Parallelization of large part of the SLA support point calculation.

New 3D grid to check, whether two support points are not too close.
This commit is contained in:
bubnikv 2019-02-18 11:46:06 +01:00
parent 388f2aac71
commit 672cf5d45f
2 changed files with 220 additions and 84 deletions

View file

@ -93,99 +93,152 @@ void SLAAutoSupports::project_onto_mesh(std::vector<sla::SupportPoint>& points)
});
}
static std::vector<SLAAutoSupports::MyLayer> make_layers(
const std::vector<ExPolygons>& slices, const std::vector<float>& heights,
std::function<void(void)> throw_on_cancel)
{
assert(slices.size() == heights.size());
// Allocate empty layers.
std::vector<SLAAutoSupports::MyLayer> layers;
layers.reserve(slices.size());
for (size_t i = 0; i < slices.size(); ++ i)
layers.emplace_back(i, heights[i]);
// FIXME: calculate actual pixel area from printer config:
//const float pixel_area = pow(wxGetApp().preset_bundle->project_config.option<ConfigOptionFloat>("display_width") / wxGetApp().preset_bundle->project_config.option<ConfigOptionInt>("display_pixels_x"), 2.f); //
const float pixel_area = pow(0.047f, 2.f);
// Use a reasonable granularity to account for the worker thread synchronization cost.
tbb::parallel_for(tbb::blocked_range<size_t>(0, layers.size(), 32),
[&layers, &slices, &heights, pixel_area, throw_on_cancel](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
if ((layer_id % 8) == 0)
// Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
throw_on_cancel();
SLAAutoSupports::MyLayer &layer = layers[layer_id];
const ExPolygons &islands = slices[layer_id];
//FIXME WTF?
const float height = (layer_id>2 ? heights[layer_id-3] : heights[0]-(heights[1]-heights[0]));
layer.islands.reserve(islands.size());
for (const ExPolygon &island : islands) {
float area = float(island.area() * SCALING_FACTOR * SCALING_FACTOR);
if (area >= pixel_area)
//FIXME this is not a correct centroid of a polygon with holes.
layer.islands.emplace_back(layer, island, get_extents(island.contour), Slic3r::unscale(island.contour.centroid()).cast<float>(), area, height);
}
}
});
// Calculate overlap of successive layers. Link overlapping islands.
tbb::parallel_for(tbb::blocked_range<size_t>(1, layers.size(), 8),
[&layers, &heights, throw_on_cancel](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++layer_id) {
if ((layer_id % 2) == 0)
// Don't call the following function too often as it flushes CPU write caches due to synchronization primitves.
throw_on_cancel();
SLAAutoSupports::MyLayer &layer_above = layers[layer_id];
SLAAutoSupports::MyLayer &layer_below = layers[layer_id - 1];
//FIXME WTF?
const float height = (layer_id>2 ? heights[layer_id-3] : heights[0]-(heights[1]-heights[0]));
const float layer_height = (layer_id!=0 ? heights[layer_id]-heights[layer_id-1] : heights[0]);
const float safe_angle = 5.f * (float(M_PI)/180.f); // smaller number - less supports
const float between_layers_offset = float(scale_(layer_height / std::tan(safe_angle)));
//FIXME This has a quadratic time complexity, it will be excessively slow for many tiny islands.
for (SLAAutoSupports::Structure &top : layer_above.islands) {
for (SLAAutoSupports::Structure &bottom : layer_below.islands)
if (top.overlaps(bottom)) {
top.islands_below.emplace_back(&bottom);
bottom.islands_above.emplace_back(&top);
}
if (! top.islands_below.empty()) {
Polygons top_polygons = to_polygons(*top.polygon);
Polygons bottom_polygons = top.polygons_below();
top.overhangs = diff_ex(top_polygons, bottom_polygons);
if (! top.overhangs.empty()) {
top.overhangs_area = 0.f;
std::vector<std::pair<ExPolygon*, float>> expolys_with_areas;
for (ExPolygon &ex : top.overhangs) {
float area = float(ex.area());
expolys_with_areas.emplace_back(&ex, area);
top.overhangs_area += area;
}
std::sort(expolys_with_areas.begin(), expolys_with_areas.end(),
[](const std::pair<ExPolygon*, float> &p1, const std::pair<ExPolygon*, float> &p2)
{ return p1.second > p2.second; });
ExPolygons overhangs_sorted;
for (auto &p : expolys_with_areas)
overhangs_sorted.emplace_back(std::move(*p.first));
top.overhangs = std::move(overhangs_sorted);
top.overhangs_area *= float(SCALING_FACTOR * SCALING_FACTOR);
top.dangling_areas = diff_ex(top_polygons, offset(bottom_polygons, between_layers_offset));
}
}
}
}
});
return layers;
}
void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::vector<float>& heights)
{
#ifdef SLA_AUTOSUPPORTS_DEBUG
std::vector<std::pair<ExPolygon, coord_t>> islands;
std::vector<Structure> structures_old;
std::vector<Structure> structures_new;
#endif /* SLA_AUTOSUPPORTS_DEBUG */
for (unsigned int i = 0; i<slices.size(); ++i) {
const ExPolygons& expolys_top = slices[i];
std::vector<SLAAutoSupports::MyLayer> layers = make_layers(slices, heights, m_throw_on_cancel);
//FIXME WTF?
const float height = (i>2 ? heights[i-3] : heights[0]-(heights[1]-heights[0]));
const float layer_height = (i!=0 ? heights[i]-heights[i-1] : heights[0]);
const float safe_angle = 5.f * (float(M_PI)/180.f); // smaller number - less supports
const float between_layers_offset = float(scale_(layer_height / std::tan(safe_angle)));
PointGrid3D point_grid;
point_grid.cell_size = Vec3f(10.f, 10.f, 10.f);
// FIXME: calculate actual pixel area from printer config:
//const float pixel_area = pow(wxGetApp().preset_bundle->project_config.option<ConfigOptionFloat>("display_width") / wxGetApp().preset_bundle->project_config.option<ConfigOptionInt>("display_pixels_x"), 2.f); //
const float pixel_area = pow(0.047f, 2.f);
// Check all ExPolygons on this slice and check whether they are new or belonging to something below.
for (const ExPolygon& polygon : expolys_top) {
float area = float(polygon.area() * SCALING_FACTOR * SCALING_FACTOR);
if (area < pixel_area)
continue;
//FIXME this is not a correct centroid of a polygon with holes.
structures_new.emplace_back(polygon, get_extents(polygon.contour), Slic3r::unscale(polygon.contour.centroid()).cast<float>(), area, height);
Structure& top = structures_new.back();
//FIXME This has a quadratic time complexity, it will be excessively slow for many tiny islands.
// At least it is now using a bounding box check for pre-filtering.
for (Structure& bottom : structures_old)
if (top.overlaps(bottom)) {
top.structures_below.push_back(&bottom);
float centroids_dist = (bottom.centroid - top.centroid).norm();
// Penalization resulting from centroid offset:
for (unsigned int layer_id = 0; layer_id < layers.size(); ++ layer_id) {
SLAAutoSupports::MyLayer &layer_top = layers[layer_id];
for (Structure &top : layer_top.islands)
for (Structure *bottom : top.islands_below) {
float centroids_dist = (bottom->centroid - top.centroid).norm();
// Penalization resulting from centroid offset:
// bottom.supports_force *= std::min(1.f, 1.f - std::min(1.f, (1600.f * layer_height) * centroids_dist * centroids_dist / bottom.area));
bottom.supports_force *= std::min(1.f, 1.f - std::min(1.f, 80.f * centroids_dist * centroids_dist / bottom.area));
// Penalization resulting from increasing polygon area:
bottom.supports_force *= std::min(1.f, 20.f * bottom.area / top.area);
}
}
bottom->supports_force *= std::min(1.f, 1.f - std::min(1.f, 80.f * centroids_dist * centroids_dist / bottom->area));
// Penalization resulting from increasing polygon area:
bottom->supports_force *= std::min(1.f, 20.f * bottom->area / top.area);
}
// Let's assign proper support force to each of them:
for (const Structure& below : structures_old) {
std::vector<Structure*> above_list;
float above_area = 0.f;
for (Structure& new_str : structures_new)
for (const Structure* below1 : new_str.structures_below)
if (&below == below1) {
above_list.push_back(&new_str);
above_area += above_list.back()->area;
}
for (Structure* above : above_list)
above->supports_force += below.supports_force * above->area / above_area;
if (layer_id > 0) {
for (Structure &below : layers[layer_id - 1].islands) {
float above_area = 0.f;
for (Structure *above : below.islands_above)
above_area += above->area;
for (Structure *above : below.islands_above)
above->supports_force += below.supports_force * above->area / above_area;
}
}
// Now iterate over all polygons and append new points if needed.
for (Structure& s : structures_new) {
if (s.structures_below.empty()) // completely new island - needs support no doubt
uniformly_cover(*s.polygon, s, true);
for (Structure &s : layer_top.islands) {
if (s.islands_below.empty()) // completely new island - needs support no doubt
uniformly_cover(*s.polygon, s, point_grid, true);
else
// Let's see if there's anything that overlaps enough to need supports:
// What we now have in polygons needs support, regardless of what the forces are, so we can add them.
for (const ExPolygon& p : diff_ex(to_polygons(*s.polygon), offset(s.expolygons_below(), between_layers_offset)))
for (const ExPolygon& p : s.dangling_areas)
//FIXME is it an island point or not? Vojtech thinks it is.
uniformly_cover(p, s);
uniformly_cover(p, s, point_grid);
}
// We should also check if current support is enough given the polygon area.
for (Structure& s : structures_new) {
// Areas not supported by the areas below.
ExPolygons e = diff_ex(to_polygons(*s.polygon), s.polygons_below());
float e_area = 0.f;
for (const ExPolygon &ex : e)
e_area += float(ex.area());
for (Structure& s : layer_top.islands) {
// Penalization resulting from large diff from the last layer:
// s.supports_force /= std::max(1.f, (layer_height / 0.3f) * e_area / s.area);
s.supports_force /= std::max(1.f, 0.17f * (e_area * float(SCALING_FACTOR * SCALING_FACTOR)) / s.area);
s.supports_force /= std::max(1.f, 0.17f * (s.overhangs_area) / s.area);
if (s.area * m_config.tear_pressure > s.supports_force) {
//FIXME Don't calculate area inside the compare function!
//FIXME Cover until the force deficit is covered. Cover multiple areas, sort by decreasing area.
ExPolygons::iterator largest_it = std::max_element(e.begin(), e.end(), [](const ExPolygon& a, const ExPolygon& b) { return a.area() < b.area(); });
if (!e.empty())
if (! s.overhangs.empty())
//FIXME add the support force deficit as a parameter, only cover until the defficiency is covered.
uniformly_cover(*largest_it, s);
uniformly_cover(s.overhangs.front(), s, point_grid);
}
}
// All is done. Prepare to advance to the next layer.
structures_old = std::move(structures_new);
structures_new.clear();
m_throw_on_cancel();
#ifdef SLA_AUTOSUPPORTS_DEBUG
@ -251,7 +304,8 @@ std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygon &expoly, float
return out;
}
std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec2f> &raw_samples, float radius)
template<typename REFUSE_FUNCTION>
static inline std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec2f> &raw_samples, float radius, REFUSE_FUNCTION refuse_function)
{
Vec2f corner_min(FLT_MAX, FLT_MAX);
for (const Vec2f &pt : raw_samples) {
@ -334,7 +388,7 @@ std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec2f> &raw_sampl
const RawSample &candidate = raw_samples_sorted[next_sample_idx];
// See if this point conflicts with any other points in this cell, or with any points in
// neighboring cells. Note that it's possible to have more than one point in the same cell.
bool conflict = false;
bool conflict = refuse_function(candidate.coord);
for (int i = -1; i < 2 && ! conflict; ++ i) {
for (int j = -1; j < 2; ++ j) {
const auto &it_neighbor = cells.find(cell_id + Vec2i(i, j));
@ -365,7 +419,7 @@ std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec2f> &raw_sampl
return out;
}
void SLAAutoSupports::uniformly_cover(const ExPolygon& island, Structure& structure, bool is_new_island, bool just_one)
void SLAAutoSupports::uniformly_cover(const ExPolygon& island, Structure& structure, PointGrid3D &grid3d, bool is_new_island, bool just_one)
{
//int num_of_points = std::max(1, (int)((island.area()*pow(SCALING_FACTOR, 2) * m_config.tear_pressure)/m_config.support_force));
@ -374,12 +428,17 @@ void SLAAutoSupports::uniformly_cover(const ExPolygon& island, Structure& struct
const float poisson_radius = 1.f / (5.f * density_horizontal);
// const float poisson_radius = 1.f / (15.f * density_horizontal);
const float samples_per_mm2 = 30.f / (float(M_PI) * poisson_radius * poisson_radius);
// Minimum distance between samples, in 3D space.
const float min_spacing = poisson_radius / 3.f;
//FIXME share the random generator. The random generator may be not so cheap to initialize, also we don't want the random generator to be restarted for each polygon.
std::random_device rd;
std::mt19937 rng(rd());
std::vector<Vec2f> raw_samples = sample_expolygon_with_boundary(island, samples_per_mm2, 5.f / poisson_radius, rng);
std::vector<Vec2f> poisson_samples = poisson_disk_from_samples(raw_samples, poisson_radius);
std::vector<Vec2f> poisson_samples = poisson_disk_from_samples(raw_samples, poisson_radius,
[&structure, &grid3d, min_spacing](const Vec2f &pos) {
return grid3d.collides_with(pos, &structure, min_spacing);
});
#ifdef SLA_AUTOSUPPORTS_DEBUG
{
@ -393,10 +452,11 @@ void SLAAutoSupports::uniformly_cover(const ExPolygon& island, Structure& struct
}
#endif /* NDEBUG */
assert(! poisson_samples.empty());
// assert(! poisson_samples.empty());
for (const Vec2f &pt : poisson_samples) {
m_output.emplace_back(float(pt(0)), float(pt(1)), structure.height, 0.2f, is_new_island);
structure.supports_force += m_config.support_force;
grid3d.insert(pt, &structure);
}
}