mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-15 18:58:00 -06:00
Prepare integration for arbitrary shaped print beds.
This commit is contained in:
commit
6cdec7ac9a
12 changed files with 555 additions and 549 deletions
|
@ -544,25 +544,25 @@ void arrangeRectangles() {
|
|||
// input.insert(input.end(), proba.begin(), proba.end());
|
||||
// input.insert(input.end(), crasher.begin(), crasher.end());
|
||||
|
||||
// Box bin(250*SCALE, 210*SCALE);
|
||||
PolygonImpl bin = {
|
||||
{
|
||||
{25*SCALE, 0},
|
||||
{0, 25*SCALE},
|
||||
{0, 225*SCALE},
|
||||
{25*SCALE, 250*SCALE},
|
||||
{225*SCALE, 250*SCALE},
|
||||
{250*SCALE, 225*SCALE},
|
||||
{250*SCALE, 25*SCALE},
|
||||
{225*SCALE, 0},
|
||||
{25*SCALE, 0}
|
||||
},
|
||||
{}
|
||||
};
|
||||
Box bin(250*SCALE, 210*SCALE);
|
||||
// PolygonImpl bin = {
|
||||
// {
|
||||
// {25*SCALE, 0},
|
||||
// {0, 25*SCALE},
|
||||
// {0, 225*SCALE},
|
||||
// {25*SCALE, 250*SCALE},
|
||||
// {225*SCALE, 250*SCALE},
|
||||
// {250*SCALE, 225*SCALE},
|
||||
// {250*SCALE, 25*SCALE},
|
||||
// {225*SCALE, 0},
|
||||
// {25*SCALE, 0}
|
||||
// },
|
||||
// {}
|
||||
// };
|
||||
|
||||
auto min_obj_distance = static_cast<Coord>(0*SCALE);
|
||||
|
||||
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, PolygonImpl>;
|
||||
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, Box>;
|
||||
using Packer = Arranger<Placer, FirstFitSelection>;
|
||||
|
||||
Packer arrange(bin, min_obj_distance);
|
||||
|
@ -571,102 +571,102 @@ void arrangeRectangles() {
|
|||
pconf.alignment = Placer::Config::Alignment::CENTER;
|
||||
pconf.starting_point = Placer::Config::Alignment::CENTER;
|
||||
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
|
||||
pconf.accuracy = 1.0;
|
||||
pconf.accuracy = 0.5f;
|
||||
|
||||
auto bincenter = ShapeLike::boundingBox(bin).center();
|
||||
pconf.object_function = [&bin, bincenter](
|
||||
Placer::Pile pile, const Item& item,
|
||||
double /*area*/, double norm, double penality) {
|
||||
// auto bincenter = ShapeLike::boundingBox(bin).center();
|
||||
// pconf.object_function = [&bin, bincenter](
|
||||
// Placer::Pile pile, const Item& item,
|
||||
// double /*area*/, double norm, double penality) {
|
||||
|
||||
using pl = PointLike;
|
||||
// using pl = PointLike;
|
||||
|
||||
static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||
static const double GRAVITY_RATIO = 0.5;
|
||||
static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
||||
// static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||
// static const double GRAVITY_RATIO = 0.5;
|
||||
// static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
NfpPlacer::Pile bigs;
|
||||
bigs.reserve(pile.size());
|
||||
for(auto& p : pile) {
|
||||
auto pbb = ShapeLike::boundingBox(p);
|
||||
auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
||||
if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
||||
}
|
||||
// // We will treat big items (compared to the print bed) differently
|
||||
// NfpPlacer::Pile bigs;
|
||||
// bigs.reserve(pile.size());
|
||||
// for(auto& p : pile) {
|
||||
// auto pbb = ShapeLike::boundingBox(p);
|
||||
// auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
||||
// if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
||||
// }
|
||||
|
||||
// Candidate item bounding box
|
||||
auto ibb = item.boundingBox();
|
||||
// // Candidate item bounding box
|
||||
// auto ibb = item.boundingBox();
|
||||
|
||||
// Calculate the full bounding box of the pile with the candidate item
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto fullbb = ShapeLike::boundingBox(pile);
|
||||
pile.pop_back();
|
||||
// // Calculate the full bounding box of the pile with the candidate item
|
||||
// pile.emplace_back(item.transformedShape());
|
||||
// auto fullbb = ShapeLike::boundingBox(pile);
|
||||
// pile.pop_back();
|
||||
|
||||
// The bounding box of the big items (they will accumulate in the center
|
||||
// of the pile
|
||||
auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
||||
// // The bounding box of the big items (they will accumulate in the center
|
||||
// // of the pile
|
||||
// auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
||||
|
||||
// The size indicator of the candidate item. This is not the area,
|
||||
// but almost...
|
||||
auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
||||
// // The size indicator of the candidate item. This is not the area,
|
||||
// // but almost...
|
||||
// auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
||||
|
||||
// Will hold the resulting score
|
||||
double score = 0;
|
||||
// // Will hold the resulting score
|
||||
// double score = 0;
|
||||
|
||||
if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
||||
// This branch is for the bigger items..
|
||||
// Here we will use the closest point of the item bounding box to
|
||||
// the already arranged pile. So not the bb center nor the a choosen
|
||||
// corner but whichever is the closest to the center. This will
|
||||
// prevent unwanted strange arrangements.
|
||||
// if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
||||
// // This branch is for the bigger items..
|
||||
// // Here we will use the closest point of the item bounding box to
|
||||
// // the already arranged pile. So not the bb center nor the a choosen
|
||||
// // corner but whichever is the closest to the center. This will
|
||||
// // prevent unwanted strange arrangements.
|
||||
|
||||
auto minc = ibb.minCorner(); // bottom left corner
|
||||
auto maxc = ibb.maxCorner(); // top right corner
|
||||
// auto minc = ibb.minCorner(); // bottom left corner
|
||||
// auto maxc = ibb.maxCorner(); // top right corner
|
||||
|
||||
// top left and bottom right corners
|
||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||
// // top left and bottom right corners
|
||||
// auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||
// auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||
|
||||
auto cc = fullbb.center(); // The gravity center
|
||||
// auto cc = fullbb.center(); // The gravity center
|
||||
|
||||
// Now the distnce of the gravity center will be calculated to the
|
||||
// five anchor points and the smallest will be chosen.
|
||||
std::array<double, 5> dists;
|
||||
dists[0] = pl::distance(minc, cc);
|
||||
dists[1] = pl::distance(maxc, cc);
|
||||
dists[2] = pl::distance(ibb.center(), cc);
|
||||
dists[3] = pl::distance(top_left, cc);
|
||||
dists[4] = pl::distance(bottom_right, cc);
|
||||
// // Now the distnce of the gravity center will be calculated to the
|
||||
// // five anchor points and the smallest will be chosen.
|
||||
// std::array<double, 5> dists;
|
||||
// dists[0] = pl::distance(minc, cc);
|
||||
// dists[1] = pl::distance(maxc, cc);
|
||||
// dists[2] = pl::distance(ibb.center(), cc);
|
||||
// dists[3] = pl::distance(top_left, cc);
|
||||
// dists[4] = pl::distance(bottom_right, cc);
|
||||
|
||||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||
// auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
// // Density is the pack density: how big is the arranged pile
|
||||
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
|
||||
// The score is a weighted sum of the distance from pile center
|
||||
// and the pile size
|
||||
score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
||||
// // The score is a weighted sum of the distance from pile center
|
||||
// // and the pile size
|
||||
// score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
||||
|
||||
} else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
||||
// If there are no big items, only small, we should consider the
|
||||
// density here as well to not get silly results
|
||||
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
||||
} else {
|
||||
// Here there are the small items that should be placed around the
|
||||
// already processed bigger items.
|
||||
// No need to play around with the anchor points, the center will be
|
||||
// just fine for small items
|
||||
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||
}
|
||||
// } else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
||||
// // If there are no big items, only small, we should consider the
|
||||
// // density here as well to not get silly results
|
||||
// auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||
// auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
// score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
||||
// } else {
|
||||
// // Here there are the small items that should be placed around the
|
||||
// // already processed bigger items.
|
||||
// // No need to play around with the anchor points, the center will be
|
||||
// // just fine for small items
|
||||
// score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||
// }
|
||||
|
||||
// If it does not fit into the print bed we will beat it
|
||||
// with a large penality. If we would not do this, there would be only
|
||||
// one big pile that doesn't care whether it fits onto the print bed.
|
||||
if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
||||
// // If it does not fit into the print bed we will beat it
|
||||
// // with a large penality. If we would not do this, there would be only
|
||||
// // one big pile that doesn't care whether it fits onto the print bed.
|
||||
// if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
||||
|
||||
return score;
|
||||
};
|
||||
// return score;
|
||||
// };
|
||||
|
||||
Packer::SelectionConfig sconf;
|
||||
// sconf.allow_parallel = false;
|
||||
|
@ -707,7 +707,7 @@ void arrangeRectangles() {
|
|||
std::vector<double> eff;
|
||||
eff.reserve(result.size());
|
||||
|
||||
auto bin_area = ShapeLike::area(bin);
|
||||
auto bin_area = ShapeLike::area<PolygonImpl>(bin);
|
||||
for(auto& r : result) {
|
||||
double a = 0;
|
||||
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue