mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-26 10:11:10 -06:00
Merged branch 'dev_native' into lm_sla_supports_auto
Added igl library files
This commit is contained in:
commit
7681d00ee5
2865 changed files with 142806 additions and 22325 deletions
157
src/igl/per_vertex_point_to_plane_quadrics.cpp
Normal file
157
src/igl/per_vertex_point_to_plane_quadrics.cpp
Normal file
|
|
@ -0,0 +1,157 @@
|
|||
// This file is part of libigl, a simple c++ geometry processing library.
|
||||
//
|
||||
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||||
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
// obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include "per_vertex_point_to_plane_quadrics.h"
|
||||
#include "quadric_binary_plus_operator.h"
|
||||
#include <Eigen/QR>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
|
||||
IGL_INLINE void igl::per_vertex_point_to_plane_quadrics(
|
||||
const Eigen::MatrixXd & V,
|
||||
const Eigen::MatrixXi & F,
|
||||
const Eigen::MatrixXi & EMAP,
|
||||
const Eigen::MatrixXi & EF,
|
||||
const Eigen::MatrixXi & EI,
|
||||
std::vector<
|
||||
std::tuple<Eigen::MatrixXd,Eigen::RowVectorXd,double> > & quadrics)
|
||||
{
|
||||
using namespace std;
|
||||
typedef std::tuple<Eigen::MatrixXd,Eigen::RowVectorXd,double> Quadric;
|
||||
const int dim = V.cols();
|
||||
//// Quadrics per face
|
||||
//std::vector<Quadric> face_quadrics(F.rows());
|
||||
// Initialize each vertex quadric to zeros
|
||||
quadrics.resize(
|
||||
V.rows(),
|
||||
// gcc <=4.8 can't handle initializer lists correctly
|
||||
Quadric{Eigen::MatrixXd::Zero(dim,dim),Eigen::RowVectorXd::Zero(dim),0});
|
||||
Eigen::MatrixXd I = Eigen::MatrixXd::Identity(dim,dim);
|
||||
// Rather initial with zeros, initial with a small amount of energy pull
|
||||
// toward original vertex position
|
||||
const double w = 1e-10;
|
||||
for(int v = 0;v<V.rows();v++)
|
||||
{
|
||||
std::get<0>(quadrics[v]) = w*I;
|
||||
Eigen::RowVectorXd Vv = V.row(v);
|
||||
std::get<1>(quadrics[v]) = w*-Vv;
|
||||
std::get<2>(quadrics[v]) = w*Vv.dot(Vv);
|
||||
}
|
||||
// Generic nD qslim from "Simplifying Surfaces with Color and Texture
|
||||
// using Quadric Error Metric" (follow up to original QSlim)
|
||||
for(int f = 0;f<F.rows();f++)
|
||||
{
|
||||
int infinite_corner = -1;
|
||||
for(int c = 0;c<3;c++)
|
||||
{
|
||||
if(
|
||||
std::isinf(V(F(f,c),0)) ||
|
||||
std::isinf(V(F(f,c),1)) ||
|
||||
std::isinf(V(F(f,c),2)))
|
||||
{
|
||||
assert(infinite_corner == -1 && "Should only be one infinite corner");
|
||||
infinite_corner = c;
|
||||
}
|
||||
}
|
||||
// Inputs:
|
||||
// p 1 by n row point on the subspace
|
||||
// S m by n matrix where rows coorespond to orthonormal spanning
|
||||
// vectors of the subspace to which we're measuring distance (usually
|
||||
// a plane, m=2)
|
||||
// weight scalar weight
|
||||
// Returns quadric triple {A,b,c} so that A-2*b+c measures the quadric
|
||||
const auto subspace_quadric = [&I](
|
||||
const Eigen::RowVectorXd & p,
|
||||
const Eigen::MatrixXd & S,
|
||||
const double weight)->Quadric
|
||||
{
|
||||
// Dimension of subspace
|
||||
