mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-12 01:07:57 -06:00
Merge remote-tracking branch 'origin/feature_arrange_with_libnest2d' into dev
# Conflicts: # xs/src/slic3r/AppController.cpp
This commit is contained in:
commit
6e2ed48e5a
30 changed files with 3273 additions and 1687 deletions
|
@ -99,54 +99,55 @@ namespace bgi = boost::geometry::index;
|
|||
|
||||
using SpatElement = std::pair<Box, unsigned>;
|
||||
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
|
||||
template<class TBin>
|
||||
using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
|
||||
|
||||
const double BIG_ITEM_TRESHOLD = 0.02;
|
||||
|
||||
Box boundingBox(const Box& pilebb, const Box& ibb ) {
|
||||
auto& pminc = pilebb.minCorner();
|
||||
auto& pmaxc = pilebb.maxCorner();
|
||||
auto& iminc = ibb.minCorner();
|
||||
auto& imaxc = ibb.maxCorner();
|
||||
PointImpl minc, maxc;
|
||||
|
||||
setX(minc, std::min(getX(pminc), getX(iminc)));
|
||||
setY(minc, std::min(getY(pminc), getY(iminc)));
|
||||
|
||||
setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
|
||||
setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
|
||||
return Box(minc, maxc);
|
||||
}
|
||||
|
||||
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
||||
objfunc(const PointImpl& bincenter,
|
||||
double /*bin_area*/,
|
||||
ShapeLike::Shapes<PolygonImpl>& pile, // The currently arranged pile
|
||||
double /*pile_area*/,
|
||||
const shapelike::Shapes<PolygonImpl>& merged_pile,
|
||||
const Box& pilebb,
|
||||
const ItemGroup& items,
|
||||
const Item &item,
|
||||
double bin_area,
|
||||
double norm, // A norming factor for physical dimensions
|
||||
std::vector<double>& areacache, // pile item areas will be cached
|
||||
// a spatial index to quickly get neighbors of the candidate item
|
||||
SpatIndex& spatindex
|
||||
const SpatIndex& spatindex,
|
||||
const ItemGroup& remaining
|
||||
)
|
||||
{
|
||||
using pl = PointLike;
|
||||
using sl = ShapeLike;
|
||||
using Coord = TCoord<PointImpl>;
|
||||
|
||||
static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||
static const double ROUNDNESS_RATIO = 0.5;
|
||||
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
|
||||
|
||||
// If a new bin has been created:
|
||||
if(pile.size() < areacache.size()) {
|
||||
areacache.clear();
|
||||
spatindex.clear();
|
||||
}
|
||||
|
||||
// We must fill the caches:
|
||||
int idx = 0;
|
||||
for(auto& p : pile) {
|
||||
if(idx == areacache.size()) {
|
||||
areacache.emplace_back(sl::area(p));
|
||||
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
|
||||
spatindex.insert({sl::boundingBox(p), idx});
|
||||
}
|
||||
|
||||
idx++;
|
||||
}
|
||||
auto isBig = [bin_area](double a) {
|
||||
return a/bin_area > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
// Candidate item bounding box
|
||||
auto ibb = item.boundingBox();
|
||||
auto ibb = sl::boundingBox(item.transformedShape());
|
||||
|
||||
// Calculate the full bounding box of the pile with the candidate item
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto fullbb = ShapeLike::boundingBox(pile);
|
||||
pile.pop_back();
|
||||
auto fullbb = boundingBox(pilebb, ibb);
|
||||
|
||||
// The bounding box of the big items (they will accumulate in the center
|
||||
// of the pile
|
||||
|
@ -157,19 +158,11 @@ objfunc(const PointImpl& bincenter,
|
|||
boost::geometry::convert(boostbb, bigbb);
|
||||
}
|
||||
|
||||
// The size indicator of the candidate item. This is not the area,
|
||||
// but almost...
|
||||
double item_normarea = normarea(item.area());
|
||||
|
||||
// Will hold the resulting score
|
||||
double score = 0;
|
||||
|
||||
if(item_normarea > BIG_ITEM_TRESHOLD) {
|
||||
if(isBig(item.area())) {
|
||||
// This branch is for the bigger items..
|
||||
// Here we will use the closest point of the item bounding box to
|
||||
// the already arranged pile. So not the bb center nor the a choosen
|
||||
// corner but whichever is the closest to the center. This will
|
||||
// prevent some unwanted strange arrangements.
|
||||
|
||||
auto minc = ibb.minCorner(); // bottom left corner
|
||||
auto maxc = ibb.maxCorner(); // top right corner
|
||||
|
@ -192,46 +185,62 @@ objfunc(const PointImpl& bincenter,
|
|||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
double density = 0;
|
||||
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item aligned with
|
||||
// its neighbors. We will check the aligment with all neighbors and
|
||||
// return the score for the best alignment. So it is enough for the
|
||||
// candidate to be aligned with only one item.
|
||||
auto alignment_score = std::numeric_limits<double>::max();
|
||||
if(remaining.empty()) {
|
||||
|
||||
auto& trsh = item.transformedShape();
|
||||
auto mp = merged_pile;
|
||||
mp.emplace_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
|
||||
auto querybb = item.boundingBox();
|
||||
placers::EdgeCache<PolygonImpl> ec(chull);
|
||||
|
||||
// Query the spatial index for the neigbours
|
||||
std::vector<SpatElement> result;
|
||||
spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
|
||||
double circ = ec.circumference() / norm;
|
||||
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
|
||||
score = 0.5*circ + 0.5*bcirc;
|
||||
|
||||
for(auto& e : result) { // now get the score for the best alignment
|
||||
auto idx = e.second;
|
||||
auto& p = pile[idx];
|
||||
auto parea = areacache[idx];
|
||||
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
} else {
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item aligned with
|
||||
// its neighbors. We will check the alignment with all neighbors and
|
||||
// return the score for the best alignment. So it is enough for the
|
||||
// candidate to be aligned with only one item.
|
||||
auto alignment_score = 1.0;
|
||||
|
||||
if(ascore < alignment_score) alignment_score = ascore;
|
||||
density = (fullbb.width()*fullbb.height()) / (norm*norm);
|
||||
auto querybb = item.boundingBox();
|
||||
|
||||
// Query the spatial index for the neighbors
|
||||
std::vector<SpatElement> result;
|
||||
result.reserve(spatindex.size());
|
||||
spatindex.query(bgi::intersects(querybb),
|
||||
std::back_inserter(result));
|
||||
|
||||
for(auto& e : result) { // now get the score for the best alignment
|
||||
auto idx = e.second;
|
||||
Item& p = items[idx];
|
||||
auto parea = p.area();
|
||||
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
|
||||
auto bb = boundingBox(p.boundingBox(), ibb);
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
|
||||
if(ascore < alignment_score) alignment_score = ascore;
|
||||
}
|
||||
}
|
||||
|
||||
// The final mix of the score is the balance between the distance
|
||||
// from the full pile center, the pack density and the
|
||||
// alignment with the neighbors
|
||||
if(result.empty())
|
||||
score = 0.5 * dist + 0.5 * density;
|
||||
else
|
||||
score = 0.45 * dist + 0.45 * density + 0.1 * alignment_score;
|
||||
}
|
||||
|
||||
// The final mix of the score is the balance between the distance
|
||||
// from the full pile center, the pack density and the
|
||||
// alignment with the neigbours
|
||||
auto C = 0.33;
|
||||
score = C * dist + C * density + C * alignment_score;
|
||||
|
||||
} else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
|
||||
// If there are no big items, only small, we should consider the
|
||||
// density here as well to not get silly results
|
||||
} else if( !isBig(item.area()) && spatindex.empty()) {
|
||||
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
|
||||
// Bindist is surprisingly enough...
|
||||
score = bindist;
|
||||
} else {
|
||||
// Here there are the small items that should be placed around the
|
||||
// already processed bigger items.
|
||||
|
@ -259,7 +268,9 @@ void fillConfig(PConf& pcfg) {
|
|||
|
||||
// The accuracy of optimization.
|
||||
// Goes from 0.0 to 1.0 and scales performance as well
|
||||
pcfg.accuracy = 0.6f;
|
||||
pcfg.accuracy = 0.65f;
|
||||
|
||||
pcfg.parallel = true;
|
||||
}
|
||||
|
||||
template<class TBin>
|
||||
|
@ -268,31 +279,62 @@ class AutoArranger {};
|
|||
template<class TBin>
|
||||
class _ArrBase {
|
||||
protected:
|
||||
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
|
||||
|
||||
using Placer = TPacker<TBin>;
|
||||
using Selector = FirstFitSelection;
|
||||
using Packer = Arranger<Placer, Selector>;
|
||||
using Packer = Nester<Placer, Selector>;
|
||||
using PConfig = typename Packer::PlacementConfig;
|
||||
using Distance = TCoord<PointImpl>;
|
||||
using Pile = ShapeLike::Shapes<PolygonImpl>;
|
||||
using Pile = sl::Shapes<PolygonImpl>;
|
||||
|
||||
Packer pck_;
|
||||
PConfig pconf_; // Placement configuration
|
||||
double bin_area_;
|
||||
std::vector<double> areacache_;
|
||||
SpatIndex rtree_;
|
||||
double norm_;
|
||||
Pile merged_pile_;
|
||||
Box pilebb_;
|
||||
ItemGroup remaining_;
|
||||
ItemGroup items_;
|
||||
public:
|
||||
|
||||
_ArrBase(const TBin& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind):
|
||||
pck_(bin, dist), bin_area_(ShapeLike::area<PolygonImpl>(bin))
|
||||
pck_(bin, dist), bin_area_(sl::area(bin)),
|
||||
norm_(std::sqrt(sl::area(bin)))
|
||||
{
|
||||
fillConfig(pconf_);
|
||||
|
||||
pconf_.before_packing =
|
||||
[this](const Pile& merged_pile, // merged pile
|
||||
const ItemGroup& items, // packed items
|
||||
const ItemGroup& remaining) // future items to be packed
|
||||
{
|
||||
items_ = items;
|
||||
merged_pile_ = merged_pile;
|
||||
remaining_ = remaining;
|
||||
|
||||
pilebb_ = sl::boundingBox(merged_pile);
|
||||
|
||||
rtree_.clear();
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
auto isBig = [this](double a) {
|
||||
return a/bin_area_ > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
for(unsigned idx = 0; idx < items.size(); ++idx) {
|
||||
Item& itm = items[idx];
|
||||
if(isBig(itm.area())) rtree_.insert({itm.boundingBox(), idx});
|
||||
}
|
||||
};
|
||||
|
||||
pck_.progressIndicator(progressind);
|
||||
}
|
||||
|
||||
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
|
||||
areacache_.clear();
|
||||
return pck_.arrangeIndexed(std::forward<Args>(args)...);
|
||||
rtree_.clear();
|
||||
return pck_.executeIndexed(std::forward<Args>(args)...);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -304,22 +346,69 @@ public:
|
|||
std::function<void(unsigned)> progressind):
|
||||
_ArrBase<Box>(bin, dist, progressind)
|
||||
{
|
||||
pconf_.object_function = [this, bin] (
|
||||
Pile& pile,
|
||||
const Item &item,
|
||||
double pile_area,
|
||||
double norm,
|
||||
double /*penality*/) {
|
||||
|
||||
auto result = objfunc(bin.center(), bin_area_, pile,
|
||||
pile_area, item, norm, areacache_, rtree_);
|
||||
pconf_.object_function = [this, bin] (const Item &item) {
|
||||
|
||||
auto result = objfunc(bin.center(),
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
bin_area_,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
|
||||
double score = std::get<0>(result);
|
||||
auto& fullbb = std::get<1>(result);
|
||||
|
||||
auto wdiff = fullbb.width() - bin.width();
|
||||
auto hdiff = fullbb.height() - bin.height();
|
||||
if(wdiff > 0) score += std::pow(wdiff, 2) / norm;
|
||||
if(hdiff > 0) score += std::pow(hdiff, 2) / norm;
|
||||
double miss = Placer::overfit(fullbb, bin);
|
||||
miss = miss > 0? miss : 0;
|
||||
score += miss*miss;
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
pck_.configure(pconf_);
|
||||
}
|
||||
};
|
||||
|
||||
using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
|
||||
|
||||
template<>
|
||||
class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
|
||||
public:
|
||||
|
||||
AutoArranger(const lnCircle& bin, Distance dist,
|
||||
std::function<void(unsigned)> progressind):
|
||||
_ArrBase<lnCircle>(bin, dist, progressind) {
|
||||
|
||||
pconf_.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto result = objfunc(bin.center(),
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
bin_area_,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
|
||||
double score = std::get<0>(result);
|
||||
|
||||
auto isBig = [this](const Item& itm) {
|
||||
return itm.area()/bin_area_ > BIG_ITEM_TRESHOLD ;
|
||||
};
|
||||
|
||||
if(isBig(item)) {
|
||||
auto mp = merged_pile_;
|
||||
mp.push_back(item.transformedShape());
|
||||
auto chull = sl::convexHull(mp);
|
||||
double miss = Placer::overfit(chull, bin);
|
||||
if(miss < 0) miss = 0;
|
||||
score += miss*miss;
|
||||
}
|
||||
|
||||
return score;
|
||||
};
|
||||
|
@ -335,27 +424,20 @@ public:
|
|||
std::function<void(unsigned)> progressind):
|
||||
_ArrBase<PolygonImpl>(bin, dist, progressind)
|
||||
{
|
||||
pconf_.object_function = [this, &bin] (
|
||||
Pile& pile,
|
||||
const Item &item,
|
||||
double pile_area,
|
||||
double norm,
|
||||
double /*penality*/) {
|
||||
pconf_.object_function = [this, &bin] (const Item &item) {
|
||||
|
||||
auto binbb = ShapeLike::boundingBox(bin);
|
||||
auto result = objfunc(binbb.center(), bin_area_, pile,
|
||||
pile_area, item, norm, areacache_, rtree_);
|
||||
auto binbb = sl::boundingBox(bin);
|
||||
auto result = objfunc(binbb.center(),
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
bin_area_,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
double score = std::get<0>(result);
|
||||
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto chull = ShapeLike::convexHull(pile);
|
||||
pile.pop_back();
|
||||
|
||||
// If it does not fit into the print bed we will beat it with a
|
||||
// large penality. If we would not do this, there would be only one
|
||||
// big pile that doesn't care whether it fits onto the print bed.
|
||||
if(!Placer::wouldFit(chull, bin)) score += norm;
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
|
@ -370,15 +452,17 @@ public:
|
|||
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
|
||||
_ArrBase<Box>(Box(0, 0), dist, progressind)
|
||||
{
|
||||
this->pconf_.object_function = [this] (
|
||||
Pile& pile,
|
||||
const Item &item,
|
||||
double pile_area,
|
||||
double norm,
|
||||
double /*penality*/) {
|
||||
this->pconf_.object_function = [this] (const Item &item) {
|
||||
|
||||
auto result = objfunc({0, 0}, 0, pile, pile_area,
|
||||
item, norm, areacache_, rtree_);
|
||||
auto result = objfunc({0, 0},
|
||||
merged_pile_,
|
||||
pilebb_,
|
||||
items_,
|
||||
item,
|
||||
0,
|
||||
norm_,
|
||||
rtree_,
|
||||
remaining_);
|
||||
return std::get<0>(result);
|
||||
};
|
||||
|
||||
|
@ -440,16 +524,113 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
|||
return ret;
|
||||
}
|
||||
|
||||
enum BedShapeHint {
|
||||
class Circle {
|
||||
Point center_;
|
||||
double radius_;
|
||||
public:
|
||||
|
||||
inline Circle(): center_(0, 0), radius_(std::nan("")) {}
|
||||
inline Circle(const Point& c, double r): center_(c), radius_(r) {}
|
||||
|
||||
inline double radius() const { return radius_; }
|
||||
inline const Point& center() const { return center_; }
|
||||
inline operator bool() { return !std::isnan(radius_); }
|
||||
inline operator lnCircle() {
|
||||
return lnCircle({center_(0), center_(1)}, radius_);
|
||||
}
|
||||
};
|
||||
|
||||
enum class BedShapeType {
|
||||
BOX,
|
||||
CIRCLE,
|
||||
IRREGULAR,
|
||||
WHO_KNOWS
|
||||
};
|
||||
|
||||
BedShapeHint bedShape(const Slic3r::Polyline& /*bed*/) {
|
||||
struct BedShapeHint {
|
||||
BedShapeType type;
|
||||
/*union*/ struct { // I know but who cares...
|
||||
Circle circ;
|
||||
BoundingBox box;
|
||||
Polyline polygon;
|
||||
} shape;
|
||||
};
|
||||
|
||||
BedShapeHint bedShape(const Polyline& bed) {
|
||||
BedShapeHint ret;
|
||||
|
||||
auto x = [](const Point& p) { return p(0); };
|
||||
auto y = [](const Point& p) { return p(1); };
|
||||
|
||||
auto width = [x](const BoundingBox& box) {
|
||||
return x(box.max) - x(box.min);
|
||||
};
|
||||
|
||||
auto height = [y](const BoundingBox& box) {
|
||||
return y(box.max) - y(box.min);
|
||||
};
|
||||
|
||||
auto area = [&width, &height](const BoundingBox& box) {
|
||||
double w = width(box);
|
||||
double h = height(box);
|
||||
return w*h;
|
||||
};
|
||||
|
||||
auto poly_area = [](Polyline p) {
|
||||
Polygon pp; pp.points.reserve(p.points.size() + 1);
|
||||
pp.points = std::move(p.points);
|
||||
pp.points.emplace_back(pp.points.front());
|
||||
return std::abs(pp.area());
|
||||
};
|
||||
|
||||
auto distance_to = [x, y](const Point& p1, const Point& p2) {
|
||||
double dx = x(p2) - x(p1);
|
||||
double dy = y(p2) - y(p1);
|
||||
return std::sqrt(dx*dx + dy*dy);
|
||||
};
|
||||
|
||||
auto bb = bed.bounding_box();
|
||||
|
||||
auto isCircle = [bb, distance_to](const Polyline& polygon) {
|
||||
auto center = bb.center();
|
||||
std::vector<double> vertex_distances;
|
||||
double avg_dist = 0;
|
||||
for (auto pt: polygon.points)
|
||||
{
|
||||
double distance = distance_to(center, pt);
|
||||
vertex_distances.push_back(distance);
|
||||
avg_dist += distance;
|
||||
}
|
||||
|
||||
avg_dist /= vertex_distances.size();
|
||||
|
||||
Circle ret(center, avg_dist);
|
||||
for (auto el: vertex_distances)
|
||||
{
|
||||
if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
|
||||
ret = Circle();
|
||||
break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
};
|
||||
|
||||
auto parea = poly_area(bed);
|
||||
|
||||
if( (1.0 - parea/area(bb)) < 1e-3 ) {
|
||||
ret.type = BedShapeType::BOX;
|
||||
ret.shape.box = bb;
|
||||
}
|
||||
else if(auto c = isCircle(bed)) {
|
||||
ret.type = BedShapeType::CIRCLE;
|
||||
ret.shape.circ = c;
|
||||
} else {
|
||||
ret.type = BedShapeType::IRREGULAR;
|
||||
ret.shape.polygon = bed;
|
||||
}
|
||||
|
||||
// Determine the bed shape by hand
|
||||
return BOX;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void applyResult(
|
||||
|
@ -468,8 +649,7 @@ void applyResult(
|
|||
// appropriately
|
||||
auto off = item.translation();
|
||||
Radians rot = item.rotation();
|
||||
Vec2d foff(off.X*SCALING_FACTOR + batch_offset,
|
||||
off.Y*SCALING_FACTOR);
|
||||
Vec2d foff(off.X*SCALING_FACTOR + batch_offset, off.Y*SCALING_FACTOR);
|
||||
|
||||
// write the tranformation data into the model instance
|
||||
inst_ptr->rotation = rot;
|
||||
|
@ -525,7 +705,10 @@ bool arrange(Model &model, coordf_t min_obj_distance,
|
|||
});
|
||||
|
||||
IndexedPackGroup result;
|
||||
BoundingBox bbb(bed.points);
|
||||
|
||||
if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
|
||||
|
||||
BoundingBox bbb(bed);
|
||||
|
||||
auto binbb = Box({
|
||||
static_cast<libnest2d::Coord>(bbb.min(0)),
|
||||
|
@ -536,8 +719,8 @@ bool arrange(Model &model, coordf_t min_obj_distance,
|
|||
static_cast<libnest2d::Coord>(bbb.max(1))
|
||||
});
|
||||
|
||||
switch(bedhint) {
|
||||
case BOX: {
|
||||
switch(bedhint.type) {
|
||||
case BedShapeType::BOX: {
|
||||
|
||||
// Create the arranger for the box shaped bed
|
||||
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
|
||||
|
@ -547,16 +730,22 @@ bool arrange(Model &model, coordf_t min_obj_distance,
|
|||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
}
|
||||
case CIRCLE:
|
||||
case BedShapeType::CIRCLE: {
|
||||
|
||||
auto c = bedhint.shape.circ;
|
||||
auto cc = lnCircle(c);
|
||||
|
||||
AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind);
|
||||
result = arrange(shapes.begin(), shapes.end());
|
||||
break;
|
||||
case IRREGULAR:
|
||||
case WHO_KNOWS: {
|
||||
}
|
||||
case BedShapeType::IRREGULAR:
|
||||
case BedShapeType::WHO_KNOWS: {
|
||||
|
||||
using P = libnest2d::PolygonImpl;
|
||||
|
||||
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
|
||||
P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
|
||||
|
||||
// std::cout << ShapeLike::toString(irrbed) << std::endl;
|
||||
P irrbed = sl::create<PolygonImpl>(std::move(ctour));
|
||||
|
||||
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
|
||||
|
||||
|
@ -567,6 +756,8 @@ bool arrange(Model &model, coordf_t min_obj_distance,
|
|||
}
|
||||
};
|
||||
|
||||
if(result.empty()) return false;
|
||||
|
||||
if(first_bin_only) {
|
||||
applyResult(result.front(), 0, shapemap);
|
||||
} else {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue