Merge branch 'master' into pa_reprap_g10_temperature_support

This commit is contained in:
ardenpm 2020-09-15 11:40:38 +10:00 committed by GitHub
commit 541c31afb0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
323 changed files with 28621 additions and 8886 deletions

View file

@ -692,6 +692,40 @@ inline typename VectorType::Scalar squared_distance_to_indexed_triangle_set(
detail::squared_distance_to_indexed_triangle_set_recursive(distancer, size_t(0), Scalar(0), std::numeric_limits<Scalar>::infinity(), hit_idx_out, hit_point_out);
}
// Decides if exists some triangle in defined radius on a 3D indexed triangle set using a pre-built AABBTreeIndirect::Tree.
// Closest point to triangle test will be performed with the accuracy of VectorType::Scalar
// even if the triangle mesh and the AABB Tree are built with floats.
// Returns true if exists some triangle in defined radius, false otherwise.
template<typename VertexType, typename IndexedFaceType, typename TreeType, typename VectorType>
inline bool is_any_triangle_in_radius(
// Indexed triangle set - 3D vertices.
const std::vector<VertexType> &vertices,
// Indexed triangle set - triangular faces, references to vertices.
const std::vector<IndexedFaceType> &faces,
// AABBTreeIndirect::Tree over vertices & faces, bounding boxes built with the accuracy of vertices.
const TreeType &tree,
// Point to which the closest point on the indexed triangle set is searched for.
const VectorType &point,
// Maximum distance in which triangle is search for
typename VectorType::Scalar &max_distance)
{
using Scalar = typename VectorType::Scalar;
auto distancer = detail::IndexedTriangleSetDistancer<VertexType, IndexedFaceType, TreeType, VectorType>
{ vertices, faces, tree, point };
size_t hit_idx;
VectorType hit_point = VectorType::Ones() * (std::nan(""));
if(tree.empty())
{
return false;
}
detail::squared_distance_to_indexed_triangle_set_recursive(distancer, size_t(0), Scalar(0), max_distance, hit_idx, hit_point);
return hit_point.allFinite();
}
} // namespace AABBTreeIndirect
} // namespace Slic3r

412
src/libslic3r/AppConfig.cpp Normal file
View file

@ -0,0 +1,412 @@
#include "libslic3r/libslic3r.h"
#include "libslic3r/Utils.hpp"
#include "AppConfig.hpp"
#include "Exception.hpp"
#include <utility>
#include <vector>
#include <stdexcept>
#include <boost/filesystem/path.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/nowide/cenv.hpp>
#include <boost/nowide/fstream.hpp>
#include <boost/property_tree/ini_parser.hpp>
#include <boost/property_tree/ptree_fwd.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/format/format_fwd.hpp>
//#include <wx/string.h>
//#include "I18N.hpp"
namespace Slic3r {
static const std::string VENDOR_PREFIX = "vendor:";
static const std::string MODEL_PREFIX = "model:";
static const std::string VERSION_CHECK_URL = "https://files.prusa3d.com/wp-content/uploads/repository/PrusaSlicer-settings-master/live/PrusaSlicer.version";
const std::string AppConfig::SECTION_FILAMENTS = "filaments";
const std::string AppConfig::SECTION_MATERIALS = "sla_materials";
void AppConfig::reset()
{
m_storage.clear();
set_defaults();
};
// Override missing or keys with their defaults.
void AppConfig::set_defaults()
{
// Reset the empty fields to defaults.
if (get("autocenter").empty())
set("autocenter", "0");
// Disable background processing by default as it is not stable.
if (get("background_processing").empty())
set("background_processing", "0");
// If set, the "Controller" tab for the control of the printer over serial line and the serial port settings are hidden.
// By default, Prusa has the controller hidden.
if (get("no_controller").empty())
set("no_controller", "1");
// If set, the "- default -" selections of print/filament/printer are suppressed, if there is a valid preset available.
if (get("no_defaults").empty())
set("no_defaults", "1");
if (get("show_incompatible_presets").empty())
set("show_incompatible_presets", "0");
if (get("version_check").empty())
set("version_check", "1");
if (get("preset_update").empty())
set("preset_update", "1");
if (get("export_sources_full_pathnames").empty())
set("export_sources_full_pathnames", "0");
// remove old 'use_legacy_opengl' parameter from this config, if present
if (!get("use_legacy_opengl").empty())
erase("", "use_legacy_opengl");
#ifdef __APPLE__
if (get("use_retina_opengl").empty())
set("use_retina_opengl", "1");
#endif
if (get("single_instance").empty())
set("single_instance", "0");
if (get("remember_output_path").empty())
set("remember_output_path", "1");
if (get("remember_output_path_removable").empty())
set("remember_output_path_removable", "1");
if (get("use_custom_toolbar_size").empty())
set("use_custom_toolbar_size", "0");
if (get("custom_toolbar_size").empty())
set("custom_toolbar_size", "100");
if (get("auto_toolbar_size").empty())
set("auto_toolbar_size", "100");
if (get("use_perspective_camera").empty())
set("use_perspective_camera", "1");
if (get("use_free_camera").empty())
set("use_free_camera", "0");
#if ENABLE_ENVIRONMENT_MAP
if (get("use_environment_map").empty())
set("use_environment_map", "0");
#endif // ENABLE_ENVIRONMENT_MAP
if (get("use_inches").empty())
set("use_inches", "0");
if (get("show_splash_screen").empty())
set("show_splash_screen", "1");
// Remove legacy window positions/sizes
erase("", "main_frame_maximized");
erase("", "main_frame_pos");
erase("", "main_frame_size");
erase("", "object_settings_maximized");
erase("", "object_settings_pos");
erase("", "object_settings_size");
}
std::string AppConfig::load()
{
// 1) Read the complete config file into a boost::property_tree.
namespace pt = boost::property_tree;
pt::ptree tree;
boost::nowide::ifstream ifs(AppConfig::config_path());
try {
pt::read_ini(ifs, tree);
} catch (pt::ptree_error& ex) {
// Error while parsing config file. We'll customize the error message and rethrow to be displayed.
// ! But to avoid the use of _utf8 (related to use of wxWidgets)
// we will rethrow this exception from the place of load() call, if returned value wouldn't be empty
/*
throw Slic3r::RuntimeError(
_utf8(L("Error parsing PrusaSlicer config file, it is probably corrupted. "
"Try to manually delete the file to recover from the error. Your user profiles will not be affected.")) +
"\n\n" + AppConfig::config_path() + "\n\n" + ex.what());
*/
return ex.what();
}
// 2) Parse the property_tree, extract the sections and key / value pairs.
for (const auto &section : tree) {
if (section.second.empty()) {
// This may be a top level (no section) entry, or an empty section.
std::string data = section.second.data();
if (! data.empty())
// If there is a non-empty data, then it must be a top-level (without a section) config entry.
m_storage[""][section.first] = data;
} else if (boost::starts_with(section.first, VENDOR_PREFIX)) {
// This is a vendor section listing enabled model / variants
const auto vendor_name = section.first.substr(VENDOR_PREFIX.size());
auto &vendor = m_vendors[vendor_name];
for (const auto &kvp : section.second) {
if (! boost::starts_with(kvp.first, MODEL_PREFIX)) { continue; }
const auto model_name = kvp.first.substr(MODEL_PREFIX.size());
std::vector<std::string> variants;
if (! unescape_strings_cstyle(kvp.second.data(), variants)) { continue; }
for (const auto &variant : variants) {
vendor[model_name].insert(variant);
}
}
} else {
// This must be a section name. Read the entries of a section.
std::map<std::string, std::string> &storage = m_storage[section.first];
for (auto &kvp : section.second)
storage[kvp.first] = kvp.second.data();
}
}
// Figure out if datadir has legacy presets
auto ini_ver = Semver::parse(get("version"));
m_legacy_datadir = false;
if (ini_ver) {
m_orig_version = *ini_ver;
// Make 1.40.0 alphas compare well
ini_ver->set_metadata(boost::none);
ini_ver->set_prerelease(boost::none);
m_legacy_datadir = ini_ver < Semver(1, 40, 0);
}
// Override missing or keys with their defaults.
this->set_defaults();
m_dirty = false;
return "";
}
void AppConfig::save()
{
#if ENABLE_GCODE_VIEWER
if (!m_save_enabled)
return;
#endif // ENABLE_GCODE_VIEWER
// The config is first written to a file with a PID suffix and then moved
// to avoid race conditions with multiple instances of Slic3r
const auto path = config_path();
std::string path_pid = (boost::format("%1%.%2%") % path % get_current_pid()).str();
boost::nowide::ofstream c;
c.open(path_pid, std::ios::out | std::ios::trunc);
c << "# " << Slic3r::header_slic3r_generated() << std::endl;
// Make sure the "no" category is written first.
for (const std::pair<std::string, std::string> &kvp : m_storage[""])
c << kvp.first << " = " << kvp.second << std::endl;
// Write the other categories.
for (const auto category : m_storage) {
if (category.first.empty())
continue;
c << std::endl << "[" << category.first << "]" << std::endl;
for (const std::pair<std::string, std::string> &kvp : category.second)
c << kvp.first << " = " << kvp.second << std::endl;
}
// Write vendor sections
for (const auto &vendor : m_vendors) {
size_t size_sum = 0;
for (const auto &model : vendor.second) { size_sum += model.second.size(); }
if (size_sum == 0) { continue; }
c << std::endl << "[" << VENDOR_PREFIX << vendor.first << "]" << std::endl;
for (const auto &model : vendor.second) {
if (model.second.size() == 0) { continue; }
const std::vector<std::string> variants(model.second.begin(), model.second.end());
const auto escaped = escape_strings_cstyle(variants);
c << MODEL_PREFIX << model.first << " = " << escaped << std::endl;
}
}
c.close();
rename_file(path_pid, path);
m_dirty = false;
}
bool AppConfig::get_variant(const std::string &vendor, const std::string &model, const std::string &variant) const
{
const auto it_v = m_vendors.find(vendor);
if (it_v == m_vendors.end()) { return false; }
const auto it_m = it_v->second.find(model);
return it_m == it_v->second.end() ? false : it_m->second.find(variant) != it_m->second.end();
}
void AppConfig::set_variant(const std::string &vendor, const std::string &model, const std::string &variant, bool enable)
{
if (enable) {
if (get_variant(vendor, model, variant)) { return; }
m_vendors[vendor][model].insert(variant);
} else {
auto it_v = m_vendors.find(vendor);
if (it_v == m_vendors.end()) { return; }
auto it_m = it_v->second.find(model);
if (it_m == it_v->second.end()) { return; }
auto it_var = it_m->second.find(variant);
if (it_var == it_m->second.end()) { return; }
it_m->second.erase(it_var);
}
// If we got here, there was an update
m_dirty = true;
}
void AppConfig::set_vendors(const AppConfig &from)
{
m_vendors = from.m_vendors;
m_dirty = true;
}
std::string AppConfig::get_last_dir() const
{
const auto it = m_storage.find("recent");
if (it != m_storage.end()) {
{
const auto it2 = it->second.find("skein_directory");
if (it2 != it->second.end() && ! it2->second.empty())
return it2->second;
}
{
const auto it2 = it->second.find("config_directory");
if (it2 != it->second.end() && ! it2->second.empty())
return it2->second;
}
}
return std::string();
}
std::vector<std::string> AppConfig::get_recent_projects() const
{
std::vector<std::string> ret;
const auto it = m_storage.find("recent_projects");
if (it != m_storage.end())
{
for (const std::map<std::string, std::string>::value_type& item : it->second)
{
ret.push_back(item.second);
}
}
return ret;
}
void AppConfig::set_recent_projects(const std::vector<std::string>& recent_projects)
{
auto it = m_storage.find("recent_projects");
if (it == m_storage.end())
it = m_storage.insert(std::map<std::string, std::map<std::string, std::string>>::value_type("recent_projects", std::map<std::string, std::string>())).first;
it->second.clear();
for (unsigned int i = 0; i < (unsigned int)recent_projects.size(); ++i)
{
it->second[std::to_string(i + 1)] = recent_projects[i];
}
}
void AppConfig::set_mouse_device(const std::string& name, double translation_speed, double translation_deadzone, float rotation_speed, float rotation_deadzone, double zoom_speed, bool swap_yz)
{
std::string key = std::string("mouse_device:") + name;
auto it = m_storage.find(key);
if (it == m_storage.end())
it = m_storage.insert(std::map<std::string, std::map<std::string, std::string>>::value_type(key, std::map<std::string, std::string>())).first;
it->second.clear();
it->second["translation_speed"] = std::to_string(translation_speed);
it->second["translation_deadzone"] = std::to_string(translation_deadzone);
it->second["rotation_speed"] = std::to_string(rotation_speed);
it->second["rotation_deadzone"] = std::to_string(rotation_deadzone);
it->second["zoom_speed"] = std::to_string(zoom_speed);
it->second["swap_yz"] = swap_yz ? "1" : "0";
}
std::vector<std::string> AppConfig::get_mouse_device_names() const
{
static constexpr const char *prefix = "mouse_device:";
static const size_t prefix_len = strlen(prefix);
std::vector<std::string> out;
for (const std::pair<std::string, std::map<std::string, std::string>>& key_value_pair : m_storage)
if (boost::starts_with(key_value_pair.first, prefix) && key_value_pair.first.size() > prefix_len)
out.emplace_back(key_value_pair.first.substr(prefix_len));
return out;
}
void AppConfig::update_config_dir(const std::string &dir)
{
this->set("recent", "config_directory", dir);
}
void AppConfig::update_skein_dir(const std::string &dir)
{
this->set("recent", "skein_directory", dir);
}
/*
std::string AppConfig::get_last_output_dir(const std::string &alt) const
{
const auto it = m_storage.find("");
if (it != m_storage.end()) {
const auto it2 = it->second.find("last_output_path");
const auto it3 = it->second.find("remember_output_path");
if (it2 != it->second.end() && it3 != it->second.end() && ! it2->second.empty() && it3->second == "1")
return it2->second;
}
return alt;
}
void AppConfig::update_last_output_dir(const std::string &dir)
{
this->set("", "last_output_path", dir);
}
*/
std::string AppConfig::get_last_output_dir(const std::string& alt, const bool removable) const
{
std::string s1 = (removable ? "last_output_path_removable" : "last_output_path");
std::string s2 = (removable ? "remember_output_path_removable" : "remember_output_path");
const auto it = m_storage.find("");
if (it != m_storage.end()) {
const auto it2 = it->second.find(s1);
const auto it3 = it->second.find(s2);
if (it2 != it->second.end() && it3 != it->second.end() && !it2->second.empty() && it3->second == "1")
return it2->second;
}
return alt;
}
void AppConfig::update_last_output_dir(const std::string& dir, const bool removable)
{
this->set("", (removable ? "last_output_path_removable" : "last_output_path"), dir);
}
void AppConfig::reset_selections()
{
auto it = m_storage.find("presets");
if (it != m_storage.end()) {
it->second.erase("print");
it->second.erase("filament");
it->second.erase("sla_print");
it->second.erase("sla_material");
it->second.erase("printer");
m_dirty = true;
}
}
std::string AppConfig::config_path()
{
return (boost::filesystem::path(Slic3r::data_dir()) / (SLIC3R_APP_KEY ".ini")).make_preferred().string();
}
std::string AppConfig::version_check_url() const
{
auto from_settings = get("version_check_url");
return from_settings.empty() ? VERSION_CHECK_URL : from_settings;
}
bool AppConfig::exists()
{
return boost::filesystem::exists(AppConfig::config_path());
}
}; // namespace Slic3r

203
src/libslic3r/AppConfig.hpp Normal file
View file

@ -0,0 +1,203 @@
#ifndef slic3r_AppConfig_hpp_
#define slic3r_AppConfig_hpp_
#include <set>
#include <map>
#include <string>
#include <boost/algorithm/string/trim_all.hpp>
#include "libslic3r/Config.hpp"
#include "libslic3r/Semver.hpp"
namespace Slic3r {
class AppConfig
{
public:
AppConfig() :
m_dirty(false),
m_orig_version(Semver::invalid()),
#if ENABLE_GCODE_VIEWER
m_save_enabled(true),
#endif // ENABLE_GCODE_VIEWER
m_legacy_datadir(false)
{
this->reset();
}
// Clear and reset to defaults.
void reset();
// Override missing or keys with their defaults.
void set_defaults();
// Load the slic3r.ini from a user profile directory (or a datadir, if configured).
// return error string or empty strinf
std::string load();
// Store the slic3r.ini into a user profile directory (or a datadir, if configured).
void save();
// Does this config need to be saved?
bool dirty() const { return m_dirty; }
// Const accessor, it will return false if a section or a key does not exist.
bool get(const std::string &section, const std::string &key, std::string &value) const
{
value.clear();
auto it = m_storage.find(section);
if (it == m_storage.end())
return false;
auto it2 = it->second.find(key);
if (it2 == it->second.end())
return false;
value = it2->second;
return true;
}
std::string get(const std::string &section, const std::string &key) const
{ std::string value; this->get(section, key, value); return value; }
std::string get(const std::string &key) const
{ std::string value; this->get("", key, value); return value; }
void set(const std::string &section, const std::string &key, const std::string &value)
{
#ifndef _NDEBUG
std::string key_trimmed = key;
boost::trim_all(key_trimmed);
assert(key_trimmed == key);
assert(! key_trimmed.empty());
#endif // _NDEBUG
std::string &old = m_storage[section][key];
if (old != value) {
old = value;
m_dirty = true;
}
}
void set(const std::string &key, const std::string &value)
{ this->set("", key, value); }
bool has(const std::string &section, const std::string &key) const
{
auto it = m_storage.find(section);
if (it == m_storage.end())
return false;
auto it2 = it->second.find(key);
return it2 != it->second.end() && ! it2->second.empty();
}
bool has(const std::string &key) const
{ return this->has("", key); }
void erase(const std::string &section, const std::string &key)
{
auto it = m_storage.find(section);
if (it != m_storage.end()) {
it->second.erase(key);
}
}
bool has_section(const std::string &section) const
{ return m_storage.find(section) != m_storage.end(); }
const std::map<std::string, std::string>& get_section(const std::string &section) const
{ return m_storage.find(section)->second; }
void set_section(const std::string &section, const std::map<std::string, std::string>& data)
{ m_storage[section] = data; }
void clear_section(const std::string &section)
{ m_storage[section].clear(); }
typedef std::map<std::string, std::map<std::string, std::set<std::string>>> VendorMap;
bool get_variant(const std::string &vendor, const std::string &model, const std::string &variant) const;
void set_variant(const std::string &vendor, const std::string &model, const std::string &variant, bool enable);
void set_vendors(const AppConfig &from);
void set_vendors(const VendorMap &vendors) { m_vendors = vendors; m_dirty = true; }
void set_vendors(VendorMap &&vendors) { m_vendors = std::move(vendors); m_dirty = true; }
const VendorMap& vendors() const { return m_vendors; }
// return recent/skein_directory or recent/config_directory or empty string.
std::string get_last_dir() const;
void update_config_dir(const std::string &dir);
void update_skein_dir(const std::string &dir);
//std::string get_last_output_dir(const std::string &alt) const;
//void update_last_output_dir(const std::string &dir);
std::string get_last_output_dir(const std::string& alt, const bool removable = false) const;
void update_last_output_dir(const std::string &dir, const bool removable = false);
// reset the current print / filament / printer selections, so that
// the PresetBundle::load_selections(const AppConfig &config) call will select
// the first non-default preset when called.
void reset_selections();
// Get the default config path from Slic3r::data_dir().
static std::string config_path();
// Returns true if the user's data directory comes from before Slic3r 1.40.0 (no updating)
bool legacy_datadir() const { return m_legacy_datadir; }
void set_legacy_datadir(bool value) { m_legacy_datadir = value; }
// Get the Slic3r version check url.
// This returns a hardcoded string unless it is overriden by "version_check_url" in the ini file.
std::string version_check_url() const;
// Returns the original Slic3r version found in the ini file before it was overwritten
// by the current version
Semver orig_version() const { return m_orig_version; }
// Does the config file exist?
static bool exists();
std::vector<std::string> get_recent_projects() const;
void set_recent_projects(const std::vector<std::string>& recent_projects);
void set_mouse_device(const std::string& name, double translation_speed, double translation_deadzone, float rotation_speed, float rotation_deadzone, double zoom_speed, bool swap_yz);
std::vector<std::string> get_mouse_device_names() const;
bool get_mouse_device_translation_speed(const std::string& name, double& speed) const
{ return get_3dmouse_device_numeric_value(name, "translation_speed", speed); }
bool get_mouse_device_translation_deadzone(const std::string& name, double& deadzone) const
{ return get_3dmouse_device_numeric_value(name, "translation_deadzone", deadzone); }
bool get_mouse_device_rotation_speed(const std::string& name, float& speed) const
{ return get_3dmouse_device_numeric_value(name, "rotation_speed", speed); }
bool get_mouse_device_rotation_deadzone(const std::string& name, float& deadzone) const
{ return get_3dmouse_device_numeric_value(name, "rotation_deadzone", deadzone); }
bool get_mouse_device_zoom_speed(const std::string& name, double& speed) const
{ return get_3dmouse_device_numeric_value(name, "zoom_speed", speed); }
bool get_mouse_device_swap_yz(const std::string& name, bool& swap) const
{ return get_3dmouse_device_numeric_value(name, "swap_yz", swap); }
#if ENABLE_GCODE_VIEWER
void enable_save(bool enable) { m_save_enabled = enable; }
#endif // ENABLE_GCODE_VIEWER
static const std::string SECTION_FILAMENTS;
static const std::string SECTION_MATERIALS;
private:
template<typename T>
bool get_3dmouse_device_numeric_value(const std::string &device_name, const char *parameter_name, T &out) const
{
std::string key = std::string("mouse_device:") + device_name;
auto it = m_storage.find(key);
if (it == m_storage.end())
return false;
auto it_val = it->second.find(parameter_name);
if (it_val == it->second.end())
return false;
out = T(::atof(it_val->second.c_str()));
return true;
}
// Map of section, name -> value
std::map<std::string, std::map<std::string, std::string>> m_storage;
// Map of enabled vendors / models / variants
VendorMap m_vendors;
// Has any value been modified since the config.ini has been last saved or loaded?
bool m_dirty;
// Original version found in the ini file before it was overwritten
Semver m_orig_version;
#if ENABLE_GCODE_VIEWER
// Whether or not calls to save() should take effect
bool m_save_enabled;
#endif // ENABLE_GCODE_VIEWER
// Whether the existing version is before system profiles & configuration updating
bool m_legacy_datadir;
};
}; // namespace Slic3r
#endif /* slic3r_AppConfig_hpp_ */

View file

@ -2,6 +2,7 @@
#define slic3r_BoundingBox_hpp_
#include "libslic3r.h"
#include "Exception.hpp"
#include "Point.hpp"
#include "Polygon.hpp"
@ -22,7 +23,7 @@ public:
{
if (points.empty()) {
this->defined = false;
// throw std::invalid_argument("Empty point set supplied to BoundingBoxBase constructor");
// throw Slic3r::InvalidArgument("Empty point set supplied to BoundingBoxBase constructor");
} else {
typename std::vector<PointClass>::const_iterator it = points.begin();
this->min = *it;
@ -68,7 +69,7 @@ public:
BoundingBox3Base(const std::vector<PointClass>& points)
{
if (points.empty())
throw std::invalid_argument("Empty point set supplied to BoundingBox3Base constructor");
throw Slic3r::InvalidArgument("Empty point set supplied to BoundingBox3Base constructor");
typename std::vector<PointClass>::const_iterator it = points.begin();
this->min = *it;
this->max = *it;
@ -192,6 +193,20 @@ inline BoundingBox3 scaled(const BoundingBoxf3 &bb) { return {scaled(bb.min), sc
inline BoundingBoxf unscaled(const BoundingBox &bb) { return {unscaled(bb.min), unscaled(bb.max)}; }
inline BoundingBoxf3 unscaled(const BoundingBox3 &bb) { return {unscaled(bb.min), unscaled(bb.max)}; }
template<class Tout, class Tin>
auto cast(const BoundingBoxBase<Tin> &b)
{
return BoundingBoxBase<Vec<3, Tout>>{b.min.template cast<Tout>(),
b.max.template cast<Tout>()};
}
template<class Tout, class Tin>
auto cast(const BoundingBox3Base<Tin> &b)
{
return BoundingBox3Base<Vec<3, Tout>>{b.min.template cast<Tout>(),
b.max.template cast<Tout>()};
}
} // namespace Slic3r
// Serialization through the Cereal library

View file

@ -46,6 +46,8 @@ add_library(libslic3r STATIC
Fill/Fill.hpp
Fill/Fill3DHoneycomb.cpp
Fill/Fill3DHoneycomb.hpp
Fill/FillAdaptive.cpp
Fill/FillAdaptive.hpp
Fill/FillBase.cpp
Fill/FillBase.hpp
Fill/FillConcentric.cpp
@ -99,6 +101,8 @@ add_library(libslic3r STATIC
GCode/ToolOrdering.hpp
GCode/WipeTower.cpp
GCode/WipeTower.hpp
GCode/GCodeProcessor.cpp
GCode/GCodeProcessor.hpp
GCode.cpp
GCode.hpp
GCodeReader.cpp
@ -147,6 +151,12 @@ add_library(libslic3r STATIC
PolygonTrimmer.hpp
Polyline.cpp
Polyline.hpp
Preset.cpp
Preset.hpp
PresetBundle.cpp
PresetBundle.hpp
AppConfig.cpp
AppConfig.hpp
Print.cpp
Print.hpp
PrintBase.cpp
@ -155,6 +165,8 @@ add_library(libslic3r STATIC
PrintConfig.hpp
PrintObject.cpp
PrintRegion.cpp
PNGRead.hpp
PNGRead.cpp
Semver.cpp
ShortestPath.cpp
ShortestPath.hpp
@ -187,6 +199,8 @@ add_library(libslic3r STATIC
Utils.hpp
Time.cpp
Time.hpp
TriangleSelector.cpp
TriangleSelector.hpp
MTUtils.hpp
VoronoiOffset.cpp
VoronoiOffset.hpp
@ -201,12 +215,15 @@ add_library(libslic3r STATIC
SimplifyMeshImpl.hpp
SimplifyMesh.cpp
MarchingSquares.hpp
Optimize/Optimizer.hpp
Optimize/NLoptOptimizer.hpp
Optimize/BruteforceOptimizer.hpp
${OpenVDBUtils_SOURCES}
SLA/Common.hpp
SLA/Common.cpp
SLA/Pad.hpp
SLA/Pad.cpp
SLA/SupportTreeBuilder.hpp
SLA/SupportTreeMesher.hpp
SLA/SupportTreeMesher.cpp
SLA/SupportTreeBuildsteps.hpp
SLA/SupportTreeBuildsteps.cpp
SLA/SupportTreeBuilder.cpp
@ -218,6 +235,7 @@ add_library(libslic3r STATIC
SLA/Rotfinder.cpp
SLA/BoostAdapter.hpp
SLA/SpatIndex.hpp
SLA/SpatIndex.cpp
SLA/RasterBase.hpp
SLA/RasterBase.cpp
SLA/AGGRaster.hpp
@ -233,8 +251,10 @@ add_library(libslic3r STATIC
SLA/SupportPointGenerator.cpp
SLA/Contour3D.hpp
SLA/Contour3D.cpp
SLA/EigenMesh3D.hpp
SLA/IndexedMesh.hpp
SLA/IndexedMesh.cpp
SLA/Clustering.hpp
SLA/Clustering.cpp
SLA/ReprojectPointsOnMesh.hpp
)
@ -296,6 +316,8 @@ target_link_libraries(libslic3r
TBB::tbb
libslic3r_cgal
${CMAKE_DL_LIBS}
PNG::PNG
ZLIB::ZLIB
)
if (TARGET OpenVDB::openvdb)

View file

@ -8,7 +8,16 @@
#include "SVG.hpp"
#endif /* CLIPPER_UTILS_DEBUG */
#include <Shiny/Shiny.h>
// Profiling support using the Shiny intrusive profiler
//#define CLIPPER_UTILS_PROFILE
#if defined(SLIC3R_PROFILE) && defined(CLIPPER_UTILS_PROFILE)
#include <Shiny/Shiny.h>
#define CLIPPERUTILS_PROFILE_FUNC() PROFILE_FUNC()
#define CLIPPERUTILS_PROFILE_BLOCK(name) PROFILE_BLOCK(name)
#else
#define CLIPPERUTILS_PROFILE_FUNC()
#define CLIPPERUTILS_PROFILE_BLOCK(name)
#endif
#define CLIPPER_OFFSET_SHORTEST_EDGE_FACTOR (0.005f)
@ -50,7 +59,7 @@ err:
void scaleClipperPolygon(ClipperLib::Path &polygon)
{
PROFILE_FUNC();
CLIPPERUTILS_PROFILE_FUNC();
for (ClipperLib::Path::iterator pit = polygon.begin(); pit != polygon.end(); ++pit) {
pit->X <<= CLIPPER_OFFSET_POWER_OF_2;
pit->Y <<= CLIPPER_OFFSET_POWER_OF_2;
@ -59,7 +68,7 @@ void scaleClipperPolygon(ClipperLib::Path &polygon)
void scaleClipperPolygons(ClipperLib::Paths &polygons)
{
PROFILE_FUNC();
CLIPPERUTILS_PROFILE_FUNC();
for (ClipperLib::Paths::iterator it = polygons.begin(); it != polygons.end(); ++it)
for (ClipperLib::Path::iterator pit = (*it).begin(); pit != (*it).end(); ++pit) {
pit->X <<= CLIPPER_OFFSET_POWER_OF_2;
@ -69,7 +78,7 @@ void scaleClipperPolygons(ClipperLib::Paths &polygons)
void unscaleClipperPolygon(ClipperLib::Path &polygon)
{
PROFILE_FUNC();
CLIPPERUTILS_PROFILE_FUNC();
for (ClipperLib::Path::iterator pit = polygon.begin(); pit != polygon.end(); ++pit) {
pit->X += CLIPPER_OFFSET_SCALE_ROUNDING_DELTA;
pit->Y += CLIPPER_OFFSET_SCALE_ROUNDING_DELTA;
@ -80,7 +89,7 @@ void unscaleClipperPolygon(ClipperLib::Path &polygon)
void unscaleClipperPolygons(ClipperLib::Paths &polygons)
{
PROFILE_FUNC();
CLIPPERUTILS_PROFILE_FUNC();
for (ClipperLib::Paths::iterator it = polygons.begin(); it != polygons.end(); ++it)
for (ClipperLib::Path::iterator pit = (*it).begin(); pit != (*it).end(); ++pit) {
pit->X += CLIPPER_OFFSET_SCALE_ROUNDING_DELTA;
@ -790,7 +799,7 @@ ExPolygons simplify_polygons_ex(const Polygons &subject, bool preserve_collinear
void safety_offset(ClipperLib::Paths* paths)
{
PROFILE_FUNC();
CLIPPERUTILS_PROFILE_FUNC();
// scale input
scaleClipperPolygons(*paths);
@ -812,11 +821,11 @@ void safety_offset(ClipperLib::Paths* paths)
if (! ccw)
std::reverse(path.begin(), path.end());
{
PROFILE_BLOCK(safety_offset_AddPaths);
CLIPPERUTILS_PROFILE_BLOCK(safety_offset_AddPaths);
co.AddPath((*paths)[i], ClipperLib::jtMiter, ClipperLib::etClosedPolygon);
}
{
PROFILE_BLOCK(safety_offset_Execute);
CLIPPERUTILS_PROFILE_BLOCK(safety_offset_Execute);
// offset outside by 10um
ClipperLib::Paths out_this;
co.Execute(out_this, ccw ? 10.f * float(CLIPPER_OFFSET_SCALE) : -10.f * float(CLIPPER_OFFSET_SCALE));

View file

@ -5,7 +5,6 @@
#include <fstream>
#include <iostream>
#include <iomanip>
#include <exception> // std::runtime_error
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/erase.hpp>
@ -218,7 +217,7 @@ ConfigOption* ConfigOptionDef::create_empty_option() const
case coInts: return new ConfigOptionIntsNullable();
case coPercents: return new ConfigOptionPercentsNullable();
case coBools: return new ConfigOptionBoolsNullable();
default: throw std::runtime_error(std::string("Unknown option type for nullable option ") + this->label);
default: throw Slic3r::RuntimeError(std::string("Unknown option type for nullable option ") + this->label);
}
} else {
switch (this->type) {
@ -238,7 +237,7 @@ ConfigOption* ConfigOptionDef::create_empty_option() const
case coBool: return new ConfigOptionBool();
case coBools: return new ConfigOptionBools();
case coEnum: return new ConfigOptionEnumGeneric(this->enum_keys_map);
default: throw std::runtime_error(std::string("Unknown option type for option ") + this->label);
default: throw Slic3r::RuntimeError(std::string("Unknown option type for option ") + this->label);
}
}
}
@ -535,7 +534,7 @@ double ConfigBase::get_abs_value(const t_config_option_key &opt_key) const
return opt_def->ratio_over.empty() ? 0. :
static_cast<const ConfigOptionFloatOrPercent*>(raw_opt)->get_abs_value(this->get_abs_value(opt_def->ratio_over));
}
throw std::runtime_error("ConfigBase::get_abs_value(): Not a valid option type for get_abs_value()");
throw Slic3r::RuntimeError("ConfigBase::get_abs_value(): Not a valid option type for get_abs_value()");
}
// Return an absolute value of a possibly relative config variable.
@ -546,7 +545,7 @@ double ConfigBase::get_abs_value(const t_config_option_key &opt_key, double rati
const ConfigOption *raw_opt = this->option(opt_key);
assert(raw_opt != nullptr);
if (raw_opt->type() != coFloatOrPercent)
throw std::runtime_error("ConfigBase::get_abs_value(): opt_key is not of coFloatOrPercent");
throw Slic3r::RuntimeError("ConfigBase::get_abs_value(): opt_key is not of coFloatOrPercent");
// Compute absolute value.
return static_cast<const ConfigOptionFloatOrPercent*>(raw_opt)->get_abs_value(ratio_over);
}
@ -609,7 +608,7 @@ void ConfigBase::load_from_gcode_file(const std::string &file)
std::getline(ifs, firstline);
if (strncmp(slic3r_gcode_header, firstline.c_str(), strlen(slic3r_gcode_header)) != 0 &&
strncmp(prusaslicer_gcode_header, firstline.c_str(), strlen(prusaslicer_gcode_header)) != 0)
throw std::runtime_error("Not a PrusaSlicer / Slic3r PE generated g-code.");
throw Slic3r::RuntimeError("Not a PrusaSlicer / Slic3r PE generated g-code.");
}
ifs.seekg(0, ifs.end);
auto file_length = ifs.tellg();
@ -621,7 +620,7 @@ void ConfigBase::load_from_gcode_file(const std::string &file)
size_t key_value_pairs = load_from_gcode_string(data.data());
if (key_value_pairs < 80)
throw std::runtime_error(format("Suspiciously low number of configuration values extracted from %1%: %2%", file, key_value_pairs));
throw Slic3r::RuntimeError(format("Suspiciously low number of configuration values extracted from %1%: %2%", file, key_value_pairs));
}
// Load the config keys from the given string.
@ -750,7 +749,7 @@ ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key, bool cre
throw NoDefinitionException(opt_key);
const ConfigOptionDef *optdef = def->get(opt_key);
if (optdef == nullptr)
// throw std::runtime_error(std::string("Invalid option name: ") + opt_key);
// throw Slic3r::RuntimeError(std::string("Invalid option name: ") + opt_key);
// Let the parent decide what to do if the opt_key is not defined by this->def().
return nullptr;
ConfigOption *opt = optdef->create_default_option();

View file

@ -13,6 +13,7 @@
#include <vector>
#include "libslic3r.h"
#include "clonable_ptr.hpp"
#include "Exception.hpp"
#include "Point.hpp"
#include <boost/algorithm/string/trim.hpp>
@ -34,31 +35,31 @@ extern bool unescape_string_cstyle(const std::string &str, std::string &
extern bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &out);
/// Specialization of std::exception to indicate that an unknown config option has been encountered.
class UnknownOptionException : public std::runtime_error {
class UnknownOptionException : public Slic3r::RuntimeError {
public:
UnknownOptionException() :
std::runtime_error("Unknown option exception") {}
Slic3r::RuntimeError("Unknown option exception") {}
UnknownOptionException(const std::string &opt_key) :
std::runtime_error(std::string("Unknown option exception: ") + opt_key) {}
Slic3r::RuntimeError(std::string("Unknown option exception: ") + opt_key) {}
};
/// Indicate that the ConfigBase derived class does not provide config definition (the method def() returns null).
class NoDefinitionException : public std::runtime_error
class NoDefinitionException : public Slic3r::RuntimeError
{
public:
NoDefinitionException() :
std::runtime_error("No definition exception") {}
Slic3r::RuntimeError("No definition exception") {}
NoDefinitionException(const std::string &opt_key) :
std::runtime_error(std::string("No definition exception: ") + opt_key) {}
Slic3r::RuntimeError(std::string("No definition exception: ") + opt_key) {}
};
/// Indicate that an unsupported accessor was called on a config option.
class BadOptionTypeException : public std::runtime_error
class BadOptionTypeException : public Slic3r::RuntimeError
{
public:
BadOptionTypeException() : std::runtime_error("Bad option type exception") {}
BadOptionTypeException(const std::string &message) : std::runtime_error(message) {}
BadOptionTypeException(const char* message) : std::runtime_error(message) {}
BadOptionTypeException() : Slic3r::RuntimeError("Bad option type exception") {}
BadOptionTypeException(const std::string &message) : Slic3r::RuntimeError(message) {}
BadOptionTypeException(const char* message) : Slic3r::RuntimeError(message) {}
};
// Type of a configuration value.
@ -167,7 +168,7 @@ public:
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionSingle: Assigning an incompatible type");
throw Slic3r::RuntimeError("ConfigOptionSingle: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(rhs));
this->value = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
}
@ -175,7 +176,7 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionSingle: Comparing incompatible types");
throw Slic3r::RuntimeError("ConfigOptionSingle: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(&rhs));
return this->value == static_cast<const ConfigOptionSingle<T>*>(&rhs)->value;
}
@ -239,7 +240,7 @@ public:
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector: Assigning an incompatible type");
throw Slic3r::RuntimeError("ConfigOptionVector: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionVector<T>*>(rhs));
this->values = static_cast<const ConfigOptionVector<T>*>(rhs)->values;
}
@ -256,12 +257,12 @@ public:
if (opt->type() == this->type()) {
auto other = static_cast<const ConfigOptionVector<T>*>(opt);
if (other->values.empty())
throw std::runtime_error("ConfigOptionVector::set(): Assigning from an empty vector");
throw Slic3r::RuntimeError("ConfigOptionVector::set(): Assigning from an empty vector");
this->values.emplace_back(other->values.front());
} else if (opt->type() == this->scalar_type())
this->values.emplace_back(static_cast<const ConfigOptionSingle<T>*>(opt)->value);
else
throw std::runtime_error("ConfigOptionVector::set():: Assigning an incompatible type");
throw Slic3r::RuntimeError("ConfigOptionVector::set():: Assigning an incompatible type");
}
}
@ -280,12 +281,12 @@ public:
// Assign the first value of the rhs vector.
auto other = static_cast<const ConfigOptionVector<T>*>(rhs);
if (other->values.empty())
throw std::runtime_error("ConfigOptionVector::set_at(): Assigning from an empty vector");
throw Slic3r::RuntimeError("ConfigOptionVector::set_at(): Assigning from an empty vector");
this->values[i] = other->get_at(j);
} else if (rhs->type() == this->scalar_type())
this->values[i] = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
else
throw std::runtime_error("ConfigOptionVector::set_at(): Assigning an incompatible type");
throw Slic3r::RuntimeError("ConfigOptionVector::set_at(): Assigning an incompatible type");
}
const T& get_at(size_t i) const
@ -310,9 +311,9 @@ public:
else if (n > this->values.size()) {
if (this->values.empty()) {
if (opt_default == nullptr)
throw std::runtime_error("ConfigOptionVector::resize(): No default value provided.");
throw Slic3r::RuntimeError("ConfigOptionVector::resize(): No default value provided.");
if (opt_default->type() != this->type())
throw std::runtime_error("ConfigOptionVector::resize(): Extending with an incompatible type.");
throw Slic3r::RuntimeError("ConfigOptionVector::resize(): Extending with an incompatible type.");
this->values.resize(n, static_cast<const ConfigOptionVector<T>*>(opt_default)->values.front());
} else {
// Resize by duplicating the last value.
@ -329,7 +330,7 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionVector: Comparing incompatible types");
throw Slic3r::RuntimeError("ConfigOptionVector: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<T>*>(&rhs));
return this->values == static_cast<const ConfigOptionVector<T>*>(&rhs)->values;
}
@ -341,9 +342,9 @@ public:
// An option overrides another option if it is not nil and not equal.
bool overriden_by(const ConfigOption *rhs) const override {
if (this->nullable())
throw std::runtime_error("Cannot override a nullable ConfigOption.");
throw Slic3r::RuntimeError("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector.overriden_by() applied to different types.");
throw Slic3r::RuntimeError("ConfigOptionVector.overriden_by() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable())
// Overridding a non-nullable object with another non-nullable object.
@ -361,9 +362,9 @@ public:
// Apply an override option, possibly a nullable one.
bool apply_override(const ConfigOption *rhs) override {
if (this->nullable())
throw std::runtime_error("Cannot override a nullable ConfigOption.");
throw Slic3r::RuntimeError("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector.apply_override() applied to different types.");
throw Slic3r::RuntimeError("ConfigOptionVector.apply_override() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable()) {
// Overridding a non-nullable object with another non-nullable object.
@ -452,7 +453,7 @@ public:
bool operator==(const ConfigOptionFloatsTempl &rhs) const { return vectors_equal(this->values, rhs.values); }
bool operator==(const ConfigOption &rhs) const override {
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionFloatsTempl: Comparing incompatible types");
throw Slic3r::RuntimeError("ConfigOptionFloatsTempl: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<double>*>(&rhs));
return vectors_equal(this->values, static_cast<const ConfigOptionVector<double>*>(&rhs)->values);
}
@ -499,7 +500,7 @@ public:
if (NULLABLE)
this->values.push_back(nil_value());
else
throw std::runtime_error("Deserializing nil into a non-nullable object");
throw Slic3r::RuntimeError("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
double value;
@ -524,9 +525,9 @@ protected:
if (NULLABLE)
ss << "nil";
else
throw std::runtime_error("Serializing NaN");
throw Slic3r::RuntimeError("Serializing NaN");
} else
throw std::runtime_error("Serializing invalid number");
throw Slic3r::RuntimeError("Serializing invalid number");
}
static bool vectors_equal(const std::vector<double> &v1, const std::vector<double> &v2) {
if (NULLABLE) {
@ -645,7 +646,7 @@ public:
if (NULLABLE)
this->values.push_back(nil_value());
else
throw std::runtime_error("Deserializing nil into a non-nullable object");
throw Slic3r::RuntimeError("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
int value;
@ -662,7 +663,7 @@ private:
if (NULLABLE)
ss << "nil";
else
throw std::runtime_error("Serializing NaN");
throw Slic3r::RuntimeError("Serializing NaN");
} else
ss << v;
}
@ -847,7 +848,7 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionFloatOrPercent: Comparing incompatible types");
throw Slic3r::RuntimeError("ConfigOptionFloatOrPercent: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(&rhs));
return *this == *static_cast<const ConfigOptionFloatOrPercent*>(&rhs);
}
@ -858,7 +859,7 @@ public:
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionFloatOrPercent: Assigning an incompatible type");
throw Slic3r::RuntimeError("ConfigOptionFloatOrPercent: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(rhs));
*this = *static_cast<const ConfigOptionFloatOrPercent*>(rhs);
}
@ -1126,7 +1127,7 @@ public:
if (NULLABLE)
this->values.push_back(nil_value());
else
throw std::runtime_error("Deserializing nil into a non-nullable object");
throw Slic3r::RuntimeError("Deserializing nil into a non-nullable object");
} else
this->values.push_back(item_str.compare("1") == 0);
}
@ -1139,7 +1140,7 @@ protected:
if (NULLABLE)
ss << "nil";
else
throw std::runtime_error("Serializing NaN");
throw Slic3r::RuntimeError("Serializing NaN");
} else
ss << (v ? "1" : "0");
}
@ -1175,14 +1176,14 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionEnum<T>: Comparing incompatible types");
throw Slic3r::RuntimeError("ConfigOptionEnum<T>: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == (T)rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionEnum<T>: Assigning an incompatible type");
throw Slic3r::RuntimeError("ConfigOptionEnum<T>: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = (T)rhs->getInt();
}
@ -1259,14 +1260,14 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionEnumGeneric: Comparing incompatible types");
throw Slic3r::RuntimeError("ConfigOptionEnumGeneric: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionEnumGeneric: Assigning an incompatible type");
throw Slic3r::RuntimeError("ConfigOptionEnumGeneric: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = rhs->getInt();
}
@ -1321,7 +1322,7 @@ public:
case coInts: { auto opt = new ConfigOptionIntsNullable(); archive(*opt); return opt; }
case coPercents: { auto opt = new ConfigOptionPercentsNullable();archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBoolsNullable(); archive(*opt); return opt; }
default: throw std::runtime_error(std::string("ConfigOptionDef::load_option_from_archive(): Unknown nullable option type for option ") + this->opt_key);
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::load_option_from_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
@ -1340,7 +1341,7 @@ public:
case coBool: { auto opt = new ConfigOptionBool(); archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBools(); archive(*opt); return opt; }
case coEnum: { auto opt = new ConfigOptionEnumGeneric(this->enum_keys_map); archive(*opt); return opt; }
default: throw std::runtime_error(std::string("ConfigOptionDef::load_option_from_archive(): Unknown option type for option ") + this->opt_key);
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::load_option_from_archive(): Unknown option type for option ") + this->opt_key);
}
}
}
@ -1352,7 +1353,7 @@ public:
case coInts: archive(*static_cast<const ConfigOptionIntsNullable*>(opt)); break;
case coPercents: archive(*static_cast<const ConfigOptionPercentsNullable*>(opt));break;
case coBools: archive(*static_cast<const ConfigOptionBoolsNullable*>(opt)); break;
default: throw std::runtime_error(std::string("ConfigOptionDef::save_option_to_archive(): Unknown nullable option type for option ") + this->opt_key);
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::save_option_to_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
@ -1371,7 +1372,7 @@ public:
case coBool: archive(*static_cast<const ConfigOptionBool*>(opt)); break;
case coBools: archive(*static_cast<const ConfigOptionBools*>(opt)); break;
case coEnum: archive(*static_cast<const ConfigOptionEnumGeneric*>(opt)); break;
default: throw std::runtime_error(std::string("ConfigOptionDef::save_option_to_archive(): Unknown option type for option ") + this->opt_key);
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::save_option_to_archive(): Unknown option type for option ") + this->opt_key);
}
}
// Make the compiler happy, shut up the warnings.

View file

@ -1,6 +1,10 @@
#include "CustomGCode.hpp"
#include "Config.hpp"
#if ENABLE_GCODE_VIEWER
#include "GCode.hpp"
#else
#include "GCode/PreviewData.hpp"
#endif // ENABLE_GCODE_VIEWER
#include "GCodeWriter.hpp"
namespace Slic3r {
@ -17,8 +21,12 @@ extern void update_custom_gcode_per_print_z_from_config(Info& info, DynamicPrint
return;
if (info.gcodes.empty() && ! colorprint_heights->values.empty()) {
// Convert the old colorprint_heighs only if there is no equivalent data in a new format.
const std::vector<std::string>& colors = GCodePreviewData::ColorPrintColors();
const auto& colorprint_values = colorprint_heights->values;
#if ENABLE_GCODE_VIEWER
const std::vector<std::string>& colors = ColorPrintColors::get();
#else
const std::vector<std::string>& colors = GCodePreviewData::ColorPrintColors();
#endif // ENABLE_GCODE_VIEWER
const auto& colorprint_values = colorprint_heights->values;
info.gcodes.clear();
info.gcodes.reserve(colorprint_values.size());
int i = 0;

View file

@ -1,5 +1,6 @@
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Exception.hpp"
#include "Geometry.hpp"
#include "Polygon.hpp"
#include "Line.hpp"
@ -435,7 +436,7 @@ void ExPolygon::triangulate_pp(Polygons* polygons) const
std::list<TPPLPoly> output;
int res = TPPLPartition().Triangulate_MONO(&input, &output);
if (res != 1)
throw std::runtime_error("Triangulation failed");
throw Slic3r::RuntimeError("Triangulation failed");
// convert output polygons
for (std::list<TPPLPoly>::iterator poly = output.begin(); poly != output.end(); ++poly) {
@ -548,7 +549,7 @@ void ExPolygon::triangulate_pp(Points *triangles) const
int res = TPPLPartition().Triangulate_MONO(&input, &output);
// int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
if (res != 1)
throw std::runtime_error("Triangulation failed");
throw Slic3r::RuntimeError("Triangulation failed");
*triangles = polypartition_output_to_triangles(output);
}
@ -591,7 +592,7 @@ void ExPolygon::triangulate_p2t(Polygons* polygons) const
}
polygons->push_back(p);
}
} catch (const std::runtime_error & /* err */) {
} catch (const Slic3r::RuntimeError & /* err */) {
assert(false);
// just ignore, don't triangulate
}

View file

@ -333,6 +333,14 @@ extern std::list<TPPLPoly> expoly_to_polypartition_input(const ExPolygons &expp)
extern std::list<TPPLPoly> expoly_to_polypartition_input(const ExPolygon &ex);
extern std::vector<Point> polypartition_output_to_triangles(const std::list<TPPLPoly> &output);
inline double area(const ExPolygons &polys)
{
double s = 0.;
for (auto &p : polys) s += p.area();
return s;
}
} // namespace Slic3r
// start Boost

View file

@ -0,0 +1,28 @@
#ifndef _libslic3r_Exception_h_
#define _libslic3r_Exception_h_
#include <stdexcept>
namespace Slic3r {
// PrusaSlicer's own exception hierarchy is derived from std::runtime_error.
// Base for Slicer's own exceptions.
class Exception : public std::runtime_error { using std::runtime_error::runtime_error; };
#define SLIC3R_DERIVE_EXCEPTION(DERIVED_EXCEPTION, PARENT_EXCEPTION) \
class DERIVED_EXCEPTION : public PARENT_EXCEPTION { using PARENT_EXCEPTION::PARENT_EXCEPTION; }
// Critical exception produced by Slicer, such exception shall never propagate up to the UI thread.
// If that happens, an ugly fat message box with an ugly fat exclamation mark is displayed.
SLIC3R_DERIVE_EXCEPTION(CriticalException, Exception);
SLIC3R_DERIVE_EXCEPTION(RuntimeError, CriticalException);
SLIC3R_DERIVE_EXCEPTION(LogicError, CriticalException);
SLIC3R_DERIVE_EXCEPTION(InvalidArgument, LogicError);
SLIC3R_DERIVE_EXCEPTION(OutOfRange, LogicError);
SLIC3R_DERIVE_EXCEPTION(IOError, CriticalException);
SLIC3R_DERIVE_EXCEPTION(FileIOError, IOError);
// Runtime exception produced by Slicer. Such exception cancels the slicing process and it shall be shown in notifications.
SLIC3R_DERIVE_EXCEPTION(SlicingError, Exception);
#undef SLIC3R_DERIVE_EXCEPTION
} // namespace Slic3r
#endif // _libslic3r_Exception_h_

View file

@ -306,14 +306,18 @@ double ExtrusionLoop::min_mm3_per_mm() const
std::string ExtrusionEntity::role_to_string(ExtrusionRole role)
{
switch (role) {
#if ENABLE_GCODE_VIEWER
case erNone : return L("Unknown");
#else
case erNone : return L("None");
#endif // ENABLE_GCODE_VIEWER
case erPerimeter : return L("Perimeter");
case erExternalPerimeter : return L("External perimeter");
case erOverhangPerimeter : return L("Overhang perimeter");
case erInternalInfill : return L("Internal infill");
case erSolidInfill : return L("Solid infill");
case erIroning : return L("Ironing");
case erTopSolidInfill : return L("Top solid infill");
case erIroning : return L("Ironing");
case erBridgeInfill : return L("Bridge infill");
case erGapFill : return L("Gap fill");
case erSkirt : return L("Skirt");
@ -327,4 +331,40 @@ std::string ExtrusionEntity::role_to_string(ExtrusionRole role)
return "";
}
ExtrusionRole ExtrusionEntity::string_to_role(const std::string& role)
{
if (role == L("Perimeter"))
return erPerimeter;
else if (role == L("External perimeter"))
return erExternalPerimeter;
else if (role == L("Overhang perimeter"))
return erOverhangPerimeter;
else if (role == L("Internal infill"))
return erInternalInfill;
else if (role == L("Solid infill"))
return erSolidInfill;
else if (role == L("Top solid infill"))
return erTopSolidInfill;
else if (role == L("Ironing"))
return erIroning;
else if (role == L("Bridge infill"))
return erBridgeInfill;
else if (role == L("Gap fill"))
return erGapFill;
else if (role == L("Skirt"))
return erSkirt;
else if (role == L("Support material"))
return erSupportMaterial;
else if (role == L("Support material interface"))
return erSupportMaterialInterface;
else if (role == L("Wipe tower"))
return erWipeTower;
else if (role == L("Custom"))
return erCustom;
else if (role == L("Mixed"))
return erMixed;
else
return erNone;
}
}

View file

@ -106,6 +106,7 @@ public:
virtual double total_volume() const = 0;
static std::string role_to_string(ExtrusionRole role);
static ExtrusionRole string_to_role(const std::string& role);
};
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
@ -121,8 +122,8 @@ public:
// Height of the extrusion, used for visualization purposes.
float height;
ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), m_role(role) {};
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role) {};
ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), m_role(role) {}
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height), m_role(role) {}
ExtrusionPath(const ExtrusionPath& rhs) : polyline(rhs.polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role) {}
ExtrusionPath(ExtrusionPath&& rhs) : polyline(std::move(rhs.polyline)), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role) {}
ExtrusionPath(const Polyline &polyline, const ExtrusionPath &rhs) : polyline(polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), m_role(rhs.m_role) {}

View file

@ -2,6 +2,7 @@
#define slic3r_ExtrusionEntityCollection_hpp_
#include "libslic3r.h"
#include "Exception.hpp"
#include "ExtrusionEntity.hpp"
namespace Slic3r {
@ -107,7 +108,7 @@ public:
// Following methods shall never be called on an ExtrusionEntityCollection.
Polyline as_polyline() const override {
throw std::runtime_error("Calling as_polyline() on a ExtrusionEntityCollection");
throw Slic3r::RuntimeError("Calling as_polyline() on a ExtrusionEntityCollection");
return Polyline();
};
@ -117,7 +118,7 @@ public:
}
double length() const override {
throw std::runtime_error("Calling length() on a ExtrusionEntityCollection");
throw Slic3r::RuntimeError("Calling length() on a ExtrusionEntityCollection");
return 0.;
}
};

View file

@ -10,14 +10,14 @@
namespace Slic3r {
// Generic file parser error, mostly copied from boost::property_tree::file_parser_error
class file_parser_error: public std::runtime_error
class file_parser_error: public Slic3r::RuntimeError
{
public:
file_parser_error(const std::string &msg, const std::string &file, unsigned long line = 0) :
std::runtime_error(format_what(msg, file, line)),
Slic3r::RuntimeError(format_what(msg, file, line)),
m_message(msg), m_filename(file), m_line(line) {}
file_parser_error(const std::string &msg, const boost::filesystem::path &file, unsigned long line = 0) :
std::runtime_error(format_what(msg, file.string(), line)),
Slic3r::RuntimeError(format_what(msg, file.string(), line)),
m_message(msg), m_filename(file.string()), m_line(line) {}
// gcc 3.4.2 complains about lack of throw specifier on compiler
// generated dtor
@ -35,7 +35,7 @@ private:
std::string m_filename;
unsigned long m_line;
// Format error message to be returned by std::runtime_error::what()
// Format error message to be returned by Slic3r::RuntimeError::what()
static std::string format_what(const std::string &msg, const std::string &file, unsigned long l)
{
std::stringstream stream;

View file

@ -318,7 +318,7 @@ void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill>
#endif
// friend to Layer
void Layer::make_fills()
void Layer::make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree, FillAdaptive_Internal::Octree* support_fill_octree)
{
for (LayerRegion *layerm : m_regions)
layerm->fills.clear();
@ -345,6 +345,8 @@ void Layer::make_fills()
f->layer_id = this->id();
f->z = this->print_z;
f->angle = surface_fill.params.angle;
f->adapt_fill_octree = adaptive_fill_octree;
f->support_fill_octree = support_fill_octree;
// calculate flow spacing for infill pattern generation
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.flow.bridge;

View file

@ -0,0 +1,520 @@
#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Surface.hpp"
#include "../Geometry.hpp"
#include "../AABBTreeIndirect.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../ShortestPath.hpp"
#include "FillAdaptive.hpp"
namespace Slic3r {
std::pair<double, double> adaptive_fill_line_spacing(const PrintObject &print_object)
{
// Output, spacing for icAdaptiveCubic and icSupportCubic
double adaptive_line_spacing = 0.;
double support_line_spacing = 0.;
enum class Tristate {
Yes,
No,
Maybe
};
struct RegionFillData {
Tristate has_adaptive_infill;
Tristate has_support_infill;
double density;
double extrusion_width;
};
std::vector<RegionFillData> region_fill_data;
region_fill_data.reserve(print_object.print()->regions().size());
bool build_octree = false;
for (const PrintRegion *region : print_object.print()->regions()) {
const PrintRegionConfig &config = region->config();
bool nonempty = config.fill_density > 0;
bool has_adaptive_infill = nonempty && config.fill_pattern == ipAdaptiveCubic;
bool has_support_infill = nonempty && config.fill_pattern == ipSupportCubic;
region_fill_data.push_back(RegionFillData({
has_adaptive_infill ? Tristate::Maybe : Tristate::No,
has_support_infill ? Tristate::Maybe : Tristate::No,
config.fill_density,
config.infill_extrusion_width
}));
build_octree |= has_adaptive_infill || has_support_infill;
}
if (build_octree) {
// Compute the average of above parameters over all layers
for (const Layer *layer : print_object.layers())
for (size_t region_id = 0; region_id < layer->regions().size(); ++ region_id) {
RegionFillData &rd = region_fill_data[region_id];
if (rd.has_adaptive_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
rd.has_adaptive_infill = Tristate::Yes;
if (rd.has_support_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
rd.has_support_infill = Tristate::Yes;
}
double adaptive_fill_density = 0.;
double adaptive_infill_extrusion_width = 0.;
int adaptive_cnt = 0;
double support_fill_density = 0.;
double support_infill_extrusion_width = 0.;
int support_cnt = 0;
for (const RegionFillData &rd : region_fill_data) {
if (rd.has_adaptive_infill == Tristate::Yes) {
adaptive_fill_density += rd.density;
adaptive_infill_extrusion_width += rd.extrusion_width;
++ adaptive_cnt;
} else if (rd.has_support_infill == Tristate::Yes) {
support_fill_density += rd.density;
support_infill_extrusion_width += rd.extrusion_width;
++ support_cnt;
}
}
auto to_line_spacing = [](int cnt, double density, double extrusion_width) {
if (cnt) {
density /= double(cnt);
extrusion_width /= double(cnt);
return extrusion_width / ((density / 100.0f) * 0.333333333f);
} else
return 0.;
};
adaptive_line_spacing = to_line_spacing(adaptive_cnt, adaptive_fill_density, adaptive_infill_extrusion_width);
support_line_spacing = to_line_spacing(support_cnt, support_fill_density, support_infill_extrusion_width);
}
return std::make_pair(adaptive_line_spacing, support_line_spacing);
}
void FillAdaptive::_fill_surface_single(const FillParams & params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon & expolygon,
Polylines & polylines_out)
{
if(this->adapt_fill_octree != nullptr)
this->generate_infill(params, thickness_layers, direction, expolygon, polylines_out, this->adapt_fill_octree);
}
void FillAdaptive::generate_infill(const FillParams & params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon & expolygon,
Polylines & polylines_out,
FillAdaptive_Internal::Octree *octree)
{
Vec3d rotation = Vec3d((5.0 * M_PI) / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0);
Transform3d rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, Vec3d::Ones(), Vec3d::Ones());
// Store grouped lines by its direction (multiple of 120°)
std::vector<Lines> infill_lines_dir(3);
this->generate_infill_lines(octree->root_cube.get(),
this->z, octree->origin, rotation_matrix,
infill_lines_dir, octree->cubes_properties,
int(octree->cubes_properties.size()) - 1);
Polylines all_polylines;
all_polylines.reserve(infill_lines_dir[0].size() * 3);
for (Lines &infill_lines : infill_lines_dir)
{
for (const Line &line : infill_lines)
{
all_polylines.emplace_back(line.a, line.b);
}
}
if (params.dont_connect)
{
// Crop all polylines
polylines_out = intersection_pl(all_polylines, to_polygons(expolygon));
}
else
{
// Crop all polylines
all_polylines = intersection_pl(all_polylines, to_polygons(expolygon));
Polylines boundary_polylines;
Polylines non_boundary_polylines;
for (const Polyline &polyline : all_polylines)
{
// connect_infill required all polylines to touch the boundary.
if(polyline.lines().size() == 1 && expolygon.has_boundary_point(polyline.lines().front().a) && expolygon.has_boundary_point(polyline.lines().front().b))
{
boundary_polylines.push_back(polyline);
}
else
{
non_boundary_polylines.push_back(polyline);
}
}
if(!boundary_polylines.empty())
{
boundary_polylines = chain_polylines(boundary_polylines);
FillAdaptive::connect_infill(std::move(boundary_polylines), expolygon, polylines_out, this->spacing, params);
}
polylines_out.insert(polylines_out.end(), non_boundary_polylines.begin(), non_boundary_polylines.end());
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRuna = 0;
BoundingBox bbox_svg = this->bounding_box;
{
::Slic3r::SVG svg(debug_out_path("FillAdaptive-%d.svg", iRuna), bbox_svg);
for (const Polyline &polyline : polylines_out)
{
for (const Line &line : polyline.lines())
{
Point from = line.a;
Point to = line.b;
Point diff = to - from;
float shrink_length = scale_(0.4);
float line_slope = (float)diff.y() / diff.x();
float shrink_x = shrink_length / (float)std::sqrt(1.0 + (line_slope * line_slope));
float shrink_y = line_slope * shrink_x;
to.x() -= shrink_x;
to.y() -= shrink_y;
from.x() += shrink_x;
from.y() += shrink_y;
svg.draw(Line(from, to));
}
}
}
iRuna++;
}
#endif /* SLIC3R_DEBUG */
}
void FillAdaptive::generate_infill_lines(
FillAdaptive_Internal::Cube *cube,
double z_position,
const Vec3d &origin,
const Transform3d &rotation_matrix,
std::vector<Lines> &dir_lines_out,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
int depth)
{
using namespace FillAdaptive_Internal;
if(cube == nullptr)
{
return;
}
Vec3d cube_center_tranformed = rotation_matrix * cube->center;
double z_diff = std::abs(z_position - cube_center_tranformed.z());
if (z_diff > cubes_properties[depth].height / 2)
{
return;
}
if (z_diff < cubes_properties[depth].line_z_distance)
{
Point from(
scale_((cubes_properties[depth].diagonal_length / 2) * (cubes_properties[depth].line_z_distance - z_diff) / cubes_properties[depth].line_z_distance),
scale_(cubes_properties[depth].line_xy_distance - ((z_position - (cube_center_tranformed.z() - cubes_properties[depth].line_z_distance)) / sqrt(2))));
Point to(-from.x(), from.y());
// Relative to cube center
double rotation_angle = (2.0 * M_PI) / 3.0;
for (Lines &lines : dir_lines_out)
{
Vec3d offset = cube_center_tranformed - (rotation_matrix * origin);
Point from_abs(from), to_abs(to);
from_abs.x() += int(scale_(offset.x()));
from_abs.y() += int(scale_(offset.y()));
to_abs.x() += int(scale_(offset.x()));
to_abs.y() += int(scale_(offset.y()));
// lines.emplace_back(from_abs, to_abs);
this->connect_lines(lines, Line(from_abs, to_abs));
from.rotate(rotation_angle);
to.rotate(rotation_angle);
}
}
for(const std::unique_ptr<Cube> &child : cube->children)
{
if(child != nullptr)
{
generate_infill_lines(child.get(), z_position, origin, rotation_matrix, dir_lines_out, cubes_properties, depth - 1);
}
}
}
void FillAdaptive::connect_lines(Lines &lines, Line new_line)
{
auto eps = int(scale_(0.10));
for (size_t i = 0; i < lines.size(); ++i)
{
if (std::abs(new_line.a.x() - lines[i].b.x()) < eps && std::abs(new_line.a.y() - lines[i].b.y()) < eps)
{
new_line.a = lines[i].a;
lines.erase(lines.begin() + i);
--i;
continue;
}
if (std::abs(new_line.b.x() - lines[i].a.x()) < eps && std::abs(new_line.b.y() - lines[i].a.y()) < eps)
{
new_line.b = lines[i].b;
lines.erase(lines.begin() + i);
--i;
continue;
}
}
lines.emplace_back(new_line.a, new_line.b);
}
std::unique_ptr<FillAdaptive_Internal::Octree> FillAdaptive::build_octree(
TriangleMesh &triangle_mesh,
coordf_t line_spacing,
const Vec3d &cube_center)
{
using namespace FillAdaptive_Internal;
if(line_spacing <= 0 || std::isnan(line_spacing))
{
return nullptr;
}
Vec3d bb_size = triangle_mesh.bounding_box().size();
// The furthest point from the center of the bottom of the mesh bounding box.
double furthest_point = std::sqrt(((bb_size.x() * bb_size.x()) / 4.0) +
((bb_size.y() * bb_size.y()) / 4.0) +
(bb_size.z() * bb_size.z()));
double max_cube_edge_length = furthest_point * 2;
std::vector<CubeProperties> cubes_properties;
for (double edge_length = (line_spacing * 2); edge_length < (max_cube_edge_length * 2); edge_length *= 2)
{
CubeProperties props{};
props.edge_length = edge_length;
props.height = edge_length * sqrt(3);
props.diagonal_length = edge_length * sqrt(2);
props.line_z_distance = edge_length / sqrt(3);
props.line_xy_distance = edge_length / sqrt(6);
cubes_properties.push_back(props);
}
if (triangle_mesh.its.vertices.empty())
{
triangle_mesh.require_shared_vertices();
}
AABBTreeIndirect::Tree3f aabbTree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
triangle_mesh.its.vertices, triangle_mesh.its.indices);
auto octree = std::make_unique<Octree>(std::make_unique<Cube>(cube_center), cube_center, cubes_properties);
FillAdaptive::expand_cube(octree->root_cube.get(), cubes_properties, aabbTree, triangle_mesh, int(cubes_properties.size()) - 1);
return octree;
}
void FillAdaptive::expand_cube(
FillAdaptive_Internal::Cube *cube,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
const AABBTreeIndirect::Tree3f &distance_tree,
const TriangleMesh &triangle_mesh, int depth)
{
using namespace FillAdaptive_Internal;
if (cube == nullptr || depth == 0)
{
return;
}
std::vector<Vec3d> child_centers = {
Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d( 1, 1, -1),
Vec3d(-1, -1, 1), Vec3d( 1, -1, 1), Vec3d(-1, 1, 1), Vec3d( 1, 1, 1)
};
double cube_radius_squared = (cubes_properties[depth].height * cubes_properties[depth].height) / 16;
for (size_t i = 0; i < 8; ++i)
{
const Vec3d &child_center = child_centers[i];
Vec3d child_center_transformed = cube->center + (child_center * (cubes_properties[depth].edge_length / 4));
if(AABBTreeIndirect::is_any_triangle_in_radius(triangle_mesh.its.vertices, triangle_mesh.its.indices,
distance_tree, child_center_transformed, cube_radius_squared))
{
cube->children[i] = std::make_unique<Cube>(child_center_transformed);
FillAdaptive::expand_cube(cube->children[i].get(), cubes_properties, distance_tree, triangle_mesh, depth - 1);
}
}
}
void FillAdaptive_Internal::Octree::propagate_point(
Vec3d point,
FillAdaptive_Internal::Cube * current,
int depth,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties)
{
using namespace FillAdaptive_Internal;
if(depth <= 0)
{
return;
}
size_t octant_idx = Octree::find_octant(point, current->center);
Cube * child = current->children[octant_idx].get();
// Octant not exists, then create it
if(child == nullptr) {
std::vector<Vec3d> child_centers = {
Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d( 1, 1, -1),
Vec3d(-1, -1, 1), Vec3d( 1, -1, 1), Vec3d(-1, 1, 1), Vec3d( 1, 1, 1)
};
const Vec3d &child_center = child_centers[octant_idx];
Vec3d child_center_transformed = current->center + (child_center * (cubes_properties[depth].edge_length / 4));
current->children[octant_idx] = std::make_unique<Cube>(child_center_transformed);
child = current->children[octant_idx].get();
}
Octree::propagate_point(point, child, (depth - 1), cubes_properties);
}
std::unique_ptr<FillAdaptive_Internal::Octree> FillSupportCubic::build_octree(
TriangleMesh & triangle_mesh,
coordf_t line_spacing,
const Vec3d & cube_center,
const Transform3d &rotation_matrix)
{
using namespace FillAdaptive_Internal;
if(line_spacing <= 0 || std::isnan(line_spacing))
{
return nullptr;
}
Vec3d bb_size = triangle_mesh.bounding_box().size();
// The furthest point from the center of the bottom of the mesh bounding box.
double furthest_point = std::sqrt(((bb_size.x() * bb_size.x()) / 4.0) +
((bb_size.y() * bb_size.y()) / 4.0) +
(bb_size.z() * bb_size.z()));
double max_cube_edge_length = furthest_point * 2;
std::vector<CubeProperties> cubes_properties;
for (double edge_length = (line_spacing * 2); edge_length < (max_cube_edge_length * 2); edge_length *= 2)
{
CubeProperties props{};
props.edge_length = edge_length;
props.height = edge_length * sqrt(3);
props.diagonal_length = edge_length * sqrt(2);
props.line_z_distance = edge_length / sqrt(3);
props.line_xy_distance = edge_length / sqrt(6);
cubes_properties.push_back(props);
}
if (triangle_mesh.its.vertices.empty())
{
triangle_mesh.require_shared_vertices();
}
AABBTreeIndirect::Tree3f aabbTree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
triangle_mesh.its.vertices, triangle_mesh.its.indices);
auto octree = std::make_unique<Octree>(std::make_unique<Cube>(cube_center), cube_center, cubes_properties);
double cube_edge_length = line_spacing / 2.0;
int max_depth = int(octree->cubes_properties.size()) - 1;
BoundingBoxf3 mesh_bb = triangle_mesh.bounding_box();
Vec3f vertical(0, 0, 1);
for (size_t facet_idx = 0; facet_idx < triangle_mesh.stl.facet_start.size(); ++facet_idx)
{
if(triangle_mesh.stl.facet_start[facet_idx].normal.dot(vertical) <= 0.707)
{
// The angle is smaller than PI/4, than infill don't to be there
continue;
}
stl_vertex v_1 = triangle_mesh.stl.facet_start[facet_idx].vertex[0];
stl_vertex v_2 = triangle_mesh.stl.facet_start[facet_idx].vertex[1];
stl_vertex v_3 = triangle_mesh.stl.facet_start[facet_idx].vertex[2];
std::vector<Vec3d> triangle_vertices =
{Vec3d(v_1.x(), v_1.y(), v_1.z()),
Vec3d(v_2.x(), v_2.y(), v_2.z()),
Vec3d(v_3.x(), v_3.y(), v_3.z())};
BoundingBoxf3 triangle_bb(triangle_vertices);
Vec3d triangle_start_relative = triangle_bb.min - mesh_bb.min;
Vec3d triangle_end_relative = triangle_bb.max - mesh_bb.min;
Vec3crd triangle_start_idx = Vec3crd(
int(std::floor(triangle_start_relative.x() / cube_edge_length)),
int(std::floor(triangle_start_relative.y() / cube_edge_length)),
int(std::floor(triangle_start_relative.z() / cube_edge_length)));
Vec3crd triangle_end_idx = Vec3crd(
int(std::floor(triangle_end_relative.x() / cube_edge_length)),
int(std::floor(triangle_end_relative.y() / cube_edge_length)),
int(std::floor(triangle_end_relative.z() / cube_edge_length)));
for (int z = triangle_start_idx.z(); z <= triangle_end_idx.z(); ++z)
{
for (int y = triangle_start_idx.y(); y <= triangle_end_idx.y(); ++y)
{
for (int x = triangle_start_idx.x(); x <= triangle_end_idx.x(); ++x)
{
Vec3d cube_center_relative(x * cube_edge_length + (cube_edge_length / 2.0), y * cube_edge_length + (cube_edge_length / 2.0), z * cube_edge_length);
Vec3d cube_center_absolute = cube_center_relative + mesh_bb.min;
double cube_center_absolute_arr[3] = {cube_center_absolute.x(), cube_center_absolute.y(), cube_center_absolute.z()};
double distance = 0, cord_u = 0, cord_v = 0;
double dir[3] = {0.0, 0.0, 1.0};
double vert_0[3] = {triangle_vertices[0].x(),
triangle_vertices[0].y(),
triangle_vertices[0].z()};
double vert_1[3] = {triangle_vertices[1].x(),
triangle_vertices[1].y(),
triangle_vertices[1].z()};
double vert_2[3] = {triangle_vertices[2].x(),
triangle_vertices[2].y(),
triangle_vertices[2].z()};
if(intersect_triangle(cube_center_absolute_arr, dir, vert_0, vert_1, vert_2, &distance, &cord_u, &cord_v) && distance > 0 && distance <= cube_edge_length)
{
Vec3d cube_center_transformed(cube_center_absolute.x(), cube_center_absolute.y(), cube_center_absolute.z() + (cube_edge_length / 2.0));
Octree::propagate_point(rotation_matrix * cube_center_transformed, octree->root_cube.get(), max_depth, octree->cubes_properties);
}
}
}
}
}
return octree;
}
void FillSupportCubic::_fill_surface_single(const FillParams & params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon & expolygon,
Polylines & polylines_out)
{
if (this->support_fill_octree != nullptr)
this->generate_infill(params, thickness_layers, direction, expolygon, polylines_out, this->support_fill_octree);
}
} // namespace Slic3r

View file

@ -0,0 +1,139 @@
#ifndef slic3r_FillAdaptive_hpp_
#define slic3r_FillAdaptive_hpp_
#include "../AABBTreeIndirect.hpp"
#include "FillBase.hpp"
namespace Slic3r {
class PrintObject;
class TriangleMesh;
namespace FillAdaptive_Internal
{
struct CubeProperties
{
double edge_length; // Lenght of edge of a cube
double height; // Height of rotated cube (standing on the corner)
double diagonal_length; // Length of diagonal of a cube a face
double line_z_distance; // Defines maximal distance from a center of a cube on Z axis on which lines will be created
double line_xy_distance;// Defines maximal distance from a center of a cube on X and Y axis on which lines will be created
};
struct Cube
{
Vec3d center;
std::unique_ptr<Cube> children[8] = {};
Cube(const Vec3d &center) : center(center) {}
};
struct Octree
{
std::unique_ptr<Cube> root_cube;
Vec3d origin;
std::vector<CubeProperties> cubes_properties;
Octree(std::unique_ptr<Cube> rootCube, const Vec3d &origin, const std::vector<CubeProperties> &cubes_properties)
: root_cube(std::move(rootCube)), origin(origin), cubes_properties(cubes_properties) {}
inline static int find_octant(const Vec3d &i_cube, const Vec3d &current)
{
return (i_cube.z() > current.z()) * 4 + (i_cube.y() > current.y()) * 2 + (i_cube.x() > current.x());
}
static void propagate_point(
Vec3d point,
FillAdaptive_Internal::Cube *current_cube,
int depth,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties);
};
}; // namespace FillAdaptive_Internal
//
// Some of the algorithms used by class FillAdaptive were inspired by
// Cura Engine's class SubDivCube
// https://github.com/Ultimaker/CuraEngine/blob/master/src/infill/SubDivCube.h
//
class FillAdaptive : public Fill
{
public:
virtual ~FillAdaptive() {}
protected:
virtual Fill* clone() const { return new FillAdaptive(*this); };
virtual void _fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out);
virtual bool no_sort() const { return true; }
void generate_infill_lines(
FillAdaptive_Internal::Cube *cube,
double z_position,
const Vec3d & origin,
const Transform3d & rotation_matrix,
std::vector<Lines> & dir_lines_out,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
int depth);
static void connect_lines(Lines &lines, Line new_line);
void generate_infill(const FillParams & params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon & expolygon,
Polylines & polylines_out,
FillAdaptive_Internal::Octree *octree);
public:
static std::unique_ptr<FillAdaptive_Internal::Octree> build_octree(
TriangleMesh &triangle_mesh,
coordf_t line_spacing,
const Vec3d & cube_center);
static void expand_cube(
FillAdaptive_Internal::Cube *cube,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
const AABBTreeIndirect::Tree3f &distance_tree,
const TriangleMesh & triangle_mesh,
int depth);
};
class FillSupportCubic : public FillAdaptive
{
public:
virtual ~FillSupportCubic() = default;
protected:
virtual Fill* clone() const { return new FillSupportCubic(*this); };
virtual bool no_sort() const { return true; }
virtual void _fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out);
public:
static std::unique_ptr<FillAdaptive_Internal::Octree> build_octree(
TriangleMesh & triangle_mesh,
coordf_t line_spacing,
const Vec3d & cube_center,
const Transform3d &rotation_matrix);
};
// Calculate line spacing for
// 1) adaptive cubic infill
// 2) adaptive internal support cubic infill
// Returns zero for a particular infill type if no such infill is to be generated.
std::pair<double, double> adaptive_fill_line_spacing(const PrintObject &print_object);
} // namespace Slic3r
#endif // slic3r_FillAdaptive_hpp_

View file

@ -16,6 +16,7 @@
#include "FillRectilinear.hpp"
#include "FillRectilinear2.hpp"
#include "FillRectilinear3.hpp"
#include "FillAdaptive.hpp"
namespace Slic3r {
@ -37,7 +38,9 @@ Fill* Fill::new_from_type(const InfillPattern type)
case ipArchimedeanChords: return new FillArchimedeanChords();
case ipHilbertCurve: return new FillHilbertCurve();
case ipOctagramSpiral: return new FillOctagramSpiral();
default: throw std::invalid_argument("unknown type");
case ipAdaptiveCubic: return new FillAdaptive();
case ipSupportCubic: return new FillSupportCubic();
default: throw Slic3r::InvalidArgument("unknown type");
}
}

View file

@ -11,6 +11,7 @@
#include "../libslic3r.h"
#include "../BoundingBox.hpp"
#include "../Exception.hpp"
#include "../Utils.hpp"
namespace Slic3r {
@ -19,9 +20,14 @@ class ExPolygon;
class Surface;
enum InfillPattern : int;
class InfillFailedException : public std::runtime_error {
namespace FillAdaptive_Internal {
struct Octree;
};
// Infill shall never fail, therefore the error is classified as RuntimeError, not SlicingError.
class InfillFailedException : public Slic3r::RuntimeError {
public:
InfillFailedException() : std::runtime_error("Infill failed") {}
InfillFailedException() : Slic3r::RuntimeError("Infill failed") {}
};
struct FillParams
@ -69,6 +75,11 @@ public:
// In scaled coordinates. Bounding box of the 2D projection of the object.
BoundingBox bounding_box;
// Octree builds on mesh for usage in the adaptive cubic infill
FillAdaptive_Internal::Octree* adapt_fill_octree = nullptr;
// Octree builds on mesh for usage in the support cubic infill
FillAdaptive_Internal::Octree* support_fill_octree = nullptr;
public:
virtual ~Fill() {}

View file

@ -53,7 +53,7 @@ static inline FlowRole opt_key_to_flow_role(const std::string &opt_key)
else if (opt_key == "support_material_extrusion_width")
return frSupportMaterial;
else
throw std::runtime_error("opt_key_to_flow_role: invalid argument");
throw Slic3r::RuntimeError("opt_key_to_flow_role: invalid argument");
};
static inline void throw_on_missing_variable(const std::string &opt_key, const char *dependent_opt_key)
@ -126,7 +126,7 @@ Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent
{
// we need layer height unless it's a bridge
if (height <= 0 && bridge_flow_ratio == 0)
throw std::invalid_argument("Invalid flow height supplied to new_from_config_width()");
throw Slic3r::InvalidArgument("Invalid flow height supplied to new_from_config_width()");
float w;
if (bridge_flow_ratio > 0) {
@ -151,7 +151,7 @@ Flow Flow::new_from_spacing(float spacing, float nozzle_diameter, float height,
{
// we need layer height unless it's a bridge
if (height <= 0 && !bridge)
throw std::invalid_argument("Invalid flow height supplied to new_from_spacing()");
throw Slic3r::InvalidArgument("Invalid flow height supplied to new_from_spacing()");
// Calculate width from spacing.
// For normal extrusons, extrusion width is wider than the spacing due to the rounding and squishing of the extrusions.
// For bridge extrusions, the extrusions are placed with a tiny BRIDGE_EXTRA_SPACING gaps between the threads.

View file

@ -3,6 +3,7 @@
#include "libslic3r.h"
#include "Config.hpp"
#include "Exception.hpp"
#include "ExtrusionEntity.hpp"
namespace Slic3r {
@ -27,11 +28,11 @@ enum FlowRole {
frSupportMaterialInterface,
};
class FlowError : public std::invalid_argument
class FlowError : public Slic3r::InvalidArgument
{
public:
FlowError(const std::string& what_arg) : invalid_argument(what_arg) {}
FlowError(const char* what_arg) : invalid_argument(what_arg) {}
FlowError(const std::string& what_arg) : Slic3r::InvalidArgument(what_arg) {}
FlowError(const char* what_arg) : Slic3r::InvalidArgument(what_arg) {}
};
class FlowErrorNegativeSpacing : public FlowError

View file

@ -1,9 +1,11 @@
#include "../libslic3r.h"
#include "../Exception.hpp"
#include "../Model.hpp"
#include "../Utils.hpp"
#include "../GCode.hpp"
#include "../Geometry.hpp"
#include "../GCode/ThumbnailData.hpp"
#include "../Time.hpp"
#include "../I18N.hpp"
@ -85,6 +87,8 @@ const char* OBJECTID_ATTR = "objectid";
const char* TRANSFORM_ATTR = "transform";
const char* PRINTABLE_ATTR = "printable";
const char* INSTANCESCOUNT_ATTR = "instances_count";
const char* CUSTOM_SUPPORTS_ATTR = "slic3rpe:custom_supports";
const char* CUSTOM_SEAM_ATTR = "slic3rpe:custom_seam";
const char* KEY_ATTR = "key";
const char* VALUE_ATTR = "value";
@ -120,11 +124,11 @@ const char* INVALID_OBJECT_TYPES[] =
"other"
};
class version_error : public std::runtime_error
class version_error : public Slic3r::FileIOError
{
public:
version_error(const std::string& what_arg) : std::runtime_error(what_arg) {}
version_error(const char* what_arg) : std::runtime_error(what_arg) {}
version_error(const std::string& what_arg) : Slic3r::FileIOError(what_arg) {}
version_error(const char* what_arg) : Slic3r::FileIOError(what_arg) {}
};
const char* get_attribute_value_charptr(const char** attributes, unsigned int attributes_size, const char* attribute_key)
@ -282,6 +286,8 @@ namespace Slic3r {
{
std::vector<float> vertices;
std::vector<unsigned int> triangles;
std::vector<std::string> custom_supports;
std::vector<std::string> custom_seam;
bool empty()
{
@ -292,6 +298,8 @@ namespace Slic3r {
{
vertices.clear();
triangles.clear();
custom_supports.clear();
custom_seam.clear();
}
};
@ -600,7 +608,7 @@ namespace Slic3r {
{
// ensure the zip archive is closed and rethrow the exception
close_zip_reader(&archive);
throw std::runtime_error(e.what());
throw Slic3r::FileIOError(e.what());
}
}
}
@ -773,7 +781,7 @@ namespace Slic3r {
{
char error_buf[1024];
::sprintf(error_buf, "Error (%s) while parsing '%s' at line %d", XML_ErrorString(XML_GetErrorCode(data->parser)), data->stat.m_filename, (int)XML_GetCurrentLineNumber(data->parser));
throw std::runtime_error(error_buf);
throw Slic3r::FileIOError(error_buf);
}
return n;
@ -782,7 +790,7 @@ namespace Slic3r {
catch (const version_error& e)
{
// rethrow the exception
throw std::runtime_error(e.what());
throw Slic3r::FileIOError(e.what());
}
catch (std::exception& e)
{
@ -1110,6 +1118,15 @@ namespace Slic3r {
float(std::atof(object_data_points[i+6].c_str())),
float(std::atof(object_data_points[i+7].c_str())));
}
// The holes are saved elevated above the mesh and deeper (bad idea indeed).
// This is retained for compatibility.
// Place the hole to the mesh and make it shallower to compensate.
// The offset is 1 mm above the mesh.
for (sla::DrainHole& hole : sla_drain_holes) {
hole.pos += hole.normal.normalized();
hole.height -= 1.f;
}
if (!sla_drain_holes.empty())
m_sla_drain_holes.insert(IdToSlaDrainHolesMap::value_type(object_id, sla_drain_holes));
@ -1538,6 +1555,9 @@ namespace Slic3r {
m_curr_object.geometry.triangles.push_back((unsigned int)get_attribute_value_int(attributes, num_attributes, V1_ATTR));
m_curr_object.geometry.triangles.push_back((unsigned int)get_attribute_value_int(attributes, num_attributes, V2_ATTR));
m_curr_object.geometry.triangles.push_back((unsigned int)get_attribute_value_int(attributes, num_attributes, V3_ATTR));
m_curr_object.geometry.custom_supports.push_back(get_attribute_value_string(attributes, num_attributes, CUSTOM_SUPPORTS_ATTR));
m_curr_object.geometry.custom_seam.push_back(get_attribute_value_string(attributes, num_attributes, CUSTOM_SEAM_ATTR));
return true;
}
@ -1871,6 +1891,18 @@ namespace Slic3r {
volume->source.transform = Slic3r::Geometry::Transformation(volume_matrix_to_object);
volume->calculate_convex_hull();
// recreate custom supports and seam from previously loaded attribute
for (unsigned i=0; i<triangles_count; ++i) {
size_t index = src_start_id/3 + i;
assert(index < geometry.custom_supports.size());
assert(index < geometry.custom_seam.size());
if (! geometry.custom_supports[index].empty())
volume->m_supported_facets.set_triangle_from_string(i, geometry.custom_supports[index]);
if (! geometry.custom_seam[index].empty())
volume->m_seam_facets.set_triangle_from_string(i, geometry.custom_seam[index]);
}
// apply the remaining volume's metadata
for (const Metadata& metadata : volume_data.metadata)
{
@ -1991,7 +2023,7 @@ namespace Slic3r {
bool _add_content_types_file_to_archive(mz_zip_archive& archive);
bool _add_thumbnail_file_to_archive(mz_zip_archive& archive, const ThumbnailData& thumbnail_data);
bool _add_relationships_file_to_archive(mz_zip_archive& archive);
bool _add_model_file_to_archive(mz_zip_archive& archive, const Model& model, IdToObjectDataMap &objects_data);
bool _add_model_file_to_archive(const std::string& filename, mz_zip_archive& archive, const Model& model, IdToObjectDataMap& objects_data);
bool _add_object_to_model_stream(std::stringstream& stream, unsigned int& object_id, ModelObject& object, BuildItemsList& build_items, VolumeToOffsetsMap& volumes_offsets);
bool _add_mesh_to_object_stream(std::stringstream& stream, ModelObject& object, VolumeToOffsetsMap& volumes_offsets);
bool _add_build_to_model_stream(std::stringstream& stream, const BuildItemsList& build_items);
@ -2054,7 +2086,7 @@ namespace Slic3r {
// Adds model file ("3D/3dmodel.model").
// This is the one and only file that contains all the geometry (vertices and triangles) of all ModelVolumes.
IdToObjectDataMap objects_data;
if (!_add_model_file_to_archive(archive, model, objects_data))
if (!_add_model_file_to_archive(filename, archive, model, objects_data))
{
close_zip_writer(&archive);
boost::filesystem::remove(filename);
@ -2203,7 +2235,7 @@ namespace Slic3r {
return true;
}
bool _3MF_Exporter::_add_model_file_to_archive(mz_zip_archive& archive, const Model& model, IdToObjectDataMap &objects_data)
bool _3MF_Exporter::_add_model_file_to_archive(const std::string& filename, mz_zip_archive& archive, const Model& model, IdToObjectDataMap& objects_data)
{
std::stringstream stream;
// https://en.cppreference.com/w/cpp/types/numeric_limits/max_digits10
@ -2214,6 +2246,19 @@ namespace Slic3r {
stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
stream << "<" << MODEL_TAG << " unit=\"millimeter\" xml:lang=\"en-US\" xmlns=\"http://schemas.microsoft.com/3dmanufacturing/core/2015/02\" xmlns:slic3rpe=\"http://schemas.slic3r.org/3mf/2017/06\">\n";
stream << " <" << METADATA_TAG << " name=\"" << SLIC3RPE_3MF_VERSION << "\">" << VERSION_3MF << "</" << METADATA_TAG << ">\n";
std::string name = boost::filesystem::path(filename).stem().string();
stream << " <" << METADATA_TAG << " name=\"Title\">" << name << "</" << METADATA_TAG << ">\n";
stream << " <" << METADATA_TAG << " name=\"Designer\">" << "</" << METADATA_TAG << ">\n";
stream << " <" << METADATA_TAG << " name=\"Description\">" << name << "</" << METADATA_TAG << ">\n";
stream << " <" << METADATA_TAG << " name=\"Copyright\">" << "</" << METADATA_TAG << ">\n";
stream << " <" << METADATA_TAG << " name=\"LicenseTerms\">" << "</" << METADATA_TAG << ">\n";
stream << " <" << METADATA_TAG << " name=\"Rating\">" << "</" << METADATA_TAG << ">\n";
std::string date = Slic3r::Utils::utc_timestamp(Slic3r::Utils::get_current_time_utc());
// keep only the date part of the string
date = date.substr(0, 10);
stream << " <" << METADATA_TAG << " name=\"CreationDate\">" << date << "</" << METADATA_TAG << ">\n";
stream << " <" << METADATA_TAG << " name=\"ModificationDate\">" << date << "</" << METADATA_TAG << ">\n";
stream << " <" << METADATA_TAG << " name=\"Application\">" << SLIC3R_APP_KEY << "-" << SLIC3R_VERSION << "</" << METADATA_TAG << ">\n";
stream << " <" << RESOURCES_TAG << ">\n";
// Instance transformations, indexed by the 3MF object ID (which is a linear serialization of all instances of all ModelObjects).
@ -2316,9 +2361,9 @@ namespace Slic3r {
continue;
if (!volume->mesh().repaired)
throw std::runtime_error("store_3mf() requires repair()");
throw Slic3r::FileIOError("store_3mf() requires repair()");
if (!volume->mesh().has_shared_vertices())
throw std::runtime_error("store_3mf() requires shared vertices");
throw Slic3r::FileIOError("store_3mf() requires shared vertices");
volumes_offsets.insert(VolumeToOffsetsMap::value_type(volume, Offsets(vertices_count))).first;
@ -2369,6 +2414,15 @@ namespace Slic3r {
{
stream << "v" << j + 1 << "=\"" << its.indices[i][j] + volume_it->second.first_vertex_id << "\" ";
}
std::string custom_supports_data_string = volume->m_supported_facets.get_triangle_as_string(i);
if (! custom_supports_data_string.empty())
stream << CUSTOM_SUPPORTS_ATTR << "=\"" << custom_supports_data_string << "\" ";
std::string custom_seam_data_string = volume->m_seam_facets.get_triangle_as_string(i);
if (! custom_seam_data_string.empty())
stream << CUSTOM_SEAM_ATTR << "=\"" << custom_seam_data_string << "\" ";
stream << "/>\n";
}
}
@ -2559,7 +2613,18 @@ namespace Slic3r {
for (const ModelObject* object : model.objects)
{
++count;
auto& drain_holes = object->sla_drain_holes;
sla::DrainHoles drain_holes = object->sla_drain_holes;
// The holes were placed 1mm above the mesh in the first implementation.
// This was a bad idea and the reference point was changed in 2.3 so
// to be on the mesh exactly. The elevated position is still saved
// in 3MFs for compatibility reasons.
for (sla::DrainHole& hole : drain_holes) {
hole.pos -= hole.normal.normalized();
hole.height += 1.f;
}
if (!drain_holes.empty())
{
out += string_printf(fmt, count);

View file

@ -35,6 +35,6 @@ namespace Slic3r {
// The model could be modified during the export process if meshes are not repaired or have no shared vertices
extern bool store_3mf(const char* path, Model* model, const DynamicPrintConfig* config, bool fullpath_sources, const ThumbnailData* thumbnail_data = nullptr);
}; // namespace Slic3r
} // namespace Slic3r
#endif /* slic3r_Format_3mf_hpp_ */

View file

@ -7,6 +7,7 @@
#include <boost/nowide/cstdio.hpp>
#include "../libslic3r.h"
#include "../Exception.hpp"
#include "../Model.hpp"
#include "../GCode.hpp"
#include "../PrintConfig.hpp"
@ -923,7 +924,7 @@ bool extract_model_from_archive(mz_zip_archive& archive, const mz_zip_archive_fi
{
char error_buf[1024];
::sprintf(error_buf, "Error (%s) while parsing '%s' at line %d", XML_ErrorString(XML_GetErrorCode(data->parser)), data->stat.m_filename, (int)XML_GetCurrentLineNumber(data->parser));
throw std::runtime_error(error_buf);
throw Slic3r::FileIOError(error_buf);
}
return n;
@ -948,9 +949,9 @@ bool extract_model_from_archive(mz_zip_archive& archive, const mz_zip_archive_fi
if (check_version && (ctx.m_version > VERSION_AMF_COMPATIBLE))
{
// std::string msg = _(L("The selected amf file has been saved with a newer version of " + std::string(SLIC3R_APP_NAME) + " and is not compatible."));
// throw std::runtime_error(msg.c_str());
// throw Slic3r::FileIOError(msg.c_str());
const std::string msg = (boost::format(_(L("The selected amf file has been saved with a newer version of %1% and is not compatible."))) % std::string(SLIC3R_APP_NAME)).str();
throw std::runtime_error(msg);
throw Slic3r::FileIOError(msg);
}
return true;
@ -994,7 +995,7 @@ bool load_amf_archive(const char* path, DynamicPrintConfig* config, Model* model
{
// ensure the zip archive is closed and rethrow the exception
close_zip_reader(&archive);
throw std::runtime_error(e.what());
throw Slic3r::FileIOError(e.what());
}
break;
@ -1147,9 +1148,9 @@ bool store_amf(const char* path, Model* model, const DynamicPrintConfig* config,
for (ModelVolume *volume : object->volumes) {
vertices_offsets.push_back(num_vertices);
if (! volume->mesh().repaired)
throw std::runtime_error("store_amf() requires repair()");
throw Slic3r::FileIOError("store_amf() requires repair()");
if (! volume->mesh().has_shared_vertices())
throw std::runtime_error("store_amf() requires shared vertices");
throw Slic3r::FileIOError("store_amf() requires shared vertices");
const indexed_triangle_set &its = volume->mesh().its;
const Transform3d& matrix = volume->get_matrix();
for (size_t i = 0; i < its.vertices.size(); ++i) {

View file

@ -147,7 +147,7 @@ static void extract_model_from_archive(
}
}
if (! trafo_set)
throw std::runtime_error(std::string("Archive ") + path + " does not contain a valid entry in scene.xml for " + name);
throw Slic3r::FileIOError(std::string("Archive ") + path + " does not contain a valid entry in scene.xml for " + name);
// Extract the STL.
StlHeader header;
@ -266,7 +266,7 @@ static void extract_model_from_archive(
}
if (! mesh_valid)
throw std::runtime_error(std::string("Archive ") + path + " does not contain a valid mesh for " + name);
throw Slic3r::FileIOError(std::string("Archive ") + path + " does not contain a valid mesh for " + name);
// Add this mesh to the model.
ModelVolume *volume = nullptr;
@ -303,7 +303,7 @@ bool load_prus(const char *path, Model *model)
mz_bool res = MZ_FALSE;
try {
if (!open_zip_reader(&archive, path))
throw std::runtime_error(std::string("Unable to init zip reader for ") + path);
throw Slic3r::FileIOError(std::string("Unable to init zip reader for ") + path);
std::vector<char> scene_xml_data;
// For grouping multiple STLs into a single ModelObject for multi-material prints.
std::map<int, ModelObject*> group_to_model_object;
@ -316,10 +316,10 @@ bool load_prus(const char *path, Model *model)
buffer.assign((size_t)stat.m_uncomp_size, 0);
res = mz_zip_reader_extract_file_to_mem(&archive, stat.m_filename, (char*)buffer.data(), (size_t)stat.m_uncomp_size, 0);
if (res == MZ_FALSE)
std::runtime_error(std::string("Error while extracting a file from ") + path);
throw Slic3r::FileIOError(std::string("Error while extracting a file from ") + path);
if (strcmp(stat.m_filename, "scene.xml") == 0) {
if (! scene_xml_data.empty())
throw std::runtime_error(std::string("Multiple scene.xml were found in the archive.") + path);
throw Slic3r::FileIOError(std::string("Multiple scene.xml were found in the archive.") + path);
scene_xml_data = std::move(buffer);
} else if (boost::iends_with(stat.m_filename, ".stl")) {
// May throw std::exception

View file

@ -8,8 +8,317 @@
#include "libslic3r/Zipper.hpp"
#include "libslic3r/SLAPrint.hpp"
#include <sstream>
#include "libslic3r/Exception.hpp"
#include "libslic3r/SlicesToTriangleMesh.hpp"
#include "libslic3r/MarchingSquares.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/MTUtils.hpp"
#include "libslic3r/PrintConfig.hpp"
#include "libslic3r/SLA/RasterBase.hpp"
#include "libslic3r/miniz_extension.hpp"
#include "libslic3r/PNGRead.hpp"
#include <boost/property_tree/ini_parser.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/algorithm/string.hpp>
namespace marchsq {
template<> struct _RasterTraits<Slic3r::png::ImageGreyscale> {
using Rst = Slic3r::png::ImageGreyscale;
// The type of pixel cell in the raster
using ValueType = uint8_t;
// Value at a given position
static uint8_t get(const Rst &rst, size_t row, size_t col)
{
return rst.get(row, col);
}
// Number of rows and cols of the raster
static size_t rows(const Rst &rst) { return rst.rows; }
static size_t cols(const Rst &rst) { return rst.cols; }
};
} // namespace marchsq
namespace Slic3r {
namespace {
struct PNGBuffer { std::vector<uint8_t> buf; std::string fname; };
struct ArchiveData {
boost::property_tree::ptree profile, config;
std::vector<PNGBuffer> images;
};
static const constexpr char *CONFIG_FNAME = "config.ini";
static const constexpr char *PROFILE_FNAME = "prusaslicer.ini";
boost::property_tree::ptree read_ini(const mz_zip_archive_file_stat &entry,
MZ_Archive & zip)
{
std::string buf(size_t(entry.m_uncomp_size), '\0');
if (!mz_zip_reader_extract_file_to_mem(&zip.arch, entry.m_filename,
buf.data(), buf.size(), 0))
throw Slic3r::FileIOError(zip.get_errorstr());
boost::property_tree::ptree tree;
std::stringstream ss(buf);
boost::property_tree::read_ini(ss, tree);
return tree;
}
PNGBuffer read_png(const mz_zip_archive_file_stat &entry,
MZ_Archive & zip,
const std::string & name)
{
std::vector<uint8_t> buf(entry.m_uncomp_size);
if (!mz_zip_reader_extract_file_to_mem(&zip.arch, entry.m_filename,
buf.data(), buf.size(), 0))
throw Slic3r::FileIOError(zip.get_errorstr());
return {std::move(buf), (name.empty() ? entry.m_filename : name)};
}
ArchiveData extract_sla_archive(const std::string &zipfname,
const std::string &exclude)
{
ArchiveData arch;
// Little RAII
struct Arch: public MZ_Archive {
Arch(const std::string &fname) {
if (!open_zip_reader(&arch, fname))
throw Slic3r::FileIOError(get_errorstr());
}
~Arch() { close_zip_reader(&arch); }
} zip (zipfname);
mz_uint num_entries = mz_zip_reader_get_num_files(&zip.arch);
for (mz_uint i = 0; i < num_entries; ++i)
{
mz_zip_archive_file_stat entry;
if (mz_zip_reader_file_stat(&zip.arch, i, &entry))
{
std::string name = entry.m_filename;
boost::algorithm::to_lower(name);
if (boost::algorithm::contains(name, exclude)) continue;
if (name == CONFIG_FNAME) arch.config = read_ini(entry, zip);
if (name == PROFILE_FNAME) arch.profile = read_ini(entry, zip);
if (boost::filesystem::path(name).extension().string() == ".png") {
auto it = std::lower_bound(
arch.images.begin(), arch.images.end(), PNGBuffer{{}, name},
[](const PNGBuffer &r1, const PNGBuffer &r2) {
return std::less<std::string>()(r1.fname, r2.fname);
});
arch.images.insert(it, read_png(entry, zip, name));
}
}
}
return arch;
}
ExPolygons rings_to_expolygons(const std::vector<marchsq::Ring> &rings,
double px_w, double px_h)
{
ExPolygons polys; polys.reserve(rings.size());
for (const marchsq::Ring &ring : rings) {
Polygon poly; Points &pts = poly.points;
pts.reserve(ring.size());
for (const marchsq::Coord &crd : ring)
pts.emplace_back(scaled(crd.c * px_w), scaled(crd.r * px_h));
polys.emplace_back(poly);
}
// reverse the raster transformations
return union_ex(polys);
}
template<class Fn> void foreach_vertex(ExPolygon &poly, Fn &&fn)
{
for (auto &p : poly.contour.points) fn(p);
for (auto &h : poly.holes)
for (auto &p : h.points) fn(p);
}
void invert_raster_trafo(ExPolygons & expolys,
const sla::RasterBase::Trafo &trafo,
coord_t width,
coord_t height)
{
if (trafo.flipXY) std::swap(height, width);
for (auto &expoly : expolys) {
if (trafo.mirror_y)
foreach_vertex(expoly, [height](Point &p) {p.y() = height - p.y(); });
if (trafo.mirror_x)
foreach_vertex(expoly, [width](Point &p) {p.x() = width - p.x(); });
expoly.translate(-trafo.center_x, -trafo.center_y);
if (trafo.flipXY)
foreach_vertex(expoly, [](Point &p) { std::swap(p.x(), p.y()); });
if ((trafo.mirror_x + trafo.mirror_y + trafo.flipXY) % 2) {
expoly.contour.reverse();
for (auto &h : expoly.holes) h.reverse();
}
}
}
struct RasterParams {
sla::RasterBase::Trafo trafo; // Raster transformations
coord_t width, height; // scaled raster dimensions (not resolution)
double px_h, px_w; // pixel dimesions
marchsq::Coord win; // marching squares window size
};
RasterParams get_raster_params(const DynamicPrintConfig &cfg)
{
auto *opt_disp_cols = cfg.option<ConfigOptionInt>("display_pixels_x");
auto *opt_disp_rows = cfg.option<ConfigOptionInt>("display_pixels_y");
auto *opt_disp_w = cfg.option<ConfigOptionFloat>("display_width");
auto *opt_disp_h = cfg.option<ConfigOptionFloat>("display_height");
auto *opt_mirror_x = cfg.option<ConfigOptionBool>("display_mirror_x");
auto *opt_mirror_y = cfg.option<ConfigOptionBool>("display_mirror_y");
auto *opt_orient = cfg.option<ConfigOptionEnum<SLADisplayOrientation>>("display_orientation");
if (!opt_disp_cols || !opt_disp_rows || !opt_disp_w || !opt_disp_h ||
!opt_mirror_x || !opt_mirror_y || !opt_orient)
throw Slic3r::FileIOError("Invalid SL1 file");
RasterParams rstp;
rstp.px_w = opt_disp_w->value / (opt_disp_cols->value - 1);
rstp.px_h = opt_disp_h->value / (opt_disp_rows->value - 1);
rstp.trafo = sla::RasterBase::Trafo{opt_orient->value == sladoLandscape ?
sla::RasterBase::roLandscape :
sla::RasterBase::roPortrait,
{opt_mirror_x->value, opt_mirror_y->value}};
rstp.height = scaled(opt_disp_h->value);
rstp.width = scaled(opt_disp_w->value);
return rstp;
}
struct SliceParams { double layerh = 0., initial_layerh = 0.; };
SliceParams get_slice_params(const DynamicPrintConfig &cfg)
{
auto *opt_layerh = cfg.option<ConfigOptionFloat>("layer_height");
auto *opt_init_layerh = cfg.option<ConfigOptionFloat>("initial_layer_height");
if (!opt_layerh || !opt_init_layerh)
throw Slic3r::FileIOError("Invalid SL1 file");
return SliceParams{opt_layerh->getFloat(), opt_init_layerh->getFloat()};
}
std::vector<ExPolygons> extract_slices_from_sla_archive(
ArchiveData & arch,
const RasterParams & rstp,
std::function<bool(int)> progr)
{
auto jobdir = arch.config.get<std::string>("jobDir");
for (auto &c : jobdir) c = std::tolower(c);
std::vector<ExPolygons> slices(arch.images.size());
struct Status
{
double incr, val, prev;
bool stop = false;
tbb::spin_mutex mutex;
} st {100. / slices.size(), 0., 0.};
tbb::parallel_for(size_t(0), arch.images.size(),
[&arch, &slices, &st, &rstp, progr](size_t i) {
// Status indication guarded with the spinlock
{
std::lock_guard<tbb::spin_mutex> lck(st.mutex);
if (st.stop) return;
st.val += st.incr;
double curr = std::round(st.val);
if (curr > st.prev) {
st.prev = curr;
st.stop = !progr(int(curr));
}
}
png::ImageGreyscale img;
png::ReadBuf rb{arch.images[i].buf.data(), arch.images[i].buf.size()};
if (!png::decode_png(rb, img)) return;
auto rings = marchsq::execute(img, 128, rstp.win);
ExPolygons expolys = rings_to_expolygons(rings, rstp.px_w, rstp.px_h);
// Invert the raster transformations indicated in
// the profile metadata
invert_raster_trafo(expolys, rstp.trafo, rstp.width, rstp.height);
slices[i] = std::move(expolys);
});
if (st.stop) slices = {};
return slices;
}
} // namespace
void import_sla_archive(const std::string &zipfname, DynamicPrintConfig &out)
{
ArchiveData arch = extract_sla_archive(zipfname, "png");
out.load(arch.profile);
}
void import_sla_archive(
const std::string & zipfname,
Vec2i windowsize,
TriangleMesh & out,
DynamicPrintConfig & profile,
std::function<bool(int)> progr)
{
// Ensure minimum window size for marching squares
windowsize.x() = std::max(2, windowsize.x());
windowsize.y() = std::max(2, windowsize.y());
ArchiveData arch = extract_sla_archive(zipfname, "thumbnail");
profile.load(arch.profile);
RasterParams rstp = get_raster_params(profile);
rstp.win = {windowsize.y(), windowsize.x()};
SliceParams slicp = get_slice_params(profile);
std::vector<ExPolygons> slices =
extract_slices_from_sla_archive(arch, rstp, progr);
if (!slices.empty())
out = slices_to_triangle_mesh(slices, 0, slicp.layerh, slicp.initial_layerh);
}
using ConfMap = std::map<std::string, std::string>;
namespace {
@ -126,9 +435,9 @@ uqptr<sla::RasterBase> SL1Archive::create_raster() const
return sla::create_raster_grayscale_aa(res, pxdim, gamma, tr);
}
sla::EncodedRaster SL1Archive::encode_raster(const sla::RasterBase &rst) const
sla::RasterEncoder SL1Archive::get_encoder() const
{
return rst.encode(sla::PNGRasterEncoder());
return sla::PNGRasterEncoder{};
}
void SL1Archive::export_print(Zipper& zipper,

View file

@ -13,7 +13,7 @@ class SL1Archive: public SLAPrinter {
protected:
uqptr<sla::RasterBase> create_raster() const override;
sla::EncodedRaster encode_raster(const sla::RasterBase &rst) const override;
sla::RasterEncoder get_encoder() const override;
public:
@ -38,6 +38,24 @@ public:
}
};
void import_sla_archive(const std::string &zipfname, DynamicPrintConfig &out);
void import_sla_archive(
const std::string & zipfname,
Vec2i windowsize,
TriangleMesh & out,
DynamicPrintConfig & profile,
std::function<bool(int)> progr = [](int) { return true; });
inline void import_sla_archive(
const std::string & zipfname,
Vec2i windowsize,
TriangleMesh & out,
std::function<bool(int)> progr = [](int) { return true; })
{
DynamicPrintConfig profile;
import_sla_archive(zipfname, windowsize, out, profile, progr);
}
} // namespace Slic3r::sla

File diff suppressed because it is too large Load diff

View file

@ -13,9 +13,13 @@
#include "GCode/SpiralVase.hpp"
#include "GCode/ToolOrdering.hpp"
#include "GCode/WipeTower.hpp"
#include "GCodeTimeEstimator.hpp"
#include "EdgeGrid.hpp"
#if ENABLE_GCODE_VIEWER
#include "GCode/GCodeProcessor.hpp"
#else
#include "GCode/Analyzer.hpp"
#include "GCodeTimeEstimator.hpp"
#endif // ENABLE_GCODE_VIEWER
#include "EdgeGrid.hpp"
#include "GCode/ThumbnailData.hpp"
#include <memory>
@ -29,7 +33,9 @@ namespace Slic3r {
// Forward declarations.
class GCode;
#if !ENABLE_GCODE_VIEWER
class GCodePreviewData;
#endif // !ENABLE_GCODE_VIEWER
namespace { struct Item; }
struct PrintInstance;
@ -138,6 +144,15 @@ private:
double m_last_wipe_tower_print_z = 0.f;
};
#if ENABLE_GCODE_VIEWER
class ColorPrintColors
{
static const std::vector<std::string> Colors;
public:
static const std::vector<std::string>& get() { return Colors; }
};
#endif // ENABLE_GCODE_VIEWER
class GCode {
public:
GCode() :
@ -145,21 +160,33 @@ public:
m_enable_loop_clipping(true),
m_enable_cooling_markers(false),
m_enable_extrusion_role_markers(false),
#if ENABLE_GCODE_VIEWER
m_last_processor_extrusion_role(erNone),
#else
m_enable_analyzer(false),
m_last_analyzer_extrusion_role(erNone),
#endif // ENABLE_GCODE_VIEWER
m_layer_count(0),
m_layer_index(-1),
m_layer(nullptr),
m_volumetric_speed(0),
m_last_pos_defined(false),
m_last_extrusion_role(erNone),
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_last_mm3_per_mm(0.0),
m_last_width(0.0f),
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
#if !ENABLE_GCODE_VIEWER
m_last_mm3_per_mm(GCodeAnalyzer::Default_mm3_per_mm),
m_last_width(GCodeAnalyzer::Default_Width),
m_last_height(GCodeAnalyzer::Default_Height),
#endif // !ENABLE_GCODE_VIEWER
m_brim_done(false),
m_second_layer_things_done(false),
#if !ENABLE_GCODE_VIEWER
m_normal_time_estimator(GCodeTimeEstimator::Normal),
m_silent_time_estimator(GCodeTimeEstimator::Silent),
#endif // !ENABLE_GCODE_VIEWER
m_silent_time_estimator_enabled(false),
m_last_obj_copy(nullptr, Point(std::numeric_limits<coord_t>::max(), std::numeric_limits<coord_t>::max()))
{}
@ -167,7 +194,11 @@ public:
// throws std::runtime_exception on error,
// throws CanceledException through print->throw_if_canceled().
#if ENABLE_GCODE_VIEWER
void do_export(Print* print, const char* path, GCodeProcessor::Result* result = nullptr, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
#else
void do_export(Print* print, const char* path, GCodePreviewData* preview_data = nullptr, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
#endif // ENABLE_GCODE_VIEWER
// Exported for the helper classes (OozePrevention, Wipe) and for the Perl binding for unit tests.
const Vec2d& origin() const { return m_origin; }
@ -327,11 +358,16 @@ private:
// Markers for the Pressure Equalizer to recognize the extrusion type.
// The Pressure Equalizer removes the markers from the final G-code.
bool m_enable_extrusion_role_markers;
#if ENABLE_GCODE_VIEWER
// Keeps track of the last extrusion role passed to the processor
ExtrusionRole m_last_processor_extrusion_role;
#else
// Enableds the G-code Analyzer.
// Extended markers will be added during G-code generation.
// The G-code Analyzer will remove these comments from the final G-code.
bool m_enable_analyzer;
ExtrusionRole m_last_analyzer_extrusion_role;
#endif // ENABLE_GCODE_VIEWER
// How many times will change_layer() be called?
// change_layer() will update the progress bar.
unsigned int m_layer_count;
@ -344,10 +380,20 @@ private:
double m_volumetric_speed;
// Support for the extrusion role markers. Which marker is active?
ExtrusionRole m_last_extrusion_role;
#if ENABLE_GCODE_VIEWER
// Support for G-Code Processor
float m_last_height{ 0.0f };
float m_last_layer_z{ 0.0f };
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
double m_last_mm3_per_mm;
float m_last_width{ 0.0f };
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
#else
// Support for G-Code Analyzer
double m_last_mm3_per_mm;
float m_last_width;
float m_last_height;
#endif // ENABLE_GCODE_VIEWER
Point m_last_pos;
bool m_last_pos_defined;
@ -368,13 +414,20 @@ private:
// Index of a last object copy extruded.
std::pair<const PrintObject*, Point> m_last_obj_copy;
#if !ENABLE_GCODE_VIEWER
// Time estimators
GCodeTimeEstimator m_normal_time_estimator;
GCodeTimeEstimator m_silent_time_estimator;
#endif // !ENABLE_GCODE_VIEWER
bool m_silent_time_estimator_enabled;
#if ENABLE_GCODE_VIEWER
// Processor
GCodeProcessor m_processor;
#else
// Analyzer
GCodeAnalyzer m_analyzer;
#endif // ENABLE_GCODE_VIEWER
// Write a string into a file.
void _write(FILE* file, const std::string& what) { this->_write(file, what.c_str()); }

View file

@ -12,6 +12,8 @@
#include "Analyzer.hpp"
#include "PreviewData.hpp"
#if !ENABLE_GCODE_VIEWER
static const std::string AXIS_STR = "XYZE";
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float INCHES_TO_MM = 25.4f;
@ -350,7 +352,7 @@ void GCodeAnalyzer::_processG1(const GCodeReader::GCodeLine& line)
if (delta_pos[E] < 0.0f)
{
if ((delta_pos[X] != 0.0f) || (delta_pos[Y] != 0.0f) || (delta_pos[Z] != 0.0f))
type = GCodeMove::Move;
type = GCodeMove::Move;
else
type = GCodeMove::Retract;
}
@ -651,7 +653,7 @@ bool GCodeAnalyzer::_process_tags(const GCodeReader::GCodeLine& line)
return true;
}
// color change tag
// pause print tag
pos = comment.find(Pause_Print_Tag);
if (pos != comment.npos)
{
@ -659,7 +661,7 @@ bool GCodeAnalyzer::_process_tags(const GCodeReader::GCodeLine& line)
return true;
}
// color change tag
// custom code tag
pos = comment.find(Custom_Code_Tag);
if (pos != comment.npos)
{
@ -667,7 +669,7 @@ bool GCodeAnalyzer::_process_tags(const GCodeReader::GCodeLine& line)
return true;
}
// color change tag
// end pause print or custom code tag
pos = comment.find(End_Pause_Print_Or_Custom_Code_Tag);
if (pos != comment.npos)
{
@ -1191,3 +1193,5 @@ size_t GCodeAnalyzer::memory_used() const
}
} // namespace Slic3r
#endif // !ENABLE_GCODE_VIEWER

View file

@ -1,6 +1,8 @@
#ifndef slic3r_GCode_Analyzer_hpp_
#define slic3r_GCode_Analyzer_hpp_
#if !ENABLE_GCODE_VIEWER
#include "../libslic3r.h"
#include "../PrintConfig.hpp"
#include "../ExtrusionEntity.hpp"
@ -302,4 +304,6 @@ private:
} // namespace Slic3r
#endif // !ENABLE_GCODE_VIEWER
#endif /* slic3r_GCode_Analyzer_hpp_ */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,560 @@
#ifndef slic3r_GCodeProcessor_hpp_
#define slic3r_GCodeProcessor_hpp_
#if ENABLE_GCODE_VIEWER
#include "libslic3r/GCodeReader.hpp"
#include "libslic3r/Point.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/PrintConfig.hpp"
#include "libslic3r/CustomGCode.hpp"
#include <array>
#include <vector>
#include <string>
namespace Slic3r {
enum class EMoveType : unsigned char
{
Noop,
Retract,
Unretract,
Tool_change,
Color_change,
Pause_Print,
Custom_GCode,
Travel,
Extrude,
Count
};
struct PrintEstimatedTimeStatistics
{
enum class ETimeMode : unsigned char
{
Normal,
Stealth,
Count
};
struct Mode
{
float time;
std::vector<std::pair<CustomGCode::Type, std::pair<float, float>>> custom_gcode_times;
std::vector<std::pair<EMoveType, float>> moves_times;
std::vector<std::pair<ExtrusionRole, float>> roles_times;
std::vector<float> layers_times;
void reset() {
time = 0.0f;
custom_gcode_times.clear();
moves_times.clear();
roles_times.clear();
layers_times.clear();
}
};
std::array<Mode, static_cast<size_t>(ETimeMode::Count)> modes;
PrintEstimatedTimeStatistics() { reset(); }
void reset() {
for (auto m : modes) {
m.reset();
}
}
};
class GCodeProcessor
{
public:
static const std::string Extrusion_Role_Tag;
static const std::string Height_Tag;
static const std::string Layer_Change_Tag;
static const std::string Color_Change_Tag;
static const std::string Pause_Print_Tag;
static const std::string Custom_Code_Tag;
static const std::string First_Line_M73_Placeholder_Tag;
static const std::string Last_Line_M73_Placeholder_Tag;
static const std::string Estimated_Printing_Time_Placeholder_Tag;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
static const std::string Width_Tag;
static const std::string Mm3_Per_Mm_Tag;
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
private:
using AxisCoords = std::array<float, 4>;
using ExtruderColors = std::vector<unsigned char>;
enum class EUnits : unsigned char
{
Millimeters,
Inches
};
enum class EPositioningType : unsigned char
{
Absolute,
Relative
};
struct CachedPosition
{
AxisCoords position; // mm
float feedrate; // mm/s
void reset();
};
struct CpColor
{
unsigned char counter;
unsigned char current;
void reset();
};
public:
struct FeedrateProfile
{
float entry{ 0.0f }; // mm/s
float cruise{ 0.0f }; // mm/s
float exit{ 0.0f }; // mm/s
};
struct Trapezoid
{
float accelerate_until{ 0.0f }; // mm
float decelerate_after{ 0.0f }; // mm
float cruise_feedrate{ 0.0f }; // mm/sec
float acceleration_time(float entry_feedrate, float acceleration) const;
float cruise_time() const;
float deceleration_time(float distance, float acceleration) const;
float cruise_distance() const;
};
struct TimeBlock
{
struct Flags
{
bool recalculate{ false };
bool nominal_length{ false };
};
EMoveType move_type{ EMoveType::Noop };
ExtrusionRole role{ erNone };
unsigned int layer_id{ 0 };
float distance{ 0.0f }; // mm
float acceleration{ 0.0f }; // mm/s^2
float max_entry_speed{ 0.0f }; // mm/s
float safe_feedrate{ 0.0f }; // mm/s
Flags flags;
FeedrateProfile feedrate_profile;
Trapezoid trapezoid;
// Calculates this block's trapezoid
void calculate_trapezoid();
float time() const;
};
private:
struct TimeMachine
{
struct State
{
float feedrate; // mm/s
float safe_feedrate; // mm/s
AxisCoords axis_feedrate; // mm/s
AxisCoords abs_axis_feedrate; // mm/s
void reset();
};
struct CustomGCodeTime
{
bool needed;
float cache;
std::vector<std::pair<CustomGCode::Type, float>> times;
void reset();
};
bool enabled;
float acceleration; // mm/s^2
// hard limit for the acceleration, to which the firmware will clamp.
float max_acceleration; // mm/s^2
float extrude_factor_override_percentage;
float time; // s
std::string line_m73_mask;
State curr;
State prev;
CustomGCodeTime gcode_time;
std::vector<TimeBlock> blocks;
std::vector<float> g1_times_cache;
std::array<float, static_cast<size_t>(EMoveType::Count)> moves_time;
std::array<float, static_cast<size_t>(ExtrusionRole::erCount)> roles_time;
std::vector<float> layers_time;
void reset();
// Simulates firmware st_synchronize() call
void simulate_st_synchronize(float additional_time = 0.0f);
void calculate_time(size_t keep_last_n_blocks = 0);
};
struct TimeProcessor
{
struct Planner
{
// Size of the firmware planner queue. The old 8-bit Marlins usually just managed 16 trapezoidal blocks.
// Let's be conservative and plan for newer boards with more memory.
static constexpr size_t queue_size = 64;
// The firmware recalculates last planner_queue_size trapezoidal blocks each time a new block is added.
// We are not simulating the firmware exactly, we calculate a sequence of blocks once a reasonable number of blocks accumulate.
static constexpr size_t refresh_threshold = queue_size * 4;
};
// extruder_id is currently used to correctly calculate filament load / unload times into the total print time.
// This is currently only really used by the MK3 MMU2:
// extruder_unloaded = true means no filament is loaded yet, all the filaments are parked in the MK3 MMU2 unit.
bool extruder_unloaded;
// whether or not to export post-process the gcode to export lines M73 in it
bool export_remaining_time_enabled;
// allow to skip the lines M201/M203/M204/M205 generated by GCode::print_machine_envelope()
bool machine_envelope_processing_enabled;
MachineEnvelopeConfig machine_limits;
// Additional load / unload times for a filament exchange sequence.
std::vector<float> filament_load_times;
std::vector<float> filament_unload_times;
std::array<TimeMachine, static_cast<size_t>(PrintEstimatedTimeStatistics::ETimeMode::Count)> machines;
void reset();
// post process the file with the given filename to add remaining time lines M73
void post_process(const std::string& filename);
};
public:
struct MoveVertex
{
EMoveType type{ EMoveType::Noop };
ExtrusionRole extrusion_role{ erNone };
unsigned char extruder_id{ 0 };
unsigned char cp_color_id{ 0 };
Vec3f position{ Vec3f::Zero() }; // mm
float delta_extruder{ 0.0f }; // mm
float feedrate{ 0.0f }; // mm/s
float width{ 0.0f }; // mm
float height{ 0.0f }; // mm
float mm3_per_mm{ 0.0f };
float fan_speed{ 0.0f }; // percentage
float time{ 0.0f }; // s
float volumetric_rate() const { return feedrate * mm3_per_mm; }
};
struct Result
{
unsigned int id;
std::vector<MoveVertex> moves;
Pointfs bed_shape;
std::string printer_settings_id;
std::vector<std::string> extruder_colors;
PrintEstimatedTimeStatistics time_statistics;
#if ENABLE_GCODE_VIEWER_STATISTICS
long long time{ 0 };
void reset()
{
time = 0;
moves = std::vector<MoveVertex>();
bed_shape = Pointfs();
extruder_colors = std::vector<std::string>();
}
#else
void reset()
{
moves = std::vector<MoveVertex>();
bed_shape = Pointfs();
extruder_colors = std::vector<std::string>();
}
#endif // ENABLE_GCODE_VIEWER_STATISTICS
};
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
struct DataChecker
{
struct Error
{
float value;
float tag_value;
ExtrusionRole role;
};
std::string type;
float threshold{ 0.01f };
float last_tag_value{ 0.0f };
unsigned int count{ 0 };
std::vector<Error> errors;
DataChecker(const std::string& type, float threshold)
: type(type), threshold(threshold)
{}
void update(float value, ExtrusionRole role) {
++count;
if (last_tag_value != 0.0f) {
if (std::abs(value - last_tag_value) / last_tag_value > threshold)
errors.push_back({ value, last_tag_value, role });
}
}
void reset() { last_tag_value = 0.0f; errors.clear(); count = 0; }
std::pair<float, float> get_min() const {
float delta_min = FLT_MAX;
float perc_min = 0.0f;
for (const Error& e : errors) {
if (delta_min > e.value - e.tag_value) {
delta_min = e.value - e.tag_value;
perc_min = 100.0f * delta_min / e.tag_value;
}
}
return { delta_min, perc_min };
}
std::pair<float, float> get_max() const {
float delta_max = -FLT_MAX;
float perc_max = 0.0f;
for (const Error& e : errors) {
if (delta_max < e.value - e.tag_value) {
delta_max = e.value - e.tag_value;
perc_max = 100.0f * delta_max / e.tag_value;
}
}
return { delta_max, perc_max };
}
void output() const {
if (!errors.empty()) {
std::cout << type << ":\n";
std::cout << "Errors: " << errors.size() << " (" << 100.0f * float(errors.size()) / float(count) << "%)\n";
auto [min, perc_min] = get_min();
auto [max, perc_max] = get_max();
std::cout << "min: " << min << "(" << perc_min << "%) - max: " << max << "(" << perc_max << "%)\n";
}
}
};
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
private:
GCodeReader m_parser;
EUnits m_units;
EPositioningType m_global_positioning_type;
EPositioningType m_e_local_positioning_type;
std::vector<Vec3f> m_extruder_offsets;
GCodeFlavor m_flavor;
AxisCoords m_start_position; // mm
AxisCoords m_end_position; // mm
AxisCoords m_origin; // mm
CachedPosition m_cached_position;
float m_feedrate; // mm/s
float m_width; // mm
float m_height; // mm
float m_mm3_per_mm;
float m_fan_speed; // percentage
ExtrusionRole m_extrusion_role;
unsigned char m_extruder_id;
ExtruderColors m_extruder_colors;
std::vector<float> m_filament_diameters;
float m_extruded_last_z;
unsigned int m_layer_id;
CpColor m_cp_color;
enum class EProducer
{
Unknown,
PrusaSlicer,
Cura,
Simplify3D,
CraftWare,
ideaMaker
};
static const std::vector<std::pair<GCodeProcessor::EProducer, std::string>> Producers;
EProducer m_producer;
bool m_producers_enabled;
TimeProcessor m_time_processor;
Result m_result;
static unsigned int s_result_id;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
DataChecker m_mm3_per_mm_compare{ "mm3_per_mm", 0.01f };
DataChecker m_height_compare{ "height", 0.01f };
DataChecker m_width_compare{ "width", 0.01f };
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
public:
GCodeProcessor();
void apply_config(const PrintConfig& config);
void apply_config(const DynamicPrintConfig& config);
void enable_stealth_time_estimator(bool enabled);
bool is_stealth_time_estimator_enabled() const {
return m_time_processor.machines[static_cast<size_t>(PrintEstimatedTimeStatistics::ETimeMode::Stealth)].enabled;
}
void enable_machine_envelope_processing(bool enabled) { m_time_processor.machine_envelope_processing_enabled = enabled; }
void enable_producers(bool enabled) { m_producers_enabled = enabled; }
void reset();
const Result& get_result() const { return m_result; }
Result&& extract_result() { return std::move(m_result); }
// Process the gcode contained in the file with the given filename
// throws CanceledException through print->throw_if_canceled() (sent by the caller as callback).
void process_file(const std::string& filename, std::function<void()> cancel_callback = nullptr);
float get_time(PrintEstimatedTimeStatistics::ETimeMode mode) const;
std::string get_time_dhm(PrintEstimatedTimeStatistics::ETimeMode mode) const;
std::vector<std::pair<CustomGCode::Type, std::pair<float, float>>> get_custom_gcode_times(PrintEstimatedTimeStatistics::ETimeMode mode, bool include_remaining) const;
std::vector<std::pair<EMoveType, float>> get_moves_time(PrintEstimatedTimeStatistics::ETimeMode mode) const;
std::vector<std::pair<ExtrusionRole, float>> get_roles_time(PrintEstimatedTimeStatistics::ETimeMode mode) const;
std::vector<float> get_layers_time(PrintEstimatedTimeStatistics::ETimeMode mode) const;
private:
void process_gcode_line(const GCodeReader::GCodeLine& line);
// Process tags embedded into comments
void process_tags(const std::string& comment);
bool process_producers_tags(const std::string& comment);
bool process_prusaslicer_tags(const std::string& comment);
bool process_cura_tags(const std::string& comment);
bool process_simplify3d_tags(const std::string& comment);
bool process_craftware_tags(const std::string& comment);
bool process_ideamaker_tags(const std::string& comment);
bool detect_producer(const std::string& comment);
// Move
void process_G0(const GCodeReader::GCodeLine& line);
void process_G1(const GCodeReader::GCodeLine& line);
// Retract
void process_G10(const GCodeReader::GCodeLine& line);
// Unretract
void process_G11(const GCodeReader::GCodeLine& line);
// Set Units to Inches
void process_G20(const GCodeReader::GCodeLine& line);
// Set Units to Millimeters
void process_G21(const GCodeReader::GCodeLine& line);
// Firmware controlled Retract
void process_G22(const GCodeReader::GCodeLine& line);
// Firmware controlled Unretract
void process_G23(const GCodeReader::GCodeLine& line);
// Set to Absolute Positioning
void process_G90(const GCodeReader::GCodeLine& line);
// Set to Relative Positioning
void process_G91(const GCodeReader::GCodeLine& line);
// Set Position
void process_G92(const GCodeReader::GCodeLine& line);
// Sleep or Conditional stop
void process_M1(const GCodeReader::GCodeLine& line);
// Set extruder to absolute mode
void process_M82(const GCodeReader::GCodeLine& line);
// Set extruder to relative mode
void process_M83(const GCodeReader::GCodeLine& line);
// Set fan speed
void process_M106(const GCodeReader::GCodeLine& line);
// Disable fan
void process_M107(const GCodeReader::GCodeLine& line);
// Set tool (Sailfish)
void process_M108(const GCodeReader::GCodeLine& line);
// Recall stored home offsets
void process_M132(const GCodeReader::GCodeLine& line);
// Set tool (MakerWare)
void process_M135(const GCodeReader::GCodeLine& line);
// Set max printing acceleration
void process_M201(const GCodeReader::GCodeLine& line);
// Set maximum feedrate
void process_M203(const GCodeReader::GCodeLine& line);
// Set default acceleration
void process_M204(const GCodeReader::GCodeLine& line);
// Advanced settings
void process_M205(const GCodeReader::GCodeLine& line);
// Set extrude factor override percentage
void process_M221(const GCodeReader::GCodeLine& line);
// Repetier: Store x, y and z position
void process_M401(const GCodeReader::GCodeLine& line);
// Repetier: Go to stored position
void process_M402(const GCodeReader::GCodeLine& line);
// Set allowable instantaneous speed change
void process_M566(const GCodeReader::GCodeLine& line);
// Unload the current filament into the MK3 MMU2 unit at the end of print.
void process_M702(const GCodeReader::GCodeLine& line);
// Processes T line (Select Tool)
void process_T(const GCodeReader::GCodeLine& line);
void process_T(const std::string& command);
void store_move_vertex(EMoveType type);
float minimum_feedrate(PrintEstimatedTimeStatistics::ETimeMode mode, float feedrate) const;
float minimum_travel_feedrate(PrintEstimatedTimeStatistics::ETimeMode mode, float feedrate) const;
float get_axis_max_feedrate(PrintEstimatedTimeStatistics::ETimeMode mode, Axis axis) const;
float get_axis_max_acceleration(PrintEstimatedTimeStatistics::ETimeMode mode, Axis axis) const;
float get_axis_max_jerk(PrintEstimatedTimeStatistics::ETimeMode mode, Axis axis) const;
float get_retract_acceleration(PrintEstimatedTimeStatistics::ETimeMode mode) const;
float get_acceleration(PrintEstimatedTimeStatistics::ETimeMode mode) const;
void set_acceleration(PrintEstimatedTimeStatistics::ETimeMode mode, float value);
float get_filament_load_time(size_t extruder_id);
float get_filament_unload_time(size_t extruder_id);
void process_custom_gcode_time(CustomGCode::Type code);
// Simulates firmware st_synchronize() call
void simulate_st_synchronize(float additional_time = 0.0f);
void update_estimated_times_stats();
};
} /* namespace Slic3r */
#endif // ENABLE_GCODE_VIEWER
#endif /* slic3r_GCodeProcessor_hpp_ */

View file

@ -79,7 +79,7 @@ static DWORD execute_process_winapi(const std::wstring &command_line)
if (! ::CreateProcessW(
nullptr /* lpApplicationName */, (LPWSTR)command_line.c_str(), nullptr /* lpProcessAttributes */, nullptr /* lpThreadAttributes */, false /* bInheritHandles */,
CREATE_UNICODE_ENVIRONMENT /* | CREATE_NEW_CONSOLE */ /* dwCreationFlags */, (LPVOID)envstr.c_str(), nullptr /* lpCurrentDirectory */, &startup_info, &process_info))
throw std::runtime_error(std::string("Failed starting the script ") + boost::nowide::narrow(command_line) + ", Win32 error: " + std::to_string(int(::GetLastError())));
throw Slic3r::RuntimeError(std::string("Failed starting the script ") + boost::nowide::narrow(command_line) + ", Win32 error: " + std::to_string(int(::GetLastError())));
::WaitForSingleObject(process_info.hProcess, INFINITE);
ULONG rc = 0;
::GetExitCodeProcess(process_info.hProcess, &rc);
@ -98,13 +98,13 @@ static int run_script(const std::string &script, const std::string &gcode, std::
LPWSTR *szArglist = CommandLineToArgvW(boost::nowide::widen(script).c_str(), &nArgs);
if (szArglist == nullptr || nArgs <= 0) {
// CommandLineToArgvW failed. Maybe the command line escapment is invalid?
throw std::runtime_error(std::string("Post processing script ") + script + " on file " + gcode + " failed. CommandLineToArgvW() refused to parse the command line path.");
throw Slic3r::RuntimeError(std::string("Post processing script ") + script + " on file " + gcode + " failed. CommandLineToArgvW() refused to parse the command line path.");
}
std::wstring command_line;
std::wstring command = szArglist[0];
if (! boost::filesystem::exists(boost::filesystem::path(command)))
throw std::runtime_error(std::string("The configured post-processing script does not exist: ") + boost::nowide::narrow(command));
throw Slic3r::RuntimeError(std::string("The configured post-processing script does not exist: ") + boost::nowide::narrow(command));
if (boost::iends_with(command, L".pl")) {
// This is a perl script. Run it through the perl interpreter.
// The current process may be slic3r.exe or slic3r-console.exe.
@ -115,7 +115,7 @@ static int run_script(const std::string &script, const std::string &gcode, std::
boost::filesystem::path path_perl = path_exe.parent_path() / "perl" / "perl.exe";
if (! boost::filesystem::exists(path_perl)) {
LocalFree(szArglist);
throw std::runtime_error(std::string("Perl interpreter ") + path_perl.string() + " does not exist.");
throw Slic3r::RuntimeError(std::string("Perl interpreter ") + path_perl.string() + " does not exist.");
}
// Replace it with the current perl interpreter.
quote_argv_winapi(boost::nowide::widen(path_perl.string()), command_line);
@ -187,7 +187,7 @@ void run_post_process_scripts(const std::string &path, const PrintConfig &config
config.setenv_();
auto gcode_file = boost::filesystem::path(path);
if (! boost::filesystem::exists(gcode_file))
throw std::runtime_error(std::string("Post-processor can't find exported gcode file"));
throw Slic3r::RuntimeError(std::string("Post-processor can't find exported gcode file"));
for (const std::string &scripts : config.post_process.values) {
std::vector<std::string> lines;
@ -205,7 +205,7 @@ void run_post_process_scripts(const std::string &path, const PrintConfig &config
const std::string msg = std_err.empty() ? (boost::format("Post-processing script %1% on file %2% failed.\nError code: %3%") % script % path % result).str()
: (boost::format("Post-processing script %1% on file %2% failed.\nError code: %3%\nOutput:\n%4%") % script % path % result % std_err).str();
BOOST_LOG_TRIVIAL(error) << msg;
throw std::runtime_error(msg);
throw Slic3r::RuntimeError(msg);
}
}
}

View file

@ -148,7 +148,7 @@ static inline int parse_int(const char *&line)
char *endptr = NULL;
long result = strtol(line, &endptr, 10);
if (endptr == NULL || !is_ws_or_eol(*endptr))
throw std::runtime_error("PressureEqualizer: Error parsing an int");
throw Slic3r::RuntimeError("PressureEqualizer: Error parsing an int");
line = endptr;
return int(result);
};
@ -160,7 +160,7 @@ static inline float parse_float(const char *&line)
char *endptr = NULL;
float result = strtof(line, &endptr);
if (endptr == NULL || !is_ws_or_eol(*endptr))
throw std::runtime_error("PressureEqualizer: Error parsing a float");
throw Slic3r::RuntimeError("PressureEqualizer: Error parsing a float");
line = endptr;
return result;
};
@ -229,7 +229,7 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
assert(false);
}
if (i == -1)
throw std::runtime_error(std::string("GCode::PressureEqualizer: Invalid axis for G0/G1: ") + axis);
throw Slic3r::RuntimeError(std::string("GCode::PressureEqualizer: Invalid axis for G0/G1: ") + axis);
buf.pos_provided[i] = true;
new_pos[i] = parse_float(line);
if (i == 3 && m_config->use_relative_e_distances.value)
@ -298,7 +298,7 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
set = true;
break;
default:
throw std::runtime_error(std::string("GCode::PressureEqualizer: Incorrect axis in a G92 G-code: ") + axis);
throw Slic3r::RuntimeError(std::string("GCode::PressureEqualizer: Incorrect axis in a G92 G-code: ") + axis);
}
eatws(line);
}

View file

@ -5,6 +5,8 @@
#include <boost/format.hpp>
#if !ENABLE_GCODE_VIEWER
//! macro used to mark string used at localization,
#define L(s) (s)
@ -516,3 +518,5 @@ Color operator * (float f, const Color& color)
}
} // namespace Slic3r
#endif // !ENABLE_GCODE_VIEWER

View file

@ -1,6 +1,8 @@
#ifndef slic3r_GCode_PreviewData_hpp_
#define slic3r_GCode_PreviewData_hpp_
#if !ENABLE_GCODE_VIEWER
#include "../libslic3r.h"
#include "../ExtrusionEntity.hpp"
#include "../Point.hpp"
@ -56,8 +58,7 @@ public:
// Color mapping to convert a float into a smooth rainbow of 10 colors.
class RangeBase
{
public:
public:
virtual void reset() = 0;
virtual bool empty() const = 0;
virtual float min() const = 0;
@ -73,7 +74,7 @@ public:
// Color mapping converting a float in a range between a min and a max into a smooth rainbow of 10 colors.
class Range : public RangeBase
{
public:
public:
Range();
// RangeBase Overrides
@ -97,8 +98,7 @@ public:
template <typename EnumRangeType>
class MultiRange : public RangeBase
{
public:
public:
void reset() override
{
bounds = decltype(bounds){};
@ -160,8 +160,7 @@ public:
mode.set(static_cast<std::size_t>(range_type_value), enable);
}
private:
private:
// Interval bounds
struct Bounds
{
@ -394,4 +393,6 @@ public:
} // namespace Slic3r
#endif // !ENABLE_GCODE_VIEWER
#endif /* slic3r_GCode_PreviewData_hpp_ */

View file

@ -94,7 +94,7 @@ static BoundingBoxf extrusionentity_extents(const ExtrusionEntity *extrusion_ent
auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
if (extrusion_entity_collection != nullptr)
return extrusionentity_extents(*extrusion_entity_collection);
throw std::runtime_error("Unexpected extrusion_entity type in extrusionentity_extents()");
throw Slic3r::RuntimeError("Unexpected extrusion_entity type in extrusionentity_extents()");
return BoundingBoxf();
}

View file

@ -21,7 +21,11 @@ TODO LIST
#include <vector>
#include <numeric>
#if ENABLE_GCODE_VIEWER
#include "GCodeProcessor.hpp"
#else
#include "Analyzer.hpp"
#endif // ENABLE_GCODE_VIEWER
#include "BoundingBox.hpp"
#if defined(__linux) || defined(__GNUC__ )
@ -47,36 +51,69 @@ public:
m_extrusion_flow(0.f),
m_preview_suppressed(false),
m_elapsed_time(0.f),
#if !ENABLE_GCODE_VIEWER || ENABLE_GCODE_VIEWER_DATA_CHECKING
m_default_analyzer_line_width(line_width),
#endif // !ENABLE_GCODE_VIEWER || ENABLE_GCODE_VIEWER_DATA_CHECKING
m_gcode_flavor(flavor),
m_filpar(filament_parameters)
{
// adds tag for analyzer:
char buf[64];
#if ENABLE_GCODE_VIEWER
sprintf(buf, ";%s%f\n", GCodeProcessor::Height_Tag.c_str(), m_layer_height); // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming
m_gcode += buf;
sprintf(buf, ";%s%s\n", GCodeProcessor::Extrusion_Role_Tag.c_str(), ExtrusionEntity::role_to_string(erWipeTower).c_str());
m_gcode += buf;
#else
sprintf(buf, ";%s%f\n", GCodeAnalyzer::Height_Tag.c_str(), m_layer_height); // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming
m_gcode += buf;
sprintf(buf, ";%s%d\n", GCodeAnalyzer::Extrusion_Role_Tag.c_str(), erWipeTower);
m_gcode += buf;
#endif // ENABLE_GCODE_VIEWER
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
change_analyzer_line_width(line_width);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
}
WipeTowerWriter& change_analyzer_line_width(float line_width) {
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeAnalyzer::Width_Tag.c_str(), line_width);
m_gcode += buf;
return *this;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& change_analyzer_line_width(float line_width) {
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeProcessor::Width_Tag.c_str(), line_width);
m_gcode += buf;
return *this;
}
WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) {
static const float area = float(M_PI) * 1.75f * 1.75f / 4.f;
float mm3_per_mm = (len == 0.f ? 0.f : area * e / len);
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeAnalyzer::Mm3_Per_Mm_Tag.c_str(), mm3_per_mm);
m_gcode += buf;
return *this;
WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) {
static const float area = float(M_PI) * 1.75f * 1.75f / 4.f;
float mm3_per_mm = (len == 0.f ? 0.f : area * e / len);
// adds tag for processor:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeProcessor::Mm3_Per_Mm_Tag.c_str(), mm3_per_mm);
m_gcode += buf;
return *this;
}
#else
#if !ENABLE_GCODE_VIEWER
WipeTowerWriter& change_analyzer_line_width(float line_width) {
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeAnalyzer::Width_Tag.c_str(), line_width);
m_gcode += buf;
return *this;
}
WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) {
static const float area = float(M_PI) * 1.75f * 1.75f / 4.f;
float mm3_per_mm = (len == 0.f ? 0.f : area * e / len);
// adds tag for analyzer:
char buf[64];
sprintf(buf, ";%s%f\n", GCodeAnalyzer::Mm3_Per_Mm_Tag.c_str(), mm3_per_mm);
m_gcode += buf;
return *this;
}
#endif // !ENABLE_GCODE_VIEWER
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) {
m_wipe_tower_width = width;
@ -111,8 +148,13 @@ public:
// Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various
// filament loading and cooling moves from normal extrusion moves. Therefore the writer
// is asked to suppres output of some lines, which look like extrusions.
WipeTowerWriter& suppress_preview() { change_analyzer_line_width(0.f); m_preview_suppressed = true; return *this; }
WipeTowerWriter& resume_preview() { change_analyzer_line_width(m_default_analyzer_line_width); m_preview_suppressed = false; return *this; }
#if !ENABLE_GCODE_VIEWER || ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& suppress_preview() { change_analyzer_line_width(0.f); m_preview_suppressed = true; return *this; }
WipeTowerWriter& resume_preview() { change_analyzer_line_width(m_default_analyzer_line_width); m_preview_suppressed = false; return *this; }
#else
WipeTowerWriter& suppress_preview() { m_preview_suppressed = true; return *this; }
WipeTowerWriter& resume_preview() { m_preview_suppressed = false; return *this; }
#endif // !ENABLE_GCODE_VIEWER || ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& feedrate(float f)
{
@ -149,8 +191,14 @@ public:
Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go
if (! m_preview_suppressed && e > 0.f && len > 0.f) {
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
change_analyzer_mm3_per_mm(len, e);
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
#else
#if !ENABLE_GCODE_VIEWER
change_analyzer_mm3_per_mm(len, e);
#endif // !ENABLE_GCODE_VIEWER
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
// This is left zero if it is a travel move.
float width = e * m_filpar[0].filament_area / (len * m_layer_height);
// Correct for the roundings of a squished extrusion.
@ -411,7 +459,9 @@ private:
float m_wipe_tower_depth = 0.f;
unsigned m_last_fan_speed = 0;
int current_temp = -1;
#if !ENABLE_GCODE_VIEWER || ENABLE_GCODE_VIEWER_DATA_CHECKING
const float m_default_analyzer_line_width;
#endif // !ENABLE_GCODE_VIEWER || ENABLE_GCODE_VIEWER_DATA_CHECKING
float m_used_filament_length = 0.f;
GCodeFlavor m_gcode_flavor;
const std::vector<WipeTower::FilamentParameters>& m_filpar;
@ -852,8 +902,12 @@ void WipeTower::toolchange_Unload(
const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness
const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing; // spacing between lines in mm
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
writer.append("; CP TOOLCHANGE UNLOAD\n")
.change_analyzer_line_width(line_width);
.change_analyzer_line_width(line_width);
#else
writer.append("; CP TOOLCHANGE UNLOAD\n");
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
unsigned i = 0; // iterates through ramming_speed
m_left_to_right = true; // current direction of ramming
@ -930,7 +984,9 @@ void WipeTower::toolchange_Unload(
}
}
Vec2f end_of_ramming(writer.x(),writer.y());
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
// Retraction:
float old_x = writer.x();

View file

@ -1,6 +1,9 @@
#include "GCodeReader.hpp"
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#if ENABLE_GCODE_VIEWER
#include <boost/nowide/fstream.hpp>
#endif // ENABLE_GCODE_VIEWER
#include <fstream>
#include <iostream>
#include <iomanip>
@ -113,9 +116,18 @@ void GCodeReader::update_coordinates(GCodeLine &gline, std::pair<const char*, co
void GCodeReader::parse_file(const std::string &file, callback_t callback)
{
#if ENABLE_GCODE_VIEWER
boost::nowide::ifstream f(file);
#else
std::ifstream f(file);
#endif // ENABLE_GCODE_VIEWER
std::string line;
#if ENABLE_GCODE_VIEWER
m_parsing_file = true;
while (m_parsing_file && std::getline(f, line))
#else
while (std::getline(f, line))
#endif // ENABLE_GCODE_VIEWER
this->parse_line(line, callback);
}

View file

@ -107,6 +107,9 @@ public:
{ GCodeLine gline; this->parse_line(line.c_str(), gline, callback); }
void parse_file(const std::string &file, callback_t callback);
#if ENABLE_GCODE_VIEWER
void quit_parsing_file() { m_parsing_file = false; }
#endif // ENABLE_GCODE_VIEWER
float& x() { return m_position[X]; }
float x() const { return m_position[X]; }
@ -145,6 +148,9 @@ private:
char m_extrusion_axis;
float m_position[NUM_AXES];
bool m_verbose;
#if ENABLE_GCODE_VIEWER
bool m_parsing_file{ false };
#endif // ENABLE_GCODE_VIEWER
};
} /* namespace Slic3r */

View file

@ -153,7 +153,7 @@ GCodeSender::set_baud_rate(unsigned int baud_rate)
if (::tcsetattr(handle, TCSAFLUSH, &ios) != 0)
printf("Failed to set baud rate: %s\n", strerror(errno));
#else
//throw invalid_argument ("OS does not currently support custom bauds");
//throw Slic3r::InvalidArgument("OS does not currently support custom bauds");
#endif
}
}

View file

@ -1,3 +1,4 @@
#include "Exception.hpp"
#include "GCodeTimeEstimator.hpp"
#include "Utils.hpp"
#include <boost/bind.hpp>
@ -9,6 +10,8 @@
#include <boost/nowide/cstdio.hpp>
#include <boost/algorithm/string/predicate.hpp>
#if !ENABLE_GCODE_VIEWER
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float MILLISEC_TO_SEC = 0.001f;
static const float INCHES_TO_MM = 25.4f;
@ -252,13 +255,13 @@ namespace Slic3r {
{
boost::nowide::ifstream in(filename);
if (!in.good())
throw std::runtime_error(std::string("Time estimator post process export failed.\nCannot open file for reading.\n"));
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nCannot open file for reading.\n"));
std::string path_tmp = filename + ".postprocess";
FILE* out = boost::nowide::fopen(path_tmp.c_str(), "wb");
if (out == nullptr)
throw std::runtime_error(std::string("Time estimator post process export failed.\nCannot open file for writing.\n"));
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nCannot open file for writing.\n"));
std::string normal_time_mask = "M73 P%s R%s\n";
std::string silent_time_mask = "M73 Q%s S%s\n";
@ -276,7 +279,7 @@ namespace Slic3r {
in.close();
fclose(out);
boost::nowide::remove(path_tmp.c_str());
throw std::runtime_error(std::string("Time estimator post process export failed.\nIs the disk full?\n"));
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nIs the disk full?\n"));
}
export_line.clear();
};
@ -324,7 +327,7 @@ namespace Slic3r {
if (!in.good())
{
fclose(out);
throw std::runtime_error(std::string("Time estimator post process export failed.\nError while reading from file.\n"));
throw Slic3r::RuntimeError(std::string("Time estimator post process export failed.\nError while reading from file.\n"));
}
// check tags
@ -381,7 +384,7 @@ namespace Slic3r {
in.close();
if (rename_file(path_tmp, filename))
throw std::runtime_error(std::string("Failed to rename the output G-code file from ") + path_tmp + " to " + filename + '\n' +
throw Slic3r::RuntimeError(std::string("Failed to rename the output G-code file from ") + path_tmp + " to " + filename + '\n' +
"Is " + path_tmp + " locked?" + '\n');
return true;
@ -1672,3 +1675,5 @@ namespace Slic3r {
}
#endif // ENABLE_MOVE_STATS
}
#endif // !ENABLE_GCODE_VIEWER

View file

@ -6,6 +6,8 @@
#include "GCodeReader.hpp"
#include "CustomGCode.hpp"
#if !ENABLE_GCODE_VIEWER
#define ENABLE_MOVE_STATS 0
namespace Slic3r {
@ -481,4 +483,6 @@ namespace Slic3r {
} /* namespace Slic3r */
#endif // !ENABLE_GCODE_VIEWER
#endif /* slic3r_GCodeTimeEstimator_hpp_ */

View file

@ -1,4 +1,5 @@
#include "libslic3r.h"
#include "Exception.hpp"
#include "Geometry.hpp"
#include "ClipperUtils.hpp"
#include "ExPolygon.hpp"
@ -471,7 +472,7 @@ Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const Bo
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
if (num_parts > cellw * cellh)
throw std::invalid_argument("%zu parts won't fit in your print area!\n", num_parts);
throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts);
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);

View file

@ -13,6 +13,10 @@ class Layer;
class PrintRegion;
class PrintObject;
namespace FillAdaptive_Internal {
struct Octree;
};
class LayerRegion
{
public:
@ -134,7 +138,8 @@ public:
return false;
}
void make_perimeters();
void make_fills();
void make_fills() { this->make_fills(nullptr, nullptr); };
void make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree, FillAdaptive_Internal::Octree* support_fill_octree);
void make_ironing();
void export_region_slices_to_svg(const char *path) const;

View file

@ -33,24 +33,6 @@ bool Line::intersection_infinite(const Line &other, Point* point) const
return true;
}
// Distance to the closest point of line.
double Line::distance_to_squared(const Point &point, const Point &a, const Point &b)
{
const Vec2d v = (b - a).cast<double>();
const Vec2d va = (point - a).cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0)
// a == b case
return va.squaredNorm();
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
if (t < 0.0) return va.squaredNorm(); // beyond the 'a' end of the segment
else if (t > 1.0) return (point - b).cast<double>().squaredNorm(); // beyond the 'b' end of the segment
return (t * v - va).squaredNorm();
}
double Line::perp_distance_to(const Point &point) const
{
const Line &line = *this;

View file

@ -18,6 +18,35 @@ typedef std::vector<ThickLine> ThickLines;
Linef3 transform(const Linef3& line, const Transform3d& t);
namespace line_alg {
// Distance to the closest point of line.
template<class L, class T, int N>
double distance_to_squared(const L &line, const Vec<N, T> &point)
{
const Vec<N, double> v = line.vector().template cast<double>();
const Vec<N, double> va = (point - line.a).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0)
// a == b case
return va.squaredNorm();
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
if (t < 0.0) return va.squaredNorm(); // beyond the 'a' end of the segment
else if (t > 1.0) return (point - line.b).template cast<double>().squaredNorm(); // beyond the 'b' end of the segment
return (t * v - va).squaredNorm();
}
template<class L, class T, int N>
double distance_to(const L &line, const Vec<N, T> &point)
{
return std::sqrt(distance_to_squared(line, point));
}
} // namespace line_alg
class Line
{
public:
@ -47,7 +76,7 @@ public:
// Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
bool clip_with_bbox(const BoundingBox &bbox);
static double distance_to_squared(const Point &point, const Point &a, const Point &b);
static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
Point a;

View file

@ -114,15 +114,6 @@ template<class T> struct remove_cvref
template<class T> using remove_cvref_t = typename remove_cvref<T>::type;
template<class T, class I, class... Args> // Arbitrary allocator can be used
inline IntegerOnly<I, std::vector<T, Args...>> reserve_vector(I capacity)
{
std::vector<T, Args...> ret;
if (capacity > I(0)) ret.reserve(size_t(capacity));
return ret;
}
/// Exactly like Matlab https://www.mathworks.com/help/matlab/ref/linspace.html
template<class T, class I, class = IntegerOnly<I>>
inline std::vector<T> linspace_vector(const ArithmeticOnly<T> &start,

View file

@ -1,3 +1,4 @@
#include "Exception.hpp"
#include "MeshBoolean.hpp"
#include "libslic3r/TriangleMesh.hpp"
#undef PI
@ -136,7 +137,7 @@ template<class _Mesh> void triangle_mesh_to_cgal(const TriangleMesh &M, _Mesh &o
if(CGAL::is_closed(out))
CGALProc::orient_to_bound_a_volume(out);
else
std::runtime_error("Mesh not watertight");
throw Slic3r::RuntimeError("Mesh not watertight");
}
inline Vec3d to_vec3d(const _EpicMesh::Point &v)
@ -222,7 +223,7 @@ template<class Op> void _cgal_do(Op &&op, CGALMesh &A, CGALMesh &B)
}
if (! success)
throw std::runtime_error("CGAL mesh boolean operation failed.");
throw Slic3r::RuntimeError("CGAL mesh boolean operation failed.");
}
void minus(CGALMesh &A, CGALMesh &B) { _cgal_do(_cgal_diff, A, B); }

View file

@ -1,7 +1,9 @@
#include "Exception.hpp"
#include "Model.hpp"
#include "ModelArrange.hpp"
#include "Geometry.hpp"
#include "MTUtils.hpp"
#include "TriangleSelector.hpp"
#include "Format/AMF.hpp"
#include "Format/OBJ.hpp"
@ -20,7 +22,9 @@
#include "SVG.hpp"
#include <Eigen/Dense>
#include "GCodeWriter.hpp"
#if !ENABLE_GCODE_VIEWER
#include "GCode/PreviewData.hpp"
#endif // !ENABLE_GCODE_VIEWER
namespace Slic3r {
@ -113,13 +117,13 @@ Model Model::read_from_file(const std::string& input_file, DynamicPrintConfig* c
else if (boost::algorithm::iends_with(input_file, ".prusa"))
result = load_prus(input_file.c_str(), &model);
else
throw std::runtime_error("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension.");
throw Slic3r::RuntimeError("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension.");
if (! result)
throw std::runtime_error("Loading of a model file failed.");
throw Slic3r::RuntimeError("Loading of a model file failed.");
if (model.objects.empty())
throw std::runtime_error("The supplied file couldn't be read because it's empty");
throw Slic3r::RuntimeError("The supplied file couldn't be read because it's empty");
for (ModelObject *o : model.objects)
o->input_file = input_file;
@ -143,13 +147,13 @@ Model Model::read_from_archive(const std::string& input_file, DynamicPrintConfig
else if (boost::algorithm::iends_with(input_file, ".zip.amf"))
result = load_amf(input_file.c_str(), config, &model, check_version);
else
throw std::runtime_error("Unknown file format. Input file must have .3mf or .zip.amf extension.");
throw Slic3r::RuntimeError("Unknown file format. Input file must have .3mf or .zip.amf extension.");
if (!result)
throw std::runtime_error("Loading of a model file failed.");
throw Slic3r::RuntimeError("Loading of a model file failed.");
if (model.objects.empty())
throw std::runtime_error("The supplied file couldn't be read because it's empty");
throw Slic3r::RuntimeError("The supplied file couldn't be read because it's empty");
for (ModelObject *o : model.objects)
{
@ -814,7 +818,7 @@ const BoundingBoxf3& ModelObject::raw_bounding_box() const
m_raw_bounding_box_valid = true;
m_raw_bounding_box.reset();
if (this->instances.empty())
throw std::invalid_argument("Can't call raw_bounding_box() with no instances");
throw Slic3r::InvalidArgument("Can't call raw_bounding_box() with no instances");
const Transform3d& inst_matrix = this->instances.front()->get_transformation().get_matrix(true);
for (const ModelVolume *v : this->volumes)
@ -1006,6 +1010,7 @@ void ModelObject::convert_units(ModelObjectPtrs& new_objects, bool from_imperial
for (ModelVolume* volume : volumes)
{
volume->m_supported_facets.clear();
volume->m_seam_facets.clear();
if (!volume->mesh().empty()) {
TriangleMesh mesh(volume->mesh());
mesh.require_shared_vertices();
@ -1111,6 +1116,7 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b
const auto volume_matrix = volume->get_matrix();
volume->m_supported_facets.clear();
volume->m_seam_facets.clear();
if (! volume->is_model_part()) {
// Modifiers are not cut, but we still need to add the instance transformation
@ -1830,28 +1836,25 @@ arrangement::ArrangePolygon ModelInstance::get_arrange_polygon() const
}
std::vector<int> FacetsAnnotation::get_facets(FacetSupportType type) const
indexed_triangle_set FacetsAnnotation::get_facets(const ModelVolume& mv, EnforcerBlockerType type) const
{
std::vector<int> out;
for (auto& [facet_idx, this_type] : m_data)
if (this_type == type)
out.push_back(facet_idx);
TriangleSelector selector(mv.mesh());
selector.deserialize(m_data);
indexed_triangle_set out = selector.get_facets(type);
return out;
}
void FacetsAnnotation::set_facet(int idx, FacetSupportType type)
bool FacetsAnnotation::set(const TriangleSelector& selector)
{
bool changed = true;
if (type == FacetSupportType::NONE)
changed = m_data.erase(idx) != 0;
else
m_data[idx] = type;
if (changed)
std::map<int, std::vector<bool>> sel_map = selector.serialize();
if (sel_map != m_data) {
m_data = sel_map;
update_timestamp();
return true;
}
return false;
}
@ -1864,6 +1867,64 @@ void FacetsAnnotation::clear()
// Following function takes data from a triangle and encodes it as string
// of hexadecimal numbers (one digit per triangle). Used for 3MF export,
// changing it may break backwards compatibility !!!!!
std::string FacetsAnnotation::get_triangle_as_string(int triangle_idx) const
{
std::string out;
auto triangle_it = m_data.find(triangle_idx);
if (triangle_it != m_data.end()) {
const std::vector<bool>& code = triangle_it->second;
int offset = 0;
while (offset < int(code.size())) {
int next_code = 0;
for (int i=3; i>=0; --i) {
next_code = next_code << 1;
next_code |= int(code[offset + i]);
}
offset += 4;
assert(next_code >=0 && next_code <= 15);
char digit = next_code < 10 ? next_code + '0' : (next_code-10)+'A';
out.insert(out.begin(), digit);
}
}
return out;
}
// Recover triangle splitting & state from string of hexadecimal values previously
// generated by get_triangle_as_string. Used to load from 3MF.
void FacetsAnnotation::set_triangle_from_string(int triangle_id, const std::string& str)
{
assert(! str.empty());
m_data[triangle_id] = std::vector<bool>(); // zero current state or create new
std::vector<bool>& code = m_data[triangle_id];
for (auto it = str.crbegin(); it != str.crend(); ++it) {
const char ch = *it;
int dec = 0;
if (ch >= '0' && ch<='9')
dec = int(ch - '0');
else if (ch >='A' && ch <= 'F')
dec = 10 + int(ch - 'A');
else
assert(false);
// Convert to binary and append into code.
for (int i=0; i<4; ++i) {
code.insert(code.end(), bool(dec & (1 << i)));
}
}
}
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
// ordered in the same order. In that case it is not necessary to kill the background processing.
bool model_object_list_equal(const Model &model_old, const Model &model_new)
@ -1935,7 +1996,17 @@ bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject
return true;
}
return false;
};
}
bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new) {
assert(! model_volume_list_changed(mo, mo_new, ModelVolumeType::MODEL_PART));
assert(mo.volumes.size() == mo_new.volumes.size());
for (size_t i=0; i<mo.volumes.size(); ++i) {
if (! mo_new.volumes[i]->m_seam_facets.is_same_as(mo.volumes[i]->m_seam_facets))
return true;
}
return false;
}
extern bool model_has_multi_part_objects(const Model &model)
{

View file

@ -39,6 +39,7 @@ class ModelVolume;
class ModelWipeTower;
class Print;
class SLAPrint;
class TriangleSelector;
namespace UndoRedo {
class StackImpl;
@ -393,7 +394,8 @@ enum class ModelVolumeType : int {
SUPPORT_BLOCKER,
};
enum class FacetSupportType : int8_t {
enum class EnforcerBlockerType : int8_t {
// Maximum is 3. The value is serialized in TriangleSelector into 2 bits!
NONE = 0,
ENFORCER = 1,
BLOCKER = 2
@ -403,9 +405,12 @@ class FacetsAnnotation {
public:
using ClockType = std::chrono::steady_clock;
std::vector<int> get_facets(FacetSupportType type) const;
void set_facet(int idx, FacetSupportType type);
const std::map<int, std::vector<bool>>& get_data() const { return m_data; }
bool set(const TriangleSelector& selector);
indexed_triangle_set get_facets(const ModelVolume& mv, EnforcerBlockerType type) const;
void clear();
std::string get_triangle_as_string(int i) const;
void set_triangle_from_string(int triangle_id, const std::string& str);
ClockType::time_point get_timestamp() const { return timestamp; }
bool is_same_as(const FacetsAnnotation& other) const {
@ -418,7 +423,7 @@ public:
}
private:
std::map<int, FacetSupportType> m_data;
std::map<int, std::vector<bool>> m_data;
ClockType::time_point timestamp;
void update_timestamp() {
@ -459,6 +464,9 @@ public:
// List of mesh facets to be supported/unsupported.
FacetsAnnotation m_supported_facets;
// List of seam enforcers/blockers.
FacetsAnnotation m_seam_facets;
// A parent object owning this modifier volume.
ModelObject* get_object() const { return this->object; }
ModelVolumeType type() const { return m_type; }
@ -588,7 +596,7 @@ private:
ObjectBase(other),
name(other.name), source(other.source), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull),
config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation),
m_supported_facets(other.m_supported_facets)
m_supported_facets(other.m_supported_facets), m_seam_facets(other.m_seam_facets)
{
assert(this->id().valid()); assert(this->config.id().valid()); assert(this->id() != this->config.id());
assert(this->id() == other.id() && this->config.id() == other.config.id());
@ -607,6 +615,7 @@ private:
assert(this->config.id().valid()); assert(this->config.id() != other.config.id()); assert(this->id() != this->config.id());
m_supported_facets.clear();
m_seam_facets.clear();
}
ModelVolume& operator=(ModelVolume &rhs) = delete;
@ -620,7 +629,7 @@ private:
template<class Archive> void load(Archive &ar) {
bool has_convex_hull;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation,
m_is_splittable, has_convex_hull, m_supported_facets);
m_is_splittable, has_convex_hull, m_supported_facets, m_seam_facets);
cereal::load_by_value(ar, config);
assert(m_mesh);
if (has_convex_hull) {
@ -634,7 +643,7 @@ private:
template<class Archive> void save(Archive &ar) const {
bool has_convex_hull = m_convex_hull.get() != nullptr;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation,
m_is_splittable, has_convex_hull, m_supported_facets);
m_is_splittable, has_convex_hull, m_supported_facets, m_seam_facets);
cereal::save_by_value(ar, config);
if (has_convex_hull)
cereal::save_optional(ar, m_convex_hull);
@ -899,6 +908,10 @@ extern bool model_volume_list_changed(const ModelObject &model_object_old, const
// The function assumes that volumes list is synchronized.
extern bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// Test whether the now ModelObject has newer custom seam data than the old one.
// The function assumes that volumes list is synchronized.
extern bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// If the model has multi-part objects, then it is currently not supported by the SLA mode.
// Either the model cannot be loaded, or a SLA printer has to be activated.
extern bool model_has_multi_part_objects(const Model &model);

View file

@ -20,7 +20,7 @@ using VirtualBedFn = std::function<void(arrangement::ArrangePolygon&)>;
[[noreturn]] inline void throw_if_out_of_bed(arrangement::ArrangePolygon&)
{
throw std::runtime_error("Objects could not fit on the bed");
throw Slic3r::RuntimeError("Objects could not fit on the bed");
}
ArrangePolygons get_arrange_polys(const Model &model, ModelInstancePtrs &instances);

View file

@ -42,6 +42,8 @@ private:
// Base for Model, ModelObject, ModelVolume, ModelInstance or ModelMaterial to provide a unique ID
// to synchronize the front end (UI) with the back end (BackgroundSlicingProcess / Print / PrintObject).
// Also base for Print, PrintObject, SLAPrint, SLAPrintObject to provide a unique ID for matching Model / ModelObject
// with their corresponding Print / PrintObject objects by the notification center at the UI when processing back-end warnings.
// Achtung! The s_last_id counter is not thread safe, so it is expected, that the ObjectBase derived instances
// are only instantiated from the main thread.
class ObjectBase

View file

@ -2,6 +2,7 @@
#include "OpenVDBUtils.hpp"
#include <openvdb/tools/MeshToVolume.h>
#include <openvdb/tools/VolumeToMesh.h>
#include <openvdb/tools/Composite.h>
#include <openvdb/tools/LevelSetRebuild.h>
//#include "MTUtils.hpp"
@ -57,17 +58,42 @@ void Contour3DDataAdapter::getIndexSpacePoint(size_t n,
// TODO: Do I need to call initialize? Seems to work without it as well but the
// docs say it should be called ones. It does a mutex lock-unlock sequence all
// even if was called previously.
openvdb::FloatGrid::Ptr mesh_to_grid(const TriangleMesh &mesh,
const openvdb::math::Transform &tr,
float exteriorBandWidth,
float interiorBandWidth,
int flags)
{
// openvdb::initialize();
// return openvdb::tools::meshToVolume<openvdb::FloatGrid>(
// TriangleMeshDataAdapter{mesh}, tr, exteriorBandWidth,
// interiorBandWidth, flags);
openvdb::initialize();
return openvdb::tools::meshToVolume<openvdb::FloatGrid>(
TriangleMeshDataAdapter{mesh}, tr, exteriorBandWidth,
interiorBandWidth, flags);
TriangleMeshPtrs meshparts = mesh.split();
auto it = std::remove_if(meshparts.begin(), meshparts.end(),
[](TriangleMesh *m){
m->require_shared_vertices();
return !m->is_manifold() || m->volume() < EPSILON;
});
meshparts.erase(it, meshparts.end());
openvdb::FloatGrid::Ptr grid;
for (TriangleMesh *m : meshparts) {
auto gridptr = openvdb::tools::meshToVolume<openvdb::FloatGrid>(
TriangleMeshDataAdapter{*m}, tr, exteriorBandWidth,
interiorBandWidth, flags);
if (grid && gridptr) openvdb::tools::csgUnion(*grid, *gridptr);
else if (gridptr) grid = std::move(gridptr);
}
grid = openvdb::tools::levelSetRebuild(*grid, 0., exteriorBandWidth, interiorBandWidth);
return grid;
}
openvdb::FloatGrid::Ptr mesh_to_grid(const sla::Contour3D &mesh,

View file

@ -2,7 +2,6 @@
#define OPENVDBUTILS_HPP
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
#include <openvdb/openvdb.h>

View file

@ -0,0 +1,140 @@
#ifndef BRUTEFORCEOPTIMIZER_HPP
#define BRUTEFORCEOPTIMIZER_HPP
#include <libslic3r/Optimize/Optimizer.hpp>
namespace Slic3r { namespace opt {
namespace detail {
// Implementing a bruteforce optimizer
// Return the number of iterations needed to reach a specific grid position (idx)
template<size_t N>
long num_iter(const std::array<size_t, N> &idx, size_t gridsz)
{
long ret = 0;
for (size_t i = 0; i < N; ++i) ret += idx[i] * std::pow(gridsz, i);
return ret;
}
// Implementation of a grid search where the search interval is sampled in
// equidistant points for each dimension. Grid size determines the number of
// samples for one dimension so the number of function calls is gridsize ^ dimension.
struct AlgBurteForce {
bool to_min;
StopCriteria stc;
size_t gridsz;
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
// This function is called recursively for each dimension and generates
// the grid values for the particular dimension. If D is less than zero,
// the object function input values are generated for each dimension and it
// can be evaluated. The current best score is compared with the newly
// returned score and changed appropriately.
template<int D, size_t N, class Fn, class Cmp>
bool run(std::array<size_t, N> &idx,
Result<N> &result,
const Bounds<N> &bounds,
Fn &&fn,
Cmp &&cmp)
{
if (stc.stop_condition()) return false;
if constexpr (D < 0) { // Let's evaluate fn
Input<N> inp;
auto max_iter = stc.max_iterations();
if (max_iter && num_iter(idx, gridsz) >= max_iter)
return false;
for (size_t d = 0; d < N; ++d) {
const Bound &b = bounds[d];
double step = (b.max() - b.min()) / (gridsz - 1);
inp[d] = b.min() + idx[d] * step;
}
auto score = fn(inp);
if (cmp(score, result.score)) { // Change current score to the new
double absdiff = std::abs(score - result.score);
result.score = score;
result.optimum = inp;
// Check if the required precision is reached.
if (absdiff < stc.abs_score_diff() ||
absdiff < stc.rel_score_diff() * std::abs(score))
return false;
}
} else {
for (size_t i = 0; i < gridsz; ++i) {
idx[D] = i; // Mark the current grid position and dig down
if (!run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::forward<Cmp>(cmp)))
return false;
}
}
return true;
}
template<class Fn, size_t N>
Result<N> optimize(Fn&& fn,
const Input<N> &/*initvals*/,
const Bounds<N>& bounds)
{
std::array<size_t, N> idx = {};
Result<N> result;
if (to_min) {
result.score = std::numeric_limits<double>::max();
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::less<double>{});
}
else {
result.score = std::numeric_limits<double>::lowest();
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
std::greater<double>{});
}
return result;
}
};
} // namespace detail
using AlgBruteForce = detail::AlgBurteForce;
template<>
class Optimizer<AlgBruteForce> {
AlgBruteForce m_alg;
public:
Optimizer(const StopCriteria &cr = {}, size_t gridsz = 100)
: m_alg{cr, gridsz}
{}
Optimizer& to_max() { m_alg.to_min = false; return *this; }
Optimizer& to_min() { m_alg.to_min = true; return *this; }
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
return m_alg.optimize(std::forward<Func>(func), initvals, bounds);
}
Optimizer &set_criteria(const StopCriteria &cr)
{
m_alg.stc = cr; return *this;
}
const StopCriteria &get_criteria() const { return m_alg.stc; }
};
}} // namespace Slic3r::opt
#endif // BRUTEFORCEOPTIMIZER_HPP

View file

@ -0,0 +1,233 @@
#ifndef NLOPTOPTIMIZER_HPP
#define NLOPTOPTIMIZER_HPP
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <nlopt.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <utility>
#include <libslic3r/Optimize/Optimizer.hpp>
namespace Slic3r { namespace opt {
namespace detail {
// Helper types for NLopt algorithm selection in template contexts
template<nlopt_algorithm alg> struct NLoptAlg {};
// NLopt can combine multiple algorithms if one is global an other is a local
// method. This is how template specializations can be informed about this fact.
template<nlopt_algorithm gl_alg, nlopt_algorithm lc_alg = NLOPT_LN_NELDERMEAD>
struct NLoptAlgComb {};
template<class M> struct IsNLoptAlg {
static const constexpr bool value = false;
};
template<nlopt_algorithm a> struct IsNLoptAlg<NLoptAlg<a>> {
static const constexpr bool value = true;
};
template<nlopt_algorithm a1, nlopt_algorithm a2>
struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
static const constexpr bool value = true;
};
template<class M, class T = void>
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
enum class OptDir { MIN, MAX }; // Where to optimize
struct NLopt { // Helper RAII class for nlopt_opt
nlopt_opt ptr = nullptr;
template<class...A> explicit NLopt(A&&...a)
{
ptr = nlopt_create(std::forward<A>(a)...);
}
NLopt(const NLopt&) = delete;
NLopt(NLopt&&) = delete;
NLopt& operator=(const NLopt&) = delete;
NLopt& operator=(NLopt&&) = delete;
~NLopt() { nlopt_destroy(ptr); }
};
template<class Method> class NLoptOpt {};
// Optimizers based on NLopt.
template<nlopt_algorithm alg> class NLoptOpt<NLoptAlg<alg>> {
protected:
StopCriteria m_stopcr;
OptDir m_dir;
template<class Fn> using TOptData =
std::tuple<std::remove_reference_t<Fn>*, NLoptOpt*, nlopt_opt>;
template<class Fn, size_t N>
static double optfunc(unsigned n, const double *params,
double *gradient,
void *data)
{
assert(n >= N);
auto tdata = static_cast<TOptData<Fn>*>(data);
if (std::get<1>(*tdata)->m_stopcr.stop_condition())
nlopt_force_stop(std::get<2>(*tdata));
auto fnptr = std::get<0>(*tdata);
auto funval = to_arr<N>(params);
double scoreval = 0.;
using RetT = decltype((*fnptr)(funval));
if constexpr (std::is_convertible_v<RetT, ScoreGradient<N>>) {
ScoreGradient<N> score = (*fnptr)(funval);
for (size_t i = 0; i < n; ++i) gradient[i] = (*score.gradient)[i];
scoreval = score.score;
} else {
scoreval = (*fnptr)(funval);
}
return scoreval;
}
template<size_t N>
void set_up(NLopt &nl, const Bounds<N>& bounds)
{
std::array<double, N> lb, ub;
for (size_t i = 0; i < N; ++i) {
lb[i] = bounds[i].min();
ub[i] = bounds[i].max();
}
nlopt_set_lower_bounds(nl.ptr, lb.data());
nlopt_set_upper_bounds(nl.ptr, ub.data());
double abs_diff = m_stopcr.abs_score_diff();
double rel_diff = m_stopcr.rel_score_diff();
double stopval = m_stopcr.stop_score();
if(!std::isnan(abs_diff)) nlopt_set_ftol_abs(nl.ptr, abs_diff);
if(!std::isnan(rel_diff)) nlopt_set_ftol_rel(nl.ptr, rel_diff);
if(!std::isnan(stopval)) nlopt_set_stopval(nl.ptr, stopval);
if(this->m_stopcr.max_iterations() > 0)
nlopt_set_maxeval(nl.ptr, this->m_stopcr.max_iterations());
}
template<class Fn, size_t N>
Result<N> optimize(NLopt &nl, Fn &&fn, const Input<N> &initvals)
{
Result<N> r;
TOptData<Fn> data = std::make_tuple(&fn, this, nl.ptr);
switch(m_dir) {
case OptDir::MIN:
nlopt_set_min_objective(nl.ptr, optfunc<Fn, N>, &data); break;
case OptDir::MAX:
nlopt_set_max_objective(nl.ptr, optfunc<Fn, N>, &data); break;
}
r.optimum = initvals;
r.resultcode = nlopt_optimize(nl.ptr, r.optimum.data(), &r.score);
return r;
}
public:
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
NLopt nl{alg, N};
set_up(nl, bounds);
return optimize(nl, std::forward<Func>(func), initvals);
}
explicit NLoptOpt(StopCriteria stopcr = {}) : m_stopcr(stopcr) {}
void set_criteria(const StopCriteria &cr) { m_stopcr = cr; }
const StopCriteria &get_criteria() const noexcept { return m_stopcr; }
void set_dir(OptDir dir) noexcept { m_dir = dir; }
void seed(long s) { nlopt_srand(s); }
};
template<nlopt_algorithm glob, nlopt_algorithm loc>
class NLoptOpt<NLoptAlgComb<glob, loc>>: public NLoptOpt<NLoptAlg<glob>>
{
using Base = NLoptOpt<NLoptAlg<glob>>;
public:
template<class Fn, size_t N>
Result<N> optimize(Fn&& f,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
NLopt nl_glob{glob, N}, nl_loc{loc, N};
Base::set_up(nl_glob, bounds);
Base::set_up(nl_loc, bounds);
nlopt_set_local_optimizer(nl_glob.ptr, nl_loc.ptr);
return Base::optimize(nl_glob, std::forward<Fn>(f), initvals);
}
explicit NLoptOpt(StopCriteria stopcr = {}) : Base{stopcr} {}
};
} // namespace detail;
// Optimizers based on NLopt.
template<class M> class Optimizer<M, detail::NLoptOnly<M>> {
detail::NLoptOpt<M> m_opt;
public:
Optimizer& to_max() { m_opt.set_dir(detail::OptDir::MAX); return *this; }
Optimizer& to_min() { m_opt.set_dir(detail::OptDir::MIN); return *this; }
template<class Func, size_t N>
Result<N> optimize(Func&& func,
const Input<N> &initvals,
const Bounds<N>& bounds)
{
return m_opt.optimize(std::forward<Func>(func), initvals, bounds);
}
explicit Optimizer(StopCriteria stopcr = {}) : m_opt(stopcr) {}
Optimizer &set_criteria(const StopCriteria &cr)
{
m_opt.set_criteria(cr); return *this;
}
const StopCriteria &get_criteria() const { return m_opt.get_criteria(); }
void seed(long s) { m_opt.seed(s); }
};
// Predefinded NLopt algorithms
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
using AlgNLoptDIRECT = detail::NLoptAlg<NLOPT_GN_DIRECT>;
using AlgNLoptMLSL = detail::NLoptAlg<NLOPT_GN_MLSL>;
}} // namespace Slic3r::opt
#endif // NLOPTOPTIMIZER_HPP

View file

@ -0,0 +1,182 @@
#ifndef OPTIMIZER_HPP
#define OPTIMIZER_HPP
#include <utility>
#include <tuple>
#include <array>
#include <cmath>
#include <functional>
#include <limits>
#include <cassert>
namespace Slic3r { namespace opt {
// A type to hold the complete result of the optimization.
template<size_t N> struct Result {
int resultcode; // Method dependent
std::array<double, N> optimum;
double score;
};
// An interval of possible input values for optimization
class Bound {
double m_min, m_max;
public:
Bound(double min = std::numeric_limits<double>::min(),
double max = std::numeric_limits<double>::max())
: m_min(min), m_max(max)
{}
double min() const noexcept { return m_min; }
double max() const noexcept { return m_max; }
};
// Helper types for optimization function input and bounds
template<size_t N> using Input = std::array<double, N>;
template<size_t N> using Bounds = std::array<Bound, N>;
// A type for specifying the stop criteria. Setter methods can be concatenated
class StopCriteria {
// If the absolute value difference between two scores.
double m_abs_score_diff = std::nan("");
// If the relative value difference between two scores.
double m_rel_score_diff = std::nan("");
// Stop if this value or better is found.
double m_stop_score = std::nan("");
// A predicate that if evaluates to true, the optimization should terminate
// and the best result found prior to termination should be returned.
std::function<bool()> m_stop_condition = [] { return false; };
// The max allowed number of iterations.
unsigned m_max_iterations = 0;
public:
StopCriteria & abs_score_diff(double val)
{
m_abs_score_diff = val; return *this;
}
double abs_score_diff() const { return m_abs_score_diff; }
StopCriteria & rel_score_diff(double val)
{
m_rel_score_diff = val; return *this;
}
double rel_score_diff() const { return m_rel_score_diff; }
StopCriteria & stop_score(double val)
{
m_stop_score = val; return *this;
}
double stop_score() const { return m_stop_score; }
StopCriteria & max_iterations(double val)
{
m_max_iterations = val; return *this;
}
double max_iterations() const { return m_max_iterations; }
template<class Fn> StopCriteria & stop_condition(Fn &&cond)
{
m_stop_condition = cond; return *this;
}
bool stop_condition() { return m_stop_condition(); }
};
// Helper class to use optimization methods involving gradient.
template<size_t N> struct ScoreGradient {
double score;
std::optional<std::array<double, N>> gradient;
ScoreGradient(double s, const std::array<double, N> &grad)
: score{s}, gradient{grad}
{}
};
// Helper to be used in static_assert.
template<class T> struct always_false { enum { value = false }; };
// Basic interface to optimizer object
template<class Method, class Enable = void> class Optimizer {
public:
Optimizer(const StopCriteria &)
{
static_assert (always_false<Method>::value,
"Optimizer unimplemented for given method!");
}
// Switch optimization towards function minimum
Optimizer &to_min() { return *this; }
// Switch optimization towards function maximum
Optimizer &to_max() { return *this; }
// Set criteria for successive optimizations
Optimizer &set_criteria(const StopCriteria &) { return *this; }
// Get current criteria
StopCriteria get_criteria() const { return {}; };
// Find function minimum or maximum for Func which has has signature:
// double(const Input<N> &input) and input with dimension N
//
// Initial starting point can be given as the second parameter.
//
// For each dimension an interval (Bound) has to be given marking the bounds
// for that dimension.
//
// initvals have to be within the specified bounds, otherwise its undefined
// behavior.
//
// Func can return a score of type double or optionally a ScoreGradient
// class to indicate the function gradient for a optimization methods that
// make use of the gradient.
template<class Func, size_t N>
Result<N> optimize(Func&& /*func*/,
const Input<N> &/*initvals*/,
const Bounds<N>& /*bounds*/) { return {}; }
// optional for randomized methods:
void seed(long /*s*/) {}
};
namespace detail {
// Helper to convert C style array to std::array. The copy should be optimized
// away with modern compilers.
template<size_t N, class T> auto to_arr(const T *a)
{
std::array<T, N> r;
std::copy(a, a + N, std::begin(r));
return r;
}
template<size_t N, class T> auto to_arr(const T (&a) [N])
{
return to_arr<N>(static_cast<const T *>(a));
}
} // namespace detail
// Helper functions to create bounds, initial value
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
{
return ScoreGradient<N>(s, detail::to_arr(grad));
}
}} // namespace Slic3r::opt
#endif // OPTIMIZER_HPP

100
src/libslic3r/PNGRead.cpp Normal file
View file

@ -0,0 +1,100 @@
#include "PNGRead.hpp"
#include <memory>
#include <cstdio>
#include <png.h>
namespace Slic3r { namespace png {
struct PNGDescr {
png_struct *png = nullptr; png_info *info = nullptr;
PNGDescr() = default;
PNGDescr(const PNGDescr&) = delete;
PNGDescr(PNGDescr&&) = delete;
PNGDescr& operator=(const PNGDescr&) = delete;
PNGDescr& operator=(PNGDescr&&) = delete;
~PNGDescr()
{
if (png && info) png_destroy_info_struct(png, &info);
if (png) png_destroy_read_struct( &png, nullptr, nullptr);
}
};
bool is_png(const ReadBuf &rb)
{
static const constexpr int PNG_SIG_BYTES = 8;
#if PNG_LIBPNG_VER_MINOR <= 2
// Earlier libpng versions had png_sig_cmp(png_bytep, ...) which is not
// a const pointer. It is not possible to cast away the const qualifier from
// the input buffer so... yes... life is challenging...
png_byte buf[PNG_SIG_BYTES];
auto inbuf = static_cast<const std::uint8_t *>(rb.buf);
std::copy(inbuf, inbuf + PNG_SIG_BYTES, buf);
#else
auto buf = static_cast<png_const_bytep>(rb.buf);
#endif
return rb.sz >= PNG_SIG_BYTES && !png_sig_cmp(buf, 0, PNG_SIG_BYTES);
}
// Buffer read callback for libpng. It provides an allocated output buffer and
// the amount of data it desires to read from the input.
void png_read_callback(png_struct *png_ptr,
png_bytep outBytes,
png_size_t byteCountToRead)
{
// Retrieve our input buffer through the png_ptr
auto reader = static_cast<IStream *>(png_get_io_ptr(png_ptr));
if (!reader || !reader->is_ok()) return;
reader->read(static_cast<std::uint8_t *>(outBytes), byteCountToRead);
}
bool decode_png(IStream &in_buf, ImageGreyscale &out_img)
{
static const constexpr int PNG_SIG_BYTES = 8;
std::vector<png_byte> sig(PNG_SIG_BYTES, 0);
in_buf.read(sig.data(), PNG_SIG_BYTES);
if (!png_check_sig(sig.data(), PNG_SIG_BYTES))
return false;
PNGDescr dsc;
dsc.png = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr,
nullptr);
if(!dsc.png) return false;
dsc.info = png_create_info_struct(dsc.png);
if(!dsc.info) return false;
png_set_read_fn(dsc.png, static_cast<void *>(&in_buf), png_read_callback);
// Tell that we have already read the first bytes to check the signature
png_set_sig_bytes(dsc.png, PNG_SIG_BYTES);
png_read_info(dsc.png, dsc.info);
out_img.cols = png_get_image_width(dsc.png, dsc.info);
out_img.rows = png_get_image_height(dsc.png, dsc.info);
size_t color_type = png_get_color_type(dsc.png, dsc.info);
size_t bit_depth = png_get_bit_depth(dsc.png, dsc.info);
if (color_type != PNG_COLOR_TYPE_GRAY || bit_depth != 8)
return false;
out_img.buf.resize(out_img.rows * out_img.cols);
auto readbuf = static_cast<png_bytep>(out_img.buf.data());
for (size_t r = 0; r < out_img.rows; ++r)
png_read_row(dsc.png, readbuf + r * out_img.cols, nullptr);
return true;
}
}} // namespace Slic3r::png

70
src/libslic3r/PNGRead.hpp Normal file
View file

@ -0,0 +1,70 @@
#ifndef PNGREAD_HPP
#define PNGREAD_HPP
#include <vector>
#include <string>
#include <istream>
namespace Slic3r { namespace png {
// Interface for an input stream of encoded png image data.
struct IStream {
virtual ~IStream() = default;
virtual size_t read(std::uint8_t *outp, size_t amount) = 0;
virtual bool is_ok() const = 0;
};
// The output format of decode_png: a 2D pixel matrix stored continuously row
// after row (row major layout).
template<class PxT> struct Image {
std::vector<PxT> buf;
size_t rows, cols;
PxT get(size_t row, size_t col) const { return buf[row * cols + col]; }
};
using ImageGreyscale = Image<uint8_t>;
// Only decodes true 8 bit grayscale png images. Returns false for other formats
// TODO (if needed): implement transformation of rgb images into grayscale...
bool decode_png(IStream &stream, ImageGreyscale &out_img);
// TODO (if needed)
// struct RGB { uint8_t r, g, b; };
// using ImageRGB = Image<RGB>;
// bool decode_png(IStream &stream, ImageRGB &img);
// Encoded png data buffer: a simple read-only buffer and its size.
struct ReadBuf { const void *buf = nullptr; const size_t sz = 0; };
bool is_png(const ReadBuf &pngbuf);
template<class Img> bool decode_png(const ReadBuf &in_buf, Img &out_img)
{
struct ReadBufStream: public IStream {
const ReadBuf &rbuf_ref; size_t pos = 0;
explicit ReadBufStream(const ReadBuf &buf): rbuf_ref{buf} {}
size_t read(std::uint8_t *outp, size_t amount) override
{
if (amount > rbuf_ref.sz - pos) return 0;
auto buf = static_cast<const std::uint8_t *>(rbuf_ref.buf);
std::copy(buf + pos, buf + (pos + amount), outp);
pos += amount;
return amount;
}
bool is_ok() const override { return pos < rbuf_ref.sz; }
} stream{in_buf};
return decode_png(stream, out_img);
}
// TODO: std::istream of FILE* could be similarly adapted in case its needed...
}} // namespace Slic3r::png
#endif // PNGREAD_HPP

View file

@ -1,4 +1,5 @@
#include "PlaceholderParser.hpp"
#include "Exception.hpp"
#include "Flow.hpp"
#include <cstring>
#include <ctime>
@ -1303,7 +1304,7 @@ static std::string process_macro(const std::string &templ, client::MyContext &co
if (!context.error_message.empty()) {
if (context.error_message.back() != '\n' && context.error_message.back() != '\r')
context.error_message += '\n';
throw std::runtime_error(context.error_message);
throw Slic3r::RuntimeError(context.error_message);
}
return output;
}
@ -1319,7 +1320,7 @@ std::string PlaceholderParser::process(const std::string &templ, unsigned int cu
}
// Evaluate a boolean expression using the full expressive power of the PlaceholderParser boolean expression syntax.
// Throws std::runtime_error on syntax or runtime error.
// Throws Slic3r::RuntimeError on syntax or runtime error.
bool PlaceholderParser::evaluate_boolean_expression(const std::string &templ, const DynamicConfig &config, const DynamicConfig *config_override)
{
client::MyContext context;

View file

@ -40,11 +40,11 @@ public:
const DynamicConfig* external_config() const { return m_external_config; }
// Fill in the template using a macro processing language.
// Throws std::runtime_error on syntax or runtime error.
// Throws Slic3r::RuntimeError on syntax or runtime error.
std::string process(const std::string &templ, unsigned int current_extruder_id = 0, const DynamicConfig *config_override = nullptr) const;
// Evaluate a boolean expression using the full expressive power of the PlaceholderParser boolean expression syntax.
// Throws std::runtime_error on syntax or runtime error.
// Throws Slic3r::RuntimeError on syntax or runtime error.
static bool evaluate_boolean_expression(const std::string &templ, const DynamicConfig &config, const DynamicConfig *config_override = nullptr);
// Update timestamp, year, month, day, hour, minute, second variables at the provided config.

View file

@ -60,10 +60,13 @@ inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
inline Vec2i32 to_2d(const Vec2i32 &pt3) { return Vec2i32(pt3(0), pt3(1)); }
inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
inline Vec2f to_2d(const Vec3f &pt3) { return Vec2f (pt3(0), pt3(1)); }
inline Vec2d to_2d(const Vec3d &pt3) { return Vec2d (pt3(0), pt3(1)); }
template<class T, int N> Eigen::Matrix<T, 2, 1, Eigen::DontAlign>
to_2d(const Eigen::Matrix<T, N, 1, Eigen::DontAlign> &ptN) { return {ptN(0), ptN(1)}; }
//inline Vec2i32 to_2d(const Vec3i32 &pt3) { return Vec2i32(pt3(0), pt3(1)); }
//inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
//inline Vec2f to_2d(const Vec3f &pt3) { return Vec2f (pt3(0), pt3(1)); }
//inline Vec2d to_2d(const Vec3d &pt3) { return Vec2d (pt3(0), pt3(1)); }
inline Vec3d to_3d(const Vec2d &v, double z) { return Vec3d(v(0), v(1), z); }
inline Vec3f to_3d(const Vec2f &v, float z) { return Vec3f(v(0), v(1), z); }
@ -85,6 +88,8 @@ inline std::string to_string(const Vec3d &pt) { return std::string("[") + std:
std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
Pointf3s transform(const Pointf3s& points, const Transform3d& t);
template<int N, class T> using Vec = Eigen::Matrix<T, N, 1, Eigen::DontAlign, N, 1>;
class Point : public Vec2crd
{
public:

View file

@ -1,5 +1,6 @@
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "Exception.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
@ -16,7 +17,7 @@ Polyline Polygon::split_at_vertex(const Point &point) const
for (const Point &pt : this->points)
if (pt == point)
return this->split_at_index(int(&pt - &this->points.front()));
throw std::invalid_argument("Point not found");
throw Slic3r::InvalidArgument("Point not found");
return Polyline();
}

View file

@ -86,6 +86,14 @@ inline double total_length(const Polygons &polylines) {
return total;
}
inline double area(const Polygons &polys)
{
double s = 0.;
for (auto &p : polys) s += p.area();
return s;
}
// Remove sticks (tentacles with zero area) from the polygon.
extern bool remove_sticks(Polygon &poly);
extern bool remove_sticks(Polygons &polys);

View file

@ -1,5 +1,6 @@
#include "BoundingBox.hpp"
#include "Polyline.hpp"
#include "Exception.hpp"
#include "ExPolygon.hpp"
#include "ExPolygonCollection.hpp"
#include "Line.hpp"
@ -19,7 +20,7 @@ Polyline::operator Polylines() const
Polyline::operator Line() const
{
if (this->points.size() > 2)
throw std::invalid_argument("Can't convert polyline with more than two points to a line");
throw Slic3r::InvalidArgument("Can't convert polyline with more than two points to a line");
return Line(this->points.front(), this->points.back());
}
@ -207,7 +208,7 @@ BoundingBox get_extents(const Polylines &polylines)
const Point& leftmost_point(const Polylines &polylines)
{
if (polylines.empty())
throw std::invalid_argument("leftmost_point() called on empty PolylineCollection");
throw Slic3r::InvalidArgument("leftmost_point() called on empty PolylineCollection");
Polylines::const_iterator it = polylines.begin();
const Point *p = &it->leftmost_point();
for (++ it; it != polylines.end(); ++it) {

1850
src/libslic3r/Preset.cpp Normal file

File diff suppressed because it is too large Load diff

739
src/libslic3r/Preset.hpp Normal file
View file

@ -0,0 +1,739 @@
#ifndef slic3r_Preset_hpp_
#define slic3r_Preset_hpp_
#include <deque>
#include <set>
#include <unordered_map>
#include <boost/filesystem/path.hpp>
#include <boost/property_tree/ptree_fwd.hpp>
#include "PrintConfig.hpp"
#include "Semver.hpp"
namespace Slic3r {
class AppConfig;
class PresetBundle;
enum ConfigFileType
{
CONFIG_FILE_TYPE_UNKNOWN,
CONFIG_FILE_TYPE_APP_CONFIG,
CONFIG_FILE_TYPE_CONFIG,
CONFIG_FILE_TYPE_CONFIG_BUNDLE,
};
extern ConfigFileType guess_config_file_type(const boost::property_tree::ptree &tree);
class VendorProfile
{
public:
std::string name;
std::string id;
Semver config_version;
std::string config_update_url;
std::string changelog_url;
struct PrinterVariant {
PrinterVariant() {}
PrinterVariant(const std::string &name) : name(name) {}
std::string name;
};
struct PrinterModel {
PrinterModel() {}
std::string id;
std::string name;
PrinterTechnology technology;
std::string family;
std::vector<PrinterVariant> variants;
std::vector<std::string> default_materials;
// Vendor & Printer Model specific print bed model & texture.
std::string bed_model;
std::string bed_texture;
PrinterVariant* variant(const std::string &name) {
for (auto &v : this->variants)
if (v.name == name)
return &v;
return nullptr;
}
const PrinterVariant* variant(const std::string &name) const { return const_cast<PrinterModel*>(this)->variant(name); }
};
std::vector<PrinterModel> models;
std::set<std::string> default_filaments;
std::set<std::string> default_sla_materials;
VendorProfile() {}
VendorProfile(std::string id) : id(std::move(id)) {}
bool valid() const { return ! name.empty() && ! id.empty() && config_version.valid(); }
// Load VendorProfile from an ini file.
// If `load_all` is false, only the header with basic info (name, version, URLs) is loaded.
static VendorProfile from_ini(const boost::filesystem::path &path, bool load_all=true);
static VendorProfile from_ini(const boost::property_tree::ptree &tree, const boost::filesystem::path &path, bool load_all=true);
size_t num_variants() const { size_t n = 0; for (auto &model : models) n += model.variants.size(); return n; }
std::vector<std::string> families() const;
bool operator< (const VendorProfile &rhs) const { return this->id < rhs.id; }
bool operator==(const VendorProfile &rhs) const { return this->id == rhs.id; }
};
class Preset;
// Helper to hold a profile with its vendor definition, where the vendor definition may have been extracted from a parent system preset.
// The parent preset is only accessible through PresetCollection, therefore to allow definition of the various is_compatible_with methods
// outside of the PresetCollection, this composite is returned by PresetCollection::get_preset_with_vendor_profile() when needed.
struct PresetWithVendorProfile {
PresetWithVendorProfile(const Preset &preset, const VendorProfile *vendor) : preset(preset), vendor(vendor) {}
const Preset &preset;
const VendorProfile *vendor;
};
// Note: it is imporant that map is used here rather than unordered_map,
// because we need iterators to not be invalidated,
// because Preset and the ConfigWizard hold pointers to VendorProfiles.
// XXX: maybe set is enough (cf. changes in Wizard)
typedef std::map<std::string, VendorProfile> VendorMap;
class Preset
{
public:
enum Type
{
TYPE_INVALID,
TYPE_PRINT,
TYPE_SLA_PRINT,
TYPE_FILAMENT,
TYPE_SLA_MATERIAL,
TYPE_PRINTER,
TYPE_COUNT,
};
Preset(Type type, const std::string &name, bool is_default = false) : type(type), is_default(is_default), name(name) {}
Type type = TYPE_INVALID;
// The preset represents a "default" set of properties,
// pulled from the default values of the PrintConfig (see PrintConfigDef for their definitions).
bool is_default;
// External preset points to a configuration, which has been loaded but not imported
// into the Slic3r default configuration location.
bool is_external = false;
// System preset is read-only.
bool is_system = false;
// Preset is visible, if it is associated with a printer model / variant that is enabled in the AppConfig
// or if it has no printer model / variant association.
// Also the "default" preset is only visible, if it is the only preset in the list.
bool is_visible = true;
// Has this preset been modified?
bool is_dirty = false;
// Is this preset compatible with the currently active printer?
bool is_compatible = true;
bool is_user() const { return ! this->is_default && ! this->is_system; }
// Name of the preset, usually derived form the file name.
std::string name;
// File name of the preset. This could be a Print / Filament / Printer preset,
// or a Configuration file bundling the Print + Filament + Printer presets (in that case is_external and possibly is_system will be true),
// or it could be a G-code (again, is_external will be true).
std::string file;
// If this is a system profile, then there should be a vendor data available to display at the UI.
const VendorProfile *vendor = nullptr;
// Has this profile been loaded?
bool loaded = false;
// Configuration data, loaded from a file, or set from the defaults.
DynamicPrintConfig config;
// Alias of the preset
std::string alias;
// List of profile names, from which this profile was renamed at some point of time.
// This list is then used to match profiles by their names when loaded from .gcode, .3mf, .amf,
// and to match the "inherits" field of user profiles with updated system profiles.
std::vector<std::string> renamed_from;
void save();
// Return a label of this preset, consisting of a name and a "(modified)" suffix, if this preset is dirty.
std::string label() const;
// Set the is_dirty flag if the provided config is different from the active one.
void set_dirty(const DynamicPrintConfig &config) { this->is_dirty = ! this->config.diff(config).empty(); }
void set_dirty(bool dirty = true) { this->is_dirty = dirty; }
void reset_dirty() { this->is_dirty = false; }
// Returns the name of the preset, from which this preset inherits.
static std::string& inherits(DynamicPrintConfig &cfg) { return cfg.option<ConfigOptionString>("inherits", true)->value; }
std::string& inherits() { return Preset::inherits(this->config); }
const std::string& inherits() const { return Preset::inherits(const_cast<Preset*>(this)->config); }
// Returns the "compatible_prints_condition".
static std::string& compatible_prints_condition(DynamicPrintConfig &cfg) { return cfg.option<ConfigOptionString>("compatible_prints_condition", true)->value; }
std::string& compatible_prints_condition() {
assert(this->type == TYPE_FILAMENT || this->type == TYPE_SLA_MATERIAL);
return Preset::compatible_prints_condition(this->config);
}
const std::string& compatible_prints_condition() const { return const_cast<Preset*>(this)->compatible_prints_condition(); }
// Returns the "compatible_printers_condition".
static std::string& compatible_printers_condition(DynamicPrintConfig &cfg) { return cfg.option<ConfigOptionString>("compatible_printers_condition", true)->value; }
std::string& compatible_printers_condition() {
assert(this->type == TYPE_PRINT || this->type == TYPE_SLA_PRINT || this->type == TYPE_FILAMENT || this->type == TYPE_SLA_MATERIAL);
return Preset::compatible_printers_condition(this->config);
}
const std::string& compatible_printers_condition() const { return const_cast<Preset*>(this)->compatible_printers_condition(); }
// Return a printer technology, return ptFFF if the printer technology is not set.
static PrinterTechnology printer_technology(const DynamicPrintConfig &cfg) {
auto *opt = cfg.option<ConfigOptionEnum<PrinterTechnology>>("printer_technology");
// The following assert may trigger when importing some legacy profile,
// but it is safer to keep it here to capture the cases where the "printer_technology" key is queried, where it should not.
// assert(opt != nullptr);
return (opt == nullptr) ? ptFFF : opt->value;
}
PrinterTechnology printer_technology() const { return Preset::printer_technology(this->config); }
// This call returns a reference, it may add a new entry into the DynamicPrintConfig.
PrinterTechnology& printer_technology_ref() { return this->config.option<ConfigOptionEnum<PrinterTechnology>>("printer_technology", true)->value; }
// Set is_visible according to application config
void set_visible_from_appconfig(const AppConfig &app_config);
// Resize the extruder specific fields, initialize them with the content of the 1st extruder.
void set_num_extruders(unsigned int n) { this->config.set_num_extruders(n); }
// Sort lexicographically by a preset name. The preset name shall be unique across a single PresetCollection.
bool operator<(const Preset &other) const { return this->name < other.name; }
static const std::vector<std::string>& print_options();
static const std::vector<std::string>& filament_options();
// Printer options contain the nozzle options.
static const std::vector<std::string>& printer_options();
// Nozzle options of the printer options.
static const std::vector<std::string>& nozzle_options();
static const std::vector<std::string>& sla_printer_options();
static const std::vector<std::string>& sla_material_options();
static const std::vector<std::string>& sla_print_options();
static void update_suffix_modified(const std::string& new_suffix_modified);
static const std::string& suffix_modified();
static std::string remove_suffix_modified(const std::string& name);
static void normalize(DynamicPrintConfig &config);
// Report configuration fields, which are misplaced into a wrong group, remove them from the config.
static std::string remove_invalid_keys(DynamicPrintConfig &config, const DynamicPrintConfig &default_config);
protected:
friend class PresetCollection;
friend class PresetBundle;
};
bool is_compatible_with_print (const PresetWithVendorProfile &preset, const PresetWithVendorProfile &active_print, const PresetWithVendorProfile &active_printer);
bool is_compatible_with_printer(const PresetWithVendorProfile &preset, const PresetWithVendorProfile &active_printer, const DynamicPrintConfig *extra_config);
bool is_compatible_with_printer(const PresetWithVendorProfile &preset, const PresetWithVendorProfile &active_printer);
enum class PresetSelectCompatibleType {
// Never select a compatible preset if the newly selected profile is not compatible.
Never,
// Only select a compatible preset if the active profile used to be compatible, but it is no more.
OnlyIfWasCompatible,
// Always select a compatible preset if the active profile is no more compatible.
Always
};
// Collections of presets of the same type (one of the Print, Filament or Printer type).
class PresetCollection
{
public:
// Initialize the PresetCollection with the "- default -" preset.
PresetCollection(Preset::Type type, const std::vector<std::string> &keys, const Slic3r::StaticPrintConfig &defaults, const std::string &default_name = "- default -");
~PresetCollection();
typedef std::deque<Preset>::iterator Iterator;
typedef std::deque<Preset>::const_iterator ConstIterator;
Iterator begin() { return m_presets.begin() + m_num_default_presets; }
ConstIterator begin() const { return m_presets.cbegin() + m_num_default_presets; }
ConstIterator cbegin() const { return m_presets.cbegin() + m_num_default_presets; }
Iterator end() { return m_presets.end(); }
ConstIterator end() const { return m_presets.cend(); }
ConstIterator cend() const { return m_presets.cend(); }
void reset(bool delete_files);
Preset::Type type() const { return m_type; }
// Name, to be used on the screen and in error messages. Not localized.
std::string name() const;
// Name, to be used as a section name in config bundle, and as a folder name for presets.
std::string section_name() const;
const std::deque<Preset>& operator()() const { return m_presets; }
// Add default preset at the start of the collection, increment the m_default_preset counter.
void add_default_preset(const std::vector<std::string> &keys, const Slic3r::StaticPrintConfig &defaults, const std::string &preset_name);
// Load ini files of the particular type from the provided directory path.
void load_presets(const std::string &dir_path, const std::string &subdir);
// Load a preset from an already parsed config file, insert it into the sorted sequence of presets
// and select it, losing previous modifications.
Preset& load_preset(const std::string &path, const std::string &name, const DynamicPrintConfig &config, bool select = true);
Preset& load_preset(const std::string &path, const std::string &name, DynamicPrintConfig &&config, bool select = true);
Preset& load_external_preset(
// Path to the profile source file (a G-code, an AMF or 3MF file, a config file)
const std::string &path,
// Name of the profile, derived from the source file name.
const std::string &name,
// Original name of the profile, extracted from the loaded config. Empty, if the name has not been stored.
const std::string &original_name,
// Config to initialize the preset from.
const DynamicPrintConfig &config,
// Select the preset after loading?
bool select = true);
// Save the preset under a new name. If the name is different from the old one,
// a new preset is stored into the list of presets.
// All presets are marked as not modified and the new preset is activated.
void save_current_preset(const std::string &new_name, bool detach = false);
// Delete the current preset, activate the first visible preset.
// returns true if the preset was deleted successfully.
bool delete_current_preset();
// Delete the current preset, activate the first visible preset.
// returns true if the preset was deleted successfully.
bool delete_preset(const std::string& name);
// Enable / disable the "- default -" preset.
void set_default_suppressed(bool default_suppressed);
bool is_default_suppressed() const { return m_default_suppressed; }
// Select a preset. If an invalid index is provided, the first visible preset is selected.
Preset& select_preset(size_t idx);
// Return the selected preset, without the user modifications applied.
Preset& get_selected_preset() { return m_presets[m_idx_selected]; }
const Preset& get_selected_preset() const { return m_presets[m_idx_selected]; }
size_t get_selected_idx() const { return m_idx_selected; }
// Returns the name of the selected preset, or an empty string if no preset is selected.
std::string get_selected_preset_name() const { return (m_idx_selected == size_t(-1)) ? std::string() : this->get_selected_preset().name; }
// For the current edited preset, return the parent preset if there is one.
// If there is no parent preset, nullptr is returned.
// The parent preset may be a system preset or a user preset, which will be
// reflected by the UI.
const Preset* get_selected_preset_parent() const;
// Get parent preset for a child preset, based on the "inherits" field of a child,
// where the "inherits" profile name is searched for in both m_presets and m_map_system_profile_renamed.
const Preset* get_preset_parent(const Preset& child) const;
// Return the selected preset including the user modifications.
Preset& get_edited_preset() { return m_edited_preset; }
const Preset& get_edited_preset() const { return m_edited_preset; }
// Return vendor of the first parent profile, for which the vendor is defined, or null if such profile does not exist.
PresetWithVendorProfile get_preset_with_vendor_profile(const Preset &preset) const;
PresetWithVendorProfile get_edited_preset_with_vendor_profile() const { return this->get_preset_with_vendor_profile(this->get_edited_preset()); }
const std::string& get_preset_name_by_alias(const std::string& alias) const;
const std::string* get_preset_name_renamed(const std::string &old_name) const;
// used to update preset_choice from Tab
const std::deque<Preset>& get_presets() const { return m_presets; }
size_t get_idx_selected() { return m_idx_selected; }
static const std::string& get_suffix_modified();
// Return a preset possibly with modifications.
Preset& default_preset(size_t idx = 0) { assert(idx < m_num_default_presets); return m_presets[idx]; }
const Preset& default_preset(size_t idx = 0) const { assert(idx < m_num_default_presets); return m_presets[idx]; }
virtual const Preset& default_preset_for(const DynamicPrintConfig & /* config */) const { return this->default_preset(); }
// Return a preset by an index. If the preset is active, a temporary copy is returned.
Preset& preset(size_t idx) { return (idx == m_idx_selected) ? m_edited_preset : m_presets[idx]; }
const Preset& preset(size_t idx) const { return const_cast<PresetCollection*>(this)->preset(idx); }
void discard_current_changes() { m_presets[m_idx_selected].reset_dirty(); m_edited_preset = m_presets[m_idx_selected]; }
// Return a preset by its name. If the preset is active, a temporary copy is returned.
// If a preset is not found by its name, null is returned.
Preset* find_preset(const std::string &name, bool first_visible_if_not_found = false);
const Preset* find_preset(const std::string &name, bool first_visible_if_not_found = false) const
{ return const_cast<PresetCollection*>(this)->find_preset(name, first_visible_if_not_found); }
size_t first_visible_idx() const;
// Return index of the first compatible preset. Certainly at least the '- default -' preset shall be compatible.
// If one of the prefered_alternates is compatible, select it.
template<typename PreferedCondition>
size_t first_compatible_idx(PreferedCondition prefered_condition) const
{
size_t i = m_default_suppressed ? m_num_default_presets : 0;
size_t n = this->m_presets.size();
size_t i_compatible = n;
for (; i < n; ++ i)
// Since we use the filament selection from Wizard, it's needed to control the preset visibility too
if (m_presets[i].is_compatible && m_presets[i].is_visible) {
if (prefered_condition(m_presets[i].name))
return i;
if (i_compatible == n)
// Store the first compatible profile into i_compatible.
i_compatible = i;
}
return (i_compatible == n) ? 0 : i_compatible;
}
// Return index of the first compatible preset. Certainly at least the '- default -' preset shall be compatible.
size_t first_compatible_idx() const { return this->first_compatible_idx([](const std::string&){return true;}); }
// Return index of the first visible preset. Certainly at least the '- default -' preset shall be visible.
// Return the first visible preset. Certainly at least the '- default -' preset shall be visible.
Preset& first_visible() { return this->preset(this->first_visible_idx()); }
const Preset& first_visible() const { return this->preset(this->first_visible_idx()); }
Preset& first_compatible() { return this->preset(this->first_compatible_idx()); }
template<typename PreferedCondition>
Preset& first_compatible(PreferedCondition prefered_condition) { return this->preset(this->first_compatible_idx(prefered_condition)); }
const Preset& first_compatible() const { return this->preset(this->first_compatible_idx()); }
// Return number of presets including the "- default -" preset.
size_t size() const { return m_presets.size(); }
bool has_defaults_only() const { return m_presets.size() <= m_num_default_presets; }
// For Print / Filament presets, disable those, which are not compatible with the printer.
template<typename PreferedCondition>
void update_compatible(const PresetWithVendorProfile &active_printer, const PresetWithVendorProfile *active_print, PresetSelectCompatibleType select_other_if_incompatible, PreferedCondition prefered_condition)
{
if (this->update_compatible_internal(active_printer, active_print, select_other_if_incompatible) == (size_t)-1)
// Find some other compatible preset, or the "-- default --" preset.
this->select_preset(this->first_compatible_idx(prefered_condition));
}
void update_compatible(const PresetWithVendorProfile &active_printer, const PresetWithVendorProfile *active_print, PresetSelectCompatibleType select_other_if_incompatible)
{ this->update_compatible(active_printer, active_print, select_other_if_incompatible, [](const std::string&){return true;}); }
size_t num_visible() const { return std::count_if(m_presets.begin(), m_presets.end(), [](const Preset &preset){return preset.is_visible;}); }
// Compare the content of get_selected_preset() with get_edited_preset() configs, return true if they differ.
bool current_is_dirty() const { return ! this->current_dirty_options().empty(); }
// Compare the content of get_selected_preset() with get_edited_preset() configs, return the list of keys where they differ.
std::vector<std::string> current_dirty_options(const bool deep_compare = false) const
{ return dirty_options(&this->get_edited_preset(), &this->get_selected_preset(), deep_compare); }
// Compare the content of get_selected_preset() with get_edited_preset() configs, return the list of keys where they differ.
std::vector<std::string> current_different_from_parent_options(const bool deep_compare = false) const
{ return dirty_options(&this->get_edited_preset(), this->get_selected_preset_parent(), deep_compare); }
// Return a sorted list of system preset names.
std::vector<std::string> system_preset_names() const;
// Update a dirty flag of the current preset
// Return true if the dirty flag changed.
bool update_dirty();
// Select a profile by its name. Return true if the selection changed.
// Without force, the selection is only updated if the index changes.
// With force, the changes are reverted if the new index is the same as the old index.
bool select_preset_by_name(const std::string &name, bool force);
// Generate a file path from a profile name. Add the ".ini" suffix if it is missing.
std::string path_from_name(const std::string &new_name) const;
size_t num_default_presets() { return m_num_default_presets; }
protected:
// Select a preset, if it exists. If it does not exist, select an invalid (-1) index.
// This is a temporary state, which shall be fixed immediately by the following step.
bool select_preset_by_name_strict(const std::string &name);
// Merge one vendor's presets with the other vendor's presets, report duplicates.
std::vector<std::string> merge_presets(PresetCollection &&other, const VendorMap &new_vendors);
// Update m_map_alias_to_profile_name from loaded system profiles.
void update_map_alias_to_profile_name();
// Update m_map_system_profile_renamed from loaded system profiles.
void update_map_system_profile_renamed();
private:
PresetCollection();
PresetCollection(const PresetCollection &other);
PresetCollection& operator=(const PresetCollection &other);
// Find a preset position in the sorted list of presets.
// The "-- default -- " preset is always the first, so it needs
// to be handled differently.
// If a preset does not exist, an iterator is returned indicating where to insert a preset with the same name.
std::deque<Preset>::iterator find_preset_internal(const std::string &name)
{
auto it = Slic3r::lower_bound_by_predicate(m_presets.begin() + m_num_default_presets, m_presets.end(), [&name](const auto& l) { return l.name < name; });
if (it == m_presets.end() || it->name != name) {
// Preset has not been not found in the sorted list of non-default presets. Try the defaults.
for (size_t i = 0; i < m_num_default_presets; ++ i)
if (m_presets[i].name == name) {
it = m_presets.begin() + i;
break;
}
}
return it;
}
std::deque<Preset>::const_iterator find_preset_internal(const std::string &name) const
{ return const_cast<PresetCollection*>(this)->find_preset_internal(name); }
std::deque<Preset>::iterator find_preset_renamed(const std::string &name) {
auto it_renamed = m_map_system_profile_renamed.find(name);
auto it = (it_renamed == m_map_system_profile_renamed.end()) ? m_presets.end() : this->find_preset_internal(it_renamed->second);
assert((it_renamed == m_map_system_profile_renamed.end()) || (it != m_presets.end() && it->name == it_renamed->second));
return it;
}
std::deque<Preset>::const_iterator find_preset_renamed(const std::string &name) const
{ return const_cast<PresetCollection*>(this)->find_preset_renamed(name); }
size_t update_compatible_internal(const PresetWithVendorProfile &active_printer, const PresetWithVendorProfile *active_print, PresetSelectCompatibleType unselect_if_incompatible);
static std::vector<std::string> dirty_options(const Preset *edited, const Preset *reference, const bool is_printer_type = false);
// Type of this PresetCollection: TYPE_PRINT, TYPE_FILAMENT or TYPE_PRINTER.
Preset::Type m_type;
// List of presets, starting with the "- default -" preset.
// Use deque to force the container to allocate an object per each entry,
// so that the addresses of the presets don't change during resizing of the container.
std::deque<Preset> m_presets;
// System profiles may have aliases. Map to the full profile name.
std::vector<std::pair<std::string, std::string>> m_map_alias_to_profile_name;
// Map from old system profile name to a current system profile name.
std::map<std::string, std::string> m_map_system_profile_renamed;
// Initially this preset contains a copy of the selected preset. Later on, this copy may be modified by the user.
Preset m_edited_preset;
// Selected preset.
size_t m_idx_selected;
// Is the "- default -" preset suppressed?
bool m_default_suppressed = true;
size_t m_num_default_presets = 0;
// Path to the directory to store the config files into.
std::string m_dir_path;
// to access select_preset_by_name_strict()
friend class PresetBundle;
};
// Printer supports the FFF and SLA technologies, with different set of configuration values,
// therefore this PresetCollection needs to handle two defaults.
class PrinterPresetCollection : public PresetCollection
{
public:
PrinterPresetCollection(Preset::Type type, const std::vector<std::string> &keys, const Slic3r::StaticPrintConfig &defaults, const std::string &default_name = "- default -") :
PresetCollection(type, keys, defaults, default_name) {}
const Preset& default_preset_for(const DynamicPrintConfig &config) const override;
const Preset* find_by_model_id(const std::string &model_id) const;
};
namespace PresetUtils {
// PrinterModel of a system profile, from which this preset is derived, or null if it is not derived from a system profile.
const VendorProfile::PrinterModel* system_printer_model(const Preset &preset);
#if ENABLE_GCODE_VIEWER
std::string system_printer_bed_model(const Preset& preset);
std::string system_printer_bed_texture(const Preset& preset);
#endif // ENABLE_GCODE_VIEWER
} // namespace PresetUtils
//////////////////////////////////////////////////////////////////////
class PhysicalPrinter
{
public:
PhysicalPrinter(const std::string& name, const DynamicPrintConfig &default_config) : name(name), config(default_config) {}
PhysicalPrinter(const std::string& name, const DynamicPrintConfig &default_config, const Preset& preset);
void set_name(const std::string &name);
// Name of the Physical Printer, usually derived form the file name.
std::string name;
// File name of the Physical Printer.
std::string file;
// Configuration data, loaded from a file, or set from the defaults.
DynamicPrintConfig config;
// set of presets used with this physical printer
std::set<std::string> preset_names;
// Has this profile been loaded?
bool loaded = false;
static std::string separator();
static const std::vector<std::string>& printer_options();
static const std::vector<std::string>& print_host_options();
static std::vector<std::string> presets_with_print_host_information(const PrinterPresetCollection& printer_presets);
static bool has_print_host_information(const DynamicPrintConfig& config);
const std::set<std::string>& get_preset_names() const;
bool has_empty_config() const;
void update_preset_names_in_config();
void save() { this->config.save(this->file); }
void save(const std::string& file_name_from, const std::string& file_name_to);
void update_from_preset(const Preset& preset);
void update_from_config(const DynamicPrintConfig &new_config);
// add preset to the preset_names
// return false, if preset with this name is already exist in the set
bool add_preset(const std::string& preset_name);
bool delete_preset(const std::string& preset_name);
void reset_presets();
// Return a printer technology, return ptFFF if the printer technology is not set.
static PrinterTechnology printer_technology(const DynamicPrintConfig& cfg) {
auto* opt = cfg.option<ConfigOptionEnum<PrinterTechnology>>("printer_technology");
// The following assert may trigger when importing some legacy profile,
// but it is safer to keep it here to capture the cases where the "printer_technology" key is queried, where it should not.
return (opt == nullptr) ? ptFFF : opt->value;
}
PrinterTechnology printer_technology() const { return printer_technology(this->config); }
// Sort lexicographically by a preset name. The preset name shall be unique across a single PresetCollection.
bool operator<(const PhysicalPrinter& other) const { return this->name < other.name; }
// get full printer name included a name of the preset
std::string get_full_name(std::string preset_name) const;
// get printer name from the full name uncluded preset name
static std::string get_short_name(std::string full_name);
// get preset name from the full name uncluded printer name
static std::string get_preset_name(std::string full_name);
protected:
friend class PhysicalPrinterCollection;
};
// ---------------------------------
// *** PhysicalPrinterCollection ***
// ---------------------------------
// Collections of physical printers
class PhysicalPrinterCollection
{
public:
PhysicalPrinterCollection(const std::vector<std::string>& keys);
~PhysicalPrinterCollection() {}
typedef std::deque<PhysicalPrinter>::iterator Iterator;
typedef std::deque<PhysicalPrinter>::const_iterator ConstIterator;
Iterator begin() { return m_printers.begin(); }
ConstIterator begin() const { return m_printers.cbegin(); }
ConstIterator cbegin() const { return m_printers.cbegin(); }
Iterator end() { return m_printers.end(); }
ConstIterator end() const { return m_printers.cend(); }
ConstIterator cend() const { return m_printers.cend(); }
bool empty() const {return m_printers.empty(); }
void reset(bool delete_files) {};
const std::deque<PhysicalPrinter>& operator()() const { return m_printers; }
// Load ini files of the particular type from the provided directory path.
void load_printers(const std::string& dir_path, const std::string& subdir);
void load_printers_from_presets(PrinterPresetCollection &printer_presets);
// Save the printer under a new name. If the name is different from the old one,
// a new printer is stored into the list of printers.
// New printer is activated.
void save_printer(PhysicalPrinter& printer, const std::string& renamed_from = "");
// Delete the current preset, activate the first visible preset.
// returns true if the preset was deleted successfully.
bool delete_printer(const std::string& name);
// Delete the selected preset
// returns true if the preset was deleted successfully.
bool delete_selected_printer();
// Delete preset_name preset from all printers:
// If there is last preset for the printer and first_check== false, then delete this printer
// returns true if all presets were deleted successfully.
bool delete_preset_from_printers(const std::string& preset_name);
// Get list of printers which have more than one preset and "preset_name" preset is one of them
std::vector<std::string> get_printers_with_preset( const std::string &preset_name);
// Get list of printers which has only "preset_name" preset
std::vector<std::string> get_printers_with_only_preset( const std::string &preset_name);
// Return the selected preset, without the user modifications applied.
PhysicalPrinter& get_selected_printer() { return m_printers[m_idx_selected]; }
const PhysicalPrinter& get_selected_printer() const { return m_printers[m_idx_selected]; }
size_t get_selected_idx() const { return m_idx_selected; }
// Returns the name of the selected preset, or an empty string if no preset is selected.
std::string get_selected_printer_name() const { return (m_idx_selected == size_t(-1)) ? std::string() : this->get_selected_printer().name; }
// Returns the config of the selected printer, or nullptr if no printer is selected.
DynamicPrintConfig* get_selected_printer_config() { return (m_idx_selected == size_t(-1)) ? nullptr : &(this->get_selected_printer().config); }
// Returns the config of the selected printer, or nullptr if no printer is selected.
PrinterTechnology get_selected_printer_technology() { return (m_idx_selected == size_t(-1)) ? PrinterTechnology::ptAny : this->get_selected_printer().printer_technology(); }
// Each physical printer can have a several related preset,
// so, use the next functions to get an exact names of selections in the list:
// Returns the full name of the selected printer, or an empty string if no preset is selected.
std::string get_selected_full_printer_name() const;
// Returns the printer model of the selected preset, or an empty string if no preset is selected.
std::string get_selected_printer_preset_name() const { return (m_idx_selected == size_t(-1)) ? std::string() : m_selected_preset; }
// Select printer by the full printer name, which contains name of printer, separator and name of selected preset
// If full_name doesn't contain name of selected preset, then select first preset in the list for this printer
void select_printer(const std::string& full_name);
void select_printer(const PhysicalPrinter& printer);
bool has_selection() const;
void unselect_printer() ;
bool is_selected(ConstIterator it, const std::string &preset_name) const;
// Return a printer by an index. If the printer is active, a temporary copy is returned.
PhysicalPrinter& printer(size_t idx) { return m_printers[idx]; }
const PhysicalPrinter& printer(size_t idx) const { return const_cast<PhysicalPrinterCollection*>(this)->printer(idx); }
// Return a preset by its name. If the preset is active, a temporary copy is returned.
// If a preset is not found by its name, null is returned.
PhysicalPrinter* find_printer(const std::string& name, bool first_visible_if_not_found = false);
const PhysicalPrinter* find_printer(const std::string& name, bool first_visible_if_not_found = false) const
{
return const_cast<PhysicalPrinterCollection*>(this)->find_printer(name, first_visible_if_not_found);
}
// Generate a file path from a profile name. Add the ".ini" suffix if it is missing.
std::string path_from_name(const std::string& new_name) const;
const DynamicPrintConfig& default_config() const { return m_default_config; }
private:
PhysicalPrinterCollection& operator=(const PhysicalPrinterCollection& other);
// Find a preset position in the sorted list of presets.
// The "-- default -- " preset is always the first, so it needs
// to be handled differently.
// If a preset does not exist, an iterator is returned indicating where to insert a preset with the same name.
std::deque<PhysicalPrinter>::iterator find_printer_internal(const std::string& name)
{
return Slic3r::lower_bound_by_predicate(m_printers.begin(), m_printers.end(), [&name](const auto& l) { return l.name < name; });
}
std::deque<PhysicalPrinter>::const_iterator find_printer_internal(const std::string& name) const
{
return const_cast<PhysicalPrinterCollection*>(this)->find_printer_internal(name);
}
PhysicalPrinter* find_printer_with_same_config( const DynamicPrintConfig &config);
// List of printers
// Use deque to force the container to allocate an object per each entry,
// so that the addresses of the presets don't change during resizing of the container.
std::deque<PhysicalPrinter> m_printers;
// Default config for a physical printer containing all key/value pairs of PhysicalPrinter::printer_options().
DynamicPrintConfig m_default_config;
// Selected printer.
size_t m_idx_selected = size_t(-1);
// The name of the preset which is currently select for this printer
std::string m_selected_preset;
// Path to the directory to store the config files into.
std::string m_dir_path;
};
} // namespace Slic3r
#endif /* slic3r_Preset_hpp_ */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,166 @@
#ifndef slic3r_PresetBundle_hpp_
#define slic3r_PresetBundle_hpp_
#include "Preset.hpp"
#include "AppConfig.hpp"
#include <memory>
#include <unordered_map>
#include <boost/filesystem/path.hpp>
namespace Slic3r {
// Bundle of Print + Filament + Printer presets.
class PresetBundle
{
public:
PresetBundle();
~PresetBundle();
// Remove all the presets but the "-- default --".
// Optionally remove all the files referenced by the presets from the user profile directory.
void reset(bool delete_files);
void setup_directories();
// Load ini files of all types (print, filament, printer) from Slic3r::data_dir() / presets.
// Load selections (current print, current filaments, current printer) from config.ini
// This is done just once on application start up.
void load_presets(AppConfig &config, const std::string &preferred_model_id = "");
// Export selections (current print, current filaments, current printer) into config.ini
void export_selections(AppConfig &config);
PresetCollection prints;
PresetCollection sla_prints;
PresetCollection filaments;
PresetCollection sla_materials;
PresetCollection& materials(PrinterTechnology pt) { return pt == ptFFF ? this->filaments : this->sla_materials; }
const PresetCollection& materials(PrinterTechnology pt) const { return pt == ptFFF ? this->filaments : this->sla_materials; }
PrinterPresetCollection printers;
PhysicalPrinterCollection physical_printers;
// Filament preset names for a multi-extruder or multi-material print.
// extruders.size() should be the same as printers.get_edited_preset().config.nozzle_diameter.size()
std::vector<std::string> filament_presets;
// The project configuration values are kept separated from the print/filament/printer preset,
// they are being serialized / deserialized from / to the .amf, .3mf, .config, .gcode,
// and they are being used by slicing core.
DynamicPrintConfig project_config;
// There will be an entry for each system profile loaded,
// and the system profiles will point to the VendorProfile instances owned by PresetBundle::vendors.
VendorMap vendors;
struct ObsoletePresets {
std::vector<std::string> prints;
std::vector<std::string> sla_prints;
std::vector<std::string> filaments;
std::vector<std::string> sla_materials;
std::vector<std::string> printers;
};
ObsoletePresets obsolete_presets;
bool has_defauls_only() const
{ return prints.has_defaults_only() && filaments.has_defaults_only() && printers.has_defaults_only(); }
DynamicPrintConfig full_config() const;
// full_config() with the "printhost_apikey" and "printhost_cafile" removed.
DynamicPrintConfig full_config_secure() const;
// Load user configuration and store it into the user profiles.
// This method is called by the configuration wizard.
void load_config(const std::string &name, DynamicPrintConfig config)
{ this->load_config_file_config(name, false, std::move(config)); }
// Load configuration that comes from a model file containing configuration, such as 3MF et al.
// This method is called by the Plater.
void load_config_model(const std::string &name, DynamicPrintConfig config)
{ this->load_config_file_config(name, true, std::move(config)); }
// Load an external config file containing the print, filament and printer presets.
// Instead of a config file, a G-code may be loaded containing the full set of parameters.
// In the future the configuration will likely be read from an AMF file as well.
// If the file is loaded successfully, its print / filament / printer profiles will be activated.
void load_config_file(const std::string &path);
// Load a config bundle file, into presets and store the loaded presets into separate files
// of the local configuration directory.
// Load settings into the provided settings instance.
// Activate the presets stored in the config bundle.
// Returns the number of presets loaded successfully.
enum {
// Save the profiles, which have been loaded.
LOAD_CFGBNDLE_SAVE = 1,
// Delete all old config profiles before loading.
LOAD_CFGBNDLE_RESET_USER_PROFILE = 2,
// Load a system config bundle.
LOAD_CFGBNDLE_SYSTEM = 4,
LOAD_CFGBUNDLE_VENDOR_ONLY = 8,
};
// Load the config bundle, store it to the user profile directory by default.
size_t load_configbundle(const std::string &path, unsigned int flags = LOAD_CFGBNDLE_SAVE);
// Export a config bundle file containing all the presets and the names of the active presets.
void export_configbundle(const std::string &path, bool export_system_settings = false);
// Enable / disable the "- default -" preset.
void set_default_suppressed(bool default_suppressed);
// Set the filament preset name. As the name could come from the UI selection box,
// an optional "(modified)" suffix will be removed from the filament name.
void set_filament_preset(size_t idx, const std::string &name);
// Read out the number of extruders from an active printer preset,
// update size and content of filament_presets.
void update_multi_material_filament_presets();
// Update the is_compatible flag of all print and filament presets depending on whether they are marked
// as compatible with the currently selected printer (and print in case of filament presets).
// Also updates the is_visible flag of each preset.
// If select_other_if_incompatible is true, then the print or filament preset is switched to some compatible
// preset if the current print or filament preset is not compatible.
void update_compatible(PresetSelectCompatibleType select_other_print_if_incompatible, PresetSelectCompatibleType select_other_filament_if_incompatible);
void update_compatible(PresetSelectCompatibleType select_other_if_incompatible) { this->update_compatible(select_other_if_incompatible, select_other_if_incompatible); }
// Set the is_visible flag for printer vendors, printer models and printer variants
// based on the user configuration.
// If the "vendor" section is missing, enable all models and variants of the particular vendor.
void load_installed_printers(const AppConfig &config);
const std::string& get_preset_name_by_alias(const Preset::Type& preset_type, const std::string& alias) const;
// Save current preset of a required type under a new name. If the name is different from the old one,
// Unselected option would be reverted to the beginning values
void save_changes_for_preset(const std::string& new_name, Preset::Type type, const std::vector<std::string>& unselected_options);
static const char *PRUSA_BUNDLE;
private:
std::string load_system_presets();
// Merge one vendor's presets with the other vendor's presets, report duplicates.
std::vector<std::string> merge_presets(PresetBundle &&other);
// Update renamed_from and alias maps of system profiles.
void update_system_maps();
// Set the is_visible flag for filaments and sla materials,
// apply defaults based on enabled printers when no filaments/materials are installed.
void load_installed_filaments(AppConfig &config);
void load_installed_sla_materials(AppConfig &config);
// Load selections (current print, current filaments, current printer) from config.ini
// This is done just once on application start up.
void load_selections(AppConfig &config, const std::string &preferred_model_id = "");
// Load print, filament & printer presets from a config. If it is an external config, then the name is extracted from the external path.
// and the external config is just referenced, not stored into user profile directory.
// If it is not an external config, then the config will be stored into the user profile directory.
void load_config_file_config(const std::string &name_or_path, bool is_external, DynamicPrintConfig &&config);
void load_config_file_config_bundle(const std::string &path, const boost::property_tree::ptree &tree);
DynamicPrintConfig full_fff_config() const;
DynamicPrintConfig full_sla_config() const;
};
} // namespace Slic3r
#endif /* slic3r_PresetBundle_hpp_ */

View file

@ -1,5 +1,6 @@
#include "clipper/clipper_z.hpp"
#include "Exception.hpp"
#include "Print.hpp"
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
@ -404,6 +405,7 @@ static inline void model_volume_list_copy_configs(ModelObject &model_object_dst,
mv_dst.name = mv_src.name;
static_cast<DynamicPrintConfig&>(mv_dst.config) = static_cast<const DynamicPrintConfig&>(mv_src.config);
mv_dst.m_supported_facets = mv_src.m_supported_facets;
mv_dst.m_seam_facets = mv_src.m_seam_facets;
//FIXME what to do with the materials?
// mv_dst.m_material_id = mv_src.m_material_id;
++ i_src;
@ -867,6 +869,9 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
model_volume_list_update_supports(model_object, model_object_new);
}
}
if (model_custom_seam_data_changed(model_object, model_object_new)) {
update_apply_status(this->invalidate_step(psGCodeExport));
}
if (! model_parts_differ && ! modifiers_differ) {
// Synchronize Object's config.
bool object_config_changed = model_object.config != model_object_new.config;
@ -1504,7 +1509,7 @@ BoundingBox Print::total_bounding_box() const
double Print::skirt_first_layer_height() const
{
if (m_objects.empty())
throw std::invalid_argument("skirt_first_layer_height() can't be called without PrintObjects");
throw Slic3r::InvalidArgument("skirt_first_layer_height() can't be called without PrintObjects");
return m_objects.front()->config().get_abs_value("first_layer_height");
}
@ -1580,7 +1585,7 @@ void Print::auto_assign_extruders(ModelObject* model_object) const
// Slicing process, running at a background thread.
void Print::process()
{
BOOST_LOG_TRIVIAL(info) << "Staring the slicing process." << log_memory_info();
BOOST_LOG_TRIVIAL(info) << "Starting the slicing process." << log_memory_info();
for (PrintObject *obj : m_objects)
obj->make_perimeters();
this->set_status(70, L("Infilling layers"));
@ -1600,7 +1605,7 @@ void Print::process()
// Initialize the tool ordering, so it could be used by the G-code preview slider for planning tool changes and filament switches.
m_tool_ordering = ToolOrdering(*this, -1, false);
if (m_tool_ordering.empty() || m_tool_ordering.last_extruder() == unsigned(-1))
throw std::runtime_error("The print is empty. The model is not printable with current print settings.");
throw Slic3r::SlicingError("The print is empty. The model is not printable with current print settings.");
}
this->set_done(psWipeTower);
}
@ -1633,13 +1638,21 @@ void Print::process()
// The export_gcode may die for various reasons (fails to process output_filename_format,
// write error into the G-code, cannot execute post-processing scripts).
// It is up to the caller to show an error message.
#if ENABLE_GCODE_VIEWER
std::string Print::export_gcode(const std::string& path_template, GCodeProcessor::Result* result, ThumbnailsGeneratorCallback thumbnail_cb)
#else
std::string Print::export_gcode(const std::string& path_template, GCodePreviewData* preview_data, ThumbnailsGeneratorCallback thumbnail_cb)
#endif // ENABLE_GCODE_VIEWER
{
// output everything to a G-code file
// The following call may die if the output_filename_format template substitution fails.
std::string path = this->output_filepath(path_template);
std::string message;
#if ENABLE_GCODE_VIEWER
if (!path.empty() && result == nullptr) {
#else
if (! path.empty() && preview_data == nullptr) {
#endif // ENABLE_GCODE_VIEWER
// Only show the path if preview_data is not set -> running from command line.
message = L("Exporting G-code");
message += " to ";
@ -1650,7 +1663,11 @@ std::string Print::export_gcode(const std::string& path_template, GCodePreviewDa
// The following line may die for multiple reasons.
GCode gcode;
#if ENABLE_GCODE_VIEWER
gcode.do_export(this, path.c_str(), result, thumbnail_cb);
#else
gcode.do_export(this, path.c_str(), preview_data, thumbnail_cb);
#endif // ENABLE_GCODE_VIEWER
return path.c_str();
}
@ -2181,16 +2198,16 @@ DynamicConfig PrintStatistics::config() const
DynamicConfig config;
std::string normal_print_time = short_time(this->estimated_normal_print_time);
std::string silent_print_time = short_time(this->estimated_silent_print_time);
config.set_key_value("print_time", new ConfigOptionString(normal_print_time));
config.set_key_value("normal_print_time", new ConfigOptionString(normal_print_time));
config.set_key_value("silent_print_time", new ConfigOptionString(silent_print_time));
config.set_key_value("used_filament", new ConfigOptionFloat (this->total_used_filament / 1000.));
config.set_key_value("extruded_volume", new ConfigOptionFloat (this->total_extruded_volume));
config.set_key_value("total_cost", new ConfigOptionFloat (this->total_cost));
config.set_key_value("print_time", new ConfigOptionString(normal_print_time));
config.set_key_value("normal_print_time", new ConfigOptionString(normal_print_time));
config.set_key_value("silent_print_time", new ConfigOptionString(silent_print_time));
config.set_key_value("used_filament", new ConfigOptionFloat(this->total_used_filament / 1000.));
config.set_key_value("extruded_volume", new ConfigOptionFloat(this->total_extruded_volume));
config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost));
config.set_key_value("total_toolchanges", new ConfigOptionInt(this->total_toolchanges));
config.set_key_value("total_weight", new ConfigOptionFloat (this->total_weight));
config.set_key_value("total_wipe_tower_cost", new ConfigOptionFloat (this->total_wipe_tower_cost));
config.set_key_value("total_wipe_tower_filament", new ConfigOptionFloat (this->total_wipe_tower_filament));
config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight));
config.set_key_value("total_wipe_tower_cost", new ConfigOptionFloat(this->total_wipe_tower_cost));
config.set_key_value("total_wipe_tower_filament", new ConfigOptionFloat(this->total_wipe_tower_filament));
return config;
}

View file

@ -11,6 +11,9 @@
#include "GCode/ToolOrdering.hpp"
#include "GCode/WipeTower.hpp"
#include "GCode/ThumbnailData.hpp"
#if ENABLE_GCODE_VIEWER
#include "GCode/GCodeProcessor.hpp"
#endif // ENABLE_GCODE_VIEWER
#include "libslic3r.h"
@ -20,11 +23,17 @@ class Print;
class PrintObject;
class ModelObject;
class GCode;
#if !ENABLE_GCODE_VIEWER
class GCodePreviewData;
#endif // !ENABLE_GCODE_VIEWER
enum class SlicingMode : uint32_t;
class Layer;
class SupportLayer;
namespace FillAdaptive_Internal {
struct Octree;
};
// Print step IDs for keeping track of the print state.
enum PrintStep {
psSkirt,
@ -186,10 +195,8 @@ public:
std::vector<ExPolygons> slice_support_blockers() const { return this->slice_support_volumes(ModelVolumeType::SUPPORT_BLOCKER); }
std::vector<ExPolygons> slice_support_enforcers() const { return this->slice_support_volumes(ModelVolumeType::SUPPORT_ENFORCER); }
// Helpers to project custom supports on slices
void project_and_append_custom_supports(FacetSupportType type, std::vector<ExPolygons>& expolys) const;
void project_and_append_custom_enforcers(std::vector<ExPolygons>& enforcers) const { project_and_append_custom_supports(FacetSupportType::ENFORCER, enforcers); }
void project_and_append_custom_blockers(std::vector<ExPolygons>& blockers) const { project_and_append_custom_supports(FacetSupportType::BLOCKER, blockers); }
// Helpers to project custom facets on slices
void project_and_append_custom_facets(bool seam, EnforcerBlockerType type, std::vector<ExPolygons>& expolys) const;
private:
// to be called from Print only.
@ -232,6 +239,7 @@ private:
void discover_horizontal_shells();
void combine_infill();
void _generate_support_material();
std::pair<std::unique_ptr<FillAdaptive_Internal::Octree>, std::unique_ptr<FillAdaptive_Internal::Octree>> prepare_adaptive_infill_data();
// XYZ in scaled coordinates
Vec3crd m_size;
@ -300,8 +308,10 @@ struct PrintStatistics
PrintStatistics() { clear(); }
std::string estimated_normal_print_time;
std::string estimated_silent_print_time;
#if !ENABLE_GCODE_VIEWER
std::vector<std::pair<CustomGCode::Type, std::string>> estimated_normal_custom_gcode_print_times;
std::vector<std::pair<CustomGCode::Type, std::string>> estimated_silent_custom_gcode_print_times;
#endif // !ENABLE_GCODE_VIEWER
double total_used_filament;
double total_extruded_volume;
double total_cost;
@ -319,10 +329,12 @@ struct PrintStatistics
std::string finalize_output_path(const std::string &path_in) const;
void clear() {
#if !ENABLE_GCODE_VIEWER
estimated_normal_print_time.clear();
estimated_silent_print_time.clear();
estimated_normal_custom_gcode_print_times.clear();
estimated_silent_custom_gcode_print_times.clear();
#endif // !ENABLE_GCODE_VIEWER
total_used_filament = 0.;
total_extruded_volume = 0.;
total_cost = 0.;
@ -362,7 +374,11 @@ public:
void process() override;
// Exports G-code into a file name based on the path_template, returns the file path of the generated G-code file.
// If preview_data is not null, the preview_data is filled in for the G-code visualization (not used by the command line Slic3r).
#if ENABLE_GCODE_VIEWER
std::string export_gcode(const std::string& path_template, GCodeProcessor::Result* result, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
#else
std::string export_gcode(const std::string& path_template, GCodePreviewData* preview_data, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
#endif // ENABLE_GCODE_VIEWER
// methods for handling state
bool is_step_done(PrintStep step) const { return Inherited::is_step_done(step); }
@ -399,7 +415,7 @@ public:
// in the notification center.
const PrintObject* get_object(ObjectID object_id) const {
auto it = std::find_if(m_objects.begin(), m_objects.end(),
[object_id](const PrintObject *obj) { return *static_cast<const ObjectID*>(obj) == object_id; });
[object_id](const PrintObject *obj) { return obj->id() == object_id; });
return (it == m_objects.end()) ? nullptr : *it;
}
const PrintRegionPtrs& regions() const { return m_regions; }
@ -417,6 +433,7 @@ public:
const Polygon& first_layer_convex_hull() const { return m_first_layer_convex_hull; }
const PrintStatistics& print_statistics() const { return m_print_statistics; }
PrintStatistics& print_statistics() { return m_print_statistics; }
// Wipe tower support.
bool has_wipe_tower() const;

View file

@ -1,3 +1,4 @@
#include "Exception.hpp"
#include "PrintBase.hpp"
#include <boost/filesystem.hpp>
@ -68,7 +69,7 @@ std::string PrintBase::output_filename(const std::string &format, const std::str
filename = boost::filesystem::change_extension(filename, default_ext);
return filename.string();
} catch (std::runtime_error &err) {
throw std::runtime_error(L("Failed processing of the output_filename_format template.") + "\n" + err.what());
throw Slic3r::RuntimeError(L("Failed processing of the output_filename_format template.") + "\n" + err.what());
}
}
@ -93,7 +94,7 @@ void PrintBase::status_update_warnings(ObjectID object_id, int step, PrintStateB
if (this->m_status_callback)
m_status_callback(SlicingStatus(*this, step));
else if (! message.empty())
printf("%s warning: %s\n", (object_id == ObjectID(*this)) ? "print" : "print object", message.c_str());
printf("%s warning: %s\n", (object_id == this->id()) ? "print" : "print object", message.c_str());
}
tbb::mutex& PrintObjectBase::state_mutex(PrintBase *print)
@ -108,7 +109,7 @@ std::function<void()> PrintObjectBase::cancel_callback(PrintBase *print)
void PrintObjectBase::status_update_warnings(PrintBase *print, int step, PrintStateBase::WarningLevel warning_level, const std::string &message)
{
print->status_update_warnings(*this, step, warning_level, message);
print->status_update_warnings(this->id(), step, warning_level, message);
}
} // namespace Slic3r

View file

@ -304,7 +304,7 @@ private:
class PrintBase;
class PrintObjectBase : public ObjectID
class PrintObjectBase : public ObjectBase
{
public:
const ModelObject* model_object() const { return m_model_object; }
@ -335,7 +335,7 @@ protected:
* The PrintBase class will abstract this flow for different technologies.
*
*/
class PrintBase : public ObjectID
class PrintBase : public ObjectBase
{
public:
PrintBase() : m_placeholder_parser(&m_full_print_config) { this->restart(); }
@ -386,9 +386,9 @@ public:
struct SlicingStatus {
SlicingStatus(int percent, const std::string &text, unsigned int flags = 0) : percent(percent), text(text), flags(flags) {}
SlicingStatus(const PrintBase &print, int warning_step) :
flags(UPDATE_PRINT_STEP_WARNINGS), warning_object_id(print), warning_step(warning_step) {}
flags(UPDATE_PRINT_STEP_WARNINGS), warning_object_id(print.id()), warning_step(warning_step) {}
SlicingStatus(const PrintObjectBase &print_object, int warning_step) :
flags(UPDATE_PRINT_OBJECT_STEP_WARNINGS), warning_object_id(print_object), warning_step(warning_step) {}
flags(UPDATE_PRINT_OBJECT_STEP_WARNINGS), warning_object_id(print_object.id()), warning_step(warning_step) {}
int percent { -1 };
std::string text;
// Bitmap of flags.
@ -507,9 +507,9 @@ protected:
bool set_started(PrintStepEnum step) { return m_state.set_started(step, this->state_mutex(), [this](){ this->throw_if_canceled(); }); }
PrintStateBase::TimeStamp set_done(PrintStepEnum step) {
std::pair<PrintStateBase::TimeStamp, bool> status = m_state.set_done(step, this->state_mutex(), [this](){ this->throw_if_canceled(); });
if (status.second)
this->status_update_warnings(*this, static_cast<int>(step), PrintStateBase::WarningLevel::NON_CRITICAL, std::string());
return status.first;
if (status.second)
this->status_update_warnings(this->id(), static_cast<int>(step), PrintStateBase::WarningLevel::NON_CRITICAL, std::string());
return status.first;
}
bool invalidate_step(PrintStepEnum step)
{ return m_state.invalidate(step, this->cancel_callback()); }
@ -530,7 +530,7 @@ protected:
std::pair<PrintStepEnum, bool> active_step = m_state.active_step_add_warning(warning_level, message, message_id, this->state_mutex());
if (active_step.second)
// Update UI.
this->status_update_warnings(*this, static_cast<int>(active_step.first), warning_level, message);
this->status_update_warnings(this->id(), static_cast<int>(active_step.first), warning_level, message);
}
private:
@ -556,9 +556,9 @@ protected:
{ return m_state.set_started(step, PrintObjectBase::state_mutex(m_print), [this](){ this->throw_if_canceled(); }); }
PrintStateBase::TimeStamp set_done(PrintObjectStepEnum step) {
std::pair<PrintStateBase::TimeStamp, bool> status = m_state.set_done(step, PrintObjectBase::state_mutex(m_print), [this](){ this->throw_if_canceled(); });
if (status.second)
this->status_update_warnings(m_print, static_cast<int>(step), PrintStateBase::WarningLevel::NON_CRITICAL, std::string());
return status.first;
if (status.second)
this->status_update_warnings(m_print, static_cast<int>(step), PrintStateBase::WarningLevel::NON_CRITICAL, std::string());
return status.first;
}
bool invalidate_step(PrintObjectStepEnum step)

View file

@ -130,6 +130,37 @@ void PrintConfigDef::init_common_params()
def->min = 0;
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloat(0.2));
// Options used by physical printers
def = this->add("printhost_user", coString);
def->label = L("User");
// def->tooltip = L("");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionString(""));
def = this->add("printhost_password", coString);
def->label = L("Password");
// def->tooltip = L("");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionString(""));
def = this->add("preset_name", coString);
def->label = L("Printer preset name");
def->tooltip = L("Related printer preset name");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionString(""));
def = this->add("printhost_authorization_type", coEnum);
def->label = L("Authorization Type");
// def->tooltip = L("");
def->enum_keys_map = &ConfigOptionEnum<AuthorizationType>::get_enum_values();
def->enum_values.push_back("key");
def->enum_values.push_back("user");
def->enum_labels.push_back("KeyPassword");
def->enum_labels.push_back("UserPassword");
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionEnum<AuthorizationType>(atKeyPassword));
}
void PrintConfigDef::init_fff_params()
@ -850,6 +881,8 @@ void PrintConfigDef::init_fff_params()
def->enum_values.push_back("hilbertcurve");
def->enum_values.push_back("archimedeanchords");
def->enum_values.push_back("octagramspiral");
def->enum_values.push_back("adaptivecubic");
def->enum_values.push_back("supportcubic");
def->enum_labels.push_back(L("Rectilinear"));
def->enum_labels.push_back(L("Grid"));
def->enum_labels.push_back(L("Triangles"));
@ -863,6 +896,8 @@ void PrintConfigDef::init_fff_params()
def->enum_labels.push_back(L("Hilbert Curve"));
def->enum_labels.push_back(L("Archimedean Chords"));
def->enum_labels.push_back(L("Octagram Spiral"));
def->enum_labels.push_back(L("Adaptive Cubic"));
def->enum_labels.push_back(L("Support Cubic"));
def->set_default_value(new ConfigOptionEnum<InfillPattern>(ipStars));
def = this->add("first_layer_acceleration", coFloat);
@ -1101,6 +1136,7 @@ void PrintConfigDef::init_fff_params()
def = this->add("ironing_type", coEnum);
def->label = L("Ironing Type");
def->category = L("Ironing");
def->tooltip = L("Ironing Type");
def->enum_keys_map = &ConfigOptionEnum<IroningType>::get_enum_values();
def->enum_values.push_back("top");
@ -1124,7 +1160,8 @@ void PrintConfigDef::init_fff_params()
def = this->add("ironing_spacing", coFloat);
def->label = L("Spacing between ironing passes");
def->tooltip = L("Distance between ironing lins");
def->category = L("Ironing");
def->tooltip = L("Distance between ironing lines");
def->sidetext = L("mm");
def->min = 0;
def->mode = comExpert;
@ -2715,7 +2752,7 @@ void PrintConfigDef::init_sla_params()
def->set_default_value(new ConfigOptionBool(true));
def = this->add("support_head_front_diameter", coFloat);
def->label = L("Support head front diameter");
def->label = L("Pinhead front diameter");
def->category = L("Supports");
def->tooltip = L("Diameter of the pointing side of the head");
def->sidetext = L("mm");
@ -2724,7 +2761,7 @@ void PrintConfigDef::init_sla_params()
def->set_default_value(new ConfigOptionFloat(0.4));
def = this->add("support_head_penetration", coFloat);
def->label = L("Support head penetration");
def->label = L("Head penetration");
def->category = L("Supports");
def->tooltip = L("How much the pinhead has to penetrate the model surface");
def->sidetext = L("mm");
@ -2733,7 +2770,7 @@ void PrintConfigDef::init_sla_params()
def->set_default_value(new ConfigOptionFloat(0.2));
def = this->add("support_head_width", coFloat);
def->label = L("Support head width");
def->label = L("Pinhead width");
def->category = L("Supports");
def->tooltip = L("Width from the back sphere center to the front sphere center");
def->sidetext = L("mm");
@ -2743,7 +2780,7 @@ void PrintConfigDef::init_sla_params()
def->set_default_value(new ConfigOptionFloat(1.0));
def = this->add("support_pillar_diameter", coFloat);
def->label = L("Support pillar diameter");
def->label = L("Pillar diameter");
def->category = L("Supports");
def->tooltip = L("Diameter in mm of the support pillars");
def->sidetext = L("mm");
@ -2751,6 +2788,17 @@ void PrintConfigDef::init_sla_params()
def->max = 15;
def->mode = comSimple;
def->set_default_value(new ConfigOptionFloat(1.0));
def = this->add("support_small_pillar_diameter_percent", coPercent);
def->label = L("Small pillar diameter percent");
def->category = L("Supports");
def->tooltip = L("The percentage of smaller pillars compared to the normal pillar diameter "
"which are used in problematic areas where a normal pilla cannot fit.");
def->sidetext = L("%");
def->min = 1;
def->max = 100;
def->mode = comExpert;
def->set_default_value(new ConfigOptionPercent(50));
def = this->add("support_max_bridges_on_pillar", coInt);
def->label = L("Max bridges on a pillar");
@ -2763,7 +2811,7 @@ void PrintConfigDef::init_sla_params()
def->set_default_value(new ConfigOptionInt(3));
def = this->add("support_pillar_connection_mode", coEnum);
def->label = L("Support pillar connection mode");
def->label = L("Pillar connection mode");
def->tooltip = L("Controls the bridge type between two neighboring pillars."
" Can be zig-zag, cross (double zig-zag) or dynamic which"
" will automatically switch between the first two depending"
@ -3489,6 +3537,12 @@ CLIActionsConfigDef::CLIActionsConfigDef()
def->cli = "export-gcode|gcode|g";
def->set_default_value(new ConfigOptionBool(false));
def = this->add("gcodeviewer", coBool);
def->label = L("G-code viewer");
def->tooltip = L("Visualize an already sliced and saved G-code");
def->cli = "gcodeviewer";
def->set_default_value(new ConfigOptionBool(false));
def = this->add("slice", coBool);
def->label = L("Slice");
def->tooltip = L("Slice the model as FFF or SLA based on the printer_technology configuration value.");

View file

@ -33,9 +33,13 @@ enum PrintHostType {
htOctoPrint, htDuet, htFlashAir, htAstroBox
};
enum AuthorizationType {
atKeyPassword, atUserPassword
};
enum InfillPattern : int {
ipRectilinear, ipMonotonous, ipGrid, ipTriangles, ipStars, ipCubic, ipLine, ipConcentric, ipHoneycomb, ip3DHoneycomb,
ipGyroid, ipHilbertCurve, ipArchimedeanChords, ipOctagramSpiral, ipCount,
ipGyroid, ipHilbertCurve, ipArchimedeanChords, ipOctagramSpiral, ipAdaptiveCubic, ipSupportCubic, ipCount,
};
enum class IroningType {
@ -110,6 +114,15 @@ template<> inline const t_config_enum_values& ConfigOptionEnum<PrintHostType>::g
return keys_map;
}
template<> inline const t_config_enum_values& ConfigOptionEnum<AuthorizationType>::get_enum_values() {
static t_config_enum_values keys_map;
if (keys_map.empty()) {
keys_map["key"] = atKeyPassword;
keys_map["user"] = atUserPassword;
}
return keys_map;
}
template<> inline const t_config_enum_values& ConfigOptionEnum<InfillPattern>::get_enum_values() {
static t_config_enum_values keys_map;
if (keys_map.empty()) {
@ -127,6 +140,8 @@ template<> inline const t_config_enum_values& ConfigOptionEnum<InfillPattern>::g
keys_map["hilbertcurve"] = ipHilbertCurve;
keys_map["archimedeanchords"] = ipArchimedeanChords;
keys_map["octagramspiral"] = ipOctagramSpiral;
keys_map["adaptivecubic"] = ipAdaptiveCubic;
keys_map["supportcubic"] = ipSupportCubic;
}
return keys_map;
}
@ -227,9 +242,13 @@ class DynamicPrintConfig : public DynamicConfig
public:
DynamicPrintConfig() {}
DynamicPrintConfig(const DynamicPrintConfig &rhs) : DynamicConfig(rhs) {}
DynamicPrintConfig(DynamicPrintConfig &&rhs) noexcept : DynamicConfig(std::move(rhs)) {}
explicit DynamicPrintConfig(const StaticPrintConfig &rhs);
explicit DynamicPrintConfig(const ConfigBase &rhs) : DynamicConfig(rhs) {}
DynamicPrintConfig& operator=(const DynamicPrintConfig &rhs) { DynamicConfig::operator=(rhs); return *this; }
DynamicPrintConfig& operator=(DynamicPrintConfig &&rhs) noexcept { DynamicConfig::operator=(std::move(rhs)); return *this; }
static DynamicPrintConfig full_print_config();
static DynamicPrintConfig* new_from_defaults_keys(const std::vector<std::string> &keys);
@ -1019,6 +1038,10 @@ public:
// Radius in mm of the support pillars.
ConfigOptionFloat support_pillar_diameter /*= 0.8*/;
// The percentage of smaller pillars compared to the normal pillar diameter
// which are used in problematic areas where a normal pilla cannot fit.
ConfigOptionPercent support_small_pillar_diameter_percent;
// How much bridge (supporting another pinhead) can be placed on a pillar.
ConfigOptionInt support_max_bridges_on_pillar;
@ -1143,6 +1166,7 @@ protected:
OPT_PTR(support_head_penetration);
OPT_PTR(support_head_width);
OPT_PTR(support_pillar_diameter);
OPT_PTR(support_small_pillar_diameter_percent);
OPT_PTR(support_max_bridges_on_pillar);
OPT_PTR(support_pillar_connection_mode);
OPT_PTR(support_buildplate_only);

View file

@ -1,3 +1,4 @@
#include "Exception.hpp"
#include "Print.hpp"
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
@ -9,6 +10,9 @@
#include "Surface.hpp"
#include "Slicing.hpp"
#include "Utils.hpp"
#include "AABBTreeIndirect.hpp"
#include "Fill/FillAdaptive.hpp"
#include "Format/STL.hpp"
#include <utility>
#include <boost/log/trivial.hpp>
@ -135,7 +139,7 @@ void PrintObject::slice()
}
});
if (m_layers.empty())
throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
throw Slic3r::SlicingError("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
this->set_done(posSlice);
}
@ -369,13 +373,15 @@ void PrintObject::infill()
this->prepare_infill();
if (this->set_started(posInfill)) {
auto [adaptive_fill_octree, support_fill_octree] = this->prepare_adaptive_infill_data();
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
[this, &adaptive_fill_octree = adaptive_fill_octree, &support_fill_octree = support_fill_octree](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_fills();
m_layers[layer_idx]->make_fills(adaptive_fill_octree.get(), support_fill_octree.get());
}
}
);
@ -421,13 +427,83 @@ void PrintObject::generate_support_material()
// therefore they cannot be printed without supports.
for (const Layer *layer : m_layers)
if (layer->empty())
throw std::runtime_error("Levitating objects cannot be printed without supports.");
throw Slic3r::SlicingError("Levitating objects cannot be printed without supports.");
#endif
}
this->set_done(posSupportMaterial);
}
}
//#define ADAPTIVE_SUPPORT_SIMPLE
std::pair<std::unique_ptr<FillAdaptive_Internal::Octree>, std::unique_ptr<FillAdaptive_Internal::Octree>> PrintObject::prepare_adaptive_infill_data()
{
using namespace FillAdaptive_Internal;
auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this);
std::unique_ptr<Octree> adaptive_fill_octree = {}, support_fill_octree = {};
if (adaptive_line_spacing == 0. && support_line_spacing == 0.)
return std::make_pair(std::move(adaptive_fill_octree), std::move(support_fill_octree));
TriangleMesh mesh = this->model_object()->raw_mesh();
mesh.transform(m_trafo, true);
// Apply XY shift
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// Center of the first cube in octree
Vec3d mesh_origin = mesh.bounding_box().center();
#ifdef ADAPTIVE_SUPPORT_SIMPLE
if (mesh.its.vertices.empty())
{
mesh.require_shared_vertices();
}
Vec3f vertical(0, 0, 1);
indexed_triangle_set its_set;
its_set.vertices = mesh.its.vertices;
// Filter out non overhanging faces
for (size_t i = 0; i < mesh.its.indices.size(); ++i) {
stl_triangle_vertex_indices vertex_idx = mesh.its.indices[i];
auto its_calculate_normal = [](const stl_triangle_vertex_indices &index, const std::vector<stl_vertex> &vertices) {
stl_normal normal = (vertices[index.y()] - vertices[index.x()]).cross(vertices[index.z()] - vertices[index.x()]);
return normal;
};
stl_normal normal = its_calculate_normal(vertex_idx, mesh.its.vertices);
stl_normalize_vector(normal);
if(normal.dot(vertical) >= 0.707) {
its_set.indices.push_back(vertex_idx);
}
}
mesh = TriangleMesh(its_set);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
Slic3r::store_stl(debug_out_path("overhangs.stl").c_str(), &mesh, false);
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#endif /* ADAPTIVE_SUPPORT_SIMPLE */
Vec3d rotation = Vec3d((5.0 * M_PI) / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0);
Transform3d rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, Vec3d::Ones(), Vec3d::Ones()).inverse();
if (adaptive_line_spacing != 0.) {
// Rotate mesh and build octree on it with axis-aligned (standart base) cubes
mesh.transform(rotation_matrix);
adaptive_fill_octree = FillAdaptive::build_octree(mesh, adaptive_line_spacing, rotation_matrix * mesh_origin);
}
if (support_line_spacing != 0.)
support_fill_octree = FillSupportCubic::build_octree(mesh, support_line_spacing, rotation_matrix * mesh_origin, rotation_matrix);
return std::make_pair(std::move(adaptive_fill_octree), std::move(support_fill_octree));
}
void PrintObject::clear_layers()
{
for (Layer *l : m_layers)
@ -2669,18 +2745,20 @@ void PrintObject::_generate_support_material()
}
void PrintObject::project_and_append_custom_supports(
FacetSupportType type, std::vector<ExPolygons>& expolys) const
void PrintObject::project_and_append_custom_facets(
bool seam, EnforcerBlockerType type, std::vector<ExPolygons>& expolys) const
{
for (const ModelVolume* mv : this->model_object()->volumes) {
const std::vector<int> custom_facets = mv->m_supported_facets.get_facets(type);
if (custom_facets.empty())
const indexed_triangle_set custom_facets = seam
? mv->m_seam_facets.get_facets(*mv, type)
: mv->m_supported_facets.get_facets(*mv, type);
if (! mv->is_model_part() || custom_facets.indices.empty())
continue;
const TriangleMesh& mesh = mv->mesh();
const Transform3f& tr1 = mv->get_matrix().cast<float>();
const Transform3f& tr2 = this->trafo().cast<float>();
const Transform3f tr = tr2 * tr1;
const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f);
// The projection will be at most a pentagon. Let's minimize heap
@ -2705,11 +2783,11 @@ void PrintObject::project_and_append_custom_supports(
};
// Vector to collect resulting projections from each triangle.
std::vector<TriangleProjections> projections_of_triangles(custom_facets.size());
std::vector<TriangleProjections> projections_of_triangles(custom_facets.indices.size());
// Iterate over all triangles.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, custom_facets.size()),
tbb::blocked_range<size_t>(0, custom_facets.indices.size()),
[&](const tbb::blocked_range<size_t>& range) {
for (size_t idx = range.begin(); idx < range.end(); ++ idx) {
@ -2717,10 +2795,11 @@ void PrintObject::project_and_append_custom_supports(
// Transform the triangle into worlds coords.
for (int i=0; i<3; ++i)
facet[i] = tr * mesh.its.vertices[mesh.its.indices[custom_facets[idx]](i)];
facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)];
// Ignore triangles with upward-pointing normal.
if ((facet[1]-facet[0]).cross(facet[2]-facet[0]).z() > 0.)
// Ignore triangles with upward-pointing normal. Don't forget about mirroring.
float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z();
if (! seam && tr_det_sign * z_comp > 0.)
continue;
// Sort the three vertices according to z-coordinate.
@ -2732,7 +2811,7 @@ void PrintObject::project_and_append_custom_supports(
std::array<Vec2f, 3> trianglef;
for (int i=0; i<3; ++i) {
trianglef[i] = Vec2f(facet[i].x(), facet[i].y());
trianglef[i] += Vec2f(unscale<float>(this->center_offset().x()),
trianglef[i] -= Vec2f(unscale<float>(this->center_offset().x()),
unscale<float>(this->center_offset().y()));
}
@ -2822,8 +2901,9 @@ void PrintObject::project_and_append_custom_supports(
// Now append the collected polygons to respective layers.
for (auto& trg : projections_of_triangles) {
int layer_id = trg.first_layer_id;
for (const LightPolygon& poly : trg.polygons) {
if (layer_id >= int(expolys.size()))
break; // part of triangle could be projected above top layer
expolys[layer_id].emplace_back(std::move(poly.pts));
++layer_id;
}

View file

@ -1,3 +1,4 @@
#include "Exception.hpp"
#include "Print.hpp"
namespace Slic3r {
@ -13,7 +14,7 @@ unsigned int PrintRegion::extruder(FlowRole role) const
else if (role == frSolidInfill || role == frTopSolidInfill)
extruder = m_config.solid_infill_extruder;
else
throw std::invalid_argument("Unknown role");
throw Slic3r::InvalidArgument("Unknown role");
return extruder;
}
@ -40,7 +41,7 @@ Flow PrintRegion::flow(FlowRole role, double layer_height, bool bridge, bool fir
} else if (role == frTopSolidInfill) {
config_width = m_config.top_infill_extrusion_width;
} else {
throw std::invalid_argument("Unknown role");
throw Slic3r::InvalidArgument("Unknown role");
}
}

View file

@ -128,12 +128,13 @@ protected:
}
public:
template<class GammaFn> AGGRaster(const Resolution &res,
template<class GammaFn>
AGGRaster(const Resolution &res,
const PixelDim & pd,
const Trafo & trafo,
const TColor & foreground,
const TColor & background,
GammaFn && gammafn)
const TColor & foreground,
const TColor & background,
GammaFn && gammafn)
: m_resolution(res)
, m_pxdim_scaled(SCALING_FACTOR / pd.w_mm, SCALING_FACTOR / pd.h_mm)
, m_buf(res.pixels())

View file

@ -1,7 +1,9 @@
#ifndef SLA_BOOSTADAPTER_HPP
#define SLA_BOOSTADAPTER_HPP
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <boost/geometry.hpp>
namespace boost {

View file

@ -0,0 +1,152 @@
#include "Clustering.hpp"
#include "boost/geometry/index/rtree.hpp"
#include <libslic3r/SLA/SpatIndex.hpp>
#include <libslic3r/SLA/BoostAdapter.hpp>
namespace Slic3r { namespace sla {
namespace bgi = boost::geometry::index;
using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >;
namespace {
bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2)
{
return e1.second < e2.second;
};
ClusteredPoints cluster(Index3D &sindex,
unsigned max_points,
std::function<std::vector<PointIndexEl>(
const Index3D &, const PointIndexEl &)> qfn)
{
using Elems = std::vector<PointIndexEl>;
// Recursive function for visiting all the points in a given distance to
// each other
std::function<void(Elems&, Elems&)> group =
[&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
{
for(auto& p : pts) {
std::vector<PointIndexEl> tmp = qfn(sindex, p);
std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements);
Elems newpts;
std::set_difference(tmp.begin(), tmp.end(),
cluster.begin(), cluster.end(),
std::back_inserter(newpts), cmp_ptidx_elements);
int c = max_points && newpts.size() + cluster.size() > max_points?
int(max_points - cluster.size()) : int(newpts.size());
cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements);
if(!newpts.empty() && (!max_points || cluster.size() < max_points))
group(newpts, cluster);
}
};
std::vector<Elems> clusters;
for(auto it = sindex.begin(); it != sindex.end();) {
Elems cluster = {};
Elems pts = {*it};
group(pts, cluster);
for(auto& c : cluster) sindex.remove(c);
it = sindex.begin();
clusters.emplace_back(cluster);
}
ClusteredPoints result;
for(auto& cluster : clusters) {
result.emplace_back();
for(auto c : cluster) result.back().emplace_back(c.second);
}
return result;
}
std::vector<PointIndexEl> distance_queryfn(const Index3D& sindex,
const PointIndexEl& p,
double dist,
unsigned max_points)
{
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sindex.query(
bgi::nearest(p.first, max_points),
std::back_inserter(tmp)
);
for(auto it = tmp.begin(); it < tmp.end(); ++it)
if((p.first - it->first).norm() > dist) it = tmp.erase(it);
return tmp;
}
} // namespace
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
double dist,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[max_points, predicate](const Index3D& sidx, const PointIndexEl& p)
{
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){
return predicate(p, e);
}), std::back_inserter(tmp));
return tmp;
});
}
ClusteredPoints cluster(const Eigen::MatrixXd& pts, double dist, unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(Eigen::Index i = 0; i < pts.rows(); i++)
sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
}} // namespace Slic3r::sla

View file

@ -2,7 +2,8 @@
#define SLA_CLUSTERING_HPP
#include <vector>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/SLA/SpatIndex.hpp>
namespace Slic3r { namespace sla {
@ -16,7 +17,7 @@ ClusteredPoints cluster(const std::vector<unsigned>& indices,
double dist,
unsigned max_points);
ClusteredPoints cluster(const PointSet& points,
ClusteredPoints cluster(const Eigen::MatrixXd& points,
double dist,
unsigned max_points);
@ -26,5 +27,56 @@ ClusteredPoints cluster(
std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
unsigned max_points);
}}
// This function returns the position of the centroid in the input 'clust'
// vector of point indices.
template<class DistFn, class PointFn>
long cluster_centroid(const ClusterEl &clust, PointFn pointfn, DistFn df)
{
switch(clust.size()) {
case 0: /* empty cluster */ return -1;
case 1: /* only one element */ return 0;
case 2: /* if two elements, there is no center */ return 0;
default: ;
}
// The function works by calculating for each point the average distance
// from all the other points in the cluster. We create a selector bitmask of
// the same size as the cluster. The bitmask will have two true bits and
// false bits for the rest of items and we will loop through all the
// permutations of the bitmask (combinations of two points). Get the
// distance for the two points and add the distance to the averages.
// The point with the smallest average than wins.
// The complexity should be O(n^2) but we will mostly apply this function
// for small clusters only (cca 3 elements)
std::vector<bool> sel(clust.size(), false); // create full zero bitmask
std::fill(sel.end() - 2, sel.end(), true); // insert the two ones
std::vector<double> avgs(clust.size(), 0.0); // store the average distances
do {
std::array<size_t, 2> idx;
for(size_t i = 0, j = 0; i < clust.size(); i++)
if(sel[i]) idx[j++] = i;
double d = df(pointfn(clust[idx[0]]),
pointfn(clust[idx[1]]));
// add the distance to the sums for both associated points
for(auto i : idx) avgs[i] += d;
// now continue with the next permutation of the bitmask with two 1s
} while(std::next_permutation(sel.begin(), sel.end()));
// Divide by point size in the cluster to get the average (may be redundant)
for(auto& a : avgs) a /= clust.size();
// get the lowest average distance and return the index
auto minit = std::min_element(avgs.begin(), avgs.end());
return long(minit - avgs.begin());
}
}} // namespace Slic3r::sla
#endif // CLUSTERING_HPP

View file

@ -1,27 +0,0 @@
#ifndef SLA_COMMON_HPP
#define SLA_COMMON_HPP
#include <memory>
#include <vector>
#include <numeric>
#include <functional>
#include <Eigen/Geometry>
namespace Slic3r {
// Typedefs from Point.hpp
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> Vec3i;
typedef Eigen::Matrix<int, 4, 1, Eigen::DontAlign> Vec4i;
namespace sla {
using PointSet = Eigen::MatrixXd;
} // namespace sla
} // namespace Slic3r
#endif // SLASUPPORTTREE_HPP

View file

@ -4,6 +4,12 @@
#include <tbb/spin_mutex.h>
#include <tbb/mutex.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <algorithm>
#include <numeric>
#include <libslic3r/libslic3r.h>
namespace Slic3r {
namespace sla {
@ -17,18 +23,59 @@ template<bool> struct _ccr {};
template<> struct _ccr<true>
{
using SpinningMutex = tbb::spin_mutex;
using BlockingMutex = tbb::mutex;
template<class It, class Fn>
static inline void enumerate(It from, It to, Fn fn)
using BlockingMutex = tbb::mutex;
template<class Fn, class It>
static IteratorOnly<It, void> loop_(const tbb::blocked_range<It> &range, Fn &&fn)
{
auto iN = to - from;
size_t N = iN < 0 ? 0 : size_t(iN);
tbb::parallel_for(size_t(0), N, [from, fn](size_t n) {
fn(*(from + decltype(iN)(n)), n);
for (auto &el : range) fn(el);
}
template<class Fn, class I>
static IntegerOnly<I, void> loop_(const tbb::blocked_range<I> &range, Fn &&fn)
{
for (I i = range.begin(); i < range.end(); ++i) fn(i);
}
template<class It, class Fn>
static void for_each(It from, It to, Fn &&fn, size_t granularity = 1)
{
tbb::parallel_for(tbb::blocked_range{from, to, granularity},
[&fn, from](const auto &range) {
loop_(range, std::forward<Fn>(fn));
});
}
template<class I, class MergeFn, class T, class AccessFn>
static T reduce(I from,
I to,
const T &init,
MergeFn &&mergefn,
AccessFn &&access,
size_t granularity = 1
)
{
return tbb::parallel_reduce(
tbb::blocked_range{from, to, granularity}, init,
[&](const auto &range, T subinit) {
T acc = subinit;
loop_(range, [&](auto &i) { acc = mergefn(acc, access(i)); });
return acc;
},
std::forward<MergeFn>(mergefn));
}
template<class I, class MergeFn, class T>
static IteratorOnly<I, T> reduce(I from,
I to,
const T & init,
MergeFn &&mergefn,
size_t granularity = 1)
{
return reduce(
from, to, init, std::forward<MergeFn>(mergefn),
[](typename I::value_type &i) { return i; }, granularity);
}
};
template<> struct _ccr<false>
@ -39,11 +86,52 @@ private:
public:
using SpinningMutex = _Mtx;
using BlockingMutex = _Mtx;
template<class It, class Fn>
static inline void enumerate(It from, It to, Fn fn)
template<class Fn, class It>
static IteratorOnly<It, void> loop_(It from, It to, Fn &&fn)
{
for (auto it = from; it != to; ++it) fn(*it, size_t(it - from));
for (auto it = from; it != to; ++it) fn(*it);
}
template<class Fn, class I>
static IntegerOnly<I, void> loop_(I from, I to, Fn &&fn)
{
for (I i = from; i < to; ++i) fn(i);
}
template<class It, class Fn>
static void for_each(It from,
It to,
Fn &&fn,
size_t /* ignore granularity */ = 1)
{
loop_(from, to, std::forward<Fn>(fn));
}
template<class I, class MergeFn, class T, class AccessFn>
static T reduce(I from,
I to,
const T & init,
MergeFn &&mergefn,
AccessFn &&access,
size_t /*granularity*/ = 1
)
{
T acc = init;
loop_(from, to, [&](auto &i) { acc = mergefn(acc, access(i)); });
return acc;
}
template<class I, class MergeFn, class T>
static IteratorOnly<I, T> reduce(I from,
I to,
const T &init,
MergeFn &&mergefn,
size_t /*granularity*/ = 1
)
{
return reduce(from, to, init, std::forward<MergeFn>(mergefn),
[](typename I::value_type &i) { return i; });
}
};

View file

@ -1,5 +1,5 @@
#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/IndexedMesh.hpp>
#include <libslic3r/Format/objparser.hpp>
@ -27,7 +27,7 @@ Contour3D::Contour3D(TriangleMesh &&trmesh)
faces3.swap(trmesh.its.indices);
}
Contour3D::Contour3D(const EigenMesh3D &emesh) {
Contour3D::Contour3D(const IndexedMesh &emesh) {
points.reserve(emesh.vertices().size());
faces3.reserve(emesh.indices().size());

View file

@ -1,13 +1,16 @@
#ifndef SLA_CONTOUR3D_HPP
#define SLA_CONTOUR3D_HPP
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/TriangleMesh.hpp>
namespace Slic3r { namespace sla {
namespace Slic3r {
class EigenMesh3D;
// Used for quads (TODO: remove this, and convert quads to triangles in OpenVDBUtils)
using Vec4i = Eigen::Matrix<int, 4, 1, Eigen::DontAlign>;
namespace sla {
class IndexedMesh;
/// Dumb vertex mesh consisting of triangles (or) quads. Capable of merging with
/// other meshes of this type and converting to and from other mesh formats.
@ -19,7 +22,7 @@ struct Contour3D {
Contour3D() = default;
Contour3D(const TriangleMesh &trmesh);
Contour3D(TriangleMesh &&trmesh);
Contour3D(const EigenMesh3D &emesh);
Contour3D(const IndexedMesh &emesh);
Contour3D& merge(const Contour3D& ctr);
Contour3D& merge(const Pointf3s& triangles);

View file

@ -3,11 +3,10 @@
#include <libslic3r/OpenVDBUtils.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/SupportTreeBuilder.hpp>
#include <libslic3r/SLA/IndexedMesh.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/SimplifyMesh.hpp>
#include <libslic3r/SLA/SupportTreeMesher.hpp>
#include <boost/log/trivial.hpp>
@ -160,7 +159,7 @@ bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());
for (size_t i=0; i<2; ++i)
out[i] = std::make_pair(sla::EigenMesh3D::hit_result::infty(), Vec3d::Zero());
out[i] = std::make_pair(sla::IndexedMesh::hit_result::infty(), Vec3d::Zero());
const float sqr_radius = pow(radius, 2.f);
@ -274,4 +273,13 @@ void cut_drainholes(std::vector<ExPolygons> & obj_slices,
obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
}
void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg)
{
std::unique_ptr<Slic3r::TriangleMesh> inter_ptr =
Slic3r::sla::generate_interior(mesh);
if (inter_ptr) mesh.merge(*inter_ptr);
mesh.require_shared_vertices();
}
}} // namespace Slic3r::sla

View file

@ -2,7 +2,6 @@
#define SLA_HOLLOWING_HPP
#include <memory>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/SLA/JobController.hpp>
@ -59,10 +58,14 @@ struct DrainHole
using DrainHoles = std::vector<DrainHole>;
constexpr float HoleStickOutLength = 1.f;
std::unique_ptr<TriangleMesh> generate_interior(const TriangleMesh &mesh,
const HollowingConfig & = {},
const JobController &ctl = {});
void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg);
void cut_drainholes(std::vector<ExPolygons> & obj_slices,
const std::vector<float> &slicegrid,
float closing_radius,

View file

@ -1,187 +1,18 @@
#include <cmath>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/SLA/SpatIndex.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/SLA/Clustering.hpp>
#include "IndexedMesh.hpp"
#include "Concurrency.hpp"
#include <libslic3r/AABBTreeIndirect.hpp>
#include <libslic3r/TriangleMesh.hpp>
// for concave hull merging decisions
#include <libslic3r/SLA/BoostAdapter.hpp>
#include "boost/geometry/index/rtree.hpp"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <igl/remove_duplicate_vertices.h>
#include <numeric>
#ifdef SLIC3R_HOLE_RAYCASTER
#include <libslic3r/SLA/Hollowing.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
#endif
namespace Slic3r { namespace sla {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
namespace Slic3r {
namespace sla {
/* **************************************************************************
* PointIndex implementation
* ************************************************************************** */
class PointIndex::Impl {
public:
using BoostIndex = boost::geometry::index::rtree< PointIndexEl,
boost::geometry::index::rstar<16, 4> /* ? */ >;
BoostIndex m_store;
};
PointIndex::PointIndex(): m_impl(new Impl()) {}
PointIndex::~PointIndex() {}
PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
PointIndex& PointIndex::operator=(const PointIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
PointIndex& PointIndex::operator=(PointIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void PointIndex::insert(const PointIndexEl &el)
{
m_impl->m_store.insert(el);
}
bool PointIndex::remove(const PointIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<PointIndexEl>
PointIndex::query(std::function<bool(const PointIndexEl &)> fn) const
{
namespace bgi = boost::geometry::index;
std::vector<PointIndexEl> ret;
m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret));
return ret;
}
std::vector<PointIndexEl> PointIndex::nearest(const Vec3d &el, unsigned k = 1) const
{
namespace bgi = boost::geometry::index;
std::vector<PointIndexEl> ret; ret.reserve(k);
m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret));
return ret;
}
size_t PointIndex::size() const
{
return m_impl->m_store.size();
}
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn) const
{
for(const auto &el : m_impl->m_store) fn(el);
}
/* **************************************************************************
* BoxIndex implementation
* ************************************************************************** */
class BoxIndex::Impl {
public:
using BoostIndex = boost::geometry::index::
rtree<BoxIndexEl, boost::geometry::index::rstar<16, 4> /* ? */>;
BoostIndex m_store;
};
BoxIndex::BoxIndex(): m_impl(new Impl()) {}
BoxIndex::~BoxIndex() {}
BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
BoxIndex& BoxIndex::operator=(const BoxIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
BoxIndex& BoxIndex::operator=(BoxIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void BoxIndex::insert(const BoxIndexEl &el)
{
m_impl->m_store.insert(el);
}
bool BoxIndex::remove(const BoxIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
BoxIndex::QueryType qt)
{
namespace bgi = boost::geometry::index;
std::vector<BoxIndexEl> ret; ret.reserve(m_impl->m_store.size());
switch (qt) {
case qtIntersects:
m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret));
break;
case qtWithin:
m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret));
}
return ret;
}
size_t BoxIndex::size() const
{
return m_impl->m_store.size();
}
void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
/* ****************************************************************************
* EigenMesh3D implementation
* ****************************************************************************/
class EigenMesh3D::AABBImpl {
class IndexedMesh::AABBImpl {
private:
AABBTreeIndirect::Tree3f m_tree;
@ -189,7 +20,7 @@ public:
void init(const TriangleMesh& tm)
{
m_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
tm.its.vertices, tm.its.indices);
tm.its.vertices, tm.its.indices);
}
void intersect_ray(const TriangleMesh& tm,
@ -215,9 +46,9 @@ public:
size_t idx_unsigned = 0;
Vec3d closest_vec3d(closest);
double dist = AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
tm.its.vertices,
tm.its.indices,
m_tree, point, idx_unsigned, closest_vec3d);
tm.its.vertices,
tm.its.indices,
m_tree, point, idx_unsigned, closest_vec3d);
i = int(idx_unsigned);
closest = closest_vec3d;
return dist;
@ -226,72 +57,71 @@ public:
static const constexpr double MESH_EPS = 1e-6;
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh)
IndexedMesh::IndexedMesh(const TriangleMesh& tmesh)
: m_aabb(new AABBImpl()), m_tm(&tmesh)
{
auto&& bb = tmesh.bounding_box();
m_ground_level += bb.min(Z);
// Build the AABB accelaration tree
m_aabb->init(tmesh);
}
EigenMesh3D::~EigenMesh3D() {}
IndexedMesh::~IndexedMesh() {}
EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
IndexedMesh::IndexedMesh(const IndexedMesh &other):
m_tm(other.m_tm), m_ground_level(other.m_ground_level),
m_aabb( new AABBImpl(*other.m_aabb) ) {}
EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
IndexedMesh &IndexedMesh::operator=(const IndexedMesh &other)
{
m_tm = other.m_tm;
m_ground_level = other.m_ground_level;
m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
}
EigenMesh3D &EigenMesh3D::operator=(EigenMesh3D &&other) = default;
IndexedMesh &IndexedMesh::operator=(IndexedMesh &&other) = default;
EigenMesh3D::EigenMesh3D(EigenMesh3D &&other) = default;
IndexedMesh::IndexedMesh(IndexedMesh &&other) = default;
const std::vector<Vec3f>& EigenMesh3D::vertices() const
const std::vector<Vec3f>& IndexedMesh::vertices() const
{
return m_tm->its.vertices;
}
const std::vector<Vec3i>& EigenMesh3D::indices() const
const std::vector<Vec3i>& IndexedMesh::indices() const
{
return m_tm->its.indices;
}
const Vec3f& EigenMesh3D::vertices(size_t idx) const
const Vec3f& IndexedMesh::vertices(size_t idx) const
{
return m_tm->its.vertices[idx];
}
const Vec3i& EigenMesh3D::indices(size_t idx) const
const Vec3i& IndexedMesh::indices(size_t idx) const
{
return m_tm->its.indices[idx];
}
Vec3d EigenMesh3D::normal_by_face_id(int face_id) const {
Vec3d IndexedMesh::normal_by_face_id(int face_id) const {
return m_tm->stl.facet_start[face_id].normal.cast<double>();
}
EigenMesh3D::hit_result
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
IndexedMesh::hit_result
IndexedMesh::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
{
assert(is_approx(dir.norm(), 1.));
igl::Hit hit;
@ -319,13 +149,13 @@ EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
return ret;
}
std::vector<EigenMesh3D::hit_result>
EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
std::vector<IndexedMesh::hit_result>
IndexedMesh::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
{
std::vector<EigenMesh3D::hit_result> outs;
std::vector<IndexedMesh::hit_result> outs;
std::vector<igl::Hit> hits;
m_aabb->intersect_ray(*m_tm, s, dir, hits);
// The sort is necessary, the hits are not always sorted.
std::sort(hits.begin(), hits.end(),
[](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; });
@ -334,13 +164,13 @@ EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
// along an axis of a cube due to floating-point approximations in igl (?)
hits.erase(std::unique(hits.begin(), hits.end(),
[](const igl::Hit& a, const igl::Hit& b)
{ return a.t == b.t; }),
{ return a.t == b.t; }),
hits.end());
// Convert the igl::Hit into hit_result
outs.reserve(hits.size());
for (const igl::Hit& hit : hits) {
outs.emplace_back(EigenMesh3D::hit_result(*this));
outs.emplace_back(IndexedMesh::hit_result(*this));
outs.back().m_t = double(hit.t);
outs.back().m_dir = dir;
outs.back().m_source = s;
@ -355,8 +185,8 @@ EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
#ifdef SLIC3R_HOLE_RAYCASTER
EigenMesh3D::hit_result EigenMesh3D::filter_hits(
const std::vector<EigenMesh3D::hit_result>& object_hits) const
IndexedMesh::hit_result IndexedMesh::filter_hits(
const std::vector<IndexedMesh::hit_result>& object_hits) const
{
assert(! m_holes.empty());
hit_result out(*this);
@ -377,7 +207,7 @@ EigenMesh3D::hit_result EigenMesh3D::filter_hits(
};
std::vector<HoleHit> hole_isects;
hole_isects.reserve(m_holes.size());
auto sf = s.cast<float>();
auto dirf = dir.cast<float>();
@ -452,7 +282,7 @@ EigenMesh3D::hit_result EigenMesh3D::filter_hits(
#endif
double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
double IndexedMesh::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
double sqdst = 0;
Eigen::Matrix<double, 1, 3> pp = p;
Eigen::Matrix<double, 1, 3> cc;
@ -461,31 +291,19 @@ double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
return sqdst;
}
/* ****************************************************************************
* Misc functions
* ****************************************************************************/
namespace {
bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
double eps = 0.05)
static bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
double eps = 0.05)
{
using Line3D = Eigen::ParametrizedLine<double, 3>;
auto line = Line3D::Through(e1, e2);
double d = line.distance(p);
return std::abs(d) < eps;
}
template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
auto p = pp2 - pp1;
return std::sqrt(p.transpose() * p);
}
}
PointSet normals(const PointSet& points,
const EigenMesh3D& mesh,
const IndexedMesh& mesh,
double eps,
std::function<void()> thr, // throw on cancel
const std::vector<unsigned>& pt_indices)
@ -502,10 +320,10 @@ PointSet normals(const PointSet& points,
PointSet ret(range.size(), 3);
// for (size_t ridx = 0; ridx < range.size(); ++ridx)
ccr::enumerate(
range.begin(), range.end(),
[&ret, &mesh, &points, thr, eps](unsigned el, size_t ridx) {
ccr::for_each(size_t(0), range.size(),
[&ret, &mesh, &points, thr, eps, &range](size_t ridx) {
thr();
unsigned el = range[ridx];
auto eidx = Eigen::Index(el);
int faceid = 0;
Vec3d p;
@ -531,11 +349,11 @@ PointSet normals(const PointSet& points,
// ic will mark a single vertex.
int ia = -1, ib = -1, ic = -1;
if (std::abs(distance(p, p1)) < eps) {
if (std::abs((p - p1).norm()) < eps) {
ic = trindex(0);
} else if (std::abs(distance(p, p2)) < eps) {
} else if (std::abs((p - p2).norm()) < eps) {
ic = trindex(1);
} else if (std::abs(distance(p, p3)) < eps) {
} else if (std::abs((p - p3).norm()) < eps) {
ic = trindex(2);
} else if (point_on_edge(p, p1, p2, eps)) {
ia = trindex(0);
@ -612,148 +430,4 @@ PointSet normals(const PointSet& points,
return ret;
}
namespace bgi = boost::geometry::index;
using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >;
namespace {
bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2)
{
return e1.second < e2.second;
};
ClusteredPoints cluster(Index3D &sindex,
unsigned max_points,
std::function<std::vector<PointIndexEl>(
const Index3D &, const PointIndexEl &)> qfn)
{
using Elems = std::vector<PointIndexEl>;
// Recursive function for visiting all the points in a given distance to
// each other
std::function<void(Elems&, Elems&)> group =
[&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
{
for(auto& p : pts) {
std::vector<PointIndexEl> tmp = qfn(sindex, p);
std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements);
Elems newpts;
std::set_difference(tmp.begin(), tmp.end(),
cluster.begin(), cluster.end(),
std::back_inserter(newpts), cmp_ptidx_elements);
int c = max_points && newpts.size() + cluster.size() > max_points?
int(max_points - cluster.size()) : int(newpts.size());
cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements);
if(!newpts.empty() && (!max_points || cluster.size() < max_points))
group(newpts, cluster);
}
};
std::vector<Elems> clusters;
for(auto it = sindex.begin(); it != sindex.end();) {
Elems cluster = {};
Elems pts = {*it};
group(pts, cluster);
for(auto& c : cluster) sindex.remove(c);
it = sindex.begin();
clusters.emplace_back(cluster);
}
ClusteredPoints result;
for(auto& cluster : clusters) {
result.emplace_back();
for(auto c : cluster) result.back().emplace_back(c.second);
}
return result;
}
std::vector<PointIndexEl> distance_queryfn(const Index3D& sindex,
const PointIndexEl& p,
double dist,
unsigned max_points)
{
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sindex.query(
bgi::nearest(p.first, max_points),
std::back_inserter(tmp)
);
for(auto it = tmp.begin(); it < tmp.end(); ++it)
if(distance(p.first, it->first) > dist) it = tmp.erase(it);
return tmp;
}
} // namespace
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
double dist,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[max_points, predicate](const Index3D& sidx, const PointIndexEl& p)
{
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){
return predicate(p, e);
}), std::back_inserter(tmp));
return tmp;
});
}
ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(Eigen::Index i = 0; i < pts.rows(); i++)
sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
} // namespace sla
} // namespace Slic3r
}} // namespace Slic3r::sla

View file

@ -1,8 +1,10 @@
#ifndef SLA_EIGENMESH3D_H
#define SLA_EIGENMESH3D_H
#ifndef SLA_INDEXEDMESH_H
#define SLA_INDEXEDMESH_H
#include <libslic3r/SLA/Common.hpp>
#include <memory>
#include <vector>
#include <libslic3r/Point.hpp>
// There is an implementation of a hole-aware raycaster that was eventually
// not used in production version. It is now hidden under following define
@ -19,10 +21,12 @@ class TriangleMesh;
namespace sla {
using PointSet = Eigen::MatrixXd;
/// An index-triangle structure for libIGL functions. Also serves as an
/// alternative (raw) input format for the SLASupportTree.
// Implemented in libslic3r/SLA/Common.cpp
class EigenMesh3D {
class IndexedMesh {
class AABBImpl;
const TriangleMesh* m_tm;
@ -38,15 +42,15 @@ class EigenMesh3D {
public:
explicit EigenMesh3D(const TriangleMesh&);
explicit IndexedMesh(const TriangleMesh&);
EigenMesh3D(const EigenMesh3D& other);
EigenMesh3D& operator=(const EigenMesh3D&);
IndexedMesh(const IndexedMesh& other);
IndexedMesh& operator=(const IndexedMesh&);
EigenMesh3D(EigenMesh3D &&other);
EigenMesh3D& operator=(EigenMesh3D &&other);
IndexedMesh(IndexedMesh &&other);
IndexedMesh& operator=(IndexedMesh &&other);
~EigenMesh3D();
~IndexedMesh();
inline double ground_level() const { return m_ground_level + m_gnd_offset; }
inline void ground_level_offset(double o) { m_gnd_offset = o; }
@ -62,15 +66,15 @@ public:
// m_t holds a distance from m_source to the intersection.
double m_t = infty();
int m_face_id = -1;
const EigenMesh3D *m_mesh = nullptr;
const IndexedMesh *m_mesh = nullptr;
Vec3d m_dir;
Vec3d m_source;
Vec3d m_normal;
friend class EigenMesh3D;
friend class IndexedMesh;
// A valid object of this class can only be obtained from
// EigenMesh3D::query_ray_hit method.
explicit inline hit_result(const EigenMesh3D& em): m_mesh(&em) {}
// IndexedMesh::query_ray_hit method.
explicit inline hit_result(const IndexedMesh& em): m_mesh(&em) {}
public:
// This denotes no hit on the mesh.
static inline constexpr double infty() { return std::numeric_limits<double>::infinity(); }
@ -83,7 +87,7 @@ public:
inline Vec3d position() const { return m_source + m_dir * m_t; }
inline int face() const { return m_face_id; }
inline bool is_valid() const { return m_mesh != nullptr; }
inline bool is_hit() const { return !std::isinf(m_t); }
inline bool is_hit() const { return m_face_id >= 0 && !std::isinf(m_t); }
inline const Vec3d& normal() const {
assert(is_valid());
@ -107,7 +111,7 @@ public:
// This function is currently not used anywhere, it was written when the
// holes were subtracted on slices, that is, before we started using CGAL
// to actually cut the holes into the mesh.
hit_result filter_hits(const std::vector<EigenMesh3D::hit_result>& obj_hits) const;
hit_result filter_hits(const std::vector<IndexedMesh::hit_result>& obj_hits) const;
#endif
// Casting a ray on the mesh, returns the distance where the hit occures.
@ -125,16 +129,18 @@ public:
}
Vec3d normal_by_face_id(int face_id) const;
const TriangleMesh * get_triangle_mesh() const { return m_tm; }
};
// Calculate the normals for the selected points (from 'points' set) on the
// mesh. This will call squared distance for each point.
PointSet normals(const PointSet& points,
const EigenMesh3D& convert_mesh,
const IndexedMesh& convert_mesh,
double eps = 0.05, // min distance from edges
std::function<void()> throw_on_cancel = [](){},
const std::vector<unsigned>& selected_points = {});
}} // namespace Slic3r::sla
#endif // EIGENMESH3D_H
#endif // INDEXEDMESH_H

View file

@ -2,6 +2,7 @@
#define SLA_JOBCONTROLLER_HPP
#include <functional>
#include <string>
namespace Slic3r { namespace sla {

View file

@ -1,5 +1,4 @@
#include <libslic3r/SLA/Pad.hpp>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/SLA/SpatIndex.hpp>
#include <libslic3r/SLA/BoostAdapter.hpp>
#include <libslic3r/SLA/Contour3D.hpp>

View file

@ -4,7 +4,7 @@
#include "libslic3r/Point.hpp"
#include "SupportPoint.hpp"
#include "Hollowing.hpp"
#include "EigenMesh3D.hpp"
#include "IndexedMesh.hpp"
#include "libslic3r/Model.hpp"
#include <tbb/parallel_for.h>
@ -15,7 +15,7 @@ template<class Pt> Vec3d pos(const Pt &p) { return p.pos.template cast<double>()
template<class Pt> void pos(Pt &p, const Vec3d &pp) { p.pos = pp.cast<float>(); }
template<class PointType>
void reproject_support_points(const EigenMesh3D &mesh, std::vector<PointType> &pts)
void reproject_support_points(const IndexedMesh &mesh, std::vector<PointType> &pts)
{
tbb::parallel_for(size_t(0), pts.size(), [&mesh, &pts](size_t idx) {
int junk;
@ -28,25 +28,19 @@ void reproject_support_points(const EigenMesh3D &mesh, std::vector<PointType> &p
inline void reproject_points_and_holes(ModelObject *object)
{
bool has_sppoints = !object->sla_support_points.empty();
bool has_holes = !object->sla_drain_holes.empty();
// Disabling reprojection of holes as they have a significant offset away
// from the model body which tolerates minor geometrical changes.
//
// TODO: uncomment and ensure the right offset of the hole points if
// reprojection would still be necessary.
// bool has_holes = !object->sla_drain_holes.empty();
if (!object || (/*!has_holes &&*/ !has_sppoints)) return;
if (!object || (!has_holes && !has_sppoints)) return;
TriangleMesh rmsh = object->raw_mesh();
rmsh.require_shared_vertices();
EigenMesh3D emesh{rmsh};
IndexedMesh emesh{rmsh};
if (has_sppoints)
reproject_support_points(emesh, object->sla_support_points);
// if (has_holes)
// reproject_support_points(emesh, object->sla_drain_holes);
if (has_holes)
reproject_support_points(emesh, object->sla_drain_holes);
}
}}

View file

@ -1,36 +1,259 @@
#include <limits>
#include <exception>
#include <libnest2d/optimizers/nlopt/genetic.hpp>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/SLA/Rotfinder.hpp>
#include <libslic3r/SLA/SupportTree.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp>
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/PrintConfig.hpp"
#include <libslic3r/Geometry.hpp>
#include "Model.hpp"
namespace Slic3r {
namespace sla {
#include <thread>
std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
float accuracy,
std::function<void(unsigned)> statuscb,
std::function<bool()> stopcond)
namespace Slic3r { namespace sla {
inline bool is_on_floor(const SLAPrintObject &mo)
{
using libnest2d::opt::Method;
using libnest2d::opt::bound;
using libnest2d::opt::Optimizer;
using libnest2d::opt::TOptimizer;
using libnest2d::opt::StopCriteria;
auto opt_elevation = mo.config().support_object_elevation.getFloat();
auto opt_padaround = mo.config().pad_around_object.getBool();
static const unsigned MAX_TRIES = 100000;
return opt_elevation < EPSILON || opt_padaround;
}
// Find transformed mesh ground level without copy and with parallel reduce.
double find_ground_level(const TriangleMesh &mesh,
const Transform3d & tr,
size_t threads)
{
size_t vsize = mesh.its.vertices.size();
auto minfn = [](double a, double b) { return std::min(a, b); };
auto accessfn = [&mesh, &tr] (size_t vi) {
return (tr * mesh.its.vertices[vi].template cast<double>()).z();
};
double zmin = std::numeric_limits<double>::max();
size_t granularity = vsize / threads;
return ccr_par::reduce(size_t(0), vsize, zmin, minfn, accessfn, granularity);
}
// Get the vertices of a triangle directly in an array of 3 points
std::array<Vec3d, 3> get_triangle_vertices(const TriangleMesh &mesh,
size_t faceidx)
{
const auto &face = mesh.its.indices[faceidx];
return {Vec3d{mesh.its.vertices[face(0)].cast<double>()},
Vec3d{mesh.its.vertices[face(1)].cast<double>()},
Vec3d{mesh.its.vertices[face(2)].cast<double>()}};
}
std::array<Vec3d, 3> get_transformed_triangle(const TriangleMesh &mesh,
const Transform3d & tr,
size_t faceidx)
{
const auto &tri = get_triangle_vertices(mesh, faceidx);
return {tr * tri[0], tr * tri[1], tr * tri[2]};
}
// Get area and normal of a triangle
struct Facestats {
Vec3d normal;
double area;
explicit Facestats(const std::array<Vec3d, 3> &triangle)
{
Vec3d U = triangle[1] - triangle[0];
Vec3d V = triangle[2] - triangle[0];
Vec3d C = U.cross(V);
normal = C.normalized();
area = 0.5 * C.norm();
}
};
inline const Vec3d DOWN = {0., 0., -1.};
constexpr double POINTS_PER_UNIT_AREA = 1.;
// The score function for a particular face
inline double get_score(const Facestats &fc)
{
// Simply get the angle (acos of dot product) between the face normal and
// the DOWN vector.
double phi = 1. - std::acos(fc.normal.dot(DOWN)) / PI;
// Only consider faces that have have slopes below 90 deg:
phi = phi * (phi > 0.5);
// Make the huge slopes more significant than the smaller slopes
phi = phi * phi * phi;
// Multiply with the area of the current face
return fc.area * POINTS_PER_UNIT_AREA * phi;
}
template<class AccessFn>
double sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
{
double initv = 0.;
auto mergefn = std::plus<double>{};
size_t grainsize = facecount / Nthreads;
size_t from = 0, to = facecount;
return ccr_par::reduce(from, to, initv, mergefn, accessfn, grainsize);
}
// Try to guess the number of support points needed to support a mesh
double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
return get_score(fc);
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
return sum_score(accessfn, facecount, Nthreads) / facecount;
}
double get_model_supportedness_onfloor(const TriangleMesh &mesh,
const Transform3d & tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
size_t Nthreads = std::thread::hardware_concurrency();
double zmin = find_ground_level(mesh, tr, Nthreads);
double zlvl = zmin + 0.1; // Set up a slight tolerance from z level
auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
std::array<Vec3d, 3> tri = get_transformed_triangle(mesh, tr, fi);
Facestats fc{tri};
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
return -fc.area * POINTS_PER_UNIT_AREA;
return get_score(fc);
};
size_t facecount = mesh.its.indices.size();
return sum_score(accessfn, facecount, Nthreads) / facecount;
}
using XYRotation = std::array<double, 2>;
// prepare the rotation transformation
Transform3d to_transform3d(const XYRotation &rot)
{
Transform3d rt = Transform3d::Identity();
rt.rotate(Eigen::AngleAxisd(rot[1], Vec3d::UnitY()));
rt.rotate(Eigen::AngleAxisd(rot[0], Vec3d::UnitX()));
return rt;
}
XYRotation from_transform3d(const Transform3d &tr)
{
Vec3d rot3d = Geometry::Transformation {tr}.get_rotation();
return {rot3d.x(), rot3d.y()};
}
// Find the best score from a set of function inputs. Evaluate for every point.
template<size_t N, class Fn, class It, class StopCond>
std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
{
std::array<double, N> ret;
double score = std::numeric_limits<double>::max();
size_t Nthreads = std::thread::hardware_concurrency();
size_t dist = std::distance(from, to);
std::vector<double> scores(dist, score);
ccr_par::for_each(size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
if (stopfn()) return;
scores[i] = fn(*(from + i));
}, dist / Nthreads);
auto it = std::min_element(scores.begin(), scores.end());
if (it != scores.end()) ret = *(from + std::distance(scores.begin(), it));
return ret;
}
// collect the rotations for each face of the convex hull
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
{
TriangleMesh chull = mesh.convex_hull_3d();
chull.require_shared_vertices();
double chull2d_area = chull.convex_hull().area();
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
size_t facecount = chull.its.indices.size();
struct RotArea { XYRotation rot; double area; };
auto inputs = reserve_vector<RotArea>(facecount);
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
};
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
};
for (size_t fi = 0; fi < facecount; ++fi) {
Facestats fc{get_triangle_vertices(chull, fi)};
if (fc.area > area_threshold) {
auto q = Eigen::Quaterniond{}.FromTwoVectors(fc.normal, DOWN);
XYRotation rot = from_transform3d(Transform3d::Identity() * q);
RotArea ra = {rot, fc.area};
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
if (it == inputs.end() || !eqcmp(it->rot, rot))
inputs.insert(it, ra);
}
}
inputs.shrink_to_fit();
if (!max_count) max_count = inputs.size();
std::sort(inputs.begin(), inputs.end(),
[](const RotArea &ra, const RotArea &rb) {
return ra.area > rb.area;
});
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
return ret;
}
Vec2d find_best_rotation(const SLAPrintObject & po,
float accuracy,
std::function<void(unsigned)> statuscb,
std::function<bool()> stopcond)
{
static const unsigned MAX_TRIES = 1000;
// return value
std::array<double, 3> rot;
XYRotation rot;
// We will use only one instance of this converted mesh to examine different
// rotations
const TriangleMesh& mesh = modelobj.raw_mesh();
TriangleMesh mesh = po.model_object()->raw_mesh();
mesh.require_shared_vertices();
// For current iteration number
// To keep track of the number of iterations
unsigned status = 0;
// The maximum number of iterations
@ -39,77 +262,61 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
// call status callback with zero, because we are at the start
statuscb(status);
// So this is the object function which is called by the solver many times
// It has to yield a single value representing the current score. We will
// call the status callback in each iteration but the actual value may be
// the same for subsequent iterations (status goes from 0 to 100 but
// iterations can be many more)
auto objfunc = [&mesh, &status, &statuscb, &stopcond, max_tries]
(double rx, double ry, double rz)
{
const TriangleMesh& m = mesh;
// prepare the rotation transformation
Transform3d rt = Transform3d::Identity();
rt.rotate(Eigen::AngleAxisd(rz, Vec3d::UnitZ()));
rt.rotate(Eigen::AngleAxisd(ry, Vec3d::UnitY()));
rt.rotate(Eigen::AngleAxisd(rx, Vec3d::UnitX()));
double score = 0;
// For all triangles we calculate the normal and sum up the dot product
// (a scalar indicating how much are two vectors aligned) with each axis
// this will result in a value that is greater if a normal is aligned
// with all axes. If the normal is aligned than the triangle itself is
// orthogonal to the axes and that is good for print quality.
// TODO: some applications optimize for minimum z-axis cross section
// area. The current function is only an example of how to optimize.
// Later we can add more criteria like the number of overhangs, etc...
for(size_t i = 0; i < m.stl.facet_start.size(); i++) {
Vec3d n = m.stl.facet_start[i].normal.cast<double>();
// rotate the normal with the current rotation given by the solver
n = rt * n;
// We should score against the alignment with the reference planes
score += std::abs(n.dot(Vec3d::UnitX()));
score += std::abs(n.dot(Vec3d::UnitY()));
score += std::abs(n.dot(Vec3d::UnitZ()));
}
auto statusfn = [&statuscb, &status, &max_tries] {
// report status
if(!stopcond()) statuscb( unsigned(++status * 100.0/max_tries) );
return score;
statuscb(unsigned(++status * 100.0/max_tries) );
};
// Firing up the genetic optimizer. For now it uses the nlopt library.
StopCriteria stc;
stc.max_iterations = max_tries;
stc.relative_score_difference = 1e-3;
stc.stop_condition = stopcond; // stop when stopcond returns true
TOptimizer<Method::G_GENETIC> solver(stc);
// Different search methods have to be used depending on the model elevation
if (is_on_floor(po)) {
// We are searching rotations around the three axes x, y, z. Thus the
// problem becomes a 3 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto b = bound(-PI/2, PI/2);
std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
max_tries = inputs.size();
// Now we start the optimization process with initial angles (0, 0, 0)
auto result = solver.optimize_max(objfunc,
libnest2d::opt::initvals(0.0, 0.0, 0.0),
b, b, b);
// If the model can be placed on the bed directly, we only need to
// check the 3D convex hull face rotations.
// Save the result and fck off
rot[0] = std::get<0>(result.optimum);
rot[1] = std::get<1>(result.optimum);
rot[2] = std::get<2>(result.optimum);
auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
statusfn();
Transform3d tr = to_transform3d(rot);
return get_model_supportedness_onfloor(mesh, tr);
};
return rot;
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
} else {
// Preparing the optimizer.
size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
.max_iterations(max_tries)
.stop_condition(stopcond),
gridsize);
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
auto result = solver.to_min().optimize(
[&mesh, &statusfn] (const XYRotation &rot)
{
statusfn();
return get_model_supportedness(mesh, to_transform3d(rot));
}, opt::initvals({0., 0.}), bounds);
// Save the result and fck off
rot = result.optimum;
}
return {rot[0], rot[1]};
}
double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr)
{
TriangleMesh mesh = po.model_object()->raw_mesh();
mesh.require_shared_vertices();
return is_on_floor(po) ? get_model_supportedness_onfloor(mesh, tr) :
get_model_supportedness(mesh, tr);
}
}
}} // namespace Slic3r::sla

View file

@ -4,9 +4,11 @@
#include <functional>
#include <array>
#include <libslic3r/Point.hpp>
namespace Slic3r {
class ModelObject;
class SLAPrintObject;
namespace sla {
@ -25,14 +27,17 @@ namespace sla {
*
* @return Returns the rotations around each axis (x, y, z)
*/
std::array<double, 3> find_best_rotation(
const ModelObject& modelobj,
Vec2d find_best_rotation(
const SLAPrintObject& modelobj,
float accuracy = 1.0f,
std::function<void(unsigned)> statuscb = [] (unsigned) {},
std::function<bool()> stopcond = [] () { return false; }
);
}
}
double get_model_supportedness(const SLAPrintObject &mesh,
const Transform3d & tr);
} // namespace sla
} // namespace Slic3r
#endif // SLAROTFINDER_HPP

View file

@ -0,0 +1,161 @@
#include "SpatIndex.hpp"
// for concave hull merging decisions
#include <libslic3r/SLA/BoostAdapter.hpp>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include "boost/geometry/index/rtree.hpp"
#ifdef _MSC_VER
#pragma warning(pop)
#endif
namespace Slic3r { namespace sla {
/* **************************************************************************
* PointIndex implementation
* ************************************************************************** */
class PointIndex::Impl {
public:
using BoostIndex = boost::geometry::index::rtree< PointIndexEl,
boost::geometry::index::rstar<16, 4> /* ? */ >;
BoostIndex m_store;
};
PointIndex::PointIndex(): m_impl(new Impl()) {}
PointIndex::~PointIndex() {}
PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
PointIndex& PointIndex::operator=(const PointIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
PointIndex& PointIndex::operator=(PointIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void PointIndex::insert(const PointIndexEl &el)
{
m_impl->m_store.insert(el);
}
bool PointIndex::remove(const PointIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<PointIndexEl>
PointIndex::query(std::function<bool(const PointIndexEl &)> fn) const
{
namespace bgi = boost::geometry::index;
std::vector<PointIndexEl> ret;
m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret));
return ret;
}
std::vector<PointIndexEl> PointIndex::nearest(const Vec3d &el, unsigned k = 1) const
{
namespace bgi = boost::geometry::index;
std::vector<PointIndexEl> ret; ret.reserve(k);
m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret));
return ret;
}
size_t PointIndex::size() const
{
return m_impl->m_store.size();
}
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn) const
{
for(const auto &el : m_impl->m_store) fn(el);
}
/* **************************************************************************
* BoxIndex implementation
* ************************************************************************** */
class BoxIndex::Impl {
public:
using BoostIndex = boost::geometry::index::
rtree<BoxIndexEl, boost::geometry::index::rstar<16, 4> /* ? */>;
BoostIndex m_store;
};
BoxIndex::BoxIndex(): m_impl(new Impl()) {}
BoxIndex::~BoxIndex() {}
BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
BoxIndex& BoxIndex::operator=(const BoxIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
BoxIndex& BoxIndex::operator=(BoxIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void BoxIndex::insert(const BoxIndexEl &el)
{
m_impl->m_store.insert(el);
}
bool BoxIndex::remove(const BoxIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
BoxIndex::QueryType qt)
{
namespace bgi = boost::geometry::index;
std::vector<BoxIndexEl> ret; ret.reserve(m_impl->m_store.size());
switch (qt) {
case qtIntersects:
m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret));
break;
case qtWithin:
m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret));
}
return ret;
}
size_t BoxIndex::size() const
{
return m_impl->m_store.size();
}
void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
}} // namespace Slic3r::sla

View file

@ -73,7 +73,7 @@ public:
BoxIndex& operator=(BoxIndex&&);
void insert(const BoxIndexEl&);
inline void insert(const BoundingBox& bb, unsigned idx)
void insert(const BoundingBox& bb, unsigned idx)
{
insert(std::make_pair(bb, unsigned(idx)));
}

Some files were not shown because too many files have changed in this diff Show more