mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-25 01:31:14 -06:00
Merged branch 'dev_native' into lm_sla_supports_auto
Added igl library files
This commit is contained in:
commit
7681d00ee5
2865 changed files with 142806 additions and 22325 deletions
854
src/igl/principal_curvature.cpp
Normal file
854
src/igl/principal_curvature.cpp
Normal file
|
|
@ -0,0 +1,854 @@
|
|||
// This file is part of libigl, a simple c++ geometry processing library.
|
||||
//
|
||||
// Copyright (C) 2013 Daniele Panozzo <daniele.panozzo@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||||
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
// obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include "principal_curvature.h"
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
#include <list>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
#include <Eigen/SparseCholesky>
|
||||
|
||||
// Lib IGL includes
|
||||
#include <igl/adjacency_list.h>
|
||||
#include <igl/per_face_normals.h>
|
||||
#include <igl/per_vertex_normals.h>
|
||||
#include <igl/avg_edge_length.h>
|
||||
#include <igl/vertex_triangle_adjacency.h>
|
||||
|
||||
typedef enum
|
||||
{
|
||||
SPHERE_SEARCH,
|
||||
K_RING_SEARCH
|
||||
} searchType;
|
||||
|
||||
typedef enum
|
||||
{
|
||||
AVERAGE,
|
||||
PROJ_PLANE
|
||||
} normalType;
|
||||
|
||||
class CurvatureCalculator
|
||||
{
|
||||
public:
|
||||
/* Row number i represents the i-th vertex, whose columns are:
|
||||
curv[i][0] : K2
|
||||
curv[i][1] : K1
|
||||
curvDir[i][0] : PD1
|
||||
curvDir[i][1] : PD2
|
||||
*/
|
||||
std::vector< std::vector<double> > curv;
|
||||
std::vector< std::vector<Eigen::Vector3d> > curvDir;
|
||||
bool curvatureComputed;
|
||||
class Quadric
|
||||
{
|
||||
public:
|
||||
|
||||
IGL_INLINE Quadric ()
|
||||
{
|
||||
a() = b() = c() = d() = e() = 1.0;
|
||||
}
|
||||
|
||||
IGL_INLINE Quadric(double av, double bv, double cv, double dv, double ev)
|
||||
{
|
||||
a() = av;
|
||||
b() = bv;
|
||||
c() = cv;
|
||||
d() = dv;
|
||||
e() = ev;
|
||||
}
|
||||
|
||||
IGL_INLINE double& a() { return data[0];}
|
||||
IGL_INLINE double& b() { return data[1];}
|
||||
IGL_INLINE double& c() { return data[2];}
|
||||
IGL_INLINE double& d() { return data[3];}
|
||||
IGL_INLINE double& e() { return data[4];}
|
||||
|
||||
double data[5];
|
||||
|
||||
IGL_INLINE double evaluate(double u, double v)
|
||||
{
|
||||
return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v;
|
||||
}
|
||||
|
||||
IGL_INLINE double du(double u, double v)
|
||||
{
|
||||
return 2.0*a()*u + b()*v + d();
|
||||
}
|
||||
|
||||
IGL_INLINE double dv(double u, double v)
|
||||
{
|
||||
return 2.0*c()*v + b()*u + e();
|
||||
}
|
||||
|
||||
IGL_INLINE double duv(double u, double v)
|
||||
{
|
||||
return b();
|
||||
}
|
||||
|
||||
IGL_INLINE double duu(double u, double v)
|
||||
{
|
||||
return 2.0*a();
|
||||
}
|
||||
|
||||
IGL_INLINE double dvv(double u, double v)
|
||||
{
|
||||
return 2.0*c();
|
||||
}
|
||||
|
||||
|
||||
IGL_INLINE static Quadric fit(const std::vector<Eigen::Vector3d> &VV)
|
||||
{
|
||||
assert(VV.size() >= 5);
|
||||
if (VV.size() < 5)
|
||||
{
|
||||
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << VV.size() << " were given." << std::endl;
|
||||
exit(0);
|
||||
}
|
||||
|
||||
Eigen::MatrixXd A(VV.size(),5);
|
||||
Eigen::MatrixXd b(VV.size(),1);
|
||||
Eigen::MatrixXd sol(5,1);
|
||||
|
||||
for(unsigned int c=0; c < VV.size(); ++c)
|
||||
{
|
||||
double u = VV[c][0];
|
||||
double v = VV[c][1];
|
||||
double n = VV[c][2];
|
||||
|
||||
A(c,0) = u*u;
|
||||
A(c,1) = u*v;
|
||||
A(c,2) = v*v;
|
||||
A(c,3) = u;
|
||||
A(c,4) = v;
|
||||
|
||||
b(c) = n;
|
||||
}
|
||||
|
||||
sol=A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);
|
||||
|
||||
return Quadric(sol(0),sol(1),sol(2),sol(3),sol(4));
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
Eigen::MatrixXd vertices;
|
||||
// Face list of current mesh (#F x 3) or (#F x 4)
|
||||
// The i-th row contains the indices of the vertices that forms the i-th face in ccw order
|
||||
Eigen::MatrixXi faces;
|
||||
|
||||
std::vector<std::vector<int> > vertex_to_vertices;
|
||||
std::vector<std::vector<int> > vertex_to_faces;
|
||||
std::vector<std::vector<int> > vertex_to_faces_index;
|
||||
Eigen::MatrixXd face_normals;
|
||||
Eigen::MatrixXd vertex_normals;
|
||||
|
||||
/* Size of the neighborhood */
|
||||
double sphereRadius;
|
||||
int kRing;
|
||||
|
||||
bool localMode; /* Use local mode */
|
||||
bool projectionPlaneCheck; /* Check collected vertices on tangent plane */
|
||||
bool montecarlo;
|
||||
unsigned int montecarloN;
|
||||
|
||||
searchType st; /* Use either a sphere search or a k-ring search */
|
||||
normalType nt;
|
||||
|
||||
double lastRadius;
|
||||
double scaledRadius;
|
||||
std::string lastMeshName;
|
||||
|
||||
/* Benchmark related variables */
|
||||
bool expStep; /* True if we want the radius to increase exponentially */
|
||||
int step; /* If expStep==false, by how much rhe radius increases on every step */
|
||||
int maxSize; /* The maximum limit of the radius in the benchmark */
|
||||
|
||||
IGL_INLINE CurvatureCalculator();
|
||||
IGL_INLINE void init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F);
|
||||
|
||||
IGL_INLINE void finalEigenStuff(int, const std::vector<Eigen::Vector3d>&, Quadric&);
|
||||
IGL_INLINE void fitQuadric(const Eigen::Vector3d&, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& , Quadric *);
|
||||
IGL_INLINE void applyProjOnPlane(const Eigen::Vector3d&, const std::vector<int>&, std::vector<int>&);
|
||||
IGL_INLINE void getSphere(const int, const double, std::vector<int>&, int min);
|
||||
IGL_INLINE void getKRing(const int, const double,std::vector<int>&);
|
||||
IGL_INLINE Eigen::Vector3d project(const Eigen::Vector3d&, const Eigen::Vector3d&, const Eigen::Vector3d&);
|
||||
IGL_INLINE void computeReferenceFrame(int, const Eigen::Vector3d&, std::vector<Eigen::Vector3d>&);
|
||||
IGL_INLINE void getAverageNormal(int, const std::vector<int>&, Eigen::Vector3d&);
|
||||
IGL_INLINE void getProjPlane(int, const std::vector<int>&, Eigen::Vector3d&);
|
||||
IGL_INLINE void applyMontecarlo(const std::vector<int>&,std::vector<int>*);
|
||||
IGL_INLINE void computeCurvature();
|
||||
IGL_INLINE void printCurvature(const std::string& outpath);
|
||||
IGL_INLINE double getAverageEdge();
|
||||
|
||||
IGL_INLINE static int rotateForward (double *v0, double *v1, double *v2)
|
||||
{
|
||||
double t;
|
||||
|
||||
if (std::abs(*v2) >= std::abs(*v1) && std::abs(*v2) >= std::abs(*v0))
|
||||
return 0;
|
||||
|
||||
t = *v0;
|
||||
*v0 = *v2;
|
||||
*v2 = *v1;
|
||||
*v1 = t;
|
||||
|
||||
return 1 + rotateForward (v0, v1, v2);
|
||||
}
|
||||
|
||||
IGL_INLINE static void rotateBackward (int nr, double *v0, double *v1, double *v2)
|
||||
{
|
||||
double t;
|
||||
|
||||
if (nr == 0)
|
||||
return;
|
||||
|
||||
t = *v2;
|
||||
*v2 = *v0;
|
||||
*v0 = *v1;
|
||||
*v1 = t;
|
||||
|
||||
rotateBackward (nr - 1, v0, v1, v2);
|
||||
}
|
||||
|
||||
IGL_INLINE static Eigen::Vector3d chooseMax (Eigen::Vector3d n, Eigen::Vector3d abc, double ab)
|
||||
{
|
||||
int max_i;
|
||||
double max_sp;
|
||||
Eigen::Vector3d nt[8];
|
||||
|
||||
n.normalize ();
|
||||
abc.normalize ();
|
||||
|
||||
max_sp = - std::numeric_limits<double>::max();
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
nt[i] = n;
|
||||
if (ab > 0)
|
||||
{
|
||||
switch (i)
|
||||
{
|
||||
case 0:
|
||||
break;
|
||||
|
||||
case 1:
|
||||
nt[i][2] = -n[2];
|
||||
break;
|
||||
|
||||
case 2:
|
||||
nt[i][0] = -n[0];
|
||||
nt[i][1] = -n[1];
|
||||
break;
|
||||
|
||||
case 3:
|
||||
nt[i][0] = -n[0];
|
||||
nt[i][1] = -n[1];
|
||||
nt[i][2] = -n[2];
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (i)
|
||||
{
|
||||
case 0:
|
||||
nt[i][0] = -n[0];
|
||||
break;
|
||||
|
||||
case 1:
|
||||
nt[i][1] = -n[1];
|
||||
break;
|
||||
|
||||
case 2:
|
||||
nt[i][0] = -n[0];
|
||||
nt[i][2] = -n[2];
|
||||
break;
|
||||
|
||||
case 3:
|
||||
nt[i][1] = -n[1];
|
||||
nt[i][2] = -n[2];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (nt[i].dot(abc) > max_sp)
|
||||
{
|
||||
max_sp = nt[i].dot(abc);
|
||||
max_i = i;
|
||||
}
|
||||
}
|
||||
return nt[max_i];
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
class comparer
|
||||
{
|
||||
public:
|
||||
IGL_INLINE bool operator() (const std::pair<int, double>& lhs, const std::pair<int, double>&rhs) const
|
||||
{
|
||||
return lhs.second>rhs.second;
|
||||
}
|
||||
};
|
||||
|
||||
IGL_INLINE CurvatureCalculator::CurvatureCalculator()
|
||||
{
|
||||
this->localMode=true;
|
||||
this->projectionPlaneCheck=true;
|
||||
this->sphereRadius=5;
|
||||
this->st=SPHERE_SEARCH;
|
||||
this->nt=AVERAGE;
|
||||
this->montecarlo=false;
|
||||
this->montecarloN=0;
|
||||
this->kRing=3;
|
||||
this->curvatureComputed=false;
|
||||
this->expStep=true;
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F)
|
||||
{
|
||||
// Normalize vertices
|
||||
vertices = V;
|
||||
|
||||
// vertices = vertices.array() - vertices.minCoeff();
|
||||
// vertices = vertices.array() / vertices.maxCoeff();
|
||||
// vertices = vertices.array() * (1.0/igl::avg_edge_length(V,F));
|
||||
|
||||
faces = F;
|
||||
igl::adjacency_list(F, vertex_to_vertices);
|
||||
igl::vertex_triangle_adjacency(V, F, vertex_to_faces, vertex_to_faces_index);
|
||||
igl::per_face_normals(V, F, face_normals);
|
||||
igl::per_vertex_normals(V, F, face_normals, vertex_normals);
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::fitQuadric(const Eigen::Vector3d& v, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& vv, Quadric *q)
|
||||
{
|
||||
std::vector<Eigen::Vector3d> points;
|
||||
points.reserve (vv.size());
|
||||
|
||||
for (unsigned int i = 0; i < vv.size(); ++i) {
|
||||
|
||||
Eigen::Vector3d cp = vertices.row(vv[i]);
|
||||
|
||||
// vtang non e` il v tangente!!!
|
||||
Eigen::Vector3d vTang = cp - v;
|
||||
|
||||
double x = vTang.dot(ref[0]);
|
||||
double y = vTang.dot(ref[1]);
|
||||
double z = vTang.dot(ref[2]);
|
||||
points.push_back(Eigen::Vector3d (x,y,z));
|
||||
}
|
||||
if (points.size() < 5)
|
||||
{
|
||||
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << points.size() << " were given." << std::endl;
|
||||
*q = Quadric(0,0,0,0,0);
|
||||
}
|
||||
else
|
||||
{
|
||||
*q = Quadric::fit (points);
|
||||
}
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::finalEigenStuff(int i, const std::vector<Eigen::Vector3d>& ref, Quadric& q)
|
||||
{
|
||||
|
||||
const double a = q.a();
|
||||
const double b = q.b();
|
||||
const double c = q.c();
|
||||
const double d = q.d();
|
||||
const double e = q.e();
|
||||
|
||||
// if (fabs(a) < 10e-8 || fabs(b) < 10e-8)
|
||||
// {
|
||||
// std::cout << "Degenerate quadric: " << i << std::endl;
|
||||
// }
|
||||
|
||||
double E = 1.0 + d*d;
|
||||
double F = d*e;
|
||||
double G = 1.0 + e*e;
|
||||
|
||||
Eigen::Vector3d n = Eigen::Vector3d(-d,-e,1.0).normalized();
|
||||
|
||||
double L = 2.0 * a * n[2];
|
||||
double M = b * n[2];
|
||||
double N = 2 * c * n[2];
|
||||
|
||||
|
||||
// ----------------- Eigen stuff
|
||||
Eigen::Matrix2d m;
|
||||
m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F;
|
||||
m = m / (E*G-F*F);
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eig(m);
|
||||
|
||||
Eigen::Vector2d c_val = eig.eigenvalues();
|
||||
Eigen::Matrix2d c_vec = eig.eigenvectors();
|
||||
|
||||
// std::cerr << "c_val:" << c_val << std::endl;
|
||||
// std::cerr << "c_vec:" << c_vec << std::endl;
|
||||
|
||||
// std::cerr << "c_vec:" << c_vec(0) << " " << c_vec(1) << std::endl;
|
||||
|
||||
c_val = -c_val;
|
||||
|
||||
Eigen::Vector3d v1, v2;
|
||||
v1[0] = c_vec(0);
|
||||
v1[1] = c_vec(1);
|
||||
v1[2] = 0; //d * v1[0] + e * v1[1];
|
||||
|
||||
v2[0] = c_vec(2);
|
||||
v2[1] = c_vec(3);
|
||||
v2[2] = 0; //d * v2[0] + e * v2[1];
|
||||
|
||||
|
||||
// v1 = v1.normalized();
|
||||
// v2 = v2.normalized();
|
||||
|
||||
Eigen::Vector3d v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2];
|
||||
Eigen::Vector3d v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2];
|
||||
|
||||
v1global.normalize();
|
||||
v2global.normalize();
|
||||
|
||||
v1global *= c_val(0);
|
||||
v2global *= c_val(1);
|
||||
|
||||
if (c_val[0] > c_val[1])
|
||||
{
|
||||
curv[i]=std::vector<double>(2);
|
||||
curv[i][0]=c_val(1);
|
||||
curv[i][1]=c_val(0);
|
||||
curvDir[i]=std::vector<Eigen::Vector3d>(2);
|
||||
curvDir[i][0]=v2global;
|
||||
curvDir[i][1]=v1global;
|
||||
}
|
||||
else
|
||||
{
|
||||
curv[i]=std::vector<double>(2);
|
||||
curv[i][0]=c_val(0);
|
||||
curv[i][1]=c_val(1);
|
||||
curvDir[i]=std::vector<Eigen::Vector3d>(2);
|
||||
curvDir[i][0]=v1global;
|
||||
curvDir[i][1]=v2global;
|
||||
}
|
||||
// ---- end Eigen stuff
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::getKRing(const int start, const double r, std::vector<int>&vv)
|
||||
{
|
||||
int bufsize=vertices.rows();
|
||||
vv.reserve(bufsize);
|
||||
std::list<std::pair<int,int> > queue;
|
||||
bool* visited = (bool*)calloc(bufsize,sizeof(bool));
|
||||
queue.push_back(std::pair<int,int>(start,0));
|
||||
visited[start]=true;
|
||||
while (!queue.empty())
|
||||
{
|
||||
int toVisit=queue.front().first;
|
||||
int distance=queue.front().second;
|
||||
queue.pop_front();
|
||||
vv.push_back(toVisit);
|
||||
if (distance<(int)r)
|
||||
{
|
||||
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
|
||||
{
|
||||
int neighbor=vertex_to_vertices[toVisit][i];
|
||||
if (!visited[neighbor])
|
||||
{
|
||||
queue.push_back(std::pair<int,int> (neighbor,distance+1));
|
||||
visited[neighbor]=true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
free(visited);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::getSphere(const int start, const double r, std::vector<int> &vv, int min)
|
||||
{
|
||||
int bufsize=vertices.rows();
|
||||
vv.reserve(bufsize);
|
||||
std::list<int>* queue= new std::list<int>();
|
||||
bool* visited = (bool*)calloc(bufsize,sizeof(bool));
|
||||
queue->push_back(start);
|
||||
visited[start]=true;
|
||||
Eigen::Vector3d me=vertices.row(start);
|
||||
std::priority_queue<std::pair<int, double>, std::vector<std::pair<int, double> >, comparer >* extra_candidates= new std::priority_queue<std::pair<int, double>, std::vector<std::pair<int, double> >, comparer >();
|
||||
while (!queue->empty())
|
||||
{
|
||||
int toVisit=queue->front();
|
||||
queue->pop_front();
|
||||
vv.push_back(toVisit);
|
||||
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
|
||||
{
|
||||
int neighbor=vertex_to_vertices[toVisit][i];
|
||||
if (!visited[neighbor])
|
||||
{
|
||||
Eigen::Vector3d neigh=vertices.row(neighbor);
|
||||
double distance=(me-neigh).norm();
|
||||
if (distance<r)
|
||||
queue->push_back(neighbor);
|
||||
else if ((int)vv.size()<min)
|
||||
extra_candidates->push(std::pair<int,double>(neighbor,distance));
|
||||
visited[neighbor]=true;
|
||||
}
|
||||
}
|
||||
}
|
||||
while (!extra_candidates->empty() && (int)vv.size()<min)
|
||||
{
|
||||
std::pair<int, double> cand=extra_candidates->top();
|
||||
extra_candidates->pop();
|
||||
vv.push_back(cand.first);
|
||||
for (unsigned int i=0; i<vertex_to_vertices[cand.first].size(); ++i)
|
||||
{
|
||||
int neighbor=vertex_to_vertices[cand.first][i];
|
||||
if (!visited[neighbor])
|
||||
{
|
||||
Eigen::Vector3d neigh=vertices.row(neighbor);
|
||||
double distance=(me-neigh).norm();
|
||||
extra_candidates->push(std::pair<int,double>(neighbor,distance));
|
||||
visited[neighbor]=true;
|
||||
}
|
||||
}
|
||||
}
|
||||
free(extra_candidates);
|
||||
free(queue);
|
||||
free(visited);
|
||||
}
|
||||
|
||||
IGL_INLINE Eigen::Vector3d CurvatureCalculator::project(const Eigen::Vector3d& v, const Eigen::Vector3d& vp, const Eigen::Vector3d& ppn)
|
||||
{
|
||||
return (vp - (ppn * ((vp - v).dot(ppn))));
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::computeReferenceFrame(int i, const Eigen::Vector3d& normal, std::vector<Eigen::Vector3d>& ref )
|
||||
{
|
||||
|
||||
Eigen::Vector3d longest_v=Eigen::Vector3d(vertices.row(vertex_to_vertices[i][0]));
|
||||
|
||||
longest_v=(project(vertices.row(i),longest_v,normal)-Eigen::Vector3d(vertices.row(i))).normalized();
|
||||
|
||||
/* L'ultimo asse si ottiene come prodotto vettoriale tra i due
|
||||
* calcolati */
|
||||
Eigen::Vector3d y_axis=(normal.cross(longest_v)).normalized();
|
||||
ref[0]=longest_v;
|
||||
ref[1]=y_axis;
|
||||
ref[2]=normal;
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::getAverageNormal(int j, const std::vector<int>& vv, Eigen::Vector3d& normal)
|
||||
{
|
||||
normal=(vertex_normals.row(j)).normalized();
|
||||
if (localMode)
|
||||
return;
|
||||
|
||||
for (unsigned int i=0; i<vv.size(); ++i)
|
||||
{
|
||||
normal+=vertex_normals.row(vv[i]).normalized();
|
||||
}
|
||||
normal.normalize();
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::getProjPlane(int j, const std::vector<int>& vv, Eigen::Vector3d& ppn)
|
||||
{
|
||||
int nr;
|
||||
double a, b, c;
|
||||
double nx, ny, nz;
|
||||
double abcq;
|
||||
|
||||
a = b = c = 0;
|
||||
|
||||
if (localMode)
|
||||
{
|
||||
for (unsigned int i=0; i<vertex_to_faces.at(j).size(); ++i)
|
||||
{
|
||||
Eigen::Vector3d faceNormal=face_normals.row(vertex_to_faces.at(j).at(i));
|
||||
a += faceNormal[0];
|
||||
b += faceNormal[1];
|
||||
c += faceNormal[2];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (unsigned int i=0; i<vv.size(); ++i)
|
||||
{
|
||||
a+= vertex_normals.row(vv[i])[0];
|
||||
b+= vertex_normals.row(vv[i])[1];
|
||||
c+= vertex_normals.row(vv[i])[2];
|
||||
}
|
||||
}
|
||||
nr = rotateForward (&a, &b, &c);
|
||||
abcq = a*a + b*b + c*c;
|
||||
nx = sqrt (a*a / abcq);
|
||||
ny = sqrt (b*b / abcq);
|
||||
nz = sqrt (1 - nx*nx - ny*ny);
|
||||
rotateBackward (nr, &a, &b, &c);
|
||||
rotateBackward (nr, &nx, &ny, &nz);
|
||||
|
||||
ppn = chooseMax (Eigen::Vector3d(nx, ny, nz), Eigen::Vector3d (a, b, c), a * b);
|
||||
ppn.normalize();
|
||||
}
|
||||
|
||||
|
||||
IGL_INLINE double CurvatureCalculator::getAverageEdge()
|
||||
{
|
||||
double sum = 0;
|
||||
int count = 0;
|
||||
|
||||
for (int i = 0; i<faces.rows(); ++i)
|
||||
{
|
||||
for (short unsigned j=0; j<3; ++j)
|
||||
{
|
||||
Eigen::Vector3d p1=vertices.row(faces.row(i)[j]);
|
||||
Eigen::Vector3d p2=vertices.row(faces.row(i)[(j+1)%3]);
|
||||
|
||||
double l = (p1-p2).norm();
|
||||
|
||||
sum+=l;
|
||||
++count;
|
||||
}
|
||||
}
|
||||
|
||||
return (sum/(double)count);
|
||||
}
|
||||
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::applyProjOnPlane(const Eigen::Vector3d& ppn, const std::vector<int>& vin, std::vector<int> &vout)
|
||||
{
|
||||
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
|
||||
if (vertex_normals.row(*vpi) * ppn > 0.0)
|
||||
vout.push_back(*vpi);
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::applyMontecarlo(const std::vector<int>& vin, std::vector<int> *vout)
|
||||
{
|
||||
if (montecarloN >= vin.size ())
|
||||
{
|
||||
*vout = vin;
|
||||
return;
|
||||
}
|
||||
|
||||
float p = ((float) montecarloN) / (float) vin.size();
|
||||
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
|
||||
{
|
||||
float r;
|
||||
if ((r = ((float)rand () / RAND_MAX)) < p)
|
||||
{
|
||||
vout->push_back(*vpi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::computeCurvature()
|
||||
{
|
||||
//CHECK che esista la mesh
|
||||
const size_t vertices_count=vertices.rows();
|
||||
|
||||
if (vertices_count ==0)
|
||||
return;
|
||||
|
||||
curvDir=std::vector< std::vector<Eigen::Vector3d> >(vertices_count);
|
||||
curv=std::vector<std::vector<double> >(vertices_count);
|
||||
|
||||
|
||||
|
||||
scaledRadius=getAverageEdge()*sphereRadius;
|
||||
|
||||
std::vector<int> vv;
|
||||
std::vector<int> vvtmp;
|
||||
Eigen::Vector3d normal;
|
||||
|
||||
//double time_spent;
|
||||
//double searchtime=0, ref_time=0, fit_time=0, final_time=0;
|
||||
|
||||
for (size_t i=0; i<vertices_count; ++i)
|
||||
{
|
||||
vv.clear();
|
||||
vvtmp.clear();
|
||||
Eigen::Vector3d me=vertices.row(i);
|
||||
switch (st)
|
||||
{
|
||||
case SPHERE_SEARCH:
|
||||
getSphere(i,scaledRadius,vv,6);
|
||||
break;
|
||||
case K_RING_SEARCH:
|
||||
getKRing(i,kRing,vv);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr,"Error: search type not recognized");
|
||||
return;
|
||||
}
|
||||
|
||||
if (vv.size()<6)
|
||||
{
|
||||
std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
if (projectionPlaneCheck)
|
||||
{
|
||||
vvtmp.reserve (vv.size ());
|
||||
applyProjOnPlane (vertex_normals.row(i), vv, vvtmp);
|
||||
if (vvtmp.size() >= 6 && vvtmp.size()<vv.size())
|
||||
vv = vvtmp;
|
||||
}
|
||||
|
||||
|
||||
switch (nt)
|
||||
{
|
||||
case AVERAGE:
|
||||
getAverageNormal(i,vv,normal);
|
||||
break;
|
||||
case PROJ_PLANE:
|
||||
getProjPlane(i,vv,normal);
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr,"Error: normal type not recognized");
|
||||
return;
|
||||
}
|
||||
if (vv.size()<6)
|
||||
{
|
||||
std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
|
||||
return;
|
||||
}
|
||||
if (montecarlo)
|
||||
{
|
||||
if(montecarloN<6)
|
||||
break;
|
||||
vvtmp.reserve(vv.size());
|
||||
applyMontecarlo(vv,&vvtmp);
|
||||
vv=vvtmp;
|
||||
}
|
||||
|
||||
if (vv.size()<6)
|
||||
return;
|
||||
std::vector<Eigen::Vector3d> ref(3);
|
||||
computeReferenceFrame(i,normal,ref);
|
||||
|
||||
Quadric q;
|
||||
fitQuadric (me, ref, vv, &q);
|
||||
finalEigenStuff(i,ref,q);
|
||||
}
|
||||
|
||||
lastRadius=sphereRadius;
|
||||
curvatureComputed=true;
|
||||
}
|
||||
|
||||
IGL_INLINE void CurvatureCalculator::printCurvature(const std::string& outpath)
|
||||
{
|
||||
using namespace std;
|
||||
if (!curvatureComputed)
|
||||
return;
|
||||
|
||||
std::ofstream of;
|
||||
of.open(outpath.c_str());
|
||||
|
||||
if (!of)
|
||||
{
|
||||
fprintf(stderr, "Error: could not open output file %s\n", outpath.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
int vertices_count=vertices.rows();
|
||||
of << vertices_count << endl;
|
||||
for (int i=0; i<vertices_count; ++i)
|
||||
{
|
||||
of << curv[i][0] << " " << curv[i][1] << " " << curvDir[i][0][0] << " " << curvDir[i][0][1] << " " << curvDir[i][0][2] << " " <<
|
||||
curvDir[i][1][0] << " " << curvDir[i][1][1] << " " << curvDir[i][1][2] << endl;
|
||||
}
|
||||
|
||||
of.close();
|
||||
|
||||
}
|
||||
|
||||
template <
|
||||
typename DerivedV,
|
||||
typename DerivedF,
|
||||
typename DerivedPD1,
|
||||
typename DerivedPD2,
|
||||
typename DerivedPV1,
|
||||
typename DerivedPV2>
|
||||
IGL_INLINE void igl::principal_curvature(
|
||||
const Eigen::PlainObjectBase<DerivedV>& V,
|
||||
const Eigen::PlainObjectBase<DerivedF>& F,
|
||||
Eigen::PlainObjectBase<DerivedPD1>& PD1,
|
||||
Eigen::PlainObjectBase<DerivedPD2>& PD2,
|
||||
Eigen::PlainObjectBase<DerivedPV1>& PV1,
|
||||
Eigen::PlainObjectBase<DerivedPV2>& PV2,
|
||||
unsigned radius,
|
||||
bool useKring)
|
||||
{
|
||||
if (radius < 2)
|
||||
{
|
||||
radius = 2;
|
||||
std::cout << "WARNING: igl::principal_curvature needs a radius >= 2, fixing it to 2." << std::endl;
|
||||
}
|
||||
|
||||
// Preallocate memory
|
||||
PD1.resize(V.rows(),3);
|
||||
PD2.resize(V.rows(),3);
|
||||
|
||||
// Preallocate memory
|
||||
PV1.resize(V.rows(),1);
|
||||
PV2.resize(V.rows(),1);
|
||||
|
||||
// Precomputation
|
||||
CurvatureCalculator cc;
|
||||
cc.init(V.template cast<double>(),F.template cast<int>());
|
||||
cc.sphereRadius = radius;
|
||||
|
||||
if (useKring)
|
||||
{
|
||||
cc.kRing = radius;
|
||||
cc.st = K_RING_SEARCH;
|
||||
}
|
||||
|
||||
// Compute
|
||||
cc.computeCurvature();
|
||||
|
||||
// Copy it back
|
||||
for (unsigned i=0; i<V.rows(); ++i)
|
||||
{
|
||||
PD1.row(i) << cc.curvDir[i][0][0], cc.curvDir[i][0][1], cc.curvDir[i][0][2];
|
||||
PD2.row(i) << cc.curvDir[i][1][0], cc.curvDir[i][1][1], cc.curvDir[i][1][2];
|
||||
PD1.row(i).normalize();
|
||||
PD2.row(i).normalize();
|
||||
|
||||
if (std::isnan(PD1(i,0)) || std::isnan(PD1(i,1)) || std::isnan(PD1(i,2)) || std::isnan(PD2(i,0)) || std::isnan(PD2(i,1)) || std::isnan(PD2(i,2)))
|
||||
{
|
||||
PD1.row(i) << 0,0,0;
|
||||
PD2.row(i) << 0,0,0;
|
||||
}
|
||||
|
||||
PV1(i) = cc.curv[i][0];
|
||||
PV2(i) = cc.curv[i][1];
|
||||
|
||||
if (PD1.row(i) * PD2.row(i).transpose() > 10e-6)
|
||||
{
|
||||
std::cerr << "PRINCIPAL_CURVATURE: Something is wrong with vertex: " << i << std::endl;
|
||||
PD1.row(i) *= 0;
|
||||
PD2.row(i) *= 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef IGL_STATIC_LIBRARY
|
||||
// Explicit template instantiation
|
||||
// generated by autoexplicit.sh
|
||||
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
|
||||
template void igl::principal_curvature<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
|
||||
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, unsigned int, bool);
|
||||
#endif
|
||||
Loading…
Add table
Add a link
Reference in a new issue