Added new tech ENABLE_GCODE_VIEWER_AS_STATE -> GCodeViewer as a new application state (WIP) + fix of conflicts after merge with master

This commit is contained in:
enricoturri1966 2020-06-05 16:50:17 +02:00
commit 70a6fb0e20
19 changed files with 1209 additions and 252 deletions

View file

@ -190,6 +190,8 @@ add_library(libslic3r STATIC
Time.cpp
Time.hpp
MTUtils.hpp
VoronoiOffset.cpp
VoronoiOffset.hpp
Zipper.hpp
Zipper.cpp
MinAreaBoundingBox.hpp

View file

@ -48,15 +48,13 @@ void GCodeProcessor::apply_config(const PrintConfig& config)
size_t extruders_count = config.nozzle_diameter.values.size();
m_extruder_offsets.resize(extruders_count);
for (size_t id = 0; id < extruders_count; ++id)
{
for (size_t id = 0; id < extruders_count; ++id) {
Vec2f offset = config.extruder_offset.get_at(id).cast<float>();
m_extruder_offsets[id] = Vec3f(offset(0), offset(1), 0.0f);
}
m_extruders_color.resize(extruders_count);
for (size_t id = 0; id < extruders_count; ++id)
{
for (size_t id = 0; id < extruders_count; ++id) {
m_extruders_color[id] = static_cast<unsigned int>(id);
}
}
@ -104,8 +102,7 @@ void GCodeProcessor::process_gcode_line(const GCodeReader::GCodeLine& line)
m_start_position = m_end_position;
std::string cmd = line.cmd();
if (cmd.length() > 1)
{
if (cmd.length() > 1) {
// process command lines
switch (::toupper(cmd[0]))
{
@ -163,8 +160,7 @@ void GCodeProcessor::process_tags(const std::string& comment)
{
// extrusion role tag
size_t pos = comment.find(Extrusion_Role_Tag);
if (pos != comment.npos)
{
if (pos != comment.npos) {
try
{
int role = std::stoi(comment.substr(pos + Extrusion_Role_Tag.length()));
@ -185,8 +181,7 @@ void GCodeProcessor::process_tags(const std::string& comment)
// width tag
pos = comment.find(Width_Tag);
if (pos != comment.npos)
{
if (pos != comment.npos) {
try
{
m_width = std::stof(comment.substr(pos + Width_Tag.length()));
@ -200,8 +195,7 @@ void GCodeProcessor::process_tags(const std::string& comment)
// height tag
pos = comment.find(Height_Tag);
if (pos != comment.npos)
{
if (pos != comment.npos) {
try
{
m_height = std::stof(comment.substr(pos + Height_Tag.length()));
@ -215,8 +209,7 @@ void GCodeProcessor::process_tags(const std::string& comment)
// mm3 per mm tag
pos = comment.find(Mm3_Per_Mm_Tag);
if (pos != comment.npos)
{
if (pos != comment.npos) {
try
{
m_mm3_per_mm = std::stof(comment.substr(pos + Mm3_Per_Mm_Tag.length()));
@ -230,8 +223,7 @@ void GCodeProcessor::process_tags(const std::string& comment)
// color change tag
pos = comment.find(Color_Change_Tag);
if (pos != comment.npos)
{
if (pos != comment.npos) {
pos = comment.find_last_of(",T");
try
{
@ -258,16 +250,14 @@ void GCodeProcessor::process_tags(const std::string& comment)
// pause print tag
pos = comment.find(Pause_Print_Tag);
if (pos != comment.npos)
{
if (pos != comment.npos) {
store_move_vertex(EMoveType::Pause_Print);
return;
}
// custom code tag
pos = comment.find(Custom_Code_Tag);
if (pos != comment.npos)
{
if (pos != comment.npos) {
store_move_vertex(EMoveType::Custom_GCode);
return;
}
@ -281,8 +271,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
if (axis == E)
is_relative |= (m_e_local_positioning_type == EPositioningType::Relative);
if (lineG1.has(Slic3r::Axis(axis)))
{
if (lineG1.has(Slic3r::Axis(axis))) {
float lengthsScaleFactor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f;
float ret = lineG1.value(Slic3r::Axis(axis)) * lengthsScaleFactor;
return is_relative ? m_start_position[axis] + ret : m_origin[axis] + ret;
@ -294,32 +283,43 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
auto move_type = [this](const AxisCoords& delta_pos) {
EMoveType type = EMoveType::Noop;
if (delta_pos[E] < 0.0f)
{
if (delta_pos[E] < 0.0f) {
if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f)
type = EMoveType::Travel;
else
type = EMoveType::Retract;
}
else if (delta_pos[E] > 0.0f)
{
} else if (delta_pos[E] > 0.0f) {
if (delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f && delta_pos[Z] == 0.0f)
type = EMoveType::Unretract;
else if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f))
type = EMoveType::Extrude;
}
else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f)
} else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f)
type = EMoveType::Travel;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#if ENABLE_GCODE_VIEWER_AS_STATE
if (type == EMoveType::Extrude && (m_width == 0.0f || m_height == 0.0f))
{
if (m_extrusion_role != erCustom)
{
m_width = 0.5f;
m_height = 0.5f;
}
type = EMoveType::Travel;
}
#else
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
if (type == EMoveType::Extrude && (m_width == 0.0f || m_height == 0.0f || !is_valid_extrusion_role(m_extrusion_role)))
type = EMoveType::Travel;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#endif // ENABLE_GCODE_VIEWER_AS_STATE
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
return type;
};
// updates axes positions from line
for (unsigned char a = X; a <= E; ++a)
{
for (unsigned char a = X; a <= E; ++a) {
m_end_position[a] = absolute_position((Axis)a, line);
}
@ -330,8 +330,7 @@ void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line)
// calculates movement deltas
float max_abs_delta = 0.0f;
AxisCoords delta_pos;
for (unsigned char a = X; a <= E; ++a)
{
for (unsigned char a = X; a <= E; ++a) {
delta_pos[a] = m_end_position[a] - m_start_position[a];
max_abs_delta = std::max(max_abs_delta, std::abs(delta_pos[a]));
}
@ -383,38 +382,32 @@ void GCodeProcessor::process_G92(const GCodeReader::GCodeLine& line)
float lengthsScaleFactor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f;
bool anyFound = false;
if (line.has_x())
{
if (line.has_x()) {
m_origin[X] = m_end_position[X] - line.x() * lengthsScaleFactor;
anyFound = true;
}
if (line.has_y())
{
if (line.has_y()) {
m_origin[Y] = m_end_position[Y] - line.y() * lengthsScaleFactor;
anyFound = true;
}
if (line.has_z())
{
if (line.has_z()) {
m_origin[Z] = m_end_position[Z] - line.z() * lengthsScaleFactor;
anyFound = true;
}
if (line.has_e())
{
if (line.has_e()) {
// extruder coordinate can grow to the point where its float representation does not allow for proper addition with small increments,
// we set the value taken from the G92 line as the new current position for it
m_end_position[E] = line.e() * lengthsScaleFactor;
anyFound = true;
}
if (!anyFound && !line.has_unknown_axis())
{
if (!anyFound && !line.has_unknown_axis()) {
// The G92 may be called for axes that PrusaSlicer does not recognize, for example see GH issue #3510,
// where G92 A0 B0 is called although the extruder axis is till E.
for (unsigned char a = X; a <= E; ++a)
{
for (unsigned char a = X; a <= E; ++a) {
m_origin[a] = m_end_position[a];
}
}
@ -432,8 +425,7 @@ void GCodeProcessor::process_M83(const GCodeReader::GCodeLine& line)
void GCodeProcessor::process_M106(const GCodeReader::GCodeLine& line)
{
if (!line.has('P'))
{
if (!line.has('P')) {
// The absence of P means the print cooling fan, so ignore anything else.
float new_fan_speed;
if (line.has_value('S', new_fan_speed))
@ -502,8 +494,7 @@ void GCodeProcessor::process_M401(const GCodeReader::GCodeLine& line)
if (m_flavor != gcfRepetier)
return;
for (unsigned char a = 0; a <= 3; ++a)
{
for (unsigned char a = 0; a <= 3; ++a) {
m_cached_position.position[a] = m_start_position[a];
}
m_cached_position.feedrate = m_feedrate;
@ -521,10 +512,8 @@ void GCodeProcessor::process_M402(const GCodeReader::GCodeLine& line)
bool has_xyz = !(line.has_x() || line.has_y() || line.has_z());
float p = FLT_MAX;
for (unsigned char a = X; a <= Z; ++a)
{
if (has_xyz || line.has(a))
{
for (unsigned char a = X; a <= Z; ++a) {
if (has_xyz || line.has(a)) {
p = m_cached_position.position[a];
if (p != FLT_MAX)
m_start_position[a] = p;
@ -550,18 +539,15 @@ void GCodeProcessor::process_T(const GCodeReader::GCodeLine& line)
void GCodeProcessor::process_T(const std::string& command)
{
if (command.length() > 1)
{
if (command.length() > 1) {
try
{
unsigned char id = static_cast<unsigned char>(std::stoi(command.substr(1)));
if (m_extruder_id != id)
{
if (m_extruder_id != id) {
unsigned char extruders_count = static_cast<unsigned char>(m_extruder_offsets.size());
if (id >= extruders_count)
BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid toolchange, maybe from a custom gcode.";
else
{
else {
m_extruder_id = id;
m_cp_color.current = m_extruders_color[id];
}

View file

@ -252,8 +252,16 @@ bool arrange(
// output
Pointfs &positions);
class VoronoiDiagram : public boost::polygon::voronoi_diagram<double> {
public:
typedef double coord_type;
typedef boost::polygon::point_data<coordinate_type> point_type;
typedef boost::polygon::segment_data<coordinate_type> segment_type;
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
};
class MedialAxis {
public:
public:
Lines lines;
const ExPolygon* expolygon;
double max_width;
@ -263,14 +271,8 @@ class MedialAxis {
void build(ThickPolylines* polylines);
void build(Polylines* polylines);
private:
class VD : public boost::polygon::voronoi_diagram<double> {
public:
typedef double coord_type;
typedef boost::polygon::point_data<coordinate_type> point_type;
typedef boost::polygon::segment_data<coordinate_type> segment_type;
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
};
private:
using VD = VoronoiDiagram;
VD vd;
std::set<const VD::edge_type*> edges, valid_edges;
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;

View file

@ -48,10 +48,16 @@
// Enable smoothing of objects normals
#define ENABLE_SMOOTH_NORMALS (0 && ENABLE_2_3_0_ALPHA1)
// Enable error logging for OpenGL calls when SLIC3R_LOGLEVEL >= 5
#define ENABLE_OPENGL_ERROR_LOGGING (1 && ENABLE_2_3_0_ALPHA1)
// Enable G-Code viewer
#define ENABLE_GCODE_VIEWER (1 && ENABLE_2_3_0_ALPHA1)
#define ENABLE_GCODE_VIEWER_STATISTICS (0 && ENABLE_GCODE_VIEWER)
#define ENABLE_GCODE_VIEWER_SHADERS_EDITOR (1 && ENABLE_GCODE_VIEWER)
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#define ENABLE_GCODE_VIEWER_AS_STATE (1 && ENABLE_GCODE_VIEWER)
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#endif // _prusaslicer_technologies_h_

View file

@ -0,0 +1,393 @@
// Polygon offsetting code inspired by OpenVoronoi by Anders Wallin
// https://github.com/aewallin/openvoronoi
// This offsetter uses results of boost::polygon Voronoi.
#include "VoronoiOffset.hpp"
#include <cmath>
namespace Slic3r {
using VD = Geometry::VoronoiDiagram;
namespace detail {
// Intersect a circle with a ray, return the two parameters
double first_circle_segment_intersection_parameter(
const Vec2d &center, const double r, const Vec2d &pt, const Vec2d &v)
{
const Vec2d d = pt - center;
#ifndef NDEBUG
double d0 = (pt - center).norm();
double d1 = (pt + v - center).norm();
assert(r < std::max(d0, d1) + EPSILON);
#endif /* NDEBUG */
const double a = v.squaredNorm();
const double b = 2. * d.dot(v);
const double c = d.squaredNorm() - r * r;
std::pair<int, std::array<double, 2>> out;
double u = b * b - 4. * a * c;
assert(u > - EPSILON);
double t;
if (u <= 0) {
// Degenerate to a single closest point.
t = - b / (2. * a);
assert(t >= - EPSILON && t <= 1. + EPSILON);
return Slic3r::clamp(0., 1., t);
} else {
u = sqrt(u);
out.first = 2;
double t0 = (- b - u) / (2. * a);
double t1 = (- b + u) / (2. * a);
// One of the intersections shall be found inside the segment.
assert((t0 >= - EPSILON && t0 <= 1. + EPSILON) || (t1 >= - EPSILON && t1 <= 1. + EPSILON));
if (t1 < 0.)
return 0.;
if (t0 > 1.)
return 1.;
return (t0 > 0.) ? t0 : t1;
}
}
Vec2d voronoi_edge_offset_point(
const VD &vd,
const Lines &lines,
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
const std::vector<double> &vertex_dist,
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
// For a parabolic segment the distance may be smaller than the distance of the two end points.
const std::vector<double> &edge_dist,
// Edge for which to calculate the offset point. If the distance towards the input polygon
// is not monotonical, pick the offset point closer to edge.vertex0().
const VD::edge_type &edge,
// Distance from the input polygon along the edge.
const double offset_distance)
{
const VD::vertex_type *v0 = edge.vertex0();
const VD::vertex_type *v1 = edge.vertex1();
const VD::cell_type *cell = edge.cell();
const VD::cell_type *cell2 = edge.twin()->cell();
const Line &line0 = lines[cell->source_index()];
const Line &line1 = lines[cell2->source_index()];
if (v0 == nullptr || v1 == nullptr) {
assert(edge.is_infinite());
assert(v0 != nullptr || v1 != nullptr);
// Offsetting on an unconstrained edge.
assert(offset_distance > vertex_dist[(v0 ? v0 : v1) - &vd.vertices().front()] - EPSILON);
Vec2d pt, dir;
double t;
if (cell->contains_point() && cell2->contains_point()) {
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
// Direction vector of this unconstrained Voronoi edge.
dir = Vec2d(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
if (v0 == nullptr) {
v0 = v1;
dir = - dir;
}
pt = Vec2d(v0->x(), v0->y());
t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
} else {
// Infinite edges could not be created by two segment sites.
assert(cell->contains_point() != cell2->contains_point());
// Linear edge goes through the endpoint of a segment.
assert(edge.is_linear());
assert(edge.is_secondary());
const Line &line = cell->contains_segment() ? line0 : line1;
const Point &ipt = cell->contains_segment() ?
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
assert(line.a == ipt || line.b == ipt);
pt = Vec2d(ipt.x(), ipt.y());
dir = Vec2d(line.a.y() - line.b.y(), line.b.x() - line.a.x());
assert(dir.norm() > 0.);
t = offset_distance / dir.norm();
if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
t = - t;
}
return pt + t * dir;
} else {
// Constrained edge.
Vec2d p0(v0->x(), v0->y());
Vec2d p1(v1->x(), v1->y());
double d0 = vertex_dist[v0 - &vd.vertices().front()];
double d1 = vertex_dist[v1 - &vd.vertices().front()];
if (cell->contains_segment() && cell2->contains_segment()) {
// This edge is a bisector of two line segments. Distance to the input polygon increases/decreases monotonically.
double ddif = d1 - d0;
assert(offset_distance > std::min(d0, d1) - EPSILON && offset_distance < std::max(d0, d1) + EPSILON);
double t = (ddif == 0) ? 0. : clamp(0., 1., (offset_distance - d0) / ddif);
return Slic3r::lerp(p0, p1, t);
} else {
// One cell contains a point, the other contains an edge or a point.
assert(cell->contains_point() || cell2->contains_point());
const Point &ipt = cell->contains_point() ?
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
double t = detail::first_circle_segment_intersection_parameter(
Vec2d(ipt.x(), ipt.y()), offset_distance, p0, p1 - p0);
return Slic3r::lerp(p0, p1, t);
}
}
}
};
Polygons voronoi_offset(const VD &vd, const Lines &lines, double offset_distance, double discretization_error)
{
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
std::vector<double> vertex_dist(vd.num_vertices(), std::numeric_limits<double>::max());
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
// For a parabolic segment the distance may be smaller than the distance of the two end points.
std::vector<double> edge_dist(vd.num_edges(), std::numeric_limits<double>::max());
// Calculate minimum distance of input polygons to voronoi vertices and voronoi edges.
for (const VD::edge_type &edge : vd.edges()) {
const VD::vertex_type *v0 = edge.vertex0();
const VD::vertex_type *v1 = edge.vertex1();
const VD::cell_type *cell = edge.cell();
const VD::cell_type *cell2 = edge.twin()->cell();
const Line &line0 = lines[cell->source_index()];
const Line &line1 = lines[cell2->source_index()];
double d0, d1, dmin;
if (v0 == nullptr || v1 == nullptr) {
assert(edge.is_infinite());
if (cell->contains_point() && cell2->contains_point()) {
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
d0 = d1 = std::numeric_limits<double>::max();
if (v0 == nullptr && v1 == nullptr) {
dmin = (pt1.cast<double>() - pt0.cast<double>()).norm();
} else {
Vec2d pt((pt0 + pt1).cast<double>() * 0.5);
Vec2d dir(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
Vec2d pt0d(pt0.x(), pt0.y());
if (v0) {
Vec2d a(v0->x(), v0->y());
d0 = (a - pt0d).norm();
dmin = ((a - pt).dot(dir) < 0.) ? (a - pt0d).norm() : d0;
vertex_dist[v0 - &vd.vertices().front()] = d0;
} else {
Vec2d a(v1->x(), v1->y());
d1 = (a - pt0d).norm();
dmin = ((a - pt).dot(dir) < 0.) ? (a - pt0d).norm() : d1;
vertex_dist[v1 - &vd.vertices().front()] = d1;
}
}
} else {
// Infinite edges could not be created by two segment sites.
assert(cell->contains_point() != cell2->contains_point());
// Linear edge goes through the endpoint of a segment.
assert(edge.is_linear());
assert(edge.is_secondary());
#ifndef NDEBUG
if (cell->contains_segment()) {
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
assert((pt1.x() == line0.a.x() && pt1.y() == line0.a.y()) ||
(pt1.x() == line0.b.x() && pt1.y() == line0.b.y()));
} else {
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
assert((pt0.x() == line1.a.x() && pt0.y() == line1.a.y()) ||
(pt0.x() == line1.b.x() && pt0.y() == line1.b.y()));
}
const Point &pt = cell->contains_segment() ?
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
#endif /* NDEBUG */
if (v0) {
assert((Point(v0->x(), v0->y()) - pt).cast<double>().norm() < SCALED_EPSILON);
d0 = dmin = 0.;
vertex_dist[v0 - &vd.vertices().front()] = d0;
} else {
assert((Point(v1->x(), v1->y()) - pt).cast<double>().norm() < SCALED_EPSILON);
d1 = dmin = 0.;
vertex_dist[v1 - &vd.vertices().front()] = d1;
}
}
} else {
// Finite edge has valid points at both sides.
if (cell->contains_segment() && cell2->contains_segment()) {
// This edge is a bisector of two line segments. Project v0, v1 onto one of the line segments.
Vec2d pt(line0.a.cast<double>());
Vec2d dir(line0.b.cast<double>() - pt);
Vec2d vec0 = Vec2d(v0->x(), v0->y()) - pt;
Vec2d vec1 = Vec2d(v1->x(), v1->y()) - pt;
double l2 = dir.squaredNorm();
assert(l2 > 0.);
d0 = (dir * (vec0.dot(dir) / l2) - vec0).norm();
d1 = (dir * (vec1.dot(dir) / l2) - vec1).norm();
dmin = std::min(d0, d1);
} else {
assert(cell->contains_point() || cell2->contains_point());
const Point &pt0 = cell->contains_point() ?
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
// Project p0 to line segment <v0, v1>.
Vec2d p0(v0->x(), v0->y());
Vec2d p1(v1->x(), v1->y());
Vec2d px(pt0.x(), pt0.y());
Vec2d v = p1 - p0;
d0 = (p0 - px).norm();
d1 = (p1 - px).norm();
double t = v.dot(px - p0);
double l2 = v.squaredNorm();
if (t > 0. && t < l2) {
// Foot point on the line segment.
Vec2d foot = p0 + (t / l2) * v;
dmin = (foot - px).norm();
} else
dmin = std::min(d0, d1);
}
vertex_dist[v0 - &vd.vertices().front()] = d0;
vertex_dist[v1 - &vd.vertices().front()] = d1;
}
edge_dist[&edge - &vd.edges().front()] = dmin;
}
// Mark cells intersected by the offset curve.
std::vector<unsigned char> seed_cells(vd.num_cells(), false);
for (const VD::cell_type &cell : vd.cells()) {
const VD::edge_type *first_edge = cell.incident_edge();
const VD::edge_type *edge = first_edge;
do {
double dmin = edge_dist[edge - &vd.edges().front()];
double dmax = std::numeric_limits<double>::max();
const VD::vertex_type *v0 = edge->vertex0();
const VD::vertex_type *v1 = edge->vertex1();
if (v0 != nullptr)
dmax = vertex_dist[v0 - &vd.vertices().front()];
if (v1 != nullptr)
dmax = std::max(dmax, vertex_dist[v1 - &vd.vertices().front()]);
if (offset_distance >= dmin && offset_distance <= dmax) {
// This cell is being intersected by the offset curve.
seed_cells[&cell - &vd.cells().front()] = true;
break;
}
edge = edge->next();
} while (edge != first_edge);
}
auto edge_dir = [&vd, &vertex_dist, &edge_dist, offset_distance](const VD::edge_type *edge) {
const VD::vertex_type *v0 = edge->vertex0();
const VD::vertex_type *v1 = edge->vertex1();
double d0 = v0 ? vertex_dist[v0 - &vd.vertices().front()] : std::numeric_limits<double>::max();
double d1 = v1 ? vertex_dist[v1 - &vd.vertices().front()] : std::numeric_limits<double>::max();
if (d0 < offset_distance && offset_distance < d1)
return true;
else if (d1 < offset_distance && offset_distance < d0)
return false;
else {
assert(false);
return false;
}
};
/// \brief starting at e, find the next edge on the face that brackets t
///
/// we can be in one of two modes.
/// if direction==false then we are looking for an edge where src_t < t < trg_t
/// if direction==true we are looning for an edge where trg_t < t < src_t
auto next_offset_edge =
[&vd, &vertex_dist, &edge_dist, offset_distance]
(const VD::edge_type *start_edge, bool direction) -> const VD::edge_type* {
const VD::edge_type *edge = start_edge;
do {
const VD::vertex_type *v0 = edge->vertex0();
const VD::vertex_type *v1 = edge->vertex1();
double d0 = v0 ? vertex_dist[v0 - &vd.vertices().front()] : std::numeric_limits<double>::max();
double d1 = v1 ? vertex_dist[v1 - &vd.vertices().front()] : std::numeric_limits<double>::max();
if (direction ? (d1 < offset_distance && offset_distance < d0) : (d0 < offset_distance && offset_distance < d1))
return edge;
edge = edge->next();
} while (edge != start_edge);
assert(false);
return nullptr;
};
#ifndef NDEBUG
auto dist_to_site = [&lines](const VD::cell_type &cell, const Vec2d &point) {
const Line &line = lines[cell.source_index()];
return cell.contains_point() ?
(((cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line.a : line.b).cast<double>() - point).norm() :
line.distance_to(point.cast<coord_t>());
};
#endif /* NDEBUG */
// Track the offset curves.
Polygons out;
double angle_step = 2. * acos((offset_distance - discretization_error) / offset_distance);
double sin_threshold = sin(angle_step) + EPSILON;
for (size_t seed_cell_idx = 0; seed_cell_idx < vd.num_cells(); ++ seed_cell_idx)
if (seed_cells[seed_cell_idx]) {
seed_cells[seed_cell_idx] = false;
// Initial direction should not matter, an offset curve shall intersect a cell at least at two points
// (if it is not just touching the cell at a single vertex), and such two intersection points shall have
// opposite direction.
bool direction = false;
// the first edge on the start-face
const VD::cell_type &cell = vd.cells()[seed_cell_idx];
const VD::edge_type *start_edge = next_offset_edge(cell.incident_edge(), direction);
assert(start_edge->cell() == &cell);
const VD::edge_type *edge = start_edge;
Polygon poly;
do {
direction = edge_dir(edge);
// find the next edge
const VD::edge_type *next_edge = next_offset_edge(edge->next(), direction);
//std::cout << "offset-output: "; print_edge(edge); std::cout << " to "; print_edge(next_edge); std::cout << "\n";
// Interpolate a circular segment or insert a linear segment between edge and next_edge.
const VD::cell_type *cell = edge->cell();
Vec2d p1 = detail::voronoi_edge_offset_point(vd, lines, vertex_dist, edge_dist, *edge, offset_distance);
Vec2d p2 = detail::voronoi_edge_offset_point(vd, lines, vertex_dist, edge_dist, *next_edge, offset_distance);
#ifndef NDEBUG
{
double err = dist_to_site(*cell, p1) - offset_distance;
assert(std::abs(err) < SCALED_EPSILON);
err = dist_to_site(*cell, p2) - offset_distance;
assert(std::abs(err) < SCALED_EPSILON);
}
#endif /* NDEBUG */
if (cell->contains_point()) {
// Discretize an arc from p1 to p2 with radius = offset_distance and discretization_error.
// The arc should cover angle < PI.
//FIXME we should be able to produce correctly oriented output curves based on the first edge taken!
const Line &line0 = lines[cell->source_index()];
const Vec2d &center = ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b).cast<double>();
const Vec2d v1 = p1 - center;
const Vec2d v2 = p2 - center;
double orient = cross2(v1, v2);
double orient_norm = v1.norm() * v2.norm();
bool ccw = orient > 0;
bool obtuse = v1.dot(v2) < 0.;
if (! ccw)
orient = - orient;
assert(orient != 0.);
if (obtuse || orient > orient_norm * sin_threshold) {
// Angle is bigger than the threshold, therefore the arc will be discretized.
double angle = asin(orient / orient_norm);
if (obtuse)
angle = M_PI - angle;
size_t n_steps = size_t(ceil(angle / angle_step));
double astep = angle / n_steps;
if (! ccw)
astep *= -1.;
double a = astep;
for (size_t i = 1; i < n_steps; ++ i, a += astep) {
double c = cos(a);
double s = sin(a);
Vec2d p = center + Vec2d(c * v1.x() - s * v1.y(), s * v1.x() + c * v1.y());
poly.points.emplace_back(Point(coord_t(p.x()), coord_t(p.y())));
}
}
}
poly.points.emplace_back(Point(coord_t(p2.x()), coord_t(p2.y())));
// although we may revisit current_face (if it is non-convex), it seems safe to mark it "done" here.
seed_cells[cell - &vd.cells().front()] = false;
edge = next_edge->twin();
} while (edge != start_edge);
out.emplace_back(std::move(poly));
}
return out;
}
} // namespace Slic3r

View file

@ -0,0 +1,14 @@
#ifndef slic3r_VoronoiOffset_hpp_
#define slic3r_VoronoiOffset_hpp_
#include "libslic3r.h"
#include "Geometry.hpp"
namespace Slic3r {
Polygons voronoi_offset(const Geometry::VoronoiDiagram &vd, const Lines &lines, double offset_distance, double discretization_error);
} // namespace Slic3r
#endif // slic3r_VoronoiOffset_hpp_