mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	Add some comments to OpenGL code
This commit is contained in:
		
							parent
							
								
									8ec3ec6bda
								
							
						
					
					
						commit
						63ba894260
					
				
					 1 changed files with 33 additions and 12 deletions
				
			
		|  | @ -15,6 +15,8 @@ __PACKAGE__->mk_accessors( qw(quat dirty init mview_init | |||
|                               mesh_center mesh_size | ||||
|                               verts norms initpos) ); | ||||
| 
 | ||||
| use constant TRACKBALLSIZE => 0.8; | ||||
| 
 | ||||
| sub new { | ||||
|     my ($class, $parent, $mesh) = @_; | ||||
|     my $self = $class->SUPER::new($parent); | ||||
|  | @ -71,6 +73,7 @@ sub new { | |||
|     return $self; | ||||
| } | ||||
| 
 | ||||
| # Given an axis and angle, compute quaternion. | ||||
| sub axis_to_quat { | ||||
|     my ($ax, $phi) = @_; | ||||
|      | ||||
|  | @ -81,13 +84,16 @@ sub axis_to_quat { | |||
|     return @q; | ||||
| } | ||||
| 
 | ||||
| # Project a point on the virtual trackball.  | ||||
| # If it is inside the sphere, map it to the sphere, if it outside map it | ||||
| # to a hyperbola. | ||||
| sub project_to_sphere { | ||||
|     my ($r, $x, $y) = @_; | ||||
|      | ||||
|     my $d = sqrt($x * $x + $y * $y); | ||||
|     if ($d < $r * 0.70710678118654752440) { | ||||
|     if ($d < $r * 0.70710678118654752440) {     # Inside sphere | ||||
|         return sqrt($r * $r - $d * $d); | ||||
|     } else { | ||||
|     } else {                                    # On hyperbola | ||||
|         my $t = $r / 1.41421356237309504880; | ||||
|         return $t * $t / $d; | ||||
|     } | ||||
|  | @ -101,20 +107,34 @@ sub cross { | |||
|             @$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]); | ||||
| } | ||||
| 
 | ||||
| # Simulate a track-ball. Project the points onto the virtual trackball,  | ||||
| # then figure out the axis of rotation, which is the cross product of  | ||||
| # P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a  | ||||
| # deformed trackball-- is a trackball in the center, but is deformed  | ||||
| # into a hyperbolic sheet of rotation away from the center.  | ||||
| # It is assumed that the arguments to this routine are in the range  | ||||
| # (-1.0 ... 1.0). | ||||
| sub trackball { | ||||
|     my ($p1x, $p1y, $p2x, $p2y, $r) = @_; | ||||
|     my ($p1x, $p1y, $p2x, $p2y) = @_; | ||||
|      | ||||
|     if ($p1x == $p2x && $p1y == $p2y) { | ||||
|       return (0.0, 0.0, 0.0, 1.0); | ||||
|         # zero rotation | ||||
|         return (0.0, 0.0, 0.0, 1.0); | ||||
|     } | ||||
|      | ||||
|     my @p1 = ($p1x, $p1y, project_to_sphere($r, $p1x, $p1y)); | ||||
|     my @p2 = ($p2x, $p2y, project_to_sphere($r, $p2x, $p2y)); | ||||
|     # First, figure out z-coordinates for projection of P1 and P2 to | ||||
|     # deformed sphere | ||||
|     my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y)); | ||||
|     my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y)); | ||||
|      | ||||
|     # axis of rotation (cross product of P1 and P2) | ||||
|     my @a = cross(\@p2, \@p1); | ||||
| 
 | ||||
|     # Figure out how much to rotate around that axis. | ||||
|     my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1); | ||||
|     my $t = sqrt(reduce { $a + $b } @d) / (2.0 * $r); | ||||
|     my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE); | ||||
|      | ||||
|     # Avoid problems with out-of-control values... | ||||
|     $t = 1.0 if ($t > 1.0); | ||||
|     $t = -1.0 if ($t < -1.0); | ||||
|     my $phi = 2.0 * asin($t); | ||||
|  | @ -122,6 +142,7 @@ sub trackball { | |||
|     return axis_to_quat(\@a, $phi); | ||||
| } | ||||
| 
 | ||||
| # Build a rotation matrix, given a quaternion rotation. | ||||
| sub quat_to_rotmatrix { | ||||
|     my ($q) = @_; | ||||
|    | ||||
|  | @ -172,7 +193,7 @@ sub handle_rotation { | |||
|                         1 - $orig->y / ($size->height / 2),       #/ | ||||
|                         $new->x / ($size->width / 2) - 1, | ||||
|                         1 - $new->y / ($size->height / 2),        #/ | ||||
|                         0.8); | ||||
|                         ); | ||||
|         $self->quat(mulquats($self->quat, \@quat)); | ||||
|         $self->initpos($new); | ||||
|         $self->Refresh; | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Alessandro Ranellucci
						Alessandro Ranellucci