Removed the PRUS format parser. WIP: admesh eradication:

stl_stats are newly only accessed by TriangleMesh::stats(),
most of the direct access to TriangleMesh::stl is gone with the exception
of parsing input files (3MF, AMF, obj).
This commit is contained in:
Vojtech Bubnik 2021-09-14 11:58:07 +02:00
parent 1c6ecd9c1a
commit 58d8ab3dea
22 changed files with 149 additions and 159 deletions

View file

@ -78,8 +78,6 @@ add_library(libslic3r STATIC
Format/OBJ.hpp
Format/objparser.cpp
Format/objparser.hpp
Format/PRUS.cpp
Format/PRUS.hpp
Format/STL.cpp
Format/STL.hpp
Format/SL1.hpp

View file

@ -9,7 +9,6 @@
#include "Format/AMF.hpp"
#include "Format/OBJ.hpp"
#include "Format/PRUS.hpp"
#include "Format/STL.hpp"
#include "Format/3mf.hpp"
@ -118,8 +117,6 @@ Model Model::read_from_file(const std::string& input_file, DynamicPrintConfig* c
else if (boost::algorithm::iends_with(input_file, ".3mf"))
//FIXME options & LoadAttribute::CheckVersion ?
result = load_3mf(input_file.c_str(), *config, *config_substitutions, &model, false);
else if (boost::algorithm::iends_with(input_file, ".prusa"))
result = load_prus(input_file.c_str(), &model);
else
throw Slic3r::RuntimeError("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension.");
@ -1154,7 +1151,7 @@ size_t ModelObject::facets_count() const
size_t num = 0;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
num += v->mesh().stl.stats.number_of_facets;
num += v->mesh().facets_count();
return num;
}
@ -1508,9 +1505,9 @@ double ModelObject::get_instance_min_z(size_t instance_idx) const
const Transform3d mv = mi * v->get_matrix();
const TriangleMesh& hull = v->get_convex_hull();
for (const stl_facet &facet : hull.stl.facet_start)
for (const stl_triangle_vertex_indices facet : hull.its.indices)
for (int i = 0; i < 3; ++ i)
min_z = std::min(min_z, (mv * facet.vertex[i].cast<double>()).z());
min_z = std::min(min_z, (mv * hull.its.vertices[facet[i]].cast<double>()).z());
}
return min_z + inst->get_offset(Z);
@ -1529,9 +1526,9 @@ double ModelObject::get_instance_max_z(size_t instance_idx) const
const Transform3d mv = mi * v->get_matrix();
const TriangleMesh& hull = v->get_convex_hull();
for (const stl_facet& facet : hull.stl.facet_start)
for (const stl_triangle_vertex_indices facet : hull.its.indices)
for (int i = 0; i < 3; ++i)
max_z = std::max(max_z, (mv * facet.vertex[i].cast<double>()).z());
max_z = std::max(max_z, (mv * hull.its.vertices[facet[i]].cast<double>()).z());
}
return max_z + inst->get_offset(Z);
@ -1584,27 +1581,27 @@ void ModelObject::print_info() const
cout << "max_x = " << bb.max(0) << endl;
cout << "max_y = " << bb.max(1) << endl;
cout << "max_z = " << bb.max(2) << endl;
cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl;
cout << "number_of_facets = " << mesh.facets_count() << endl;
cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl;
mesh.repair(); // this calculates number_of_parts
if (mesh.needed_repair()) {
mesh.repair();
if (mesh.stl.stats.degenerate_facets > 0)
cout << "degenerate_facets = " << mesh.stl.stats.degenerate_facets << endl;
if (mesh.stl.stats.edges_fixed > 0)
cout << "edges_fixed = " << mesh.stl.stats.edges_fixed << endl;
if (mesh.stl.stats.facets_removed > 0)
cout << "facets_removed = " << mesh.stl.stats.facets_removed << endl;
if (mesh.stl.stats.facets_added > 0)
cout << "facets_added = " << mesh.stl.stats.facets_added << endl;
if (mesh.stl.stats.facets_reversed > 0)
cout << "facets_reversed = " << mesh.stl.stats.facets_reversed << endl;
if (mesh.stl.stats.backwards_edges > 0)
cout << "backwards_edges = " << mesh.stl.stats.backwards_edges << endl;
if (mesh.stats().degenerate_facets > 0)
cout << "degenerate_facets = " << mesh.stats().degenerate_facets << endl;
if (mesh.stats().edges_fixed > 0)
cout << "edges_fixed = " << mesh.stats().edges_fixed << endl;
if (mesh.stats().facets_removed > 0)
cout << "facets_removed = " << mesh.stats().facets_removed << endl;
if (mesh.stats().facets_added > 0)
cout << "facets_added = " << mesh.stats().facets_added << endl;
if (mesh.stats().facets_reversed > 0)
cout << "facets_reversed = " << mesh.stats().facets_reversed << endl;
if (mesh.stats().backwards_edges > 0)
cout << "backwards_edges = " << mesh.stats().backwards_edges << endl;
}
cout << "number_of_parts = " << mesh.stl.stats.number_of_parts << endl;
cout << "volume = " << mesh.volume() << endl;
cout << "number_of_parts = " << mesh.stats().number_of_parts << endl;
cout << "volume = " << mesh.volume() << endl;
}
std::string ModelObject::get_export_filename() const
@ -1630,7 +1627,7 @@ std::string ModelObject::get_export_filename() const
stl_stats ModelObject::get_object_stl_stats() const
{
if (this->volumes.size() == 1)
return this->volumes[0]->mesh().stl.stats;
return this->volumes[0]->mesh().stats();
stl_stats full_stats;
full_stats.volume = 0.f;
@ -1638,7 +1635,7 @@ stl_stats ModelObject::get_object_stl_stats() const
// fill full_stats from all objet's meshes
for (ModelVolume* volume : this->volumes)
{
const stl_stats& stats = volume->mesh().stl.stats;
const stl_stats& stats = volume->mesh().stats();
// initialize full_stats (for repaired errors)
full_stats.degenerate_facets += stats.degenerate_facets;
@ -1734,7 +1731,7 @@ void ModelVolume::calculate_convex_hull()
int ModelVolume::get_mesh_errors_count() const
{
const stl_stats& stats = this->mesh().stl.stats;
const stl_stats &stats = this->mesh().stats();
return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed +
stats.facets_added + stats.facets_reversed + stats.backwards_edges;

View file

@ -774,7 +774,7 @@ private:
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
if (mesh.stl.stats.number_of_facets > 1)
if (mesh.facets_count() > 1)
calculate_convex_hull();
}
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull, ModelVolumeType type = ModelVolumeType::MODEL_PART) :
@ -830,7 +830,7 @@ private:
assert(this->config.id() == other.config.id());
this->set_material_id(other.material_id());
this->config.set_new_unique_id();
if (mesh.stl.stats.number_of_facets > 1)
if (mesh.facets_count() > 1)
calculate_convex_hull();
assert(this->config.id().valid());
assert(this->config.id() != other.config.id());

View file

@ -39,23 +39,6 @@ LayerPtrs new_layers(
return out;
}
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
// This function will go away once we get rid of admesh from ModelVolume.
static indexed_triangle_set get_mesh_its_fix_mesh_connectivity(TriangleMesh mesh)
{
assert(mesh.repaired && mesh.has_shared_vertices());
if (mesh.stl.stats.number_of_facets > 0) {
assert(mesh.repaired && mesh.has_shared_vertices());
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
stl_check_facets_exact(&mesh.stl);
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
stl_generate_shared_vertices(&mesh.stl, mesh.its);
} else
mesh.its.clear();
return std::move(mesh.its);
}
// Slice single triangle mesh.
static std::vector<ExPolygons> slice_volume(
const ModelVolume &volume,
@ -65,7 +48,7 @@ static std::vector<ExPolygons> slice_volume(
{
std::vector<ExPolygons> layers;
if (! zs.empty()) {
indexed_triangle_set its = get_mesh_its_fix_mesh_connectivity(volume.mesh());
indexed_triangle_set its = volume.mesh().its;
if (its.indices.size() > 0) {
MeshSlicingParamsEx params2 { params };
params2.trafo = params2.trafo * volume.get_matrix();

View file

@ -35,13 +35,6 @@ legend("tan(a) as cura - topographic lines distance limit", "sqrt(tan(a)) as Pru
namespace Slic3r
{
static inline std::pair<float, float> face_z_span(const stl_facet &f)
{
return std::pair<float, float>(
std::min(std::min(f.vertex[0](2), f.vertex[1](2)), f.vertex[2](2)),
std::max(std::max(f.vertex[0](2), f.vertex[1](2)), f.vertex[2](2)));
}
// By Florens Waserfall aka @platch:
// This constant essentially describes the volumetric error at the surface which is induced
// by stacking "elliptic" extrusion threads. It is empirically determined by
@ -88,10 +81,15 @@ void SlicingAdaptive::prepare(const ModelObject &object)
mesh.transform(first_instance.get_matrix(), first_instance.is_left_handed());
// 1) Collect faces from mesh.
m_faces.reserve(mesh.stl.stats.number_of_facets);
for (const stl_facet &face : mesh.stl.facet_start) {
Vec3f n = face.normal.normalized();
m_faces.emplace_back(FaceZ({ face_z_span(face), std::abs(n.z()), std::sqrt(n.x() * n.x() + n.y() * n.y()) }));
m_faces.reserve(mesh.facets_count());
for (stl_triangle_vertex_indices face : mesh.its.indices) {
stl_vertex vertex[3] = { mesh.its.vertices[face[0]], mesh.its.vertices[face[1]], mesh.its.vertices[face[2]] };
stl_vertex n = (vertex[2] - vertex[1]).cross(vertex[3] - vertex[2]).normalized();
std::pair<float, float> face_z_span {
std::min(std::min(vertex[0].z(), vertex[1].z()), vertex[2].z()),
std::max(std::max(vertex[0].z(), vertex[1].z()), vertex[2].z())
};
m_faces.emplace_back(FaceZ({ face_z_span, std::abs(n.z()), std::sqrt(n.x() * n.x() + n.y() * n.y()) }));
}
// 2) Sort faces lexicographically by their Z span.

View file

@ -187,6 +187,10 @@ void TriangleMesh::repair(bool update_shared_vertices)
this->repaired = true;
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
if (auto nr_degenerated = this->stl.stats.degenerate_facets; this->facets_count() > 0 && nr_degenerated > 0)
stl_check_facets_exact(&this->stl);
BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() finished";
// This call should be quite cheap, a lot of code requires the indexed_triangle_set data structure,
@ -1335,4 +1339,15 @@ std::vector<Vec3i> its_face_neighbors_par(const indexed_triangle_set &its)
return create_face_neighbors_index(ex_tbb, its);
}
std::vector<Vec3f> its_face_normals(const indexed_triangle_set &its)
{
std::vector<Vec3f> normals;
normals.reserve(its.indices.size());
for (stl_triangle_vertex_indices face : its.indices) {
stl_vertex vertex[3] = { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] };
normals.push_back((vertex[2] - vertex[1]).cross(vertex[3] - vertex[2]).normalized());
}
return normals;
}
} // namespace Slic3r

View file

@ -52,7 +52,6 @@ public:
TriangleMeshPtrs split() const;
void merge(const TriangleMesh &mesh);
ExPolygons horizontal_projection() const;
const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); }
// 2D convex hull of a 3D mesh projected into the Z=0 plane.
Polygon convex_hull();
BoundingBoxf3 bounding_box() const;
@ -80,10 +79,14 @@ public:
// Restore optional data possibly released by release_optional().
void restore_optional();
stl_file stl;
const stl_stats& stats() const { return this->stl.stats; }
indexed_triangle_set its;
bool repaired;
//private:
stl_file stl;
private:
std::deque<uint32_t> find_unvisited_neighbors(std::vector<unsigned char> &facet_visited) const;
};
@ -205,6 +208,8 @@ void its_merge(indexed_triangle_set &A, const indexed_triangle_set &B);
void its_merge(indexed_triangle_set &A, const std::vector<Vec3f> &triangles);
void its_merge(indexed_triangle_set &A, const Pointf3s &triangles);
std::vector<Vec3f> its_face_normals(const indexed_triangle_set &its);
indexed_triangle_set its_make_cube(double x, double y, double z);
TriangleMesh make_cube(double x, double y, double z);

View file

@ -9,16 +9,6 @@
namespace Slic3r {
static inline Vec3i root_neighbors(const TriangleMesh &mesh, int triangle_id)
{
Vec3i neighbors;
const stl_neighbors& neighbors_src = mesh.stl.neighbors_start[triangle_id];
for (int i = 0; i < 3; ++i)
// Refuse a neighbor with a flipped normal.
neighbors(i) = neighbors_src.neighbor[i];
return neighbors;
}
#ifndef NDEBUG
bool TriangleSelector::verify_triangle_midpoints(const Triangle &tr) const
{
@ -129,7 +119,7 @@ int TriangleSelector::select_unsplit_triangle(const Vec3f &hit, int facet_idx) c
if (!m_triangles[facet_idx].valid())
return -1;
Vec3i neighbors = root_neighbors(*m_mesh, facet_idx);
Vec3i neighbors = m_neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
return this->select_unsplit_triangle(hit, facet_idx, neighbors);
}
@ -167,7 +157,7 @@ void TriangleSelector::select_patch(const Vec3f& hit, int facet_start,
if (! visited[facet]) {
if (select_triangle(facet, new_state, triangle_splitting)) {
// add neighboring facets to list to be proccessed later
for (int neighbor_idx : m_mesh->stl.neighbors_start[facet].neighbor) {
for (int neighbor_idx : m_neighbors[facet]) {
if (neighbor_idx >=0 && (m_cursor.type == SPHERE || faces_camera(neighbor_idx)))
facets_to_check.push_back(neighbor_idx);
}
@ -213,12 +203,12 @@ void TriangleSelector::seed_fill_select_triangles(const Vec3f &hit, int facet_st
if (current_facet < m_orig_size_indices)
// Propagate over the original triangles.
for (int neighbor_idx : m_mesh->stl.neighbors_start[current_facet].neighbor) {
for (int neighbor_idx : m_neighbors[current_facet]) {
assert(neighbor_idx >= -1);
if (neighbor_idx >= 0 && !visited[neighbor_idx]) {
// Check if neighbour_facet_idx is satisfies angle in seed_fill_angle and append it to facet_queue if it do.
const Vec3f &n1 = m_mesh->stl.facet_start[m_triangles[neighbor_idx].source_triangle].normal;
const Vec3f &n2 = m_mesh->stl.facet_start[m_triangles[current_facet].source_triangle].normal;
const Vec3f &n1 = m_face_normals[m_triangles[neighbor_idx].source_triangle];
const Vec3f &n2 = m_face_normals[m_triangles[current_facet].source_triangle];
if (std::clamp(n1.dot(n2), 0.f, 1.f) >= facet_angle_limit)
facet_queue.push(neighbor_idx);
}
@ -261,7 +251,7 @@ std::pair<std::vector<Vec3i>, std::vector<Vec3i>> TriangleSelector::precompute_a
std::vector<Vec3i> neighbors(m_triangles.size(), Vec3i(-1, -1, -1));
std::vector<Vec3i> neighbors_propagated(m_triangles.size(), Vec3i(-1, -1, -1));
for (int facet_idx = 0; facet_idx < this->m_orig_size_indices; ++facet_idx) {
neighbors[facet_idx] = root_neighbors(*m_mesh, facet_idx);
neighbors[facet_idx] = m_neighbors[facet_idx];
neighbors_propagated[facet_idx] = neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors[facet_idx]));
if (m_triangles[facet_idx].is_split())
@ -403,7 +393,7 @@ bool TriangleSelector::select_triangle(int facet_idx, EnforcerBlockerType type,
if (! m_triangles[facet_idx].valid())
return false;
Vec3i neighbors = root_neighbors(*m_mesh, facet_idx);
Vec3i neighbors = m_neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
if (! select_triangle_recursive(facet_idx, neighbors, type, triangle_splitting))
@ -906,14 +896,7 @@ bool TriangleSelector::is_pointer_in_triangle(int facet_idx) const
bool TriangleSelector::faces_camera(int facet) const
{
assert(facet < m_orig_size_indices);
// The normal is cached in mesh->stl, use it.
Vec3f normal = m_mesh->stl.facet_start[facet].normal;
if (! m_cursor.uniform_scaling) {
// Transform the normal into world coords.
normal = m_cursor.trafo_normal * normal;
}
return (normal.dot(m_cursor.dir) < 0.);
return (m_cursor.uniform_scaling ? m_face_normals[facet] : m_cursor.trafo_normal * m_face_normals[facet]).dot(m_cursor.dir) < 0.;
}
@ -1094,7 +1077,7 @@ void TriangleSelector::garbage_collect()
}
TriangleSelector::TriangleSelector(const TriangleMesh& mesh)
: m_mesh{&mesh}
: m_mesh{mesh}, m_neighbors(its_face_neighbors(mesh.its)), m_face_normals(its_face_normals(mesh.its))
{
reset();
}
@ -1107,16 +1090,17 @@ void TriangleSelector::reset()
m_invalid_triangles = 0;
m_free_triangles_head = -1;
m_free_vertices_head = -1;
m_vertices.reserve(m_mesh->its.vertices.size());
for (const stl_vertex& vert : m_mesh->its.vertices)
m_vertices.reserve(m_mesh.its.vertices.size());
for (const stl_vertex& vert : m_mesh.its.vertices)
m_vertices.emplace_back(vert);
m_triangles.reserve(m_mesh->its.indices.size());
for (size_t i = 0; i < m_mesh->its.indices.size(); ++i) {
const stl_triangle_vertex_indices &ind = m_mesh->its.indices[i];
m_triangles.reserve(m_mesh.its.indices.size());
for (size_t i = 0; i < m_mesh.its.indices.size(); ++i) {
const stl_triangle_vertex_indices &ind = m_mesh.its.indices[i];
push_triangle(ind[0], ind[1], ind[2], int(i));
}
m_orig_size_vertices = int(m_vertices.size());
m_orig_size_indices = int(m_triangles.size());
}
@ -1286,7 +1270,7 @@ indexed_triangle_set TriangleSelector::get_facets_strict(EnforcerBlockerType sta
}
for (int itriangle = 0; itriangle < m_orig_size_indices; ++ itriangle)
this->get_facets_strict_recursive(m_triangles[itriangle], root_neighbors(*m_mesh, itriangle), state, out.indices);
this->get_facets_strict_recursive(m_triangles[itriangle], m_neighbors[itriangle], state, out.indices);
for (auto &triangle : out.indices)
for (int i = 0; i < 3; ++ i)
@ -1398,7 +1382,7 @@ void TriangleSelector::get_facets_split_by_tjoints(const Vec3i &vertices, const
std::vector<Vec2i> TriangleSelector::get_seed_fill_contour() const {
std::vector<Vec2i> edges_out;
for (int facet_idx = 0; facet_idx < this->m_orig_size_indices; ++facet_idx) {
const Vec3i neighbors = root_neighbors(*m_mesh, facet_idx);
const Vec3i neighbors = m_neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
this->get_seed_fill_contour_recursive(facet_idx, neighbors, neighbors, edges_out);
}
@ -1522,10 +1506,10 @@ void TriangleSelector::deserialize(const std::pair<std::vector<std::pair<int, in
// Reserve number of triangles as if each triangle was saved with 4 bits.
// With MMU painting this estimate may be somehow low, but better than nothing.
m_triangles.reserve(std::max(m_mesh->its.indices.size(), data.second.size() / 4));
m_triangles.reserve(std::max(m_mesh.its.indices.size(), data.second.size() / 4));
// Number of triangles is twice the number of vertices on a large manifold mesh of genus zero.
// Here the triangles count account for both the nodes and leaves, thus the following line may overestimate.
m_vertices.reserve(std::max(m_mesh->its.vertices.size(), m_triangles.size() / 2));
m_vertices.reserve(std::max(m_mesh.its.vertices.size(), m_triangles.size() / 2));
// Vector to store all parents that have offsprings.
struct ProcessingInfo {
@ -1565,7 +1549,7 @@ void TriangleSelector::deserialize(const std::pair<std::vector<std::pair<int, in
if (is_split) {
// root is split, add it into list of parents and split it.
// then go to the next.
Vec3i neighbors = root_neighbors(*m_mesh, triangle_id);
Vec3i neighbors = m_neighbors[triangle_id];
parents.push_back({triangle_id, neighbors, 0, num_of_children});
m_triangles[triangle_id].set_division(num_of_split_sides, special_side);
perform_split(triangle_id, neighbors, EnforcerBlockerType::NONE);

View file

@ -161,7 +161,9 @@ protected:
// Lists of vertices and triangles, both original and new
std::vector<Vertex> m_vertices;
std::vector<Triangle> m_triangles;
const TriangleMesh* m_mesh;
const TriangleMesh &m_mesh;
const std::vector<Vec3i> m_neighbors;
const std::vector<Vec3f> m_face_normals;
// Number of invalid triangles (to trigger garbage collection).
int m_invalid_triangles;