Merge remote-tracking branch 'origin/master' into feature_slice_to_png

# Conflicts:
#	xs/CMakeLists.txt
This commit is contained in:
tamasmeszaros 2018-08-09 10:53:27 +02:00
commit 5164bec8ce
85 changed files with 8626 additions and 4454 deletions

View file

@ -167,6 +167,18 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
{
std::string gcode;
// Toolchangeresult.gcode assumes the wipe tower corner is at the origin
// We want to rotate and shift all extrusions (gcode postprocessing) and starting and ending position
float alpha = m_wipe_tower_rotation/180.f * M_PI;
WipeTower::xy start_pos = tcr.start_pos;
WipeTower::xy end_pos = tcr.end_pos;
start_pos.rotate(alpha);
start_pos.translate(m_wipe_tower_pos);
end_pos.rotate(alpha);
end_pos.translate(m_wipe_tower_pos);
std::string tcr_rotated_gcode = rotate_wipe_tower_moves(tcr.gcode, tcr.start_pos, m_wipe_tower_pos, alpha);
// Disable linear advance for the wipe tower operations.
gcode += "M900 K0\n";
// Move over the wipe tower.
@ -174,14 +186,14 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
gcode += gcodegen.retract(true);
gcodegen.m_avoid_crossing_perimeters.use_external_mp_once = true;
gcode += gcodegen.travel_to(
wipe_tower_point_to_object_point(gcodegen, tcr.start_pos),
wipe_tower_point_to_object_point(gcodegen, start_pos),
erMixed,
"Travel to a Wipe Tower");
gcode += gcodegen.unretract();
// Let the tool change be executed by the wipe tower class.
// Inform the G-code writer about the changes done behind its back.
gcode += tcr.gcode;
gcode += tcr_rotated_gcode;
// Let the m_writer know the current extruder_id, but ignore the generated G-code.
if (new_extruder_id >= 0 && gcodegen.writer().need_toolchange(new_extruder_id))
gcodegen.writer().toolchange(new_extruder_id);
@ -195,18 +207,18 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
check_add_eol(gcode);
}
// A phony move to the end position at the wipe tower.
gcodegen.writer().travel_to_xy(Pointf(tcr.end_pos.x, tcr.end_pos.y));
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, tcr.end_pos));
gcodegen.writer().travel_to_xy(Pointf(end_pos.x, end_pos.y));
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, end_pos));
// Prepare a future wipe.
gcodegen.m_wipe.path.points.clear();
if (new_extruder_id >= 0) {
// Start the wipe at the current position.
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, tcr.end_pos));
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, end_pos));
// Wipe end point: Wipe direction away from the closer tower edge to the further tower edge.
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen,
WipeTower::xy((std::abs(m_left - tcr.end_pos.x) < std::abs(m_right - tcr.end_pos.x)) ? m_right : m_left,
tcr.end_pos.y)));
WipeTower::xy((std::abs(m_left - end_pos.x) < std::abs(m_right - end_pos.x)) ? m_right : m_left,
end_pos.y)));
}
// Let the planner know we are traveling between objects.
@ -214,6 +226,57 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
return gcode;
}
// This function postprocesses gcode_original, rotates and moves all G1 extrusions and returns resulting gcode
// Starting position has to be supplied explicitely (otherwise it would fail in case first G1 command only contained one coordinate)
std::string WipeTowerIntegration::rotate_wipe_tower_moves(const std::string& gcode_original, const WipeTower::xy& start_pos, const WipeTower::xy& translation, float angle) const
{
std::istringstream gcode_str(gcode_original);
std::string gcode_out;
std::string line;
WipeTower::xy pos = start_pos;
WipeTower::xy transformed_pos;
WipeTower::xy old_pos(-1000.1f, -1000.1f);
while (gcode_str) {
std::getline(gcode_str, line); // we read the gcode line by line
if (line.find("G1 ") == 0) {
std::ostringstream line_out;
std::istringstream line_str(line);
line_str >> std::noskipws; // don't skip whitespace
char ch = 0;
while (line_str >> ch) {
if (ch == 'X')
line_str >> pos.x;
else
if (ch == 'Y')
line_str >> pos.y;
else
line_out << ch;
}
transformed_pos = pos;
transformed_pos.rotate(angle);
transformed_pos.translate(translation);
if (transformed_pos != old_pos) {
line = line_out.str();
char buf[2048] = "G1";
if (transformed_pos.x != old_pos.x)
sprintf(buf + strlen(buf), " X%.3f", transformed_pos.x);
if (transformed_pos.y != old_pos.y)
sprintf(buf + strlen(buf), " Y%.3f", transformed_pos.y);
line.replace(line.find("G1 "), 3, buf);
old_pos = transformed_pos;
}
}
gcode_out += line + "\n";
}
return gcode_out;
}
std::string WipeTowerIntegration::prime(GCode &gcodegen)
{
assert(m_layer_idx == 0);
@ -377,10 +440,9 @@ void GCode::do_export(Print *print, const char *path, GCodePreviewData *preview_
}
fclose(file);
if (print->config.gcode_flavor.value == gcfMarlin)
if (print->config.remaining_times.value)
{
m_normal_time_estimator.post_process_remaining_times(path_tmp, 60.0f);
if (m_silent_time_estimator_enabled)
m_silent_time_estimator.post_process_remaining_times(path_tmp, 60.0f);
}
@ -462,8 +524,21 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
m_silent_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::Y, print.config.machine_max_jerk_y.values[1]);
m_silent_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::Z, print.config.machine_max_jerk_z.values[1]);
m_silent_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::E, print.config.machine_max_jerk_e.values[1]);
if (print.config.single_extruder_multi_material) {
// As of now the fields are shown at the UI dialog in the same combo box as the ramming values, so they
// are considered to be active for the single extruder multi-material printers only.
m_silent_time_estimator.set_filament_load_times(print.config.filament_load_time.values);
m_silent_time_estimator.set_filament_unload_times(print.config.filament_unload_time.values);
}
}
}
// Filament load / unload times are not specific to a firmware flavor. Let anybody use it if they find it useful.
if (print.config.single_extruder_multi_material) {
// As of now the fields are shown at the UI dialog in the same combo box as the ramming values, so they
// are considered to be active for the single extruder multi-material printers only.
m_normal_time_estimator.set_filament_load_times(print.config.filament_load_time.values);
m_normal_time_estimator.set_filament_unload_times(print.config.filament_unload_time.values);
}
// resets analyzer
m_analyzer.reset();
@ -608,15 +683,18 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
if ((initial_extruder_id = tool_ordering.first_extruder()) != (unsigned int)-1)
break;
}
}
else {
} else {
// Find tool ordering for all the objects at once, and the initial extruder ID.
// If the tool ordering has been pre-calculated by Print class for wipe tower already, reuse it.
tool_ordering = print.m_tool_ordering.empty() ?
ToolOrdering(print, initial_extruder_id) :
print.m_tool_ordering;
initial_extruder_id = tool_ordering.first_extruder();
has_wipe_tower = print.has_wipe_tower() && tool_ordering.has_wipe_tower();
initial_extruder_id = (has_wipe_tower && ! print.config.single_extruder_multi_material_priming) ?
// The priming towers will be skipped.
tool_ordering.all_extruders().back() :
// Don't skip the priming towers.
tool_ordering.first_extruder();
}
if (initial_extruder_id == (unsigned int)-1) {
// Nothing to print!
@ -644,6 +722,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
m_placeholder_parser.set("current_object_idx", 0);
// For the start / end G-code to do the priming and final filament pull in case there is no wipe tower provided.
m_placeholder_parser.set("has_wipe_tower", has_wipe_tower);
m_placeholder_parser.set("has_single_extruder_multi_material_priming", has_wipe_tower && print.config.single_extruder_multi_material_priming);
std::string start_gcode = this->placeholder_parser_process("start_gcode", print.config.start_gcode.value, initial_extruder_id);
// Set bed temperature if the start G-code does not contain any bed temp control G-codes.
@ -724,8 +803,11 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
}
}
// Set initial extruder only after custom start G-code.
_write(file, this->set_extruder(initial_extruder_id));
if (! (has_wipe_tower && print.config.single_extruder_multi_material_priming)) {
// Set initial extruder only after custom start G-code.
// Ugly hack: Do not set the initial extruder if the extruder is primed using the MMU priming towers at the edge of the print bed.
_write(file, this->set_extruder(initial_extruder_id));
}
// Do all objects for each layer.
if (print.config.complete_objects.value) {
@ -803,27 +885,29 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
if (has_wipe_tower && ! layers_to_print.empty()) {
m_wipe_tower.reset(new WipeTowerIntegration(print.config, *print.m_wipe_tower_priming.get(), print.m_wipe_tower_tool_changes, *print.m_wipe_tower_final_purge.get()));
_write(file, m_writer.travel_to_z(first_layer_height + m_config.z_offset.value, "Move to the first layer height"));
_write(file, m_wipe_tower->prime(*this));
// Verify, whether the print overaps the priming extrusions.
BoundingBoxf bbox_print(get_print_extrusions_extents(print));
coordf_t twolayers_printz = ((layers_to_print.size() == 1) ? layers_to_print.front() : layers_to_print[1]).first + EPSILON;
for (const PrintObject *print_object : printable_objects)
bbox_print.merge(get_print_object_extrusions_extents(*print_object, twolayers_printz));
bbox_print.merge(get_wipe_tower_extrusions_extents(print, twolayers_printz));
BoundingBoxf bbox_prime(get_wipe_tower_priming_extrusions_extents(print));
bbox_prime.offset(0.5f);
// Beep for 500ms, tone 800Hz. Yet better, play some Morse.
_write(file, this->retract());
_write(file, "M300 S800 P500\n");
if (bbox_prime.overlap(bbox_print)) {
// Wait for the user to remove the priming extrusions, otherwise they would
// get covered by the print.
_write(file, "M1 Remove priming towers and click button.\n");
}
else {
// Just wait for a bit to let the user check, that the priming succeeded.
//TODO Add a message explaining what the printer is waiting for. This needs a firmware fix.
_write(file, "M1 S10\n");
if (print.config.single_extruder_multi_material_priming) {
_write(file, m_wipe_tower->prime(*this));
// Verify, whether the print overaps the priming extrusions.
BoundingBoxf bbox_print(get_print_extrusions_extents(print));
coordf_t twolayers_printz = ((layers_to_print.size() == 1) ? layers_to_print.front() : layers_to_print[1]).first + EPSILON;
for (const PrintObject *print_object : printable_objects)
bbox_print.merge(get_print_object_extrusions_extents(*print_object, twolayers_printz));
bbox_print.merge(get_wipe_tower_extrusions_extents(print, twolayers_printz));
BoundingBoxf bbox_prime(get_wipe_tower_priming_extrusions_extents(print));
bbox_prime.offset(0.5f);
// Beep for 500ms, tone 800Hz. Yet better, play some Morse.
_write(file, this->retract());
_write(file, "M300 S800 P500\n");
if (bbox_prime.overlap(bbox_print)) {
// Wait for the user to remove the priming extrusions, otherwise they would
// get covered by the print.
_write(file, "M1 Remove priming towers and click button.\n");
}
else {
// Just wait for a bit to let the user check, that the priming succeeded.
//TODO Add a message explaining what the printer is waiting for. This needs a firmware fix.
_write(file, "M1 S10\n");
}
}
}
// Extrude the layers.
@ -1003,9 +1087,10 @@ void GCode::print_machine_envelope(FILE *file, Print &print)
int(print.config.machine_max_feedrate_y.values.front() + 0.5),
int(print.config.machine_max_feedrate_z.values.front() + 0.5),
int(print.config.machine_max_feedrate_e.values.front() + 0.5));
fprintf(file, "M204 S%d T%d ; sets acceleration (S) and retract acceleration (T), mm/sec^2\n",
fprintf(file, "M204 P%d R%d T%d ; sets acceleration (P, T) and retract acceleration (R), mm/sec^2\n",
int(print.config.machine_max_acceleration_extruding.values.front() + 0.5),
int(print.config.machine_max_acceleration_retracting.values.front() + 0.5));
int(print.config.machine_max_acceleration_retracting.values.front() + 0.5),
int(print.config.machine_max_acceleration_extruding.values.front() + 0.5));
fprintf(file, "M205 X%.2lf Y%.2lf Z%.2lf E%.2lf ; sets the jerk limits, mm/sec\n",
print.config.machine_max_jerk_x.values.front(),
print.config.machine_max_jerk_y.values.front(),

View file

@ -83,8 +83,10 @@ public:
const WipeTower::ToolChangeResult &priming,
const std::vector<std::vector<WipeTower::ToolChangeResult>> &tool_changes,
const WipeTower::ToolChangeResult &final_purge) :
m_left(float(print_config.wipe_tower_x.value)),
m_right(float(print_config.wipe_tower_x.value + print_config.wipe_tower_width.value)),
m_left(/*float(print_config.wipe_tower_x.value)*/ 0.f),
m_right(float(/*print_config.wipe_tower_x.value +*/ print_config.wipe_tower_width.value)),
m_wipe_tower_pos(float(print_config.wipe_tower_x.value), float(print_config.wipe_tower_y.value)),
m_wipe_tower_rotation(float(print_config.wipe_tower_rotation_angle)),
m_priming(priming),
m_tool_changes(tool_changes),
m_final_purge(final_purge),
@ -101,9 +103,14 @@ private:
WipeTowerIntegration& operator=(const WipeTowerIntegration&);
std::string append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const;
// Postprocesses gcode: rotates and moves all G1 extrusions and returns result
std::string rotate_wipe_tower_moves(const std::string& gcode_original, const WipeTower::xy& start_pos, const WipeTower::xy& translation, float angle) const;
// Left / right edges of the wipe tower, for the planning of wipe moves.
const float m_left;
const float m_right;
const WipeTower::xy m_wipe_tower_pos;
const float m_wipe_tower_rotation;
// Reference to cached values at the Printer class.
const WipeTower::ToolChangeResult &m_priming;
const std::vector<std::vector<WipeTower::ToolChangeResult>> &m_tool_changes;
@ -112,6 +119,7 @@ private:
int m_layer_idx;
int m_tool_change_idx;
bool m_brim_done;
bool i_have_brim = false;
};
class GCode {

View file

@ -134,6 +134,11 @@ BoundingBoxf get_print_object_extrusions_extents(const PrintObject &print_object
// The projection does not contain the priming regions.
BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_t max_print_z)
{
// Wipe tower extrusions are saved as if the tower was at the origin with no rotation
// We need to get position and angle of the wipe tower to transform them to actual position.
Pointf wipe_tower_pos(print.config.wipe_tower_x.value, print.config.wipe_tower_y.value);
float wipe_tower_angle = print.config.wipe_tower_rotation_angle.value;
BoundingBoxf bbox;
for (const std::vector<WipeTower::ToolChangeResult> &tool_changes : print.m_wipe_tower_tool_changes) {
if (! tool_changes.empty() && tool_changes.front().print_z > max_print_z)
@ -144,6 +149,11 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
if (e.width > 0) {
Pointf p1((&e - 1)->pos.x, (&e - 1)->pos.y);
Pointf p2(e.pos.x, e.pos.y);
p1.rotate(wipe_tower_angle);
p1.translate(wipe_tower_pos);
p2.rotate(wipe_tower_angle);
p2.translate(wipe_tower_pos);
bbox.merge(p1);
coordf_t radius = 0.5 * e.width;
bbox.min.x = std::min(bbox.min.x, std::min(p1.x, p2.x) - radius);

View file

@ -25,18 +25,30 @@ public:
bool operator==(const xy &rhs) const { return x == rhs.x && y == rhs.y; }
bool operator!=(const xy &rhs) const { return x != rhs.x || y != rhs.y; }
// Rotate the point around given point about given angle (in degrees)
// shifts the result so that point of rotation is in the middle of the tower
xy rotate(const xy& origin, float width, float depth, float angle) const {
// Rotate the point around center of the wipe tower about given angle (in degrees)
xy rotate(float width, float depth, float angle) const {
xy out(0,0);
float temp_x = x - width / 2.f;
float temp_y = y - depth / 2.f;
angle *= M_PI/180.;
out.x += (temp_x - origin.x) * cos(angle) - (temp_y - origin.y) * sin(angle);
out.y += (temp_x - origin.x) * sin(angle) + (temp_y - origin.y) * cos(angle);
return out + origin;
out.x += temp_x * cos(angle) - temp_y * sin(angle) + width / 2.f;
out.y += temp_x * sin(angle) + temp_y * cos(angle) + depth / 2.f;
return out;
}
// Rotate the point around origin about given angle in degrees
void rotate(float angle) {
float temp_x = x * cos(angle) - y * sin(angle);
y = x * sin(angle) + y * cos(angle);
x = temp_x;
}
void translate(const xy& vect) {
x += vect.x;
y += vect.y;
}
float x;
float y;
};
@ -104,6 +116,9 @@ public:
// This is useful not only for the print time estimation, but also for the control of layer cooling.
float elapsed_time;
// Is this a priming extrusion? (If so, the wipe tower rotation & translation will not be applied later)
bool priming;
// Sum the total length of the extrusion.
float total_extrusion_length_in_plane() {
float e_length = 0.f;

View file

@ -5,7 +5,7 @@ TODO LIST
1. cooling moves - DONE
2. account for perimeter and finish_layer extrusions and subtract it from last wipe - DONE
3. priming extrusions (last wipe must clear the color)
3. priming extrusions (last wipe must clear the color) - DONE
4. Peter's wipe tower - layer's are not exactly square
5. Peter's wipe tower - variable width for higher levels
6. Peter's wipe tower - make sure it is not too sparse (apply max_bridge_distance and make last wipe longer)
@ -17,7 +17,6 @@ TODO LIST
#include <assert.h>
#include <math.h>
#include <fstream>
#include <iostream>
#include <vector>
#include <numeric>
@ -68,8 +67,11 @@ public:
return *this;
}
Writer& set_initial_position(const WipeTower::xy &pos) {
m_start_pos = WipeTower::xy(pos,0.f,m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg);
Writer& set_initial_position(const WipeTower::xy &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) {
m_wipe_tower_width = width;
m_wipe_tower_depth = depth;
m_internal_angle = internal_angle;
m_start_pos = WipeTower::xy(pos,0.f,m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle);
m_current_pos = pos;
return *this;
}
@ -81,9 +83,6 @@ public:
Writer& set_extrusion_flow(float flow)
{ m_extrusion_flow = flow; return *this; }
Writer& set_rotation(WipeTower::xy& pos, float width, float depth, float angle)
{ m_wipe_tower_pos = pos; m_wipe_tower_width = width; m_wipe_tower_depth=depth; m_angle_deg = angle; return (*this); }
Writer& set_y_shift(float shift) {
m_current_pos.y -= shift-m_y_shift;
@ -110,7 +109,7 @@ public:
float y() const { return m_current_pos.y; }
const WipeTower::xy& pos() const { return m_current_pos; }
const WipeTower::xy start_pos_rotated() const { return m_start_pos; }
const WipeTower::xy pos_rotated() const { return WipeTower::xy(m_current_pos,0.f,m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); }
const WipeTower::xy pos_rotated() const { return WipeTower::xy(m_current_pos, 0.f, m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle); }
float elapsed_time() const { return m_elapsed_time; }
// Extrude with an explicitely provided amount of extrusion.
@ -125,9 +124,9 @@ public:
double len = sqrt(dx*dx+dy*dy);
// For rotated wipe tower, transform position to printer coordinates
WipeTower::xy rotated_current_pos(WipeTower::xy(m_current_pos,0.f,m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); // this is where we are
WipeTower::xy rot(WipeTower::xy(x,y+m_y_shift).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); // this is where we want to go
// Now do the "internal rotation" with respect to the wipe tower center
WipeTower::xy rotated_current_pos(WipeTower::xy(m_current_pos,0.f,m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle)); // this is where we are
WipeTower::xy rot(WipeTower::xy(x,y+m_y_shift).rotate(m_wipe_tower_width, m_wipe_tower_depth, m_internal_angle)); // this is where we want to go
if (! m_preview_suppressed && e > 0.f && len > 0.) {
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
@ -147,6 +146,7 @@ public:
if (std::abs(rot.y - rotated_current_pos.y) > EPSILON)
m_gcode += set_format_Y(rot.y);
if (e != 0.f)
m_gcode += set_format_E(e);
@ -397,9 +397,8 @@ private:
std::string m_gcode;
std::vector<WipeTower::Extrusion> m_extrusions;
float m_elapsed_time;
float m_angle_deg = 0.f;
float m_internal_angle = 0.f;
float m_y_shift = 0.f;
WipeTower::xy m_wipe_tower_pos;
float m_wipe_tower_width = 0.f;
float m_wipe_tower_depth = 0.f;
float m_last_fan_speed = 0.f;
@ -539,6 +538,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::prime(
m_print_brim = true;
ToolChangeResult result;
result.priming = true;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -575,7 +575,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
}
box_coordinates cleaning_box(
m_wipe_tower_pos + xy(m_perimeter_width / 2.f, m_perimeter_width / 2.f),
xy(m_perimeter_width / 2.f, m_perimeter_width / 2.f),
m_wipe_tower_width - m_perimeter_width,
(tool != (unsigned int)(-1) ? /*m_layer_info->depth*/wipe_area+m_depth_traversed-0.5*m_perimeter_width
: m_wipe_tower_depth-m_perimeter_width));
@ -584,7 +584,6 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f))
.append(";--------------------\n"
"; CP TOOLCHANGE START\n")
@ -594,7 +593,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
.speed_override(100);
xy initial_position = cleaning_box.ld + WipeTower::xy(0.f,m_depth_traversed);
writer.set_initial_position(initial_position);
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
// Increase the extruder driver current to allow fast ramming.
writer.set_extruder_trimpot(750);
@ -616,11 +615,11 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
if (last_change_in_layer) {// draw perimeter line
writer.set_y_shift(m_y_shift);
if (m_peters_wipe_tower)
writer.rectangle(m_wipe_tower_pos,m_layer_info->depth + 3*m_perimeter_width,m_wipe_tower_depth);
writer.rectangle(WipeTower::xy(0.f, 0.f),m_layer_info->depth + 3*m_perimeter_width,m_wipe_tower_depth);
else {
writer.rectangle(m_wipe_tower_pos,m_wipe_tower_width, m_layer_info->depth + m_perimeter_width);
writer.rectangle(WipeTower::xy(0.f, 0.f),m_wipe_tower_width, m_layer_info->depth + m_perimeter_width);
if (layer_finished()) { // no finish_layer will be called, we must wipe the nozzle
writer.travel(m_wipe_tower_pos.x + (writer.x()> (m_wipe_tower_pos.x + m_wipe_tower_width) / 2.f ? 0.f : m_wipe_tower_width), writer.y());
writer.travel(writer.x()> m_wipe_tower_width / 2.f ? 0.f : m_wipe_tower_width, writer.y());
}
}
}
@ -634,6 +633,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
"\n\n");
ToolChangeResult result;
result.priming = false;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -647,7 +647,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(bool sideOnly, float y_offset)
{
const box_coordinates wipeTower_box(
m_wipe_tower_pos,
WipeTower::xy(0.f, 0.f),
m_wipe_tower_width,
m_wipe_tower_depth);
@ -655,12 +655,11 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(bool sideOnly, flo
writer.set_extrusion_flow(m_extrusion_flow * 1.1f)
.set_z(m_z_pos) // Let the writer know the current Z position as a base for Z-hop.
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.append(";-------------------------------------\n"
"; CP WIPE TOWER FIRST LAYER BRIM START\n");
xy initial_position = wipeTower_box.lu - xy(m_perimeter_width * 6.f, 0);
writer.set_initial_position(initial_position);
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
writer.extrude_explicit(wipeTower_box.ld - xy(m_perimeter_width * 6.f, 0), // Prime the extruder left of the wipe tower.
1.5f * m_extrusion_flow * (wipeTower_box.lu.y - wipeTower_box.ld.y), 2400);
@ -685,6 +684,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(bool sideOnly, flo
m_print_brim = false; // Mark the brim as extruded
ToolChangeResult result;
result.priming = false;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -724,7 +724,7 @@ void WipeTowerPrusaMM::toolchange_Unload(
if (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion )) {
// this is y of the center of previous sparse infill border
float sparse_beginning_y = m_wipe_tower_pos.y;
float sparse_beginning_y = 0.f;
if (m_current_shape == SHAPE_REVERSED)
sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth())
- ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ;
@ -742,7 +742,7 @@ void WipeTowerPrusaMM::toolchange_Unload(
for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange
if (tch.old_tool == m_current_tool) {
sum_of_depths += tch.ramming_depth;
float ramming_end_y = m_wipe_tower_pos.y + sum_of_depths;
float ramming_end_y = sum_of_depths;
ramming_end_y -= (y_step/m_extra_spacing-m_perimeter_width) / 2.f; // center of final ramming line
// debugging:
@ -950,7 +950,7 @@ void WipeTowerPrusaMM::toolchange_Wipe(
if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool) {
m_left_to_right = !m_left_to_right;
writer.travel(writer.x(), writer.y() - dy)
.travel(m_wipe_tower_pos.x + (m_left_to_right ? m_wipe_tower_width : 0.f), writer.y());
.travel(m_left_to_right ? m_wipe_tower_width : 0.f, writer.y());
}
writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow.
@ -969,7 +969,6 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer()
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower ? m_layer_info->toolchanges_depth() : 0.f))
.append(";--------------------\n"
"; CP EMPTY GRID START\n")
@ -978,14 +977,12 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer()
// Slow down on the 1st layer.
float speed_factor = m_is_first_layer ? 0.5f : 1.f;
float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth();
box_coordinates fill_box(m_wipe_tower_pos + xy(m_perimeter_width, m_depth_traversed + m_perimeter_width),
box_coordinates fill_box(xy(m_perimeter_width, m_depth_traversed + m_perimeter_width),
m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width);
if (m_left_to_right) // so there is never a diagonal travel
writer.set_initial_position(fill_box.ru);
else
writer.set_initial_position(fill_box.lu);
writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel
m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
box_coordinates box = fill_box;
for (int i=0;i<2;++i) {
@ -1044,6 +1041,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer()
m_depth_traversed = m_wipe_tower_depth-m_perimeter_width;
ToolChangeResult result;
result.priming = false;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
@ -1165,9 +1163,9 @@ void WipeTowerPrusaMM::generate(std::vector<std::vector<WipeTower::ToolChangeRes
{
set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z);
if (m_peters_wipe_tower)
m_wipe_tower_rotation_angle += 90.f;
m_internal_rotation += 90.f;
else
m_wipe_tower_rotation_angle += 180.f;
m_internal_rotation += 180.f;
if (!m_peters_wipe_tower && m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width)
m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f;
@ -1188,7 +1186,7 @@ void WipeTowerPrusaMM::generate(std::vector<std::vector<WipeTower::ToolChangeRes
last_toolchange.gcode += buf;
}
last_toolchange.gcode += finish_layer_toolchange.gcode;
last_toolchange.extrusions.insert(last_toolchange.extrusions.end(),finish_layer_toolchange.extrusions.begin(),finish_layer_toolchange.extrusions.end());
last_toolchange.extrusions.insert(last_toolchange.extrusions.end(), finish_layer_toolchange.extrusions.begin(), finish_layer_toolchange.extrusions.end());
last_toolchange.end_pos = finish_layer_toolchange.end_pos;
}
else

View file

@ -102,6 +102,8 @@ public:
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
void generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result);
float get_depth() const { return m_wipe_tower_depth; }
// Switch to a next layer.
@ -189,6 +191,7 @@ private:
float m_wipe_tower_width; // Width of the wipe tower.
float m_wipe_tower_depth = 0.f; // Depth of the wipe tower
float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis)
float m_internal_rotation = 0.f;
float m_y_shift = 0.f; // y shift passed to writer
float m_z_pos = 0.f; // Current Z position.
float m_layer_height = 0.f; // Current layer height.

View file

@ -114,6 +114,28 @@ void GCodeReader::parse_file(const std::string &file, callback_t callback)
this->parse_line(line, callback);
}
bool GCodeReader::GCodeLine::has(char axis) const
{
const char *c = m_raw.c_str();
// Skip the whitespaces.
c = skip_whitespaces(c);
// Skip the command.
c = skip_word(c);
// Up to the end of line or comment.
while (! is_end_of_gcode_line(*c)) {
// Skip whitespaces.
c = skip_whitespaces(c);
if (is_end_of_gcode_line(*c))
break;
// Check the name of the axis.
if (*c == axis)
return true;
// Skip the rest of the word.
c = skip_word(c);
}
return false;
}
bool GCodeReader::GCodeLine::has_value(char axis, float &value) const
{
const char *c = m_raw.c_str();

View file

@ -27,6 +27,7 @@ public:
bool has(Axis axis) const { return (m_mask & (1 << int(axis))) != 0; }
float value(Axis axis) const { return m_axis[axis]; }
bool has(char axis) const;
bool has_value(char axis, float &value) const;
float new_Z(const GCodeReader &reader) const { return this->has(Z) ? this->z() : reader.z(); }
float new_E(const GCodeReader &reader) const { return this->has(E) ? this->e() : reader.e(); }

View file

@ -2,6 +2,7 @@
#include <iostream>
#include <istream>
#include <string>
#include <thread>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/trim.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
@ -568,16 +569,12 @@ GCodeSender::set_DTR(bool on)
void
GCodeSender::reset()
{
this->set_DTR(false);
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
this->set_DTR(true);
boost::this_thread::sleep(boost::posix_time::milliseconds(200));
this->set_DTR(false);
boost::this_thread::sleep(boost::posix_time::milliseconds(1000));
{
boost::lock_guard<boost::mutex> l(this->queue_mutex);
this->can_send = true;
}
set_DTR(false);
std::this_thread::sleep_for(std::chrono::milliseconds(200));
set_DTR(true);
std::this_thread::sleep_for(std::chrono::milliseconds(200));
set_DTR(false);
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
} // namespace Slic3r

View file

@ -469,6 +469,40 @@ namespace Slic3r {
return _state.minimum_travel_feedrate;
}
void GCodeTimeEstimator::set_filament_load_times(const std::vector<double> &filament_load_times)
{
_state.filament_load_times.clear();
for (double t : filament_load_times)
_state.filament_load_times.push_back(t);
}
void GCodeTimeEstimator::set_filament_unload_times(const std::vector<double> &filament_unload_times)
{
_state.filament_unload_times.clear();
for (double t : filament_unload_times)
_state.filament_unload_times.push_back(t);
}
float GCodeTimeEstimator::get_filament_load_time(unsigned int id_extruder)
{
return
(_state.filament_load_times.empty() || id_extruder == _state.extruder_id_unloaded) ?
0 :
(_state.filament_load_times.size() <= id_extruder) ?
_state.filament_load_times.front() :
_state.filament_load_times[id_extruder];
}
float GCodeTimeEstimator::get_filament_unload_time(unsigned int id_extruder)
{
return
(_state.filament_unload_times.empty() || id_extruder == _state.extruder_id_unloaded) ?
0 :
(_state.filament_unload_times.size() <= id_extruder) ?
_state.filament_unload_times.front() :
_state.filament_unload_times[id_extruder];
}
void GCodeTimeEstimator::set_extrude_factor_override_percentage(float percentage)
{
_state.extrude_factor_override_percentage = percentage;
@ -535,6 +569,23 @@ namespace Slic3r {
_state.g1_line_id = 0;
}
void GCodeTimeEstimator::set_extruder_id(unsigned int id)
{
_state.extruder_id = id;
}
unsigned int GCodeTimeEstimator::get_extruder_id() const
{
return _state.extruder_id;
}
void GCodeTimeEstimator::reset_extruder_id()
{
// Set the initial extruder ID to unknown. For the multi-material setup it means
// that all the filaments are parked in the MMU and no filament is loaded yet.
_state.extruder_id = _state.extruder_id_unloaded;
}
void GCodeTimeEstimator::add_additional_time(float timeSec)
{
PROFILE_FUNC();
@ -575,6 +626,9 @@ namespace Slic3r {
set_axis_max_acceleration(axis, DEFAULT_AXIS_MAX_ACCELERATION[a]);
set_axis_max_jerk(axis, DEFAULT_AXIS_MAX_JERK[a]);
}
_state.filament_load_times.clear();
_state.filament_unload_times.clear();
}
void GCodeTimeEstimator::reset()
@ -613,6 +667,7 @@ namespace Slic3r {
set_additional_time(0.0f);
reset_extruder_id();
reset_g1_line_id();
_g1_line_ids.clear();
@ -666,6 +721,8 @@ namespace Slic3r {
}
_last_st_synchronized_block_id = _blocks.size() - 1;
// The additional time has been consumed (added to the total time), reset it to zero.
set_additional_time(0.);
}
void GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
@ -778,8 +835,18 @@ namespace Slic3r {
_processM566(line);
break;
}
case 702: // MK3 MMU2: Process the final filament unload.
{
_processM702(line);
break;
}
}
break;
}
case 'T': // Select Tools
{
_processT(line);
break;
}
}
@ -1164,11 +1231,25 @@ namespace Slic3r {
{
PROFILE_FUNC();
float value;
if (line.has_value('S', value))
if (line.has_value('S', value)) {
// Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
// and it is also generated by Slic3r to control acceleration per extrusion type
// (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
set_acceleration(value);
if (line.has_value('T', value))
set_retract_acceleration(value);
if (line.has_value('T', value))
set_retract_acceleration(value);
} else {
// New acceleration format, compatible with the upstream Marlin.
if (line.has_value('P', value))
set_acceleration(value);
if (line.has_value('R', value))
set_retract_acceleration(value);
if (line.has_value('T', value)) {
// Interpret the T value as the travel acceleration in the new Marlin format.
//FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
// set_travel_acceleration(value);
}
}
}
void GCodeTimeEstimator::_processM205(const GCodeReader::GCodeLine& line)
@ -1223,6 +1304,37 @@ namespace Slic3r {
set_axis_max_jerk(E, line.e() * MMMIN_TO_MMSEC);
}
void GCodeTimeEstimator::_processM702(const GCodeReader::GCodeLine& line)
{
PROFILE_FUNC();
if (line.has('C')) {
// MK3 MMU2 specific M code:
// M702 C is expected to be sent by the custom end G-code when finalizing a print.
// The MK3 unit shall unload and park the active filament into the MMU2 unit.
add_additional_time(get_filament_unload_time(get_extruder_id()));
reset_extruder_id();
_simulate_st_synchronize();
}
}
void GCodeTimeEstimator::_processT(const GCodeReader::GCodeLine& line)
{
std::string cmd = line.cmd();
if (cmd.length() > 1)
{
unsigned int id = (unsigned int)::strtol(cmd.substr(1).c_str(), nullptr, 10);
if (get_extruder_id() != id)
{
// Specific to the MK3 MMU2: The initial extruder ID is set to -1 indicating
// that the filament is parked in the MMU2 unit and there is nothing to be unloaded yet.
add_additional_time(get_filament_unload_time(get_extruder_id()));
set_extruder_id(id);
add_additional_time(get_filament_load_time(get_extruder_id()));
_simulate_st_synchronize();
}
}
}
void GCodeTimeEstimator::_simulate_st_synchronize()
{
PROFILE_FUNC();

View file

@ -79,7 +79,15 @@ namespace Slic3r {
float minimum_feedrate; // mm/s
float minimum_travel_feedrate; // mm/s
float extrude_factor_override_percentage;
// Additional load / unload times for a filament exchange sequence.
std::vector<float> filament_load_times;
std::vector<float> filament_unload_times;
unsigned int g1_line_id;
// extruder_id is currently used to correctly calculate filament load / unload times
// into the total print time. This is currently only really used by the MK3 MMU2:
// Extruder id (-1) means no filament is loaded yet, all the filaments are parked in the MK3 MMU2 unit.
static const unsigned int extruder_id_unloaded = (unsigned int)-1;
unsigned int extruder_id;
};
public:
@ -281,6 +289,11 @@ namespace Slic3r {
void set_minimum_travel_feedrate(float feedrate_mm_sec);
float get_minimum_travel_feedrate() const;
void set_filament_load_times(const std::vector<double> &filament_load_times);
void set_filament_unload_times(const std::vector<double> &filament_unload_times);
float get_filament_load_time(unsigned int id_extruder);
float get_filament_unload_time(unsigned int id_extruder);
void set_extrude_factor_override_percentage(float percentage);
float get_extrude_factor_override_percentage() const;
@ -300,6 +313,10 @@ namespace Slic3r {
void increment_g1_line_id();
void reset_g1_line_id();
void set_extruder_id(unsigned int id);
unsigned int get_extruder_id() const;
void reset_extruder_id();
void add_additional_time(float timeSec);
void set_additional_time(float timeSec);
float get_additional_time() const;
@ -383,6 +400,12 @@ namespace Slic3r {
// Set allowable instantaneous speed change
void _processM566(const GCodeReader::GCodeLine& line);
// Unload the current filament into the MK3 MMU2 unit at the end of print.
void _processM702(const GCodeReader::GCodeLine& line);
// Processes T line (Select Tool)
void _processT(const GCodeReader::GCodeLine& line);
// Simulates firmware st_synchronize() call
void _simulate_st_synchronize();

View file

@ -7,11 +7,6 @@
#include "Format/STL.hpp"
#include "Format/3mf.hpp"
#include <numeric>
#include <libnest2d.h>
#include <ClipperUtils.hpp>
#include "slic3r/GUI/GUI.hpp"
#include <float.h>
#include <boost/algorithm/string/predicate.hpp>
@ -304,369 +299,36 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
return result;
}
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
tmpmesh.scale(objinst->scaling_factor);
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
bool first_bin_only,
std::function<void(unsigned)> progressind)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Create the arranger config
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
bool hasbin = bb != nullptr && bb->defined;
double area_max = 0;
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes, min_obj_distance, &area_max, hasbin]
(ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
Box bin;
if(hasbin) {
// Scale up the bounding box to clipper scale.
BoundingBoxf bbb = *bb;
bbb.scale(1.0/SCALING_FACTOR);
bin = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
}
// Will use the DJD selection heuristic with the BottomLeft placement
// strategy
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
using PConf = Arranger::PlacementConfig;
using SConf = Arranger::SelectionConfig;
PConf pcfg; // Placement configuration
SConf scfg; // Selection configuration
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// Magic: we will specify what is the goal of arrangement... In this case
// we override the default object function to make the larger items go into
// the center of the pile and smaller items orbit it so the resulting pile
// has a circle-like shape. This is good for the print bed's heat profile.
// We alse sacrafice a bit of pack efficiency for this to work. As a side
// effect, the arrange procedure is a lot faster (we do not need to
// calculate the convex hulls)
pcfg.object_function = [bin, hasbin](
NfpPlacer::Pile pile, // The currently arranged pile
double /*area*/, // Sum area of items (not needed)
double norm, // A norming factor for physical dimensions
double penality) // Min penality in case of bad arrangement
{
auto bb = ShapeLike::boundingBox(pile);
// We get the current item that's being evaluated.
auto& sh = pile.back();
// We retrieve the reference point of this item
auto rv = Nfp::referenceVertex(sh);
// We get the distance of the reference point from the center of the
// heat bed
auto c = bin.center();
auto d = PointLike::distance(rv, c);
// The score will be the normalized distance which will be minimized,
// effectively creating a circle shaped pile of items
double score = double(d)/norm;
// If it does not fit into the print bed we will beat it
// with a large penality. If we would not do this, there would be only
// one big pile that doesn't care whether it fits onto the print bed.
if(hasbin && !NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
return score;
};
// Create the arranger object
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
// Set the progress indicator for the arranger.
arranger.progressIndicator(progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
Coord batch_offset)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation = rot;
inst_ptr->offset = foff;
}
};
if(first_bin_only) {
applyResult(result.front(), 0);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
bin.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
/* arrange objects preserving their instance count
but altering their instance positions */
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
std::function<void(unsigned)> progressind)
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
{
bool ret = false;
if(bb != nullptr && bb->defined) {
// Despite the new arrange is able to run without a specified bin,
// the perl testsuit still fails for this case. For now the safest
// thing to do is to use the new arrange only when a proper bin is
// specified.
ret = arr::arrange(*this, dist, bb, false, progressind);
} else {
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing
Pointfs instance_sizes;
Pointfs instance_centers;
for (const ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i) {
// an accurate snug bounding box around the transformed mesh.
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
instance_sizes.push_back(bbox.size());
instance_centers.push_back(bbox.center());
}
Pointfs positions;
if (! _arrange(instance_sizes, dist, bb, positions))
return false;
size_t idx = 0;
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances) {
i->offset = positions[idx] - instance_centers[idx];
++ idx;
}
o->invalidate_bounding_box();
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing
Pointfs instance_sizes;
Pointfs instance_centers;
for (const ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i) {
// an accurate snug bounding box around the transformed mesh.
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
instance_sizes.push_back(bbox.size());
instance_centers.push_back(bbox.center());
}
Pointfs positions;
if (! _arrange(instance_sizes, dist, bb, positions))
return false;
size_t idx = 0;
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances) {
i->offset = positions[idx] - instance_centers[idx];
++ idx;
}
o->invalidate_bounding_box();
}
return ret;
return true;
}
// Duplicate the entire model preserving instance relative positions.
@ -1109,9 +771,23 @@ void ModelObject::scale(const Pointf3 &versor)
void ModelObject::rotate(float angle, const Axis &axis)
{
float min_z = FLT_MAX;
for (ModelVolume *v : this->volumes)
{
v->mesh.rotate(angle, axis);
this->origin_translation = Pointf3(0,0,0);
min_z = std::min(min_z, v->mesh.stl.stats.min.z);
}
if (min_z != 0.0f)
{
// translate the object so that its minimum z lays on the bed
for (ModelVolume *v : this->volumes)
{
v->mesh.translate(0.0f, 0.0f, -min_z);
}
}
this->origin_translation = Pointf3(0, 0, 0);
this->invalidate_bounding_box();
}

View file

@ -290,8 +290,7 @@ public:
void center_instances_around_point(const Pointf &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const;
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL,
std::function<void(unsigned)> progressind = [](unsigned){});
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
// Croaks if the duplicated objects do not fit the print bed.
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);

View file

@ -0,0 +1,597 @@
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
namespace Slic3r {
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
double /*bin_area*/,
ShapeLike::Shapes<PolygonImpl>& pile, // The currently arranged pile
double /*pile_area*/,
const Item &item,
double norm, // A norming factor for physical dimensions
std::vector<double>& areacache, // pile item areas will be cached
// a spatial index to quickly get neighbors of the candidate item
SpatIndex& spatindex
)
{
using pl = PointLike;
using sl = ShapeLike;
static const double BIG_ITEM_TRESHOLD = 0.2;
static const double ROUNDNESS_RATIO = 0.5;
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
// We will treat big items (compared to the print bed) differently
auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
// If a new bin has been created:
if(pile.size() < areacache.size()) {
areacache.clear();
spatindex.clear();
}
// We must fill the caches:
int idx = 0;
for(auto& p : pile) {
if(idx == areacache.size()) {
areacache.emplace_back(sl::area(p));
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
spatindex.insert({sl::boundingBox(p), idx});
}
idx++;
}
// Candidate item bounding box
auto ibb = item.boundingBox();
// Calculate the full bounding box of the pile with the candidate item
pile.emplace_back(item.transformedShape());
auto fullbb = ShapeLike::boundingBox(pile);
pile.pop_back();
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// The size indicator of the candidate item. This is not the area,
// but almost...
double item_normarea = normarea(item.area());
// Will hold the resulting score
double score = 0;
if(item_normarea > BIG_ITEM_TRESHOLD) {
// This branch is for the bigger items..
// Here we will use the closest point of the item bounding box to
// the already arranged pile. So not the bb center nor the a choosen
// corner but whichever is the closest to the center. This will
// prevent some unwanted strange arrangements.
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
// Density is the pack density: how big is the arranged pile
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item aligned with
// its neighbors. We will check the aligment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = std::numeric_limits<double>::max();
auto& trsh = item.transformedShape();
auto querybb = item.boundingBox();
// Query the spatial index for the neigbours
std::vector<SpatElement> result;
spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
auto& p = pile[idx];
auto parea = areacache[idx];
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
// The final mix of the score is the balance between the distance
// from the full pile center, the pack density and the
// alignment with the neigbours
auto C = 0.33;
score = C * dist + C * density + C * alignment_score;
} else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
// If there are no big items, only small, we should consider the
// density here as well to not get silly results
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / norm;
}
return std::make_tuple(score, fullbb);
}
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.6f;
}
template<class TBin>
class AutoArranger {};
template<class TBin>
class _ArrBase {
protected:
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
using Selector = FirstFitSelection;
using Packer = Arranger<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
using Pile = ShapeLike::Shapes<PolygonImpl>;
Packer pck_;
PConfig pconf_; // Placement configuration
double bin_area_;
std::vector<double> areacache_;
SpatIndex rtree_;
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind):
pck_(bin, dist), bin_area_(ShapeLike::area<PolygonImpl>(bin))
{
fillConfig(pconf_);
pck_.progressIndicator(progressind);
}
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
areacache_.clear();
return pck_.arrangeIndexed(std::forward<Args>(args)...);
}
};
template<>
class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<Box>(bin, dist, progressind)
{
pconf_.object_function = [this, bin] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto result = objfunc(bin.center(), bin_area_, pile,
pile_area, item, norm, areacache_, rtree_);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
auto wdiff = fullbb.width() - bin.width();
auto hdiff = fullbb.height() - bin.height();
if(wdiff > 0) score += std::pow(wdiff, 2) / norm;
if(hdiff > 0) score += std::pow(hdiff, 2) / norm;
return score;
};
pck_.configure(pconf_);
}
};
template<>
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<PolygonImpl>(bin, dist, progressind)
{
pconf_.object_function = [this, &bin] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto binbb = ShapeLike::boundingBox(bin);
auto result = objfunc(binbb.center(), bin_area_, pile,
pile_area, item, norm, areacache_, rtree_);
double score = std::get<0>(result);
pile.emplace_back(item.transformedShape());
auto chull = ShapeLike::convexHull(pile);
pile.pop_back();
// If it does not fit into the print bed we will beat it with a
// large penality. If we would not do this, there would be only one
// big pile that doesn't care whether it fits onto the print bed.
if(!Placer::wouldFit(chull, bin)) score += norm;
return score;
};
pck_.configure(pconf_);
}
};
template<> // Specialization with no bin
class AutoArranger<bool>: public _ArrBase<Box> {
public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
_ArrBase<Box>(Box(0, 0), dist, progressind)
{
this->pconf_.object_function = [this] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto result = objfunc({0, 0}, 0, pile, pile_area,
item, norm, areacache_, rtree_);
return std::get<0>(result);
};
this->pck_.configure(pconf_);
}
};
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
tmpmesh.scale(objinst->scaling_factor);
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
enum BedShapeHint {
BOX,
CIRCLE,
IRREGULAR,
WHO_KNOWS
};
BedShapeHint bedShape(const Slic3r::Polyline& /*bed*/) {
// Determine the bed shape by hand
return BOX;
}
void applyResult(
IndexedPackGroup::value_type& group,
Coord batch_offset,
ShapeData2D& shapemap)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation = rot;
inst_ptr->offset = foff;
}
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t min_obj_distance,
const Slic3r::Polyline& bed,
BedShapeHint bedhint,
bool first_bin_only,
std::function<void(unsigned)> progressind)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes] (ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
IndexedPackGroup result;
BoundingBox bbb(bed.points);
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
switch(bedhint) {
case BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case CIRCLE:
break;
case IRREGULAR:
case WHO_KNOWS: {
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
// std::cout << ShapeLike::toString(irrbed) << std::endl;
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
};
if(first_bin_only) {
applyResult(result.front(), 0, shapemap);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset, shapemap);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
}
#endif // MODELARRANGE_HPP

View file

@ -132,7 +132,6 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
"gcode_comments",
"gcode_flavor",
"infill_acceleration",
"infill_first",
"layer_gcode",
"min_fan_speed",
"max_fan_speed",
@ -159,6 +158,7 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
"retract_restart_extra",
"retract_restart_extra_toolchange",
"retract_speed",
"single_extruder_multi_material_priming",
"slowdown_below_layer_time",
"standby_temperature_delta",
"start_gcode",
@ -170,17 +170,16 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
"use_relative_e_distances",
"use_volumetric_e",
"variable_layer_height",
"wipe"
"wipe",
"wipe_tower_x",
"wipe_tower_y",
"wipe_tower_rotation_angle"
};
std::vector<PrintStep> steps;
std::vector<PrintObjectStep> osteps;
bool invalidated = false;
// Always invalidate the wipe tower. This is probably necessary because of the wipe_into_infill / wipe_into_objects
// features - nearly anything can influence what should (and could) be wiped into.
steps.emplace_back(psWipeTower);
for (const t_config_option_key &opt_key : opt_keys) {
if (steps_ignore.find(opt_key) != steps_ignore.end()) {
// These options only affect G-code export or they are just notes without influence on the generated G-code,
@ -208,18 +207,17 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|| opt_key == "filament_unloading_speed"
|| opt_key == "filament_toolchange_delay"
|| opt_key == "filament_cooling_moves"
|| opt_key == "filament_minimal_purge_on_wipe_tower"
|| opt_key == "filament_cooling_initial_speed"
|| opt_key == "filament_cooling_final_speed"
|| opt_key == "filament_ramming_parameters"
|| opt_key == "gcode_flavor"
|| opt_key == "infill_first"
|| opt_key == "single_extruder_multi_material"
|| opt_key == "spiral_vase"
|| opt_key == "temperature"
|| opt_key == "wipe_tower"
|| opt_key == "wipe_tower_x"
|| opt_key == "wipe_tower_y"
|| opt_key == "wipe_tower_width"
|| opt_key == "wipe_tower_rotation_angle"
|| opt_key == "wipe_tower_bridging"
|| opt_key == "wiping_volumes_matrix"
|| opt_key == "parking_pos_retraction"
@ -1055,6 +1053,8 @@ void Print::_make_wipe_tower()
if (! this->has_wipe_tower())
return;
m_wipe_tower_depth = 0.f;
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
std::vector<float> wiping_matrix((this->config.wiping_volumes_matrix.values).begin(),(this->config.wiping_volumes_matrix.values).end());
// Extract purging volumes for each extruder pair:
@ -1148,12 +1148,19 @@ void Print::_make_wipe_tower()
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, current_extruder_id,false);
for (const auto extruder_id : layer_tools.extruders) {
if ((first_layer && extruder_id == m_tool_ordering.all_extruders().back()) || extruder_id != current_extruder_id) {
float volume_to_wipe = wipe_volumes[current_extruder_id][extruder_id]; // total volume to wipe after this toolchange
float volume_to_wipe = wipe_volumes[current_extruder_id][extruder_id]; // total volume to wipe after this toolchange
// Not all of that can be used for infill purging:
volume_to_wipe -= config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
// try to assign some infills/objects for the wiping:
volume_to_wipe = layer_tools.wiping_extrusions().mark_wiping_extrusions(*this, current_extruder_id, extruder_id, wipe_volumes[current_extruder_id][extruder_id]);
volume_to_wipe = layer_tools.wiping_extrusions().mark_wiping_extrusions(*this, current_extruder_id, extruder_id, volume_to_wipe);
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, extruder_id, first_layer && extruder_id == m_tool_ordering.all_extruders().back(), volume_to_wipe);
// add back the minimal amount toforce on the wipe tower:
volume_to_wipe += config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
// request a toolchange at the wipe tower with at least volume_to_wipe purging amount
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, extruder_id,
first_layer && extruder_id == m_tool_ordering.all_extruders().back(), volume_to_wipe);
current_extruder_id = extruder_id;
}
}
@ -1166,7 +1173,8 @@ void Print::_make_wipe_tower()
// Generate the wipe tower layers.
m_wipe_tower_tool_changes.reserve(m_tool_ordering.layer_tools().size());
wipe_tower.generate(m_wipe_tower_tool_changes);
m_wipe_tower_depth = wipe_tower.get_depth();
// Unload the current filament over the purge tower.
coordf_t layer_height = this->objects.front()->config.layer_height.value;
if (m_tool_ordering.back().wipe_tower_partitions > 0) {
@ -1187,10 +1195,6 @@ void Print::_make_wipe_tower()
wipe_tower.tool_change((unsigned int)-1, false));
}
std::string Print::output_filename()
{
this->placeholder_parser.update_timestamp();
@ -1244,7 +1248,6 @@ void Print::print_to_png(std::string dirpath) {
float(this->config.exp_time_first.value));
}
// Returns extruder this eec should be printed with, according to PrintRegion config
int Print::get_extruder(const ExtrusionEntityCollection& fill, const PrintRegion &region)
{
@ -1252,5 +1255,4 @@ int Print::get_extruder(const ExtrusionEntityCollection& fill, const PrintRegion
std::max<int>(region.config.perimeter_extruder.value - 1, 0);
}
}

View file

@ -279,6 +279,7 @@ public:
void add_model_object(ModelObject* model_object, int idx = -1);
bool apply_config(DynamicPrintConfig config);
float get_wipe_tower_depth() const { return m_wipe_tower_depth; }
bool has_infinite_skirt() const;
bool has_skirt() const;
// Returns an empty string if valid, otherwise returns an error message.
@ -334,6 +335,9 @@ private:
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
PrintRegionConfig _region_config_from_model_volume(const ModelVolume &volume);
// Depth of the wipe tower to pass to GLCanvas3D for exact bounding box:
float m_wipe_tower_depth = 0.f;
// Has the calculation been canceled?
tbb::atomic<bool> m_canceled;
};

View file

@ -504,19 +504,38 @@ PrintConfigDef::PrintConfigDef()
def = this->add("filament_cooling_initial_speed", coFloats);
def->label = L("Speed of the first cooling move");
def->tooltip = L("Cooling moves are gradually accelerating beginning at this speed. ");
def->cli = "filament-cooling-initial-speed=i@";
def->cli = "filament-cooling-initial-speed=f@";
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats { 2.2f };
def = this->add("filament_minimal_purge_on_wipe_tower", coFloats);
def->label = L("Minimal purge on wipe tower");
def->tooltip = L("After a tool change, the exact position of the newly loaded filament inside "
"the nozzle may not be known, and the filament pressure is likely not yet stable. "
"Before purging the print head into an infill or a sacrificial object, Slic3r will always prime "
"this amount of material into the wipe tower to produce successive infill or sacrificial object extrusions reliably.");
def->cli = "filament-minimal-purge-on-wipe-tower=f@";
def->sidetext = L("mm³");
def->min = 0;
def->default_value = new ConfigOptionFloats { 5.f };
def = this->add("filament_cooling_final_speed", coFloats);
def->label = L("Speed of the last cooling move");
def->tooltip = L("Cooling moves are gradually accelerating towards this speed. ");
def->cli = "filament-cooling-final-speed=i@";
def->cli = "filament-cooling-final-speed=f@";
def->sidetext = L("mm/s");
def->min = 0;
def->default_value = new ConfigOptionFloats { 3.4f };
def = this->add("filament_load_time", coFloats);
def->label = L("Filament load time");
def->tooltip = L("Time for the printer firmware (or the Multi Material Unit 2.0) to load a new filament during a tool change (when executing the T code). This time is added to the total print time by the G-code time estimator.");
def->cli = "filament-load-time=i@";
def->sidetext = L("s");
def->min = 0;
def->default_value = new ConfigOptionFloats { 0.0f };
def = this->add("filament_ramming_parameters", coStrings);
def->label = L("Ramming parameters");
def->tooltip = L("This string is edited by RammingDialog and contains ramming specific parameters ");
@ -524,6 +543,14 @@ PrintConfigDef::PrintConfigDef()
def->default_value = new ConfigOptionStrings { "120 100 6.6 6.8 7.2 7.6 7.9 8.2 8.7 9.4 9.9 10.0|"
" 0.05 6.6 0.45 6.8 0.95 7.8 1.45 8.3 1.95 9.7 2.45 10 2.95 7.6 3.45 7.6 3.95 7.6 4.45 7.6 4.95 7.6" };
def = this->add("filament_unload_time", coFloats);
def->label = L("Filament unload time");
def->tooltip = L("Time for the printer firmware (or the Multi Material Unit 2.0) to unload a filament during a tool change (when executing the T code). This time is added to the total print time by the G-code time estimator.");
def->cli = "filament-unload-time=i@";
def->sidetext = L("s");
def->min = 0;
def->default_value = new ConfigOptionFloats { 0.0f };
def = this->add("filament_diameter", coFloats);
def->label = L("Diameter");
def->tooltip = L("Enter your filament diameter here. Good precision is required, so use a caliper "
@ -892,8 +919,16 @@ PrintConfigDef::PrintConfigDef()
def->min = 0;
def->default_value = new ConfigOptionFloat(0.3);
def = this->add("remaining_times", coBool);
def->label = L("Supports remaining times");
def->tooltip = L("Emit M73 P[percent printed] R[remaining time in seconds] at 1 minute"
" intervals into the G-code to let the firmware show accurate remaining time."
" As of now only the Prusa i3 MK3 firmware recognizes M73."
" Also the i3 MK3 firmware supports M73 Qxx Sxx for the silent mode.");
def->default_value = new ConfigOptionBool(false);
def = this->add("silent_mode", coBool);
def->label = L("Support silent mode");
def->label = L("Supports silent mode");
def->tooltip = L("Set silent mode for the G-code flavor");
def->default_value = new ConfigOptionBool(true);
@ -1623,6 +1658,12 @@ PrintConfigDef::PrintConfigDef()
def->cli = "single-extruder-multi-material!";
def->default_value = new ConfigOptionBool(false);
def = this->add("single_extruder_multi_material_priming", coBool);
def->label = L("Prime all printing extruders");
def->tooltip = L("If enabled, all printing extruders will be primed at the front edge of the print bed at the start of the print.");
def->cli = "single-extruder-multi-material-priming!";
def->default_value = new ConfigOptionBool(true);
def = this->add("support_material", coBool);
def->label = L("Generate support material");
def->category = L("Support material");
@ -1993,8 +2034,8 @@ PrintConfigDef::PrintConfigDef()
def = this->add("wipe_into_infill", coBool);
def->category = L("Extruders");
def->label = L("Purging into infill");
def->tooltip = L("Wiping after toolchange will be preferentially done inside infills. "
def->label = L("Purge into this object's infill");
def->tooltip = L("Purging after toolchange will done inside this object's infills. "
"This lowers the amount of waste but may result in longer print time "
" due to additional travel moves.");
def->cli = "wipe-into-infill!";
@ -2002,8 +2043,8 @@ PrintConfigDef::PrintConfigDef()
def = this->add("wipe_into_objects", coBool);
def->category = L("Extruders");
def->label = L("Purging into objects");
def->tooltip = L("Objects will be used to wipe the nozzle after a toolchange to save material "
def->label = L("Purge into this object");
def->tooltip = L("Object will be used to purge the nozzle after a toolchange to save material "
"that would otherwise end up in the wipe tower and decrease print time. "
"Colours of the objects will be mixed as a result.");
def->cli = "wipe-into-objects!";

View file

@ -528,10 +528,13 @@ public:
ConfigOptionFloats filament_cost;
ConfigOptionFloats filament_max_volumetric_speed;
ConfigOptionFloats filament_loading_speed;
ConfigOptionFloats filament_load_time;
ConfigOptionFloats filament_unloading_speed;
ConfigOptionFloats filament_toolchange_delay;
ConfigOptionFloats filament_unload_time;
ConfigOptionInts filament_cooling_moves;
ConfigOptionFloats filament_cooling_initial_speed;
ConfigOptionFloats filament_minimal_purge_on_wipe_tower;
ConfigOptionFloats filament_cooling_final_speed;
ConfigOptionStrings filament_ramming_parameters;
ConfigOptionBool gcode_comments;
@ -553,6 +556,7 @@ public:
ConfigOptionString start_gcode;
ConfigOptionStrings start_filament_gcode;
ConfigOptionBool single_extruder_multi_material;
ConfigOptionBool single_extruder_multi_material_priming;
ConfigOptionString toolchange_gcode;
ConfigOptionFloat travel_speed;
ConfigOptionBool use_firmware_retraction;
@ -562,6 +566,7 @@ public:
ConfigOptionFloat cooling_tube_retraction;
ConfigOptionFloat cooling_tube_length;
ConfigOptionFloat parking_pos_retraction;
ConfigOptionBool remaining_times;
ConfigOptionBool silent_mode;
ConfigOptionFloat extra_loading_move;
@ -589,10 +594,13 @@ protected:
OPT_PTR(filament_cost);
OPT_PTR(filament_max_volumetric_speed);
OPT_PTR(filament_loading_speed);
OPT_PTR(filament_load_time);
OPT_PTR(filament_unloading_speed);
OPT_PTR(filament_unload_time);
OPT_PTR(filament_toolchange_delay);
OPT_PTR(filament_cooling_moves);
OPT_PTR(filament_cooling_initial_speed);
OPT_PTR(filament_minimal_purge_on_wipe_tower);
OPT_PTR(filament_cooling_final_speed);
OPT_PTR(filament_ramming_parameters);
OPT_PTR(gcode_comments);
@ -612,6 +620,7 @@ protected:
OPT_PTR(retract_restart_extra_toolchange);
OPT_PTR(retract_speed);
OPT_PTR(single_extruder_multi_material);
OPT_PTR(single_extruder_multi_material_priming);
OPT_PTR(start_gcode);
OPT_PTR(start_filament_gcode);
OPT_PTR(toolchange_gcode);
@ -623,6 +632,7 @@ protected:
OPT_PTR(cooling_tube_retraction);
OPT_PTR(cooling_tube_length);
OPT_PTR(parking_pos_retraction);
OPT_PTR(remaining_times);
OPT_PTR(silent_mode);
OPT_PTR(extra_loading_move);
}

View file

@ -75,6 +75,7 @@ bool PrintObject::delete_last_copy()
bool PrintObject::set_copies(const Points &points)
{
bool copies_num_changed = this->_copies.size() != points.size();
this->_copies = points;
// order copies with a nearest neighbor search and translate them by _copies_shift
@ -93,7 +94,8 @@ bool PrintObject::set_copies(const Points &points)
bool invalidated = this->_print->invalidate_step(psSkirt);
invalidated |= this->_print->invalidate_step(psBrim);
invalidated |= this->_print->invalidate_step(psWipeTower);
if (copies_num_changed)
invalidated |= this->_print->invalidate_step(psWipeTower);
return invalidated;
}

View file

@ -14,7 +14,7 @@
#include <boost/thread.hpp>
#define SLIC3R_FORK_NAME "Slic3r Prusa Edition"
#define SLIC3R_VERSION "1.41.0-alpha2"
#define SLIC3R_VERSION "1.41.0-beta"
#define SLIC3R_BUILD "UNKNOWN"
typedef int32_t coord_t;