mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-27 10:41:15 -06:00
Merged branch 'dev_native' into lm_sla_supports_auto
Added igl library files
This commit is contained in:
commit
7681d00ee5
2865 changed files with 142806 additions and 22325 deletions
139
src/igl/collapse_small_triangles.cpp
Normal file
139
src/igl/collapse_small_triangles.cpp
Normal file
|
|
@ -0,0 +1,139 @@
|
|||
// This file is part of libigl, a simple c++ geometry processing library.
|
||||
//
|
||||
// Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||||
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
// obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include "collapse_small_triangles.h"
|
||||
|
||||
#include "bounding_box_diagonal.h"
|
||||
#include "doublearea.h"
|
||||
#include "edge_lengths.h"
|
||||
#include "colon.h"
|
||||
#include "faces_first.h"
|
||||
|
||||
#include <limits>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
void igl::collapse_small_triangles(
|
||||
const Eigen::MatrixXd & V,
|
||||
const Eigen::MatrixXi & F,
|
||||
const double eps,
|
||||
Eigen::MatrixXi & FF)
|
||||
{
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
// Compute bounding box diagonal length
|
||||
double bbd = bounding_box_diagonal(V);
|
||||
MatrixXd l;
|
||||
edge_lengths(V,F,l);
|
||||
VectorXd dblA;
|
||||
doublearea(l,0.,dblA);
|
||||
|
||||
// Minimum area tolerance
|
||||
const double min_dblarea = 2.0*eps*bbd*bbd;
|
||||
|
||||
Eigen::VectorXi FIM = colon<int>(0,V.rows()-1);
|
||||
int num_edge_collapses = 0;
|
||||
// Loop over triangles
|
||||
for(int f = 0;f<F.rows();f++)
|
||||
{
|
||||
if(dblA(f) < min_dblarea)
|
||||
{
|
||||
double minl = 0;
|
||||
int minli = -1;
|
||||
// Find shortest edge
|
||||
for(int e = 0;e<3;e++)
|
||||
{
|
||||
if(minli==-1 || l(f,e)<minl)
|
||||
{
|
||||
minli = e;
|
||||
minl = l(f,e);
|
||||
}
|
||||
}
|
||||
double maxl = 0;
|
||||
int maxli = -1;
|
||||
// Find longest edge
|
||||
for(int e = 0;e<3;e++)
|
||||
{
|
||||
if(maxli==-1 || l(f,e)>maxl)
|
||||
{
|
||||
maxli = e;
|
||||
maxl = l(f,e);
|
||||
}
|
||||
}
|
||||
// Be sure that min and max aren't the same
|
||||
maxli = (minli==maxli?(minli+1)%3:maxli);
|
||||
|
||||
// Collapse min edge maintaining max edge: i-->j
|
||||
// Q: Why this direction?
|
||||
int i = maxli;
|
||||
int j = ((minli+1)%3 == maxli ? (minli+2)%3: (minli+1)%3);
|
||||
assert(i != minli);
|
||||
assert(j != minli);
|
||||
assert(i != j);
|
||||
FIM(F(f,i)) = FIM(F(f,j));
|
||||
num_edge_collapses++;
|
||||
}
|
||||
}
|
||||
|
||||
// Reindex faces
|
||||
MatrixXi rF = F;
|
||||
// Loop over triangles
|
||||
for(int f = 0;f<rF.rows();f++)
|
||||
{
|
||||
for(int i = 0;i<rF.cols();i++)
|
||||
{
|
||||
rF(f,i) = FIM(rF(f,i));
|
||||
}
|
||||
}
|
||||
|
||||
FF.resizeLike(rF);
|
||||
int num_face_collapses=0;
|
||||
// Only keep uncollapsed faces
|
||||
{
|
||||
int ff = 0;
|
||||
// Loop over triangles
|
||||
for(int f = 0;f<rF.rows();f++)
|
||||
{
|
||||
bool collapsed = false;
|
||||
// Check if any indices are the same
|
||||
for(int i = 0;i<rF.cols();i++)
|
||||
{
|
||||
for(int j = i+1;j<rF.cols();j++)
|
||||
{
|
||||
if(rF(f,i)==rF(f,j))
|
||||
{
|
||||
collapsed = true;
|
||||
num_face_collapses++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(!collapsed)
|
||||
{
|
||||
FF.row(ff++) = rF.row(f);
|
||||
}
|
||||
}
|
||||
// Use conservative resize
|
||||
FF.conservativeResize(ff,FF.cols());
|
||||
}
|
||||
//cout<<"num_edge_collapses: "<<num_edge_collapses<<endl;
|
||||
//cout<<"num_face_collapses: "<<num_face_collapses<<endl;
|
||||
if(num_edge_collapses == 0)
|
||||
{
|
||||
// There must have been a "collapsed edge" in the input
|
||||
assert(num_face_collapses==0);
|
||||
// Base case
|
||||
return;
|
||||
}
|
||||
|
||||
//// force base case
|
||||
//return;
|
||||
|
||||
MatrixXi recFF = FF;
|
||||
return collapse_small_triangles(V,recFF,eps,FF);
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue