mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-11 16:57:53 -06:00
Moved C++ code into new libslic3r directory
This commit is contained in:
parent
b8676241e0
commit
6adc3477c9
84 changed files with 122 additions and 111 deletions
334
xs/src/libslic3r/Geometry.cpp
Normal file
334
xs/src/libslic3r/Geometry.cpp
Normal file
|
@ -0,0 +1,334 @@
|
|||
#include "Geometry.hpp"
|
||||
#include "Line.hpp"
|
||||
#include "PolylineCollection.hpp"
|
||||
#include "clipper.hpp"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <list>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
#include "SVG.hpp"
|
||||
#endif
|
||||
|
||||
using namespace boost::polygon; // provides also high() and low()
|
||||
|
||||
namespace Slic3r { namespace Geometry {
|
||||
|
||||
static bool
|
||||
sort_points (Point a, Point b)
|
||||
{
|
||||
return (a.x < b.x) || (a.x == b.x && a.y < b.y);
|
||||
}
|
||||
|
||||
/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
|
||||
void
|
||||
convex_hull(Points &points, Polygon* hull)
|
||||
{
|
||||
assert(points.size() >= 3);
|
||||
// sort input points
|
||||
std::sort(points.begin(), points.end(), sort_points);
|
||||
|
||||
int n = points.size(), k = 0;
|
||||
hull->points.resize(2*n);
|
||||
|
||||
// Build lower hull
|
||||
for (int i = 0; i < n; i++) {
|
||||
while (k >= 2 && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--;
|
||||
hull->points[k++] = points[i];
|
||||
}
|
||||
|
||||
// Build upper hull
|
||||
for (int i = n-2, t = k+1; i >= 0; i--) {
|
||||
while (k >= t && points[i].ccw(hull->points[k-2], hull->points[k-1]) <= 0) k--;
|
||||
hull->points[k++] = points[i];
|
||||
}
|
||||
|
||||
hull->points.resize(k);
|
||||
|
||||
assert( hull->points.front().coincides_with(hull->points.back()) );
|
||||
hull->points.pop_back();
|
||||
}
|
||||
|
||||
/* accepts an arrayref of points and returns a list of indices
|
||||
according to a nearest-neighbor walk */
|
||||
void
|
||||
chained_path(Points &points, std::vector<Points::size_type> &retval, Point start_near)
|
||||
{
|
||||
PointPtrs my_points;
|
||||
std::map<Point*,Points::size_type> indices;
|
||||
my_points.reserve(points.size());
|
||||
for (Points::iterator it = points.begin(); it != points.end(); ++it) {
|
||||
my_points.push_back(&*it);
|
||||
indices[&*it] = it - points.begin();
|
||||
}
|
||||
|
||||
retval.reserve(points.size());
|
||||
while (!my_points.empty()) {
|
||||
Points::size_type idx = start_near.nearest_point_index(my_points);
|
||||
start_near = *my_points[idx];
|
||||
retval.push_back(indices[ my_points[idx] ]);
|
||||
my_points.erase(my_points.begin() + idx);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
chained_path(Points &points, std::vector<Points::size_type> &retval)
|
||||
{
|
||||
if (points.empty()) return; // can't call front() on empty vector
|
||||
chained_path(points, retval, points.front());
|
||||
}
|
||||
|
||||
/* retval and items must be different containers */
|
||||
template<class T>
|
||||
void
|
||||
chained_path_items(Points &points, T &items, T &retval)
|
||||
{
|
||||
std::vector<Points::size_type> indices;
|
||||
chained_path(points, indices);
|
||||
for (std::vector<Points::size_type>::const_iterator it = indices.begin(); it != indices.end(); ++it)
|
||||
retval.push_back(items[*it]);
|
||||
}
|
||||
template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);
|
||||
|
||||
bool
|
||||
directions_parallel(double angle1, double angle2, double max_diff)
|
||||
{
|
||||
double diff = fabs(angle1 - angle2);
|
||||
max_diff += EPSILON;
|
||||
return diff < max_diff || fabs(diff - PI) < max_diff;
|
||||
}
|
||||
|
||||
Line
|
||||
MedialAxis::edge_to_line(const VD::edge_type &edge) const
|
||||
{
|
||||
Line line;
|
||||
line.a.x = edge.vertex0()->x();
|
||||
line.a.y = edge.vertex0()->y();
|
||||
line.b.x = edge.vertex1()->x();
|
||||
line.b.y = edge.vertex1()->y();
|
||||
return line;
|
||||
}
|
||||
|
||||
void
|
||||
MedialAxis::build(Polylines* polylines)
|
||||
{
|
||||
/*
|
||||
// build bounding box (we use it for clipping infinite segments)
|
||||
// --> we have no infinite segments
|
||||
this->bb = BoundingBox(this->lines);
|
||||
*/
|
||||
|
||||
construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
|
||||
|
||||
/*
|
||||
// DEBUG: dump all Voronoi edges
|
||||
{
|
||||
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
|
||||
if (edge->is_infinite()) continue;
|
||||
|
||||
Polyline polyline;
|
||||
polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
|
||||
polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
|
||||
polylines->push_back(polyline);
|
||||
}
|
||||
return;
|
||||
}
|
||||
*/
|
||||
|
||||
// collect valid edges (i.e. prune those not belonging to MAT)
|
||||
// note: this keeps twins, so it contains twice the number of the valid edges
|
||||
this->edges.clear();
|
||||
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
|
||||
// if we only process segments representing closed loops, none if the
|
||||
// infinite edges (if any) would be part of our MAT anyway
|
||||
if (edge->is_secondary() || edge->is_infinite()) continue;
|
||||
this->edges.insert(&*edge);
|
||||
}
|
||||
|
||||
// count valid segments for each vertex
|
||||
std::map< const VD::vertex_type*,std::set<const VD::edge_type*> > vertex_edges;
|
||||
std::set<const VD::vertex_type*> entry_nodes;
|
||||
for (VD::const_vertex_iterator vertex = this->vd.vertices().begin(); vertex != this->vd.vertices().end(); ++vertex) {
|
||||
// get a reference to the list of valid edges originating from this vertex
|
||||
std::set<const VD::edge_type*>& edges = vertex_edges[&*vertex];
|
||||
|
||||
// get one random edge originating from this vertex
|
||||
const VD::edge_type* edge = vertex->incident_edge();
|
||||
do {
|
||||
if (this->edges.count(edge) > 0) // only count valid edges
|
||||
edges.insert(edge);
|
||||
edge = edge->rot_next(); // next edge originating from this vertex
|
||||
} while (edge != vertex->incident_edge());
|
||||
|
||||
// if there's only one edge starting at this vertex then it's a leaf
|
||||
size_t edge_count = edges.size();
|
||||
if (edge_count == 1) {
|
||||
entry_nodes.insert(&*vertex);
|
||||
}
|
||||
}
|
||||
|
||||
// prune recursively
|
||||
while (!entry_nodes.empty()) {
|
||||
// get a random entry node
|
||||
const VD::vertex_type* v = *entry_nodes.begin();
|
||||
|
||||
// get edge starting from v
|
||||
assert(!vertex_edges[v].empty());
|
||||
const VD::edge_type* edge = *vertex_edges[v].begin();
|
||||
|
||||
if (!this->is_valid_edge(*edge)) {
|
||||
// if edge is not valid, erase it from edge list
|
||||
(void)this->edges.erase(edge);
|
||||
(void)this->edges.erase(edge->twin());
|
||||
|
||||
// decrement edge counters for the affected nodes
|
||||
const VD::vertex_type* v1 = edge->vertex1();
|
||||
(void)vertex_edges[v].erase(edge);
|
||||
(void)vertex_edges[v1].erase(edge->twin());
|
||||
|
||||
// also, check whether the end vertex is a new leaf
|
||||
if (vertex_edges[v1].size() == 1) {
|
||||
entry_nodes.insert(v1);
|
||||
} else if (vertex_edges[v1].empty()) {
|
||||
entry_nodes.erase(v1);
|
||||
}
|
||||
}
|
||||
|
||||
// remove node from the set to prevent it from being visited again
|
||||
entry_nodes.erase(v);
|
||||
}
|
||||
|
||||
// iterate through the valid edges to build polylines
|
||||
while (!this->edges.empty()) {
|
||||
const VD::edge_type& edge = **this->edges.begin();
|
||||
|
||||
// start a polyline
|
||||
Polyline polyline;
|
||||
polyline.points.push_back(Point( edge.vertex0()->x(), edge.vertex0()->y() ));
|
||||
polyline.points.push_back(Point( edge.vertex1()->x(), edge.vertex1()->y() ));
|
||||
|
||||
// remove this edge and its twin from the available edges
|
||||
(void)this->edges.erase(&edge);
|
||||
(void)this->edges.erase(edge.twin());
|
||||
|
||||
// get next points
|
||||
this->process_edge_neighbors(edge, &polyline.points);
|
||||
|
||||
// get previous points
|
||||
Points pp;
|
||||
this->process_edge_neighbors(*edge.twin(), &pp);
|
||||
polyline.points.insert(polyline.points.begin(), pp.rbegin(), pp.rend());
|
||||
|
||||
// append polyline to result if it's not too small
|
||||
if (polyline.length() > this->max_width)
|
||||
polylines->push_back(polyline);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
MedialAxis::process_edge_neighbors(const VD::edge_type& edge, Points* points)
|
||||
{
|
||||
// Since rot_next() works on the edge starting point but we want
|
||||
// to find neighbors on the ending point, we just swap edge with
|
||||
// its twin.
|
||||
const VD::edge_type& twin = *edge.twin();
|
||||
|
||||
// count neighbors for this edge
|
||||
std::vector<const VD::edge_type*> neighbors;
|
||||
for (const VD::edge_type* neighbor = twin.rot_next(); neighbor != &twin; neighbor = neighbor->rot_next()) {
|
||||
if (this->edges.count(neighbor) > 0) neighbors.push_back(neighbor);
|
||||
}
|
||||
|
||||
// if we have a single neighbor then we can continue recursively
|
||||
if (neighbors.size() == 1) {
|
||||
const VD::edge_type& neighbor = *neighbors.front();
|
||||
points->push_back(Point( neighbor.vertex1()->x(), neighbor.vertex1()->y() ));
|
||||
(void)this->edges.erase(&neighbor);
|
||||
(void)this->edges.erase(neighbor.twin());
|
||||
this->process_edge_neighbors(neighbor, points);
|
||||
}
|
||||
}
|
||||
|
||||
bool
|
||||
MedialAxis::is_valid_edge(const VD::edge_type& edge) const
|
||||
{
|
||||
/* If the cells sharing this edge have a common vertex, we're not interested
|
||||
in this edge. Why? Because it means that the edge lies on the bisector of
|
||||
two contiguous input lines and it was included in the Voronoi graph because
|
||||
it's the locus of centers of circles tangent to both vertices. Due to the
|
||||
"thin" nature of our input, these edges will be very short and not part of
|
||||
our wanted output. */
|
||||
|
||||
const VD::cell_type &cell1 = *edge.cell();
|
||||
const VD::cell_type &cell2 = *edge.twin()->cell();
|
||||
if (cell1.contains_segment() && cell2.contains_segment()) {
|
||||
Line segment1 = this->retrieve_segment(cell1);
|
||||
Line segment2 = this->retrieve_segment(cell2);
|
||||
if (segment1.a == segment2.b || segment1.b == segment2.a) return false;
|
||||
|
||||
// calculate relative angle between the two boundary segments
|
||||
double angle = fabs(segment2.orientation() - segment1.orientation());
|
||||
|
||||
// fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
|
||||
// we're interested only in segments close to the second case (facing segments)
|
||||
// so we allow some tolerance (say, 30°)
|
||||
if (angle < PI*2/3 ) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// each vertex is equidistant to both cell segments
|
||||
// but such distance might differ between the two vertices;
|
||||
// in this case it means the shape is getting narrow (like a corner)
|
||||
// and we might need to skip the edge since it's not really part of
|
||||
// our skeleton
|
||||
Point v0( edge.vertex0()->x(), edge.vertex0()->y() );
|
||||
Point v1( edge.vertex1()->x(), edge.vertex1()->y() );
|
||||
double dist0 = v0.distance_to(segment1);
|
||||
double dist1 = v1.distance_to(segment1);
|
||||
|
||||
/*
|
||||
double diff = fabs(dist1 - dist0);
|
||||
double dist_between_segments1 = segment1.a.distance_to(segment2);
|
||||
double dist_between_segments2 = segment1.b.distance_to(segment2);
|
||||
printf("w = %f/%f, dist0 = %f, dist1 = %f, diff = %f, seg1len = %f, seg2len = %f, edgelen = %f, s2s = %f / %f\n",
|
||||
unscale(this->max_width), unscale(this->min_width),
|
||||
unscale(dist0), unscale(dist1), unscale(diff),
|
||||
unscale(segment1.length()), unscale(segment2.length()),
|
||||
unscale(this->edge_to_line(edge).length()),
|
||||
unscale(dist_between_segments1), unscale(dist_between_segments2)
|
||||
);
|
||||
*/
|
||||
|
||||
// if this segment is the centerline for a very thin area, we might want to skip it
|
||||
// in case the area is too thin
|
||||
if (dist0 < this->min_width/2 || dist1 < this->min_width/2) {
|
||||
//printf(" => too thin, skipping\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
// if distance between this edge and the thin area boundary is greater
|
||||
// than half the max width, then it's not a true medial axis segment
|
||||
if (dist1 > this->width*2) {
|
||||
printf(" => too fat, skipping\n");
|
||||
//return false;
|
||||
}
|
||||
*/
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
Line
|
||||
MedialAxis::retrieve_segment(const VD::cell_type& cell) const
|
||||
{
|
||||
VD::cell_type::source_index_type index = cell.source_index() - this->points.size();
|
||||
return this->lines[index];
|
||||
}
|
||||
|
||||
} }
|
Loading…
Add table
Add a link
Reference in a new issue