Refactored the can_connect() logic (includes a refactoring of the SVG library)

This commit is contained in:
Alessandro Ranellucci 2011-10-06 11:55:26 +02:00
parent 5a07137def
commit 5812804d6b
4 changed files with 342 additions and 187 deletions

View file

@ -10,7 +10,7 @@ use constant A => 0;
use constant B => 1;
use constant X => 0;
use constant Y => 1;
use constant epsilon => 1E-6;
use constant epsilon => 1E-4;
our $parallel_degrees_limit = abs(deg2rad(3));
sub slope {
@ -120,6 +120,13 @@ sub point_in_segment {
return abs($y3 - $y) < epsilon ? 1 : 0;
}
sub point_is_on_left_of_segment {
my ($point, $line) = @_;
return (($line->[B][X] - $line->[A][X])*($point->[Y] - $line->[A][Y])
- ($line->[B][Y] - $line->[A][Y])*($point->[X] - $line->[A][X])) > 0;
}
sub polygon_lines {
my ($polygon) = @_;
@ -148,6 +155,7 @@ sub nearest_point {
return $nearest_point;
}
# given a segment $p1-$p2, get the point at $distance from $p1 along segment
sub point_along_segment {
my ($p1, $p2, $distance) = @_;
@ -163,6 +171,39 @@ sub point_along_segment {
return $point;
}
# given a $polygon, return the (first) segment having $point
sub polygon_segment_having_point {
my ($polygon, $point) = @_;
foreach my $line (polygon_lines($polygon)) {
return $line if point_in_segment($point, $line);
}
return undef;
}
sub can_connect_points {
my ($p1, $p2, $polygons) = @_;
# check that the two points are visible from each other
return 0 if grep !polygon_points_visibility($_, $p1, $p2), @$polygons;
# get segment where $p1 lies
my $p1_segment;
for (@$polygons) {
$p1_segment = polygon_segment_having_point($_, $p1);
last if $p1_segment;
}
# defensive programming, this shouldn't happen
if (!$p1_segment) {
die sprintf "Point %f,%f wasn't found in polygon contour or holes!", @$p1;
}
# check whether $p2 is internal or external (internal = on the left)
return point_is_on_left_of_segment($p2, $p1_segment)
|| point_in_segment($p2, $p1_segment);
}
sub deg2rad {
my ($degrees) = @_;
return PI() * $degrees / 180;
@ -264,4 +305,158 @@ sub perp {
return $u->[X] * $v->[Y] - $u->[Y] * $v->[X];
}
sub polygon_points_visibility {
my ($polygon, $p1, $p2) = @_;
my $our_line = [ $p1, $p2 ];
foreach my $line (polygon_lines($polygon)) {
my $intersection = line_intersection($our_line, $line, 1) or next;
next if grep points_coincide($intersection, $_), $p1, $p2;
return 0;
}
return 1;
}
my $i = 0;
sub line_intersection {
my ($line1, $line2, $require_crossing) = @_;
$require_crossing ||= 0;
Slic3r::SVG::output(undef, "line_intersection_" . $i++ . ".svg",
lines => [ $line1, $line2 ],
) if 0;
my $intersection = _line_intersection(map @$_, @$line1, @$line2);
return (ref $intersection && $intersection->[1] == $require_crossing)
? $intersection->[0]
: undef;
}
sub _line_intersection {
my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 );
if ( @_ == 8 ) {
( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;
# The bounding boxes chop the lines into line segments.
# bounding_box() is defined later in this chapter.
my @box_a = bounding_box([ [$x0, $y0], [$x1, $y1] ]);
my @box_b = bounding_box([ [$x2, $y2], [$x3, $y3] ]);
# Take this test away and the line segments are
# turned into lines going from infinite to another.
# bounding_box_intersect() defined later in this chapter.
return "out of bounding box" unless bounding_box_intersect( 2, @box_a, @box_b );
}
elsif ( @_ == 4 ) { # The parametric form.
$x0 = $x2 = 0;
( $y0, $y2 ) = @_[ 1, 3 ];
# Need to multiply by 'enough' to get 'far enough'.
my $abs_y0 = abs $y0;
my $abs_y2 = abs $y2;
my $enough = 10 * ( $abs_y0 > $abs_y2 ? $abs_y0 : $abs_y2 );
$x1 = $x3 = $enough;
$y1 = $_[0] * $x1 + $y0;
$y3 = $_[2] * $x2 + $y2;
}
my ($x, $y); # The as-yet-undetermined intersection point.
my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
my $dx10 = $x1 - $x0; # between the points P and Q.
my $dy32 = $y3 - $y2;
my $dx32 = $x3 - $x2;
my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
my $dx10z = abs( $dx10 ) < epsilon;
my $dy32z = abs( $dy32 ) < epsilon;
my $dx32z = abs( $dx32 ) < epsilon;
my $dyx10; # The slopes.
my $dyx32;
$dyx10 = $dy10 / $dx10 unless $dx10z;
$dyx32 = $dy32 / $dx32 unless $dx32z;
# Now we know all differences and the slopes;
# we can detect horizontal/vertical special cases.
# E.g., slope = 0 means a horizontal line.
unless ( defined $dyx10 or defined $dyx32 ) {
return "parallel vertical";
}
elsif ( $dy10z and not $dy32z ) { # First line horizontal.
$y = $y0;
$x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
}
elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
$y = $y2;
$x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
}
elsif ( $dx10z and not $dx32z ) { # First line vertical.
$x = $x0;
$y = $y2 + $dyx32 * ( $x - $x2 );
}
elsif ( not $dx10z and $dx32z ) { # Second line vertical.
$x = $x2;
$y = $y0 + $dyx10 * ( $x - $x0 );
}
elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
# The slopes are suspiciously close to each other.
# Either we have parallel collinear or just parallel lines.
# The bounding box checks have already weeded the cases
# "parallel horizontal" and "parallel vertical" away.
my $ya = $y0 - $dyx10 * $x0;
my $yb = $y2 - $dyx32 * $x2;
return "parallel collinear" if abs( $ya - $yb ) < epsilon;
return "parallel";
}
else {
# None of the special cases matched.
# We have a "honest" line intersection.
$x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
$y = $y0 + $dyx10 * ($x - $x0);
}
my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);
return [[$x, $y], $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
}
# 2D
sub bounding_box {
my ($points) = @_;
my @x = sort { $a <=> $b } map $_->[X], @$points;
my @y = sort { $a <=> $b } map $_->[Y], @$points;
return ($x[0], $y[0], $x[-1], $y[-1]);
}
# bounding_box_intersect($d, @a, @b)
# Return true if the given bounding boxes @a and @b intersect
# in $d dimensions. Used by line_intersection().
sub bounding_box_intersect {
my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
my @aa = splice( @bb, 0, 2 * $d ); # The first box.
# (@bb is the second one.)
# Must intersect in all dimensions.
for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
my $i_max = $i_min + $d; # The index for the maximum.
return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
}
return 1;
}
1;