const int m = S.rows();
|
||||
// Weight face's quadric (v'*A*v + 2*b'*v + c) by area
|
||||
// e1 and e2 should be perpendicular
|
||||
Eigen::MatrixXd A = I;
|
||||
Eigen::RowVectorXd b = -p;
|
||||
double c = p.dot(p);
|
||||
for(int i = 0;i<m;i++)
|
||||
{
|
||||
Eigen::RowVectorXd ei = S.row(i);
|
||||
for(int j = 0;j<i;j++) assert(std::abs(S.row(j).dot(ei)) < 1e-10);
|
||||
A += -ei.transpose()*ei;
|
||||
b += p.dot(ei)*ei;
|
||||
c += -pow(p.dot(ei),2);
|
||||
}
|
||||
// gcc <=4.8 can't handle initializer lists correctly: needs explicit
|
||||
// cast
|
||||
return Quadric{ weight*A, weight*b, weight*c };
|
||||
};
|
||||
if(infinite_corner == -1)
|
||||
{
|
||||
// Finite (non-boundary) face
|
||||
Eigen::RowVectorXd p = V.row(F(f,0));
|
||||
Eigen::RowVectorXd q = V.row(F(f,1));
|
||||
Eigen::RowVectorXd r = V.row(F(f,2));
|
||||
Eigen::RowVectorXd pq = q-p;
|
||||
Eigen::RowVectorXd pr = r-p;
|
||||
// Gram Determinant = squared area of parallelogram
|
||||
double area = sqrt(pq.squaredNorm()*pr.squaredNorm()-pow(pr.dot(pq),2));
|
||||
Eigen::RowVectorXd e1 = pq.normalized();
|
||||
Eigen::RowVectorXd e2 = (pr-e1.dot(pr)*e1).normalized();
|
||||
Eigen::MatrixXd S(2,V.cols());
|
||||
S<<e1,e2;
|
||||
Quadric face_quadric = subspace_quadric(p,S,area);
|
||||
// Throw at each corner
|
||||
for(int c = 0;c<3;c++)
|
||||
{
|
||||
quadrics[F(f,c)] = quadrics[F(f,c)] + face_quadric;
|
||||
}
|
||||
}else
|
||||
{
|
||||
// cth corner is infinite --> edge opposite cth corner is boundary
|
||||
// Boundary edge vector
|
||||
const Eigen::RowVectorXd p = V.row(F(f,(infinite_corner+1)%3));
|
||||
Eigen::RowVectorXd ev = V.row(F(f,(infinite_corner+2)%3)) - p;
|
||||
const double length = ev.norm();
|
||||
ev /= length;
|
||||
// Face neighbor across boundary edge
|
||||
int e = EMAP(f+F.rows()*infinite_corner);
|
||||
int opp = EF(e,0) == f ? 1 : 0;
|
||||
int n = EF(e,opp);
|
||||
int nc = EI(e,opp);
|
||||
assert(
|
||||
((F(f,(infinite_corner+1)%3) == F(n,(nc+1)%3) &&
|
||||
F(f,(infinite_corner+2)%3) == F(n,(nc+2)%3)) ||
|
||||
(F(f,(infinite_corner+1)%3) == F(n,(nc+2)%3)
|
||||
&& F(f,(infinite_corner+2)%3) == F(n,(nc+1)%3))) &&
|
||||
"Edge flaps not agreeing on shared edge");
|
||||
// Edge vector on opposite face
|
||||
const Eigen::RowVectorXd eu = V.row(F(n,nc)) - p;
|
||||
assert(!std::isinf(eu(0)));
|
||||
// Matrix with vectors spanning plane as columns
|
||||
Eigen::MatrixXd A(ev.size(),2);
|
||||
A<<ev.transpose(),eu.transpose();
|
||||
// Use QR decomposition to find basis for orthogonal space
|
||||
Eigen::HouseholderQR<Eigen::MatrixXd> qr(A);
|
||||
const Eigen::MatrixXd Q = qr.householderQ();
|
||||
const Eigen::MatrixXd N =
|
||||
Q.topRightCorner(ev.size(),ev.size()-2).transpose();
|
||||
assert(N.cols() == ev.size());
|
||||
assert(N.rows() == ev.size()-2);
|
||||
Eigen::MatrixXd S(N.rows()+1,ev.size());
|
||||
S<<ev,N;
|
||||
Quadric boundary_edge_quadric = subspace_quadric(p,S,length);
|
||||
for(int c = 0;c<3;c++)
|
||||
{
|
||||
if(c != infinite_corner)
|
||||
{
|
||||
quadrics[F(f,c)] = quadrics[F(f,c)] + boundary_edge_quadric;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue