WIP: Refactoring of PrintRegions. It nearly compiles!

This commit is contained in:
Vojtech Bubnik 2021-05-21 17:57:37 +02:00
parent 68b0d92183
commit 740773db85
8 changed files with 479 additions and 1206 deletions

View file

@ -1,5 +1,7 @@
#include "Print.hpp"
#include "ElephantFootCompensation.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include <boost/log/trivial.hpp>
@ -10,22 +12,21 @@
namespace Slic3r {
static inline LayerPtrs new_layers(
LayerPtrs new_layers(
PrintObject *print_object,
// Object layers (pairs of bottom/top Z coordinate), without the raft.
const std::vector<coordf_t> &object_layers,
// Reserve object layers for the raft. Last layer of the raft is the contact layer.
size_t first_layer_id)
const std::vector<coordf_t> &object_layers)
{
LayerPtrs out;
out.reserve(object_layers.size());
auto id = int(first_layer_id);
Layer *prev = nullptr;
auto id = int(print_object->slicing_parameters().raft_layers());
coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
Layer *prev = nullptr;
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
coordf_t lo = object_layers[i_layer];
coordf_t hi = object_layers[i_layer + 1];
coordf_t slice_z = 0.5 * (lo + hi);
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
out.emplace_back(layer);
if (prev != nullptr) {
prev->upper_layer = layer;
@ -36,7 +37,7 @@ static inline LayerPtrs new_layers(
return out;
}
template<LayerContainer>
template<typename LayerContainer>
static inline std::vector<float> zs_from_layers(const LayerContainer &layers)
{
std::vector<float> zs;
@ -47,57 +48,38 @@ static inline std::vector<float> zs_from_layers(const LayerContainer &layers)
}
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
static void fix_mesh_connectivity(TriangleMesh &mesh)
// This function will go away once we get rid of admesh from ModelVolume.
static indexed_triangle_set get_mesh_its_fix_mesh_connectivity(TriangleMesh mesh)
{
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
stl_check_facets_exact(&mesh.stl);
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
stl_generate_shared_vertices(&mesh.stl, mesh.its);
assert(mesh.repaired && mesh.has_shared_vertices());
if (mesh.stl.stats.number_of_facets > 0) {
assert(mesh.repaired && mesh.has_shared_vertices());
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
stl_check_facets_exact(&mesh.stl);
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
stl_generate_shared_vertices(&mesh.stl, mesh.its);
} else
mesh.its.clear();
return std::move(mesh.its);
}
struct SliceVolumeParams
{
const SlicingMode mode { SlicingMode::Regular };
// For vase mode: below this layer a different slicing mode will be used to produce a single contour.
// 0 = ignore.
const size_t slicing_mode_normal_below_layer { 0 };
// Mode to apply below slicing_mode_normal_below_layer. Ignored if slicing_mode_nromal_below_layer == 0.
const SlicingMode mode_below { SlicingMode::Regular };
// Morphological closing operation when creating output expolygons.
const float closing_radius { 0 };
// Positive offset applied when creating output expolygons.
const float extra_offset { 0 };
// Resolution for contour simplification.
// 0 = don't simplify.
const double resolution { 0 };
// Transformation of the object owning the ModelVolume.
Transform3d object_trafo;
};
// Slice single triangle mesh.
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &z,
const SliceVolumeParams &params,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const ModelVolume &volume,
const std::vector<float> &zs,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> layers;
if (! z.empty()) {
TriangleMesh mesh(volume.mesh());
mesh.transform(params.object_trafo * volume.get_matrix(), true);
if (mesh.repaired)
fix_mesh_connectivity(mesh);
if (mesh.stl.stats.number_of_facets > 0) {
// perform actual slicing
TriangleMeshSlicer mesh_slicer;
// TriangleMeshSlicer needs the shared vertices.
mesh.require_shared_vertices();
mesh_slicer.init(&mesh, throw_on_cancel_callback);
//FIXME simplify contours
mesh_slicer.slice(z, mode, params.slicing_mode_normal_below_layer, params.mode_below, params.closing_radius, params.extra_offset, &layers, throw_on_cancel_callback);
if (! zs.empty()) {
indexed_triangle_set its = get_mesh_its_fix_mesh_connectivity(volume.mesh());
if (its.indices.size() > 0) {
MeshSlicingParamsEx params2 { params };
params2.trafo = params2.trafo * volume.get_matrix();
if (params2.trafo.rotation().determinant() < 0.)
its_flip_triangles(its);
layers = slice_mesh_ex(its, zs, params, throw_on_cancel_callback);
throw_on_cancel_callback();
}
}
@ -107,11 +89,11 @@ static std::vector<ExPolygons> slice_volume(
// Slice single triangle mesh.
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
const std::vector<float> &z,
const std::vector<t_layer_height_range> &ranges,
const SliceVolumeParams &params,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const ModelVolume &volume,
const std::vector<float> &z,
const std::vector<t_layer_height_range> &ranges,
const MeshSlicingParamsEx &params,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) {
@ -161,14 +143,14 @@ static inline bool model_volume_needs_slicing(const ModelVolume &mv)
// Apply closing radius.
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
// Apply contour simplification.
static std::vector<VolumeSlices> slice_volumes(
static std::vector<VolumeSlices> slice_volumes_inner(
const PrintConfig &print_config,
const PrintObjectConfig &print_object_config,
const Transform3d &object_trafo,
ModelVolumePtrs model_volumes,
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges;
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
const std::vector<float> &zs,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
@ -179,32 +161,32 @@ static std::vector<VolumeSlices> slice_volumes(
if (layer_ranges.size() > 1)
slicing_ranges.reserve(layer_ranges.size());
SliceVolumeParams params_base;
MeshSlicingParamsEx params_base;
params_base.closing_radius = float(print_object_config.slice_closing_radius.value);
params_base.extra_offset = 0;
params_base.object_trafo = object_trafo;
params_base.resolution = print_config.resolution;
params_base.trafo = object_trafo;
params_base.resolution = scaled<double>(print_config.resolution.value);
const float extra_offset = print_object_config.xy_size_compensation > 0 ? float(print_object_config.xy_size_compensation.value) : 0.f;
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_needs_slicing(*model_volume)) {
SliceVolumeParams params { params_base };
MeshSlicingParamsEx params { params_base };
if (! model_volume->is_negative_volume())
params.extra_offset = extra_ofset;
params.extra_offset = extra_offset;
if (layer_ranges.size() == 1) {
if (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
if (model_volume->is_model_part() && print_config.spiral_vase) {
auto it = std::find_first(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
[model_volume](const auto &slice){ return model_volume == slice.model_volume; });
params.mode = SlicingMode::PositiveLargestContour;
params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
// Slice the bottom layers with SlicingMode::Regular.
// This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
params.mode_below = SlicingMode::Regular;
params.mode_below = MeshSlicingParams::SlicingMode::Regular;
const PrintRegionConfig &region_config = it->region->config();
slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
for (; slicing_mode_normal_below_layer < zs.size() && zs[slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
++ slicing_mode_normal_below_layer);
params.slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
++ params.slicing_mode_normal_below_layer);
}
out.push_back({
model_volume->id(),
@ -212,7 +194,7 @@ static std::vector<VolumeSlices> slice_volumes(
});
}
} else {
assert(! spiral_vase);
assert(! print_config.spiral_vase);
slicing_ranges.clear();
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
if (layer_range.has_volume(model_volume->id()))
@ -249,7 +231,7 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
// If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
// It is up to the model designer to handle these overlaps.
const bool clip_multipart_objects,
const TriangleMeshSlicer::throw_on_cancel_callback_type &throw_on_cancel_callback)
const std::function<void()> &throw_on_cancel_callback)
{
model_volumes_sort_by_id(model_volumes);
@ -263,13 +245,13 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
if (layer_range.volume_regions.empty()) {
} else if (layer_range.volume_regions.size() == 1) {
const ModelVolume *model_volume = layer_range.volume_regions.model_volume;
const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
assert(model_volume != nullptr);
if (model_volume->is_model_part()) {
VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
auto &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
slices_dst[z_idx] = std::move(slices_src[z_idx]);
slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
}
} else {
zs_complex.reserve(zs.size());
@ -279,14 +261,14 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
bool complex = false;
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.bbox.min().z() >= z && region.bbox.max().z() <= z) {
if (region.bbox->min.z() >= z && region.bbox->max.z() <= z) {
if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
idx_first_printable_region = idx_region;
else if (idx_first_printable_region != -1) {
// Test for overlap with some other region.
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
if (region2.bbox.min().z() >= z && region2.bbox.max().z() <= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
if (region2.bbox->min.z() >= z && region2.bbox->max.z() <= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
complex = true;
break;
}
@ -312,15 +294,15 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
VolumeSlices* volume_slices;
int prev_same_region { -1 };
};
std::vector<std::vector<SliceEntry>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
std::vector<std::vector<SliceEntry>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<SliceEntry>());
std::vector<int> last_volume_idx_of_region;
for (PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
std::vector<SliceEntry> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
last_volume_idx_of_region.assign(print_object_regions.layer_ranges.all_regions.size(), -1);
for (PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions) {
last_volume_idx_of_region.assign(print_object_regions.all_regions.size(), -1);
for (const PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions) {
int region_id = region.region->print_object_region_id();
layer_range_regions_to_slices.emplace_back({ &volume_slices_find_by_id(volume_slices, region.model_volume->id()), last_volume_idx_of_region[region_id] });
layer_range_regions_to_slices.emplace_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()), last_volume_idx_of_region[region_id]);
last_volume_idx_of_region[region_id] = &region - layer_range.volume_regions.data();
}
}
@ -328,9 +310,9 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
tbb::blocked_range<size_t>(0, zs_complex.size()),
[&slices_by_region, &model_volumes, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
(const tbb::blocked_range<size_t> &range) {
float z = zs_complex[*range.begin()];
it_layer_range = lower_bound_by_predicate(print_object_regions.layer_ranges.begin(), print_object_regions.layer_ranges.end(),
[z](const PrintObjectRegions::LayerRangeRegions &lr){ lr.layer_height_range.first < z; });
float z = zs_complex[range.begin()];
auto it_layer_range = lower_bound_by_predicate(print_object_regions.layer_ranges.begin(), print_object_regions.layer_ranges.end(),
[z](const PrintObjectRegions::LayerRangeRegions &lr){ return lr.layer_height_range.first < z; });
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
// Per volume_regions slices at this Z height.
struct RegionSlice {
@ -351,13 +333,13 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first >= z && z < it_layer_range->layer_height_range.second);
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
{
SliceEntry &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
std::vector<SliceEntry> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
// Per volume_regions slices at thiz Z height.
temp_slices.clear();
temp_slices.reserve(layer_range.volume_regions.size());
for (VolumeSlices *slices : layer_range_regions_to_slices.volume_slices) {
const PrintRegion *region = layer_range.volume_regions[i].region;
temp_slices.push_back({ std::move(slices->slices[idx_z]), region ? region->print_object_region_id() : -1, slices->volume_id });
for (SliceEntry &slices : layer_range_regions_to_slices) {
const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
temp_slices.push_back({ std::move(slices.volume_slices->slices[idx_z]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
}
}
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
@ -365,16 +347,16 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
if (region.model_volume->is_modifier()) {
assert(region.parent > -1);
bool next_region_same_modifier = idx_region + 1 < temp_slices.size() && layer_range.volume_regions[idx_region + 1]->model_volume == region.model_volume;
bool next_region_same_modifier = idx_region + 1 < temp_slices.size() && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
if (next_region_same_modifier)
temp_slices[idx_region + 1] = std::move(temp_slices[idx_region]);
ExPolygons &parent_slice = temp_slices[region.parent];
ExPolygons &this_slice = temp_slices[idx_region];
RegionSlice &parent_slice = temp_slices[region.parent];
RegionSlice &this_slice = temp_slices[idx_region];
if (parent_slice.empty())
this_slice.clear();
this_slice.expolygons.clear();
else {
ExPolygons &source_slice = temp_slices[idx_region + int(next_region_same_modifier)];
this_slice = intersection_ex(parent_slice, source_slice);
RegionSlice &source_slice = temp_slices[idx_region + int(next_region_same_modifier)];
this_slice.expolygons = intersection_ex(parent_slice.expolygons, source_slice.expolygons);
}
} else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
// Clip every non-zero region preceding it.
@ -382,15 +364,14 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
if (! temp_slices[idx_region2].empty()) {
if (const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region];
! region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
temp_slices[idx_region] = diff_ex(temp_slices[idx_region], temp_slices[idx_region2]);
temp_slices[idx_region].expolygons = diff_ex(temp_slices[idx_region].expolygons, temp_slices[idx_region2].expolygons);
}
}
}
}
// Sort by region_id, push empty slices to the end.
std::sort(temp_slices.begin(), temp_slices.end());
// Remove the empty slices.
temp_slices.erase(temp_slices.begin(), std::find_first(temp_slices.begin(), temp_slices.end(), [](const auto &slice){ return slice.empty(); }));
temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.empty(); }), temp_slices.end());
// Merge slices and store them to the output.
for (int i = 0; i < temp_slices.size();) {
// Find a range of temp_slices with the same region_id.
@ -411,15 +392,15 @@ static std::vector<std::vector<ExPolygons>> slices_to_regions(
}
if (merged)
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
slices_by_region[temp_slices[i].region_id][idx_z] = std::move(expolygons);
i = j;
}
}
});
}
}
}
#if 0
// Z ranges are not applicable to modifier meshes, therefore a single volume will be found in volume_w_zrange at most once.
std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std::vector<float> &slice_zs) const
{
@ -467,7 +448,7 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
if (volume->is_modifier())
volumes.emplace_back(volume);
}
out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes);
out = this->slice_volumes(slice_zs, MeshSlicingParams::SlicingMode::Regular, volumes);
} else {
// Some modifier in this region was split to layer spans.
std::vector<char> merge;
@ -485,7 +466,7 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
for (; j < volumes_and_ranges.volumes.size() && volume_id == volumes_and_ranges.volumes[j].volume_idx; ++ j)
ranges.emplace_back(volumes_and_ranges.volumes[j].layer_height_range);
// slicing in parallel
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, SlicingMode::Regular, *model_volume);
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, MeshSlicingParams::SlicingMode::Regular, *model_volume);
// Variable this_slices could be empty if no value of slice_zs is within any of the ranges of this volume.
if (out.empty()) {
out = std::move(this_slices);
@ -515,41 +496,42 @@ std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std
return out;
}
#endif
std::string PrintObject::_fix_slicing_errors()
std::string fix_slicing_errors(LayerPtrs &layers, const std::function<void()> &throw_if_canceled)
{
// Collect layers with slicing errors.
// These layers will be fixed in parallel.
std::vector<size_t> buggy_layers;
buggy_layers.reserve(m_layers.size());
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
if (m_layers[idx_layer]->slicing_errors)
buggy_layers.reserve(layers.size());
for (size_t idx_layer = 0; idx_layer < layers.size(); ++ idx_layer)
if (layers[idx_layer]->slicing_errors)
buggy_layers.push_back(idx_layer);
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, buggy_layers.size()),
[this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
[&layers, &throw_if_canceled, &buggy_layers](const tbb::blocked_range<size_t>& range) {
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
m_print->throw_if_canceled();
throw_if_canceled();
size_t idx_layer = buggy_layers[buggy_layer_idx];
Layer *layer = m_layers[idx_layer];
Layer *layer = layers[idx_layer];
assert(layer->slicing_errors);
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
LayerRegion *layerm = layer->get_region(region_id);
// Find the first valid layer below / above the current layer.
const Surfaces *upper_surfaces = nullptr;
const Surfaces *lower_surfaces = nullptr;
for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
if (! m_layers[j]->slicing_errors) {
upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
for (size_t j = idx_layer + 1; j < layers.size(); ++ j)
if (! layers[j]->slicing_errors) {
upper_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
for (int j = int(idx_layer) - 1; j >= 0; -- j)
if (! m_layers[j]->slicing_errors) {
lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
if (! layers[j]->slicing_errors) {
lower_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
break;
}
// Collect outer contours and holes from the valid layers above & below.
@ -582,16 +564,16 @@ std::string PrintObject::_fix_slicing_errors()
layer->make_slices();
}
});
m_print->throw_if_canceled();
throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
// remove empty layers from bottom
while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) {
delete m_layers.front();
m_layers.erase(m_layers.begin());
m_layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < m_layers.size(); ++ i)
m_layers[i]->set_id(m_layers[i]->id() - 1);
while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
delete layers.front();
layers.erase(layers.begin());
layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < layers.size(); ++ i)
layers[i]->set_id(layers[i]->id() - 1);
}
return buggy_layers.empty() ? "" :
@ -599,31 +581,6 @@ std::string PrintObject::_fix_slicing_errors()
"however you might want to check the results or repair the input file and retry.\n";
}
// Simplify the sliced model, if "resolution" configuration parameter > 0.
// The simplification is problematic, because it simplifies the slices independent from each other,
// which makes the simplified discretization visible on the object surface.
void PrintObject::simplify_slices(double distance)
{
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, distance](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_idx];
for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
layer->m_regions[region_idx]->slices.simplify(distance);
{
ExPolygons simplified;
for (const ExPolygon &expoly : layer->lslices)
expoly.simplify(distance, &simplified);
layer->lslices = std::move(simplified);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
}
// Called by make_perimeters()
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
@ -642,12 +599,12 @@ void PrintObject::slice()
m_print->throw_if_canceled();
m_typed_slices = false;
this->clear_layers();
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile), m_slicing_params.raft_layers());
this->_slice();
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile));
this->slice_volumes();
m_print->throw_if_canceled();
// Fix the model.
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
std::string warning = this->_fix_slicing_errors();
std::string warning = fix_slicing_errors(m_layers, [this](){ m_print->throw_if_canceled(); });
m_print->throw_if_canceled();
if (! warning.empty())
BOOST_LOG_TRIVIAL(info) << warning;
@ -682,16 +639,17 @@ void PrintObject::slice()
void PrintObject::slice_volumes()
{
BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
bool spiral_vase = this->print()->config().spiral_vase;
auto throw_on_cancel_callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
const Print* print = this->print();
const bool spiral_vase = print->config().spiral_vase;
const auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
std::vector<float> slice_zs = zs_from_layers(m_layers);
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs,
slice_volumes(
this->print()->config(), this->config(),
this->model_object()->volumes, m_shared_regions->layer_ranges, m_center_offset, slice_zs, SlicingMode::Regular, spiral_vase, throw_on_cancel_callback),
Transform3d trafo = this->trafo();
trafo.pretranslate(Vec3d(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0));
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, *m_shared_regions, slice_zs,
slice_volumes_inner(
print->config(), this->config(), trafo,
this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback),
m_config.clip_multipart_objects,
throw_on_cancel_callback);
@ -702,6 +660,7 @@ void PrintObject::slice_volumes()
}
region_slices.clear();
#if 0
// Second clip the volumes in the order they are presented at the user interface.
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - start";
tbb::parallel_for(
@ -750,7 +709,8 @@ void PrintObject::slice_volumes()
clipped = true;
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
}
#endif
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
while (! m_layers.empty()) {
const Layer *layer = m_layers.back();
@ -864,9 +824,9 @@ void PrintObject::slice_volumes()
std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
{
size_t it_volume = this->model_object()->volumes.begin();
size_t it_volume_end = this->model_object()->volumes.end();
for (; it_volume->type() != model_volume_type && it_volume != it_volume_end; ++ it_volume) ;
auto it_volume = this->model_object()->volumes.begin();
auto it_volume_end = this->model_object()->volumes.end();
for (; (*it_volume)->type() != model_volume_type && it_volume != it_volume_end; ++ it_volume) ;
std::vector<ExPolygons> slices;
if (it_volume != it_volume_end) {
// Found at least a single support volume of model_volume_type.
@ -874,10 +834,10 @@ std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType
std::vector<char> merge_layers;
bool merge = false;
const Print *print = this->print();
auto throw_on_cancel_callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
for (; it_volume != it_volume_end; ++ it_volume; it_volume != it_volume_end)
if (it_volume->type() == model_volume_type) {
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, SlicingMode::Regular, throw_on_cancel_callback);
auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
for (; it_volume != it_volume_end; ++ it_volume)
if ((*it_volume)->type() == model_volume_type) {
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, MeshSlicingParamsEx{}, throw_on_cancel_callback);
if (slices.empty())
slices = std::move(slices2);
else if (! slices2.empty()) {
@ -896,7 +856,7 @@ std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType
}
if (merge) {
std::vector<ExPolygons*> to_merge;
to_merge.reserve(zs);
to_merge.reserve(zs.size());
for (size_t i = 0; i < zs.size(); ++ i)
if (merge_layers[i])
to_merge.emplace_back(&slices[i]);
@ -904,7 +864,7 @@ std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType
tbb::blocked_range<size_t>(0, to_merge.size()),
[&to_merge](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++ i)
to_merge[i] = union_ex(to_merge[i]);
*to_merge[i] = union_ex(*to_merge[i]);
});
}
}