)
|
||||
{
|
||||
m_rel_score_diff = val; return *this;
|
||||
}
|
||||
|
||||
double rel_score_diff() const { return m_rel_score_diff; }
|
||||
|
||||
StopCriteria & stop_score(double val)
|
||||
{
|
||||
m_stop_score = val; return *this;
|
||||
}
|
||||
|
||||
double stop_score() const { return m_stop_score; }
|
||||
|
||||
StopCriteria & max_iterations(double val)
|
||||
{
|
||||
m_max_iterations = val; return *this;
|
||||
}
|
||||
|
||||
double max_iterations() const { return m_max_iterations; }
|
||||
|
||||
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
|
||||
{
|
||||
m_stop_condition = cond; return *this;
|
||||
}
|
||||
|
||||
bool stop_condition() { return m_stop_condition(); }
|
||||
};
|
||||
|
||||
// Helper class to use optimization methods involving gradient.
|
||||
template<size_t N> struct ScoreGradient {
|
||||
double score;
|
||||
std::optional<std::array<double, N>> gradient;
|
||||
|
||||
ScoreGradient(double s, const std::array<double, N> &grad)
|
||||
: score{s}, gradient{grad}
|
||||
{}
|
||||
};
|
||||
|
||||
// Helper to be used in static_assert.
|
||||
template<class T> struct always_false { enum { value = false }; };
|
||||
|
||||
// Basic interface to optimizer object
|
||||
template<class Method, class Enable = void> class Optimizer {
|
||||
public:
|
||||
|
||||
Optimizer(const StopCriteria &)
|
||||
{
|
||||
static_assert (always_false<Method>::value,
|
||||
"Optimizer unimplemented for given method!");
|
||||
}
|
||||
|
||||
// Switch optimization towards function minimum
|
||||
Optimizer &to_min() { return *this; }
|
||||
|
||||
// Switch optimization towards function maximum
|
||||
Optimizer &to_max() { return *this; }
|
||||
|
||||
// Set criteria for successive optimizations
|
||||
Optimizer &set_criteria(const StopCriteria &) { return *this; }
|
||||
|
||||
// Get current criteria
|
||||
StopCriteria get_criteria() const { return {}; };
|
||||
|
||||
// Find function minimum or maximum for Func which has has signature:
|
||||
// double(const Input<N> &input) and input with dimension N
|
||||
//
|
||||
// Initial starting point can be given as the second parameter.
|
||||
//
|
||||
// For each dimension an interval (Bound) has to be given marking the bounds
|
||||
// for that dimension.
|
||||
//
|
||||
// initvals have to be within the specified bounds, otherwise its undefined
|
||||
// behavior.
|
||||
//
|
||||
// Func can return a score of type double or optionally a ScoreGradient
|
||||
// class to indicate the function gradient for a optimization methods that
|
||||
// make use of the gradient.
|
||||
template<class Func, size_t N>
|
||||
Result<N> optimize(Func&& /*func*/,
|
||||
const Input<N> &/*initvals*/,
|
||||
const Bounds<N>& /*bounds*/) { return {}; }
|
||||
|
||||
// optional for randomized methods:
|
||||
void seed(long /*s*/) {}
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
// Helper to convert C style array to std::array. The copy should be optimized
|
||||
// away with modern compilers.
|
||||
template<size_t N, class T> auto to_arr(const T *a)
|
||||
{
|
||||
std::array<T, N> r;
|
||||
std::copy(a, a + N, std::begin(r));
|
||||
return r;
|
||||
}
|
||||
|
||||
template<size_t N, class T> auto to_arr(const T (&a) [N])
|
||||
{
|
||||
return to_arr<N>(static_cast<const T *>(a));
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// Helper functions to create bounds, initial value
|
||||
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
|
||||
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
|
||||
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
|
||||
{
|
||||
return ScoreGradient<N>(s, detail::to_arr(grad));
|
||||
}
|
||||
|
||||
}} // namespace Slic3r::opt
|
||||
|
||||
#endif // OPTIMIZER_HPP
|
|
@ -4,7 +4,11 @@
|
|||
#include <tbb/spin_mutex.h>
|
||||
#include <tbb/mutex.h>
|
||||
#include <tbb/parallel_for.h>
|
||||
#include <tbb/parallel_reduce.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
|
||||
#include <libslic3r/libslic3r.h>
|
||||
|
||||
namespace Slic3r {
|
||||
|
@ -21,28 +25,56 @@ template<> struct _ccr<true>
|
|||
using SpinningMutex = tbb::spin_mutex;
|
||||
using BlockingMutex = tbb::mutex;
|
||||
|
||||
template<class Fn, class It>
|
||||
static IteratorOnly<It, void> loop_(const tbb::blocked_range<It> &range, Fn &&fn)
|
||||
{
|
||||
for (auto &el : range) fn(el);
|
||||
}
|
||||
|
||||
template<class Fn, class I>
|
||||
static IntegerOnly<I, void> loop_(const tbb::blocked_range<I> &range, Fn &&fn)
|
||||
{
|
||||
for (I i = range.begin(); i < range.end(); ++i) fn(i);
|
||||
}
|
||||
|
||||
template<class It, class Fn>
|
||||
static IteratorOnly<It, void> for_each(It from,
|
||||
It to,
|
||||
Fn && fn,
|
||||
size_t granularity = 1)
|
||||
static void for_each(It from, It to, Fn &&fn, size_t granularity = 1)
|
||||
{
|
||||
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
|
||||
[&fn, from](const auto &range) {
|
||||
for (auto &el : range) fn(el);
|
||||
loop_(range, std::forward<Fn>(fn));
|
||||
});
|
||||
}
|
||||
|
||||
template<class I, class Fn>
|
||||
static IntegerOnly<I, void> for_each(I from,
|
||||
I to,
|
||||
Fn && fn,
|
||||
size_t granularity = 1)
|
||||
template<class I, class MergeFn, class T, class AccessFn>
|
||||
static T reduce(I from,
|
||||
I to,
|
||||
const T &init,
|
||||
MergeFn &&mergefn,
|
||||
AccessFn &&access,
|
||||
size_t granularity = 1
|
||||
)
|
||||
{
|
||||
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
|
||||
[&fn](const auto &range) {
|
||||
for (I i = range.begin(); i < range.end(); ++i) fn(i);
|
||||
});
|
||||
return tbb::parallel_reduce(
|
||||
tbb::blocked_range{from, to, granularity}, init,
|
||||
[&](const auto &range, T subinit) {
|
||||
T acc = subinit;
|
||||
loop_(range, [&](auto &i) { acc = mergefn(acc, access(i)); });
|
||||
return acc;
|
||||
},
|
||||
std::forward<MergeFn>(mergefn));
|
||||
}
|
||||
|
||||
template<class I, class MergeFn, class T>
|
||||
static IteratorOnly<I, T> reduce(I from,
|
||||
I to,
|
||||
const T & init,
|
||||
MergeFn &&mergefn,
|
||||
size_t granularity = 1)
|
||||
{
|
||||
return reduce(
|
||||
from, to, init, std::forward<MergeFn>(mergefn),
|
||||
[](typename I::value_type &i) { return i; }, granularity);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -55,23 +87,52 @@ public:
|
|||
using SpinningMutex = _Mtx;
|
||||
using BlockingMutex = _Mtx;
|
||||
|
||||
template<class It, class Fn>
|
||||
static IteratorOnly<It, void> for_each(It from,
|
||||
It to,
|
||||
Fn &&fn,
|
||||
size_t /* ignore granularity */ = 1)
|
||||
template<class Fn, class It>
|
||||
static IteratorOnly<It, void> loop_(It from, It to, Fn &&fn)
|
||||
{
|
||||
for (auto it = from; it != to; ++it) fn(*it);
|
||||
}
|
||||
|
||||
template<class I, class Fn>
|
||||
static IntegerOnly<I, void> for_each(I from,
|
||||
I to,
|
||||
Fn &&fn,
|
||||
size_t /* ignore granularity */ = 1)
|
||||
template<class Fn, class I>
|
||||
static IntegerOnly<I, void> loop_(I from, I to, Fn &&fn)
|
||||
{
|
||||
for (I i = from; i < to; ++i) fn(i);
|
||||
}
|
||||
|
||||
template<class It, class Fn>
|
||||
static void for_each(It from,
|
||||
It to,
|
||||
Fn &&fn,
|
||||
size_t /* ignore granularity */ = 1)
|
||||
{
|
||||
loop_(from, to, std::forward<Fn>(fn));
|
||||
}
|
||||
|
||||
template<class I, class MergeFn, class T, class AccessFn>
|
||||
static T reduce(I from,
|
||||
I to,
|
||||
const T & init,
|
||||
MergeFn &&mergefn,
|
||||
AccessFn &&access,
|
||||
size_t /*granularity*/ = 1
|
||||
)
|
||||
{
|
||||
T acc = init;
|
||||
loop_(from, to, [&](auto &i) { acc = mergefn(acc, access(i)); });
|
||||
return acc;
|
||||
}
|
||||
|
||||
template<class I, class MergeFn, class T>
|
||||
static IteratorOnly<I, T> reduce(I from,
|
||||
I to,
|
||||
const T &init,
|
||||
MergeFn &&mergefn,
|
||||
size_t /*granularity*/ = 1
|
||||
)
|
||||
{
|
||||
return reduce(from, to, init, std::forward<MergeFn>(mergefn),
|
||||
[](typename I::value_type &i) { return i; });
|
||||
}
|
||||
};
|
||||
|
||||
using ccr = _ccr<USE_FULL_CONCURRENCY>;
|
||||
|
|
|
@ -1,35 +1,259 @@
|
|||
#include <limits>
|
||||
#include <exception>
|
||||
|
||||
#include <libnest2d/optimizers/nlopt/genetic.hpp>
|
||||
#include <libslic3r/SLA/Rotfinder.hpp>
|
||||
#include <libslic3r/SLA/SupportTree.hpp>
|
||||
#include <libslic3r/SLA/Concurrency.hpp>
|
||||
|
||||
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
|
||||
|
||||
#include "libslic3r/SLAPrint.hpp"
|
||||
#include "libslic3r/PrintConfig.hpp"
|
||||
|
||||
#include <libslic3r/Geometry.hpp>
|
||||
#include "Model.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
namespace sla {
|
||||
#include <thread>
|
||||
|
||||
std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
||||
float accuracy,
|
||||
std::function<void(unsigned)> statuscb,
|
||||
std::function<bool()> stopcond)
|
||||
namespace Slic3r { namespace sla {
|
||||
|
||||
inline bool is_on_floor(const SLAPrintObject &mo)
|
||||
{
|
||||
using libnest2d::opt::Method;
|
||||
using libnest2d::opt::bound;
|
||||
using libnest2d::opt::Optimizer;
|
||||
using libnest2d::opt::TOptimizer;
|
||||
using libnest2d::opt::StopCriteria;
|
||||
auto opt_elevation = mo.config().support_object_elevation.getFloat();
|
||||
auto opt_padaround = mo.config().pad_around_object.getBool();
|
||||
|
||||
static const unsigned MAX_TRIES = 100000;
|
||||
return opt_elevation < EPSILON || opt_padaround;
|
||||
}
|
||||
|
||||
// Find transformed mesh ground level without copy and with parallel reduce.
|
||||
double find_ground_level(const TriangleMesh &mesh,
|
||||
const Transform3d & tr,
|
||||
size_t threads)
|
||||
{
|
||||
size_t vsize = mesh.its.vertices.size();
|
||||
|
||||
auto minfn = [](double a, double b) { return std::min(a, b); };
|
||||
|
||||
auto accessfn = [&mesh, &tr] (size_t vi) {
|
||||
return (tr * mesh.its.vertices[vi].template cast<double>()).z();
|
||||
};
|
||||
|
||||
double zmin = std::numeric_limits<double>::max();
|
||||
size_t granularity = vsize / threads;
|
||||
return ccr_par::reduce(size_t(0), vsize, zmin, minfn, accessfn, granularity);
|
||||
}
|
||||
|
||||
// Get the vertices of a triangle directly in an array of 3 points
|
||||
std::array<Vec3d, 3> get_triangle_vertices(const TriangleMesh &mesh,
|
||||
size_t faceidx)
|
||||
{
|
||||
const auto &face = mesh.its.indices[faceidx];
|
||||
return {Vec3d{mesh.its.vertices[face(0)].cast<double>()},
|
||||
Vec3d{mesh.its.vertices[face(1)].cast<double>()},
|
||||
Vec3d{mesh.its.vertices[face(2)].cast<double>()}};
|
||||
}
|
||||
|
||||
std::array<Vec3d, 3> get_transformed_triangle(const TriangleMesh &mesh,
|
||||
const Transform3d & tr,
|
||||
size_t faceidx)
|
||||
{
|
||||
const auto &tri = get_triangle_vertices(mesh, faceidx);
|
||||
return {tr * tri[0], tr * tri[1], tr * tri[2]};
|
||||
}
|
||||
|
||||
// Get area and normal of a triangle
|
||||
struct Facestats {
|
||||
Vec3d normal;
|
||||
double area;
|
||||
|
||||
explicit Facestats(const std::array<Vec3d, 3> &triangle)
|
||||
{
|
||||
Vec3d U = triangle[1] - triangle[0];
|
||||
Vec3d V = triangle[2] - triangle[0];
|
||||
Vec3d C = U.cross(V);
|
||||
normal = C.normalized();
|
||||
area = 0.5 * C.norm();
|
||||
}
|
||||
};
|
||||
|
||||
inline const Vec3d DOWN = {0., 0., -1.};
|
||||
constexpr double POINTS_PER_UNIT_AREA = 1.;
|
||||
|
||||
// The score function for a particular face
|
||||
inline double get_score(const Facestats &fc)
|
||||
{
|
||||
// Simply get the angle (acos of dot product) between the face normal and
|
||||
// the DOWN vector.
|
||||
double phi = 1. - std::acos(fc.normal.dot(DOWN)) / PI;
|
||||
|
||||
// Only consider faces that have have slopes below 90 deg:
|
||||
phi = phi * (phi > 0.5);
|
||||
|
||||
// Make the huge slopes more significant than the smaller slopes
|
||||
phi = phi * phi * phi;
|
||||
|
||||
// Multiply with the area of the current face
|
||||
return fc.area * POINTS_PER_UNIT_AREA * phi;
|
||||
}
|
||||
|
||||
template<class AccessFn>
|
||||
double sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
|
||||
{
|
||||
double initv = 0.;
|
||||
auto mergefn = std::plus<double>{};
|
||||
size_t grainsize = facecount / Nthreads;
|
||||
size_t from = 0, to = facecount;
|
||||
|
||||
return ccr_par::reduce(from, to, initv, mergefn, accessfn, grainsize);
|
||||
}
|
||||
|
||||
// Try to guess the number of support points needed to support a mesh
|
||||
double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr)
|
||||
{
|
||||
if (mesh.its.vertices.empty()) return std::nan("");
|
||||
|
||||
auto accessfn = [&mesh, &tr](size_t fi) {
|
||||
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
|
||||
return get_score(fc);
|
||||
};
|
||||
|
||||
size_t facecount = mesh.its.indices.size();
|
||||
size_t Nthreads = std::thread::hardware_concurrency();
|
||||
return sum_score(accessfn, facecount, Nthreads) / facecount;
|
||||
}
|
||||
|
||||
double get_model_supportedness_onfloor(const TriangleMesh &mesh,
|
||||
const Transform3d & tr)
|
||||
{
|
||||
if (mesh.its.vertices.empty()) return std::nan("");
|
||||
|
||||
size_t Nthreads = std::thread::hardware_concurrency();
|
||||
|
||||
double zmin = find_ground_level(mesh, tr, Nthreads);
|
||||
double zlvl = zmin + 0.1; // Set up a slight tolerance from z level
|
||||
|
||||
auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
|
||||
std::array<Vec3d, 3> tri = get_transformed_triangle(mesh, tr, fi);
|
||||
Facestats fc{tri};
|
||||
|
||||
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
|
||||
return -fc.area * POINTS_PER_UNIT_AREA;
|
||||
|
||||
return get_score(fc);
|
||||
};
|
||||
|
||||
size_t facecount = mesh.its.indices.size();
|
||||
return sum_score(accessfn, facecount, Nthreads) / facecount;
|
||||
}
|
||||
|
||||
using XYRotation = std::array<double, 2>;
|
||||
|
||||
// prepare the rotation transformation
|
||||
Transform3d to_transform3d(const XYRotation &rot)
|
||||
{
|
||||
Transform3d rt = Transform3d::Identity();
|
||||
rt.rotate(Eigen::AngleAxisd(rot[1], Vec3d::UnitY()));
|
||||
rt.rotate(Eigen::AngleAxisd(rot[0], Vec3d::UnitX()));
|
||||
return rt;
|
||||
}
|
||||
|
||||
XYRotation from_transform3d(const Transform3d &tr)
|
||||
{
|
||||
Vec3d rot3d = Geometry::Transformation {tr}.get_rotation();
|
||||
return {rot3d.x(), rot3d.y()};
|
||||
}
|
||||
|
||||
// Find the best score from a set of function inputs. Evaluate for every point.
|
||||
template<size_t N, class Fn, class It, class StopCond>
|
||||
std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
|
||||
{
|
||||
std::array<double, N> ret;
|
||||
|
||||
double score = std::numeric_limits<double>::max();
|
||||
|
||||
size_t Nthreads = std::thread::hardware_concurrency();
|
||||
size_t dist = std::distance(from, to);
|
||||
std::vector<double> scores(dist, score);
|
||||
|
||||
ccr_par::for_each(size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
|
||||
if (stopfn()) return;
|
||||
|
||||
scores[i] = fn(*(from + i));
|
||||
}, dist / Nthreads);
|
||||
|
||||
auto it = std::min_element(scores.begin(), scores.end());
|
||||
|
||||
if (it != scores.end()) ret = *(from + std::distance(scores.begin(), it));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// collect the rotations for each face of the convex hull
|
||||
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
|
||||
{
|
||||
TriangleMesh chull = mesh.convex_hull_3d();
|
||||
chull.require_shared_vertices();
|
||||
double chull2d_area = chull.convex_hull().area();
|
||||
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
|
||||
|
||||
size_t facecount = chull.its.indices.size();
|
||||
|
||||
struct RotArea { XYRotation rot; double area; };
|
||||
|
||||
auto inputs = reserve_vector<RotArea>(facecount);
|
||||
|
||||
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
|
||||
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
|
||||
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
|
||||
};
|
||||
|
||||
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
|
||||
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
|
||||
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
|
||||
};
|
||||
|
||||
for (size_t fi = 0; fi < facecount; ++fi) {
|
||||
Facestats fc{get_triangle_vertices(chull, fi)};
|
||||
|
||||
if (fc.area > area_threshold) {
|
||||
auto q = Eigen::Quaterniond{}.FromTwoVectors(fc.normal, DOWN);
|
||||
XYRotation rot = from_transform3d(Transform3d::Identity() * q);
|
||||
RotArea ra = {rot, fc.area};
|
||||
|
||||
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
|
||||
|
||||
if (it == inputs.end() || !eqcmp(it->rot, rot))
|
||||
inputs.insert(it, ra);
|
||||
}
|
||||
}
|
||||
|
||||
inputs.shrink_to_fit();
|
||||
if (!max_count) max_count = inputs.size();
|
||||
std::sort(inputs.begin(), inputs.end(),
|
||||
[](const RotArea &ra, const RotArea &rb) {
|
||||
return ra.area > rb.area;
|
||||
});
|
||||
|
||||
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
|
||||
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
Vec2d find_best_rotation(const SLAPrintObject & po,
|
||||
float accuracy,
|
||||
std::function<void(unsigned)> statuscb,
|
||||
std::function<bool()> stopcond)
|
||||
{
|
||||
static const unsigned MAX_TRIES = 1000;
|
||||
|
||||
// return value
|
||||
std::array<double, 3> rot;
|
||||
XYRotation rot;
|
||||
|
||||
// We will use only one instance of this converted mesh to examine different
|
||||
// rotations
|
||||
const TriangleMesh& mesh = modelobj.raw_mesh();
|
||||
TriangleMesh mesh = po.model_object()->raw_mesh();
|
||||
mesh.require_shared_vertices();
|
||||
|
||||
// For current iteration number
|
||||
// To keep track of the number of iterations
|
||||
unsigned status = 0;
|
||||
|
||||
// The maximum number of iterations
|
||||
|
@ -38,77 +262,61 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
|||
// call status callback with zero, because we are at the start
|
||||
statuscb(status);
|
||||
|
||||
// So this is the object function which is called by the solver many times
|
||||
// It has to yield a single value representing the current score. We will
|
||||
// call the status callback in each iteration but the actual value may be
|
||||
// the same for subsequent iterations (status goes from 0 to 100 but
|
||||
// iterations can be many more)
|
||||
auto objfunc = [&mesh, &status, &statuscb, &stopcond, max_tries]
|
||||
(double rx, double ry, double rz)
|
||||
{
|
||||
const TriangleMesh& m = mesh;
|
||||
|
||||
// prepare the rotation transformation
|
||||
Transform3d rt = Transform3d::Identity();
|
||||
|
||||
rt.rotate(Eigen::AngleAxisd(rz, Vec3d::UnitZ()));
|
||||
rt.rotate(Eigen::AngleAxisd(ry, Vec3d::UnitY()));
|
||||
rt.rotate(Eigen::AngleAxisd(rx, Vec3d::UnitX()));
|
||||
|
||||
double score = 0;
|
||||
|
||||
// For all triangles we calculate the normal and sum up the dot product
|
||||
// (a scalar indicating how much are two vectors aligned) with each axis
|
||||
// this will result in a value that is greater if a normal is aligned
|
||||
// with all axes. If the normal is aligned than the triangle itself is
|
||||
// orthogonal to the axes and that is good for print quality.
|
||||
|
||||
// TODO: some applications optimize for minimum z-axis cross section
|
||||
// area. The current function is only an example of how to optimize.
|
||||
|
||||
// Later we can add more criteria like the number of overhangs, etc...
|
||||
for(size_t i = 0; i < m.stl.facet_start.size(); i++) {
|
||||
Vec3d n = m.stl.facet_start[i].normal.cast<double>();
|
||||
|
||||
// rotate the normal with the current rotation given by the solver
|
||||
n = rt * n;
|
||||
|
||||
// We should score against the alignment with the reference planes
|
||||
score += std::abs(n.dot(Vec3d::UnitX()));
|
||||
score += std::abs(n.dot(Vec3d::UnitY()));
|
||||
score += std::abs(n.dot(Vec3d::UnitZ()));
|
||||
}
|
||||
|
||||
auto statusfn = [&statuscb, &status, &max_tries] {
|
||||
// report status
|
||||
if(!stopcond()) statuscb( unsigned(++status * 100.0/max_tries) );
|
||||
|
||||
return score;
|
||||
statuscb(unsigned(++status * 100.0/max_tries) );
|
||||
};
|
||||
|
||||
// Firing up the genetic optimizer. For now it uses the nlopt library.
|
||||
StopCriteria stc;
|
||||
stc.max_iterations = max_tries;
|
||||
stc.relative_score_difference = 1e-3;
|
||||
stc.stop_condition = stopcond; // stop when stopcond returns true
|
||||
TOptimizer<Method::G_GENETIC> solver(stc);
|
||||
// Different search methods have to be used depending on the model elevation
|
||||
if (is_on_floor(po)) {
|
||||
|
||||
// We are searching rotations around the three axes x, y, z. Thus the
|
||||
// problem becomes a 3 dimensional optimization task.
|
||||
// We can specify the bounds for a dimension in the following way:
|
||||
auto b = bound(-PI/2, PI/2);
|
||||
std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
|
||||
max_tries = inputs.size();
|
||||
|
||||
// Now we start the optimization process with initial angles (0, 0, 0)
|
||||
auto result = solver.optimize_max(objfunc,
|
||||
libnest2d::opt::initvals(0.0, 0.0, 0.0),
|
||||
b, b, b);
|
||||
// If the model can be placed on the bed directly, we only need to
|
||||
// check the 3D convex hull face rotations.
|
||||
|
||||
// Save the result and fck off
|
||||
rot[0] = std::get<0>(result.optimum);
|
||||
rot[1] = std::get<1>(result.optimum);
|
||||
rot[2] = std::get<2>(result.optimum);
|
||||
auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
|
||||
statusfn();
|
||||
Transform3d tr = to_transform3d(rot);
|
||||
return get_model_supportedness_onfloor(mesh, tr);
|
||||
};
|
||||
|
||||
return rot;
|
||||
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
|
||||
} else {
|
||||
// Preparing the optimizer.
|
||||
size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
|
||||
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
|
||||
.max_iterations(max_tries)
|
||||
.stop_condition(stopcond),
|
||||
gridsize);
|
||||
|
||||
// We are searching rotations around only two axes x, y. Thus the
|
||||
// problem becomes a 2 dimensional optimization task.
|
||||
// We can specify the bounds for a dimension in the following way:
|
||||
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
|
||||
|
||||
auto result = solver.to_min().optimize(
|
||||
[&mesh, &statusfn] (const XYRotation &rot)
|
||||
{
|
||||
statusfn();
|
||||
return get_model_supportedness(mesh, to_transform3d(rot));
|
||||
}, opt::initvals({0., 0.}), bounds);
|
||||
|
||||
// Save the result and fck off
|
||||
rot = result.optimum;
|
||||
}
|
||||
|
||||
return {rot[0], rot[1]};
|
||||
}
|
||||
|
||||
double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr)
|
||||
{
|
||||
TriangleMesh mesh = po.model_object()->raw_mesh();
|
||||
mesh.require_shared_vertices();
|
||||
|
||||
return is_on_floor(po) ? get_model_supportedness_onfloor(mesh, tr) :
|
||||
get_model_supportedness(mesh, tr);
|
||||
}
|
||||
}
|
||||
|
||||
}} // namespace Slic3r::sla
|
||||
|
|
|
@ -4,9 +4,11 @@
|
|||
#include <functional>
|
||||
#include <array>
|
||||
|
||||
#include <libslic3r/Point.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ModelObject;
|
||||
class SLAPrintObject;
|
||||
|
||||
namespace sla {
|
||||
|
||||
|
@ -25,14 +27,17 @@ namespace sla {
|
|||
*
|
||||
* @return Returns the rotations around each axis (x, y, z)
|
||||
*/
|
||||
std::array<double, 3> find_best_rotation(
|
||||
const ModelObject& modelobj,
|
||||
Vec2d find_best_rotation(
|
||||
const SLAPrintObject& modelobj,
|
||||
float accuracy = 1.0f,
|
||||
std::function<void(unsigned)> statuscb = [] (unsigned) {},
|
||||
std::function<bool()> stopcond = [] () { return false; }
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
double get_model_supportedness(const SLAPrintObject &mesh,
|
||||
const Transform3d & tr);
|
||||
|
||||
} // namespace sla
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif // SLAROTFINDER_HPP
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#include <libslic3r/SLA/SupportTreeBuildsteps.hpp>
|
||||
|
||||
#include <libslic3r/SLA/SpatIndex.hpp>
|
||||
#include <libslic3r/Optimizer.hpp>
|
||||
#include <libslic3r/Optimize/NLoptOptimizer.hpp>
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue