mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-18 04:08:02 -06:00
Performance improvements of the MotionPlanner
(rewrote the Dijkstra shortest path algorithm to use a binary priority heap instead of a dumb O(n^2) algorithm, added some bounding box tests to avoid expensive in-polygon tests if possible).
This commit is contained in:
parent
8a628c451c
commit
60528c5c2a
8 changed files with 340 additions and 313 deletions
|
@ -1,5 +1,8 @@
|
|||
#include "BoundingBox.hpp"
|
||||
#include "MotionPlanner.hpp"
|
||||
#include "MutablePriorityQueue.hpp"
|
||||
#include "Utils.hpp"
|
||||
|
||||
#include <limits> // for numeric_limits
|
||||
#include <assert.h>
|
||||
|
||||
|
@ -9,103 +12,73 @@ using boost::polygon::voronoi_diagram;
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
MotionPlanner::MotionPlanner(const ExPolygons &islands)
|
||||
: initialized(false)
|
||||
MotionPlanner::MotionPlanner(const ExPolygons &islands) : initialized(false)
|
||||
{
|
||||
ExPolygons expp;
|
||||
for (ExPolygons::const_iterator island = islands.begin(); island != islands.end(); ++island)
|
||||
island->simplify(SCALED_EPSILON, &expp);
|
||||
|
||||
for (ExPolygons::const_iterator island = expp.begin(); island != expp.end(); ++island)
|
||||
this->islands.push_back(MotionPlannerEnv(*island));
|
||||
for (const ExPolygon &island : islands) {
|
||||
island.simplify(SCALED_EPSILON, &expp);
|
||||
for (ExPolygon &island : expp)
|
||||
this->islands.push_back(MotionPlannerEnv(island));
|
||||
expp.clear();
|
||||
}
|
||||
}
|
||||
|
||||
MotionPlanner::~MotionPlanner()
|
||||
void MotionPlanner::initialize()
|
||||
{
|
||||
for (std::vector<MotionPlannerGraph*>::iterator graph = this->graphs.begin(); graph != this->graphs.end(); ++graph)
|
||||
delete *graph;
|
||||
}
|
||||
|
||||
size_t
|
||||
MotionPlanner::islands_count() const
|
||||
{
|
||||
return this->islands.size();
|
||||
}
|
||||
|
||||
void
|
||||
MotionPlanner::initialize()
|
||||
{
|
||||
if (this->initialized) return;
|
||||
if (this->islands.empty()) return; // prevent initialization of empty BoundingBox
|
||||
// prevent initialization of empty BoundingBox
|
||||
if (this->initialized || this->islands.empty())
|
||||
return;
|
||||
|
||||
// loop through islands in order to create inner expolygons and collect their contours
|
||||
Polygons outer_holes;
|
||||
for (std::vector<MotionPlannerEnv>::iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
|
||||
for (MotionPlannerEnv &island : this->islands) {
|
||||
// generate the internal env boundaries by shrinking the island
|
||||
// we'll use these inner rings for motion planning (endpoints of the Voronoi-based
|
||||
// graph, visibility check) in order to avoid moving too close to the boundaries
|
||||
island->env = offset_ex(island->island, -MP_INNER_MARGIN);
|
||||
|
||||
island.env = ExPolygonCollection(offset_ex(island.island, -MP_INNER_MARGIN));
|
||||
// island contours are holes of our external environment
|
||||
outer_holes.push_back(island->island.contour);
|
||||
outer_holes.push_back(island.island.contour);
|
||||
}
|
||||
|
||||
// generate outer contour as bounding box of everything
|
||||
BoundingBox bb;
|
||||
for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour)
|
||||
bb.merge(contour->bounding_box());
|
||||
|
||||
// grow outer contour
|
||||
Polygons contour = offset(bb.polygon(), +MP_OUTER_MARGIN*2);
|
||||
// Generate a box contour around everyting.
|
||||
Polygons contour = offset(get_extents(outer_holes).polygon(), +MP_OUTER_MARGIN*2);
|
||||
assert(contour.size() == 1);
|
||||
|
||||
// make expolygon for outer environment
|
||||
ExPolygons outer = diff_ex(contour, outer_holes);
|
||||
assert(outer.size() == 1);
|
||||
//FIXME What if some of the islands are nested? Then the front contour may not be the outmost contour!
|
||||
this->outer.island = outer.front();
|
||||
|
||||
this->outer.env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
|
||||
|
||||
this->graphs.resize(this->islands.size() + 1, NULL);
|
||||
this->graphs.resize(this->islands.size() + 1);
|
||||
this->initialized = true;
|
||||
}
|
||||
|
||||
const MotionPlannerEnv&
|
||||
MotionPlanner::get_env(int island_idx) const
|
||||
Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
||||
{
|
||||
if (island_idx == -1) {
|
||||
return this->outer;
|
||||
} else {
|
||||
return this->islands[island_idx];
|
||||
}
|
||||
}
|
||||
|
||||
Polyline
|
||||
MotionPlanner::shortest_path(const Point &from, const Point &to)
|
||||
{
|
||||
// if we have an empty configuration space, return a straight move
|
||||
// If we have an empty configuration space, return a straight move.
|
||||
if (this->islands.empty())
|
||||
return Line(from, to);
|
||||
|
||||
// Are both points in the same island?
|
||||
int island_idx = -1;
|
||||
for (std::vector<MotionPlannerEnv>::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
|
||||
if (island->island.contains(from) && island->island.contains(to)) {
|
||||
// since both points are in the same island, is a direct move possible?
|
||||
// if so, we avoid generating the visibility environment
|
||||
if (island->island.contains(Line(from, to)))
|
||||
for (MotionPlannerEnv &island : islands) {
|
||||
if (island.island_bbox.contains(from) && island.island_bbox.contains(to) &&
|
||||
island.island.contains(from) && island.island.contains(to)) {
|
||||
// Since both points are in the same island, is a direct move possible?
|
||||
// If so, we avoid generating the visibility environment.
|
||||
if (island.island.contains(Line(from, to)))
|
||||
return Line(from, to);
|
||||
|
||||
island_idx = island - this->islands.begin();
|
||||
// Both points are inside a single island, but the straight line crosses the island boundary.
|
||||
island_idx = &island - this->islands.data();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// lazy generation of configuration space
|
||||
// lazy generation of configuration space.
|
||||
this->initialize();
|
||||
|
||||
|
||||
// get environment
|
||||
MotionPlannerEnv env = this->get_env(island_idx);
|
||||
const MotionPlannerEnv &env = this->get_env(island_idx);
|
||||
if (env.env.expolygons.empty()) {
|
||||
// if this environment is empty (probably because it's too small), perform straight move
|
||||
// and avoid running the algorithms on empty dataset
|
||||
|
@ -122,19 +95,19 @@ MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
// nodes which don't require more than one crossing, and let Dijkstra
|
||||
// figure out the entire path - this should also replace the call to
|
||||
// find_node() below
|
||||
if (!env.island.contains(inner_from)) {
|
||||
if (! env.island_bbox.contains(inner_from) || ! env.island.contains(inner_from)) {
|
||||
// Find the closest inner point to start from.
|
||||
inner_from = env.nearest_env_point(from, to);
|
||||
}
|
||||
if (!env.island.contains(inner_to)) {
|
||||
if (! env.island_bbox.contains(inner_to) || ! env.island.contains(inner_to)) {
|
||||
// Find the closest inner point to start from.
|
||||
inner_to = env.nearest_env_point(to, inner_from);
|
||||
}
|
||||
}
|
||||
|
||||
// perform actual path search
|
||||
MotionPlannerGraph* graph = this->init_graph(island_idx);
|
||||
Polyline polyline = graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to));
|
||||
const MotionPlannerGraph &graph = this->init_graph(island_idx);
|
||||
Polyline polyline = graph.shortest_path(graph.find_closest_node(inner_from), graph.find_closest_node(inner_to));
|
||||
|
||||
polyline.points.insert(polyline.points.begin(), from);
|
||||
polyline.points.push_back(to);
|
||||
|
@ -152,17 +125,15 @@ MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
grown_env (whose contour was arbitrarily constructed with MP_OUTER_MARGIN,
|
||||
which may not be enough for, say, including a skirt point). So we prune
|
||||
the extra points manually. */
|
||||
if (!grown_env.contains(from)) {
|
||||
if (! grown_env.contains(from)) {
|
||||
// delete second point while the line connecting first to third crosses the
|
||||
// boundaries as many times as the current first to second
|
||||
while (polyline.points.size() > 2 && intersection_ln((Lines)Line(from, polyline.points[2]), grown_env).size() == 1) {
|
||||
while (polyline.points.size() > 2 && intersection_ln((Lines)Line(from, polyline.points[2]), grown_env).size() == 1)
|
||||
polyline.points.erase(polyline.points.begin() + 1);
|
||||
}
|
||||
}
|
||||
if (!grown_env.contains(to)) {
|
||||
while (polyline.points.size() > 2 && intersection_ln((Lines)Line(*(polyline.points.end() - 3), to), grown_env).size() == 1) {
|
||||
if (! grown_env.contains(to)) {
|
||||
while (polyline.points.size() > 2 && intersection_ln((Lines)Line(*(polyline.points.end() - 3), to), grown_env).size() == 1)
|
||||
polyline.points.erase(polyline.points.end() - 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -178,7 +149,7 @@ MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
svg.arrows = false;
|
||||
for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
|
||||
Point a = graph->nodes[it - graph->adjacency_list.begin()];
|
||||
for (std::vector<MotionPlannerGraph::neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
|
||||
for (std::vector<MotionPlannerGraph::Neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
|
||||
Point b = graph->nodes[n->target];
|
||||
svg.draw(Line(a, b));
|
||||
}
|
||||
|
@ -196,12 +167,12 @@ MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|||
return polyline;
|
||||
}
|
||||
|
||||
MotionPlannerGraph*
|
||||
MotionPlanner::init_graph(int island_idx)
|
||||
const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx)
|
||||
{
|
||||
if (this->graphs[island_idx + 1] == NULL) {
|
||||
if (! this->graphs[island_idx + 1]) {
|
||||
// if this graph doesn't exist, initialize it
|
||||
MotionPlannerGraph* graph = this->graphs[island_idx + 1] = new MotionPlannerGraph();
|
||||
this->graphs[island_idx + 1] = make_unique<MotionPlannerGraph>();
|
||||
MotionPlannerGraph* graph = this->graphs[island_idx + 1].get();
|
||||
|
||||
/* We don't add polygon boundaries as graph edges, because we'd need to connect
|
||||
them to the Voronoi-generated edges by recognizing coinciding nodes. */
|
||||
|
@ -214,7 +185,7 @@ MotionPlanner::init_graph(int island_idx)
|
|||
t_vd_vertices vd_vertices;
|
||||
|
||||
// get boundaries as lines
|
||||
MotionPlannerEnv env = this->get_env(island_idx);
|
||||
const MotionPlannerEnv &env = this->get_env(island_idx);
|
||||
Lines lines = env.env.lines();
|
||||
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
|
||||
|
||||
|
@ -228,6 +199,7 @@ MotionPlanner::init_graph(int island_idx)
|
|||
Point p1 = Point(v1->x(), v1->y());
|
||||
|
||||
// skip edge if any of its endpoints is outside our configuration space
|
||||
//FIXME This test has a terrible O(n^2) time complexity.
|
||||
if (!env.island.contains_b(p0) || !env.island.contains_b(p1)) continue;
|
||||
|
||||
t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
|
||||
|
@ -252,14 +224,12 @@ MotionPlanner::init_graph(int island_idx)
|
|||
double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
|
||||
graph->add_edge(v0_idx, v1_idx, dist);
|
||||
}
|
||||
|
||||
return graph;
|
||||
}
|
||||
return this->graphs[island_idx + 1];
|
||||
|
||||
return *this->graphs[island_idx + 1].get();
|
||||
}
|
||||
|
||||
Point
|
||||
MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
|
||||
Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
|
||||
{
|
||||
/* In order to ensure that the move between 'from' and the initial env point does
|
||||
not violate any of the configuration space boundaries, we limit our search to
|
||||
|
@ -270,23 +240,19 @@ MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
|
|||
|
||||
// get the points of the hole containing 'from', if any
|
||||
Points pp;
|
||||
for (ExPolygons::const_iterator ex = this->env.expolygons.begin(); ex != this->env.expolygons.end(); ++ex) {
|
||||
for (Polygons::const_iterator h = ex->holes.begin(); h != ex->holes.end(); ++h) {
|
||||
if (h->contains(from)) {
|
||||
pp = *h;
|
||||
}
|
||||
}
|
||||
if (!pp.empty()) break;
|
||||
for (const ExPolygon &ex : this->env.expolygons) {
|
||||
for (const Polygon &hole : ex.holes)
|
||||
if (hole.contains(from))
|
||||
pp = hole;
|
||||
if (! pp.empty())
|
||||
break;
|
||||
}
|
||||
|
||||
/* If 'from' is not inside a hole, it's outside of all contours, so take all
|
||||
contours' points */
|
||||
if (pp.empty()) {
|
||||
for (ExPolygons::const_iterator ex = this->env.expolygons.begin(); ex != this->env.expolygons.end(); ++ex) {
|
||||
Points contour_pp = ex->contour;
|
||||
pp.insert(pp.end(), contour_pp.begin(), contour_pp.end());
|
||||
}
|
||||
}
|
||||
if (pp.empty())
|
||||
for (const ExPolygon &ex : this->env.expolygons)
|
||||
append(pp, ex.contour.points);
|
||||
|
||||
/* Find the candidate result and check that it doesn't cross too many boundaries. */
|
||||
while (pp.size() >= 2) {
|
||||
|
@ -297,115 +263,77 @@ MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
|
|||
if (intersection_ln((Lines)Line(from, pp[result]), this->island).size() > 1) {
|
||||
// discard result
|
||||
pp.erase(pp.begin() + result);
|
||||
} else {
|
||||
} else
|
||||
return pp[result];
|
||||
}
|
||||
}
|
||||
|
||||
// if we're here, return last point if any (better than nothing)
|
||||
if (!pp.empty()) {
|
||||
return pp.front();
|
||||
}
|
||||
|
||||
// if we have no points at all, then we have an empty environment and we
|
||||
// make this method behave as a no-op (we shouldn't get here by the way)
|
||||
return from;
|
||||
return pp.empty() ? from : pp.front();
|
||||
}
|
||||
|
||||
void
|
||||
MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
|
||||
// Add a new directed edge to the adjacency graph.
|
||||
void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
|
||||
{
|
||||
// extend adjacency list until this start node
|
||||
if (this->adjacency_list.size() < from+1)
|
||||
this->adjacency_list.resize(from+1);
|
||||
|
||||
this->adjacency_list[from].push_back(neighbor(to, weight));
|
||||
}
|
||||
|
||||
size_t
|
||||
MotionPlannerGraph::find_node(const Point &point) const
|
||||
{
|
||||
/*
|
||||
for (Points::const_iterator p = this->nodes.begin(); p != this->nodes.end(); ++p) {
|
||||
if (p->coincides_with(point)) return p - this->nodes.begin();
|
||||
// Extend adjacency list until this start node.
|
||||
if (this->adjacency_list.size() < from + 1) {
|
||||
// Reserve in powers of two to avoid repeated reallocation.
|
||||
this->adjacency_list.reserve(std::max<size_t>(8, next_highest_power_of_2(from + 1)));
|
||||
// Allocate new empty adjacency vectors.
|
||||
this->adjacency_list.resize(from + 1);
|
||||
}
|
||||
*/
|
||||
return point.nearest_point_index(this->nodes);
|
||||
this->adjacency_list[from].emplace_back(Neighbor(node_t(to), weight));
|
||||
}
|
||||
|
||||
Polyline
|
||||
MotionPlannerGraph::shortest_path(size_t from, size_t to)
|
||||
// Dijkstra's shortest path in a weighted graph from node_start to node_end.
|
||||
// The returned path contains the end points.
|
||||
Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) const
|
||||
{
|
||||
// this prevents a crash in case for some reason we got here with an empty adjacency list
|
||||
if (this->adjacency_list.empty()) return Polyline();
|
||||
|
||||
const weight_t max_weight = std::numeric_limits<weight_t>::infinity();
|
||||
|
||||
std::vector<weight_t> dist;
|
||||
std::vector<node_t> previous;
|
||||
{
|
||||
// number of nodes
|
||||
size_t n = this->adjacency_list.size();
|
||||
|
||||
// initialize dist and previous
|
||||
dist.clear();
|
||||
dist.resize(n, max_weight);
|
||||
dist[from] = 0; // distance from 'from' to itself
|
||||
previous.clear();
|
||||
previous.resize(n, -1);
|
||||
|
||||
// initialize the Q with all nodes
|
||||
std::set<node_t> Q;
|
||||
for (node_t i = 0; i < n; ++i) Q.insert(i);
|
||||
|
||||
while (!Q.empty())
|
||||
{
|
||||
// get node in Q having the minimum dist ('from' in the first loop)
|
||||
node_t u;
|
||||
{
|
||||
double min_dist = -1;
|
||||
for (std::set<node_t>::const_iterator n = Q.begin(); n != Q.end(); ++n) {
|
||||
if (dist[*n] < min_dist || min_dist == -1) {
|
||||
u = *n;
|
||||
min_dist = dist[*n];
|
||||
}
|
||||
// This prevents a crash in case for some reason we got here with an empty adjacency list.
|
||||
if (this->adjacency_list.empty())
|
||||
return Polyline();
|
||||
|
||||
// Dijkstra algorithm, previous node of the current node 'u' in the shortest path towards node_start.
|
||||
std::vector<node_t> previous(this->adjacency_list.size(), -1);
|
||||
std::vector<weight_t> distance(this->adjacency_list.size(), std::numeric_limits<weight_t>::infinity());
|
||||
std::vector<size_t> map_node_to_queue_id(this->adjacency_list.size(), size_t(-1));
|
||||
distance[node_start] = 0.;
|
||||
|
||||
auto queue = make_mutable_priority_queue<node_t>(
|
||||
[&map_node_to_queue_id](const node_t &node, size_t idx) { map_node_to_queue_id[node] = idx; },
|
||||
[&distance](const node_t &node1, const node_t &node2) { return distance[node1] < distance[node2]; });
|
||||
queue.reserve(this->adjacency_list.size());
|
||||
for (size_t i = 0; i < this->adjacency_list.size(); ++ i)
|
||||
queue.push(node_t(i));
|
||||
|
||||
while (! queue.empty()) {
|
||||
// Get the next node with the lowest distance to node_start.
|
||||
node_t u = node_t(queue.top());
|
||||
queue.pop();
|
||||
map_node_to_queue_id[u] = size_t(-1);
|
||||
// Stop searching if we reached our destination.
|
||||
if (u == node_end)
|
||||
break;
|
||||
// Visit each edge starting at node u.
|
||||
for (const Neighbor& neighbor : this->adjacency_list[u])
|
||||
if (map_node_to_queue_id[neighbor.target] != size_t(-1)) {
|
||||
weight_t alt = distance[u] + neighbor.weight;
|
||||
// If total distance through u is shorter than the previous
|
||||
// distance (if any) between node_start and neighbor.target, replace it.
|
||||
if (alt < distance[neighbor.target]) {
|
||||
distance[neighbor.target] = alt;
|
||||
previous[neighbor.target] = u;
|
||||
queue.update(map_node_to_queue_id[neighbor.target]);
|
||||
}
|
||||
}
|
||||
Q.erase(u);
|
||||
|
||||
// stop searching if we reached our destination
|
||||
if (u == to) break;
|
||||
|
||||
// Visit each edge starting from node u
|
||||
const std::vector<neighbor> &neighbors = this->adjacency_list[u];
|
||||
for (std::vector<neighbor>::const_iterator neighbor_iter = neighbors.begin();
|
||||
neighbor_iter != neighbors.end();
|
||||
++neighbor_iter)
|
||||
{
|
||||
// neighbor node is v
|
||||
node_t v = neighbor_iter->target;
|
||||
|
||||
// skip if we already visited this
|
||||
if (Q.find(v) == Q.end()) continue;
|
||||
|
||||
// calculate total distance
|
||||
weight_t alt = dist[u] + neighbor_iter->weight;
|
||||
|
||||
// if total distance through u is shorter than the previous
|
||||
// distance (if any) between 'from' and 'v', replace it
|
||||
if (alt < dist[v]) {
|
||||
dist[v] = alt;
|
||||
previous[v] = u;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Polyline polyline;
|
||||
for (node_t vertex = to; vertex != -1; vertex = previous[vertex])
|
||||
polyline.points.reserve(previous.size());
|
||||
for (node_t vertex = node_t(node_end); vertex != -1; vertex = previous[vertex])
|
||||
polyline.points.push_back(this->nodes[vertex]);
|
||||
polyline.points.push_back(this->nodes[from]);
|
||||
polyline.points.push_back(this->nodes[node_start]);
|
||||
polyline.reverse();
|
||||
return polyline;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue