ENH: enable arachne for wall

Refer to prusa and enable arachne for wall.

Arachne also has corner case and cause strange
slicing result and bad quality when print, while
class engine is much better for these cases.

Provide option for user to choose.

Signed-off-by: salt.wei <salt.wei@bambulab.com>
Change-Id: Ieb3a1c6a457ca610561f8734de4a122d74165afd
This commit is contained in:
salt.wei 2022-11-30 21:14:55 +08:00 committed by Lane.Wei
parent 4419703f41
commit 6551b86230
10 changed files with 703 additions and 6 deletions

View file

@ -5,6 +5,7 @@
#include "VariableWidth.hpp"
#include "CurveAnalyzer.hpp"
#include "Clipper2Utils.hpp"
#include "Arachne/WallToolPaths.hpp"
#include <cmath>
#include <cassert>
@ -79,6 +80,51 @@ static void fuzzy_polygon(Polygon &poly, double fuzzy_skin_thickness, double fuz
poly.points = std::move(out);
}
// Thanks Cura developers for this function.
static void fuzzy_extrusion_line(Arachne::ExtrusionLine& ext_lines, double fuzzy_skin_thickness, double fuzzy_skin_point_dist)
{
const double min_dist_between_points = fuzzy_skin_point_dist * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
const double range_random_point_dist = fuzzy_skin_point_dist / 2.;
double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
auto* p0 = &ext_lines.front();
std::vector<Arachne::ExtrusionJunction> out;
out.reserve(ext_lines.size());
for (auto& p1 : ext_lines) {
if (p0->p == p1.p) { // Connect endpoints.
out.emplace_back(p1.p, p1.w, p1.perimeter_index);
continue;
}
// 'a' is the (next) new point between p0 and p1
Vec2d p0p1 = (p1.p - p0->p).cast<double>();
double p0p1_size = p0p1.norm();
// so that p0p1_size - dist_last_point evaulates to dist_left_over - p0p1_size
double dist_last_point = dist_left_over + p0p1_size * 2.;
for (double p0pa_dist = dist_left_over; p0pa_dist < p0p1_size; p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX)) {
double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
out.emplace_back(p0->p + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>(), p1.w, p1.perimeter_index);
dist_last_point = p0pa_dist;
}
dist_left_over = p0p1_size - dist_last_point;
p0 = &p1;
}
while (out.size() < 3) {
size_t point_idx = ext_lines.size() - 2;
out.emplace_back(ext_lines[point_idx].p, ext_lines[point_idx].w, ext_lines[point_idx].perimeter_index);
if (point_idx == 0)
break;
--point_idx;
}
if (ext_lines.back().p == ext_lines.front().p) // Connect endpoints.
out.front().p = out.back().p;
if (out.size() >= 3)
ext_lines.junctions = std::move(out);
}
using PerimeterGeneratorLoops = std::vector<PerimeterGeneratorLoop>;
static void lowpass_filter_by_paths_overhang_degree(ExtrusionPaths& paths) {
@ -356,7 +402,229 @@ static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator &perime
return out;
}
void PerimeterGenerator::process()
static ClipperLib_Z::Paths clip_extrusion(const ClipperLib_Z::Path& subject, const ClipperLib_Z::Paths& clip, ClipperLib_Z::ClipType clipType)
{
ClipperLib_Z::Clipper clipper;
clipper.ZFillFunction([](const ClipperLib_Z::IntPoint& e1bot, const ClipperLib_Z::IntPoint& e1top, const ClipperLib_Z::IntPoint& e2bot,
const ClipperLib_Z::IntPoint& e2top, ClipperLib_Z::IntPoint& pt) {
ClipperLib_Z::IntPoint start = e1bot;
ClipperLib_Z::IntPoint end = e1top;
if (start.z() <= 0 && end.z() <= 0) {
start = e2bot;
end = e2top;
}
assert(start.z() > 0 && end.z() > 0);
// Interpolate extrusion line width.
double length_sqr = (end - start).cast<double>().squaredNorm();
double dist_sqr = (pt - start).cast<double>().squaredNorm();
double t = std::sqrt(dist_sqr / length_sqr);
pt.z() = start.z() + coord_t((end.z() - start.z()) * t);
});
clipper.AddPath(subject, ClipperLib_Z::ptSubject, false);
clipper.AddPaths(clip, ClipperLib_Z::ptClip, true);
ClipperLib_Z::PolyTree clipped_polytree;
ClipperLib_Z::Paths clipped_paths;
clipper.Execute(clipType, clipped_polytree, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero);
ClipperLib_Z::PolyTreeToPaths(clipped_polytree, clipped_paths);
// Clipped path could contain vertices from the clip with a Z coordinate equal to zero.
// For those vertices, we must assign value based on the subject.
// This happens only in sporadic cases.
for (ClipperLib_Z::Path& path : clipped_paths)
for (ClipperLib_Z::IntPoint& c_pt : path)
if (c_pt.z() == 0) {
// Now we must find the corresponding line on with this point is located and compute line width (Z coordinate).
if (subject.size() <= 2)
continue;
const Point pt(c_pt.x(), c_pt.y());
Point projected_pt_min;
auto it_min = subject.begin();
auto dist_sqr_min = std::numeric_limits<double>::max();
Point prev(subject.front().x(), subject.front().y());
for (auto it = std::next(subject.begin()); it != subject.end(); ++it) {
Point curr(it->x(), it->y());
Point projected_pt = pt.projection_onto(Line(prev, curr));
if (double dist_sqr = (projected_pt - pt).cast<double>().squaredNorm(); dist_sqr < dist_sqr_min) {
dist_sqr_min = dist_sqr;
projected_pt_min = projected_pt;
it_min = std::prev(it);
}
prev = curr;
}
assert(dist_sqr_min <= SCALED_EPSILON);
assert(std::next(it_min) != subject.end());
const Point pt_a(it_min->x(), it_min->y());
const Point pt_b(std::next(it_min)->x(), std::next(it_min)->y());
const double line_len = (pt_b - pt_a).cast<double>().norm();
const double dist = (projected_pt_min - pt_a).cast<double>().norm();
c_pt.z() = coord_t(double(it_min->z()) + (dist / line_len) * double(std::next(it_min)->z() - it_min->z()));
}
assert([&clipped_paths = std::as_const(clipped_paths)]() -> bool {
for (const ClipperLib_Z::Path& path : clipped_paths)
for (const ClipperLib_Z::IntPoint& pt : path)
if (pt.z() <= 0)
return false;
return true;
}());
return clipped_paths;
}
struct PerimeterGeneratorArachneExtrusion
{
Arachne::ExtrusionLine* extrusion = nullptr;
// Indicates if closed ExtrusionLine is a contour or a hole. Used it only when ExtrusionLine is a closed loop.
bool is_contour = false;
// Should this extrusion be fuzzyfied on path generation?
bool fuzzify = false;
};
static ExtrusionEntityCollection traverse_extrusions(const PerimeterGenerator& perimeter_generator, std::vector<PerimeterGeneratorArachneExtrusion>& pg_extrusions)
{
ExtrusionEntityCollection extrusion_coll;
for (PerimeterGeneratorArachneExtrusion& pg_extrusion : pg_extrusions) {
Arachne::ExtrusionLine* extrusion = pg_extrusion.extrusion;
if (extrusion->empty())
continue;
const bool is_external = extrusion->inset_idx == 0;
ExtrusionRole role = is_external ? erExternalPerimeter : erPerimeter;
if (pg_extrusion.fuzzify)
fuzzy_extrusion_line(*extrusion, scaled<float>(perimeter_generator.config->fuzzy_skin_thickness.value), scaled<float>(perimeter_generator.config->fuzzy_skin_point_distance.value));
ExtrusionPaths paths;
// detect overhanging/bridging perimeters
if (perimeter_generator.config->detect_overhang_wall && perimeter_generator.layer_id > perimeter_generator.object_config->raft_layers
&& !((perimeter_generator.object_config->enable_support || perimeter_generator.object_config->enforce_support_layers > 0) &&
perimeter_generator.object_config->support_top_z_distance.value == 0)) {
ClipperLib_Z::Path extrusion_path;
extrusion_path.reserve(extrusion->size());
for (const Arachne::ExtrusionJunction& ej : extrusion->junctions)
extrusion_path.emplace_back(ej.p.x(), ej.p.y(), ej.w);
ClipperLib_Z::Paths lower_slices_paths;
lower_slices_paths.reserve(perimeter_generator.lower_slices_polygons().size());
for (const Polygon& poly : perimeter_generator.lower_slices_polygons()) {
lower_slices_paths.emplace_back();
ClipperLib_Z::Path& out = lower_slices_paths.back();
out.reserve(poly.points.size());
for (const Point& pt : poly.points)
out.emplace_back(pt.x(), pt.y(), 0);
}
// get non-overhang paths by intersecting this loop with the grown lower slices
extrusion_paths_append(paths, clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctIntersection), role,
is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow);
// get overhang paths by checking what parts of this loop fall
// outside the grown lower slices (thus where the distance between
// the loop centerline and original lower slices is >= half nozzle diameter
extrusion_paths_append(paths, clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctDifference), erOverhangPerimeter,
perimeter_generator.overhang_flow);
// Reapply the nearest point search for starting point.
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
// Arachne sometimes creates extrusion with zero-length (just two same endpoints);
if (!paths.empty()) {
Point start_point = paths.front().first_point();
if (!extrusion->is_closed) {
// Especially for open extrusion, we need to select a starting point that is at the start
// or the end of the extrusions to make one continuous line. Also, we prefer a non-overhang
// starting point.
struct PointInfo
{
size_t occurrence = 0;
bool is_overhang = false;
};
std::unordered_map<Point, PointInfo, PointHash> point_occurrence;
for (const ExtrusionPath& path : paths) {
++point_occurrence[path.polyline.first_point()].occurrence;
++point_occurrence[path.polyline.last_point()].occurrence;
if (path.role() == erOverhangPerimeter) {
point_occurrence[path.polyline.first_point()].is_overhang = true;
point_occurrence[path.polyline.last_point()].is_overhang = true;
}
}
// Prefer non-overhang point as a starting point.
for (const std::pair<Point, PointInfo> pt : point_occurrence)
if (pt.second.occurrence == 1) {
start_point = pt.first;
if (!pt.second.is_overhang) {
start_point = pt.first;
break;
}
}
}
chain_and_reorder_extrusion_paths(paths, &start_point);
}
}
else {
extrusion_paths_append(paths, *extrusion, role, is_external ? perimeter_generator.ext_perimeter_flow : perimeter_generator.perimeter_flow);
}
// Append paths to collection.
if (!paths.empty()) {
if (extrusion->is_closed) {
ExtrusionLoop extrusion_loop(std::move(paths));
// Restore the orientation of the extrusion loop.
if (pg_extrusion.is_contour)
extrusion_loop.make_counter_clockwise();
else
extrusion_loop.make_clockwise();
for (auto it = std::next(extrusion_loop.paths.begin()); it != extrusion_loop.paths.end(); ++it) {
assert(it->polyline.points.size() >= 2);
assert(std::prev(it)->polyline.last_point() == it->polyline.first_point());
}
assert(extrusion_loop.paths.front().first_point() == extrusion_loop.paths.back().last_point());
extrusion_coll.append(std::move(extrusion_loop));
}
else {
// Because we are processing one ExtrusionLine all ExtrusionPaths should form one connected path.
// But there is possibility that due to numerical issue there is poss
assert([&paths = std::as_const(paths)]() -> bool {
for (auto it = std::next(paths.begin()); it != paths.end(); ++it)
if (std::prev(it)->polyline.last_point() != it->polyline.first_point())
return false;
return true;
}());
ExtrusionMultiPath multi_path;
multi_path.paths.emplace_back(std::move(paths.front()));
for (auto it_path = std::next(paths.begin()); it_path != paths.end(); ++it_path) {
if (multi_path.paths.back().last_point() != it_path->first_point()) {
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
multi_path = ExtrusionMultiPath();
}
multi_path.paths.emplace_back(std::move(*it_path));
}
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
}
}
}
return extrusion_coll;
}
void PerimeterGenerator::process_classic()
{
// other perimeters
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
@ -798,6 +1066,261 @@ void PerimeterGenerator::process()
} // for each island
}
// Thanks, Cura developers, for implementing an algorithm for generating perimeters with variable width (Arachne) that is based on the paper
// "A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling"
void PerimeterGenerator::process_arachne()
{
// other perimeters
m_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
// external perimeters
m_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
coord_t ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (this->ext_perimeter_flow.spacing() + this->perimeter_flow.spacing()));
// overhang perimeters
m_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
// solid infill
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
// prepare grown lower layer slices for overhang detection
if (this->lower_slices != nullptr && this->config->detect_overhang_wall) {
// We consider overhang any part where the entire nozzle diameter is not supported by the
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
// in the current layer
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->wall_filament - 1);
m_lower_slices_polygons = offset(*this->lower_slices, float(scale_(+nozzle_diameter / 2)));
}
// we need to process each island separately because we might have different
// extra perimeters for each one
for (const Surface& surface : this->slices->surfaces) {
// detect how many perimeters must be generated for this island
int loop_number = this->config->wall_loops + surface.extra_perimeters - 1; // 0-indexed loops
ExPolygons last = offset_ex(surface.expolygon.simplify_p(m_scaled_resolution), -float(ext_perimeter_width / 2. - ext_perimeter_spacing / 2.));
Polygons last_p = to_polygons(last);
double min_nozzle_diameter = *std::min_element(print_config->nozzle_diameter.values.begin(), print_config->nozzle_diameter.values.end());
Arachne::WallToolPathsParams input_params;
{
if (const auto& min_feature_size_opt = object_config->min_feature_size)
input_params.min_feature_size = min_feature_size_opt.value * 0.01 * min_nozzle_diameter;
if (const auto& min_bead_width_opt = object_config->min_bead_width)
input_params.min_bead_width = min_bead_width_opt.value * 0.01 * min_nozzle_diameter;
if (const auto& wall_transition_filter_deviation_opt = object_config->wall_transition_filter_deviation)
input_params.wall_transition_filter_deviation = wall_transition_filter_deviation_opt.value * 0.01 * min_nozzle_diameter;
if (const auto& wall_transition_length_opt = object_config->wall_transition_length)
input_params.wall_transition_length = wall_transition_length_opt.value * 0.01 * min_nozzle_diameter;
input_params.wall_transition_angle = this->object_config->wall_transition_angle.value;
input_params.wall_distribution_count = this->object_config->wall_distribution_count.value;
}
Arachne::WallToolPaths wallToolPaths(last_p, ext_perimeter_spacing, perimeter_spacing, coord_t(loop_number + 1), 0, layer_height, input_params);
std::vector<Arachne::VariableWidthLines> perimeters = wallToolPaths.getToolPaths();
loop_number = int(perimeters.size()) - 1;
#ifdef ARACHNE_DEBUG
{
static int iRun = 0;
export_perimeters_to_svg(debug_out_path("arachne-perimeters-%d-%d.svg", layer_id, iRun++), to_polygons(last), perimeters, union_ex(wallToolPaths.getInnerContour()));
}
#endif
// All closed ExtrusionLine should have the same the first and the last point.
// But in rare cases, Arachne produce ExtrusionLine marked as closed but without
// equal the first and the last point.
assert([&perimeters = std::as_const(perimeters)]() -> bool {
for (const Arachne::VariableWidthLines& perimeter : perimeters)
for (const Arachne::ExtrusionLine& el : perimeter)
if (el.is_closed && el.junctions.front().p != el.junctions.back().p)
return false;
return true;
}());
int start_perimeter = int(perimeters.size()) - 1;
int end_perimeter = -1;
int direction = -1;
bool is_outer_wall_first =
this->print_config->wall_infill_order == WallInfillOrder::OuterInnerInfill ||
this->print_config->wall_infill_order == WallInfillOrder::InfillOuterInner;
if (is_outer_wall_first) {
start_perimeter = 0;
end_perimeter = int(perimeters.size());
direction = 1;
}
std::vector<Arachne::ExtrusionLine*> all_extrusions;
for (int perimeter_idx = start_perimeter; perimeter_idx != end_perimeter; perimeter_idx += direction) {
if (perimeters[perimeter_idx].empty())
continue;
for (Arachne::ExtrusionLine& wall : perimeters[perimeter_idx])
all_extrusions.emplace_back(&wall);
}
// Find topological order with constraints from extrusions_constrains.
std::vector<size_t> blocked(all_extrusions.size(), 0); // Value indicating how many extrusions it is blocking (preceding extrusions) an extrusion.
std::vector<std::vector<size_t>> blocking(all_extrusions.size()); // Each extrusion contains a vector of extrusions that are blocked by this extrusion.
std::unordered_map<const Arachne::ExtrusionLine*, size_t> map_extrusion_to_idx;
for (size_t idx = 0; idx < all_extrusions.size(); idx++)
map_extrusion_to_idx.emplace(all_extrusions[idx], idx);
auto extrusions_constrains = Arachne::WallToolPaths::getRegionOrder(all_extrusions, is_outer_wall_first);
for (auto [before, after] : extrusions_constrains) {
auto after_it = map_extrusion_to_idx.find(after);
++blocked[after_it->second];
blocking[map_extrusion_to_idx.find(before)->second].emplace_back(after_it->second);
}
std::vector<bool> processed(all_extrusions.size(), false); // Indicate that the extrusion was already processed.
Point current_position = all_extrusions.empty() ? Point::Zero() : all_extrusions.front()->junctions.front().p; // Some starting position.
std::vector<PerimeterGeneratorArachneExtrusion> ordered_extrusions; // To store our result in. At the end we'll std::swap.
ordered_extrusions.reserve(all_extrusions.size());
while (ordered_extrusions.size() < all_extrusions.size()) {
size_t best_candidate = 0;
double best_distance_sqr = std::numeric_limits<double>::max();
bool is_best_closed = false;
std::vector<size_t> available_candidates;
for (size_t candidate = 0; candidate < all_extrusions.size(); ++candidate) {
if (processed[candidate] || blocked[candidate])
continue; // Not a valid candidate.
available_candidates.push_back(candidate);
}
std::sort(available_candidates.begin(), available_candidates.end(), [&all_extrusions](const size_t a_idx, const size_t b_idx) -> bool {
return all_extrusions[a_idx]->is_closed < all_extrusions[b_idx]->is_closed;
});
for (const size_t candidate_path_idx : available_candidates) {
auto& path = all_extrusions[candidate_path_idx];
if (path->junctions.empty()) { // No vertices in the path. Can't find the start position then or really plan it in. Put that at the end.
if (best_distance_sqr == std::numeric_limits<double>::max()) {
best_candidate = candidate_path_idx;
is_best_closed = path->is_closed;
}
continue;
}
const Point candidate_position = path->junctions.front().p;
double distance_sqr = (current_position - candidate_position).cast<double>().norm();
if (distance_sqr < best_distance_sqr) { // Closer than the best candidate so far.
if (path->is_closed || (!path->is_closed && best_distance_sqr != std::numeric_limits<double>::max()) || (!path->is_closed && !is_best_closed)) {
best_candidate = candidate_path_idx;
best_distance_sqr = distance_sqr;
is_best_closed = path->is_closed;
}
}
}
auto& best_path = all_extrusions[best_candidate];
ordered_extrusions.push_back({ best_path, best_path->is_contour(), false });
processed[best_candidate] = true;
for (size_t unlocked_idx : blocking[best_candidate])
blocked[unlocked_idx]--;
if (!best_path->junctions.empty()) { //If all paths were empty, the best path is still empty. We don't upate the current position then.
if (best_path->is_closed)
current_position = best_path->junctions[0].p; //We end where we started.
else
current_position = best_path->junctions.back().p; //Pick the other end from where we started.
}
}
if (this->layer_id > 0 && this->config->fuzzy_skin != FuzzySkinType::None) {
std::vector<PerimeterGeneratorArachneExtrusion*> closed_loop_extrusions;
for (PerimeterGeneratorArachneExtrusion& extrusion : ordered_extrusions)
if (extrusion.extrusion->inset_idx == 0) {
if (extrusion.extrusion->is_closed && this->config->fuzzy_skin == FuzzySkinType::External) {
closed_loop_extrusions.emplace_back(&extrusion);
}
else {
extrusion.fuzzify = true;
}
}
if (this->config->fuzzy_skin == FuzzySkinType::External) {
ClipperLib_Z::Paths loops_paths;
loops_paths.reserve(closed_loop_extrusions.size());
for (const auto& cl_extrusion : closed_loop_extrusions) {
assert(cl_extrusion->extrusion->junctions.front() == cl_extrusion->extrusion->junctions.back());
size_t loop_idx = &cl_extrusion - &closed_loop_extrusions.front();
ClipperLib_Z::Path loop_path;
loop_path.reserve(cl_extrusion->extrusion->junctions.size() - 1);
for (auto junction_it = cl_extrusion->extrusion->junctions.begin(); junction_it != std::prev(cl_extrusion->extrusion->junctions.end()); ++junction_it)
loop_path.emplace_back(junction_it->p.x(), junction_it->p.y(), loop_idx);
loops_paths.emplace_back(loop_path);
}
ClipperLib_Z::Clipper clipper;
clipper.AddPaths(loops_paths, ClipperLib_Z::ptSubject, true);
ClipperLib_Z::PolyTree loops_polytree;
clipper.Execute(ClipperLib_Z::ctUnion, loops_polytree, ClipperLib_Z::pftEvenOdd, ClipperLib_Z::pftEvenOdd);
for (const ClipperLib_Z::PolyNode* child_node : loops_polytree.Childs) {
// The whole contour must have the same index.
coord_t polygon_idx = child_node->Contour.front().z();
bool has_same_idx = std::all_of(child_node->Contour.begin(), child_node->Contour.end(),
[&polygon_idx](const ClipperLib_Z::IntPoint& point) -> bool { return polygon_idx == point.z(); });
if (has_same_idx)
closed_loop_extrusions[polygon_idx]->fuzzify = true;
}
}
}
if (ExtrusionEntityCollection extrusion_coll = traverse_extrusions(*this, ordered_extrusions); !extrusion_coll.empty())
this->loops->append(extrusion_coll);
ExPolygons infill_contour = union_ex(wallToolPaths.getInnerContour());
const coord_t spacing = (perimeters.size() == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
if (offset_ex(infill_contour, -float(spacing / 2.)).empty())
infill_contour.clear(); // Infill region is too small, so let's filter it out.
// create one more offset to be used as boundary for fill
// we offset by half the perimeter spacing (to get to the actual infill boundary)
// and then we offset back and forth by half the infill spacing to only consider the
// non-collapsing regions
coord_t inset =
(loop_number < 0) ? 0 :
(loop_number == 0) ?
// one loop
ext_perimeter_spacing :
// two or more loops?
perimeter_spacing;
inset = coord_t(scale_(this->config->infill_wall_overlap.get_abs_value(unscale<double>(inset))));
Polygons pp;
for (ExPolygon& ex : infill_contour)
ex.simplify_p(m_scaled_resolution, &pp);
// collapse too narrow infill areas
const auto min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
// append infill areas to fill_surfaces
this->fill_surfaces->append(
offset2_ex(
union_ex(pp),
float(-min_perimeter_infill_spacing / 2.),
float(inset + min_perimeter_infill_spacing / 2.)),
stInternal);
// BBS: get the no-overlap infill expolygons
{
append(*this->fill_no_overlap, offset2_ex(
union_ex(pp),
float(-min_perimeter_infill_spacing / 2.),
float(+min_perimeter_infill_spacing / 2.)));
}
}
}
bool PerimeterGeneratorLoop::is_internal_contour() const
{
// An internal contour is a contour containing no other contours