mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	Search for suitable rotation when arranging items larger than the bed
This commit is contained in:
		
							parent
							
								
									d3233d66fb
								
							
						
					
					
						commit
						49c6ce76d0
					
				
					 2 changed files with 191 additions and 72 deletions
				
			
		| 
						 | 
					@ -90,12 +90,29 @@ inline R rectarea(const Pt& w, const std::array<It, 4>& rect)
 | 
				
			||||||
    return rectarea<Pt, Unit, R>(w, *rect[0], *rect[1], *rect[2], *rect[3]);
 | 
					    return rectarea<Pt, Unit, R>(w, *rect[0], *rect[1], *rect[2], *rect[3]);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class Pt, class Unit = TCompute<Pt>, class R = TCompute<Pt>>
 | 
				
			||||||
 | 
					inline R rectarea(const Pt& w, // the axis
 | 
				
			||||||
 | 
					                  const Unit& a,
 | 
				
			||||||
 | 
					                  const Unit& b)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    R m = R(a) / pl::magnsq<Pt, Unit>(w);
 | 
				
			||||||
 | 
					    m = m * b;
 | 
				
			||||||
 | 
					    return m;
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class R, class Pt, class Unit>
 | 
				
			||||||
 | 
					inline R rectarea(const RotatedBox<Pt, Unit> &rb)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    return rectarea<Pt, Unit, R>(rb.axis(), rb.bottom_extent(), rb.right_extent());
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// This function is only applicable to counter-clockwise oriented convex
 | 
					// This function is only applicable to counter-clockwise oriented convex
 | 
				
			||||||
// polygons where only two points can be collinear witch each other.
 | 
					// polygons where only two points can be collinear witch each other.
 | 
				
			||||||
template <class RawShape,
 | 
					template <class RawShape,
 | 
				
			||||||
          class Unit = TCompute<RawShape>,
 | 
					          class Unit = TCompute<RawShape>,
 | 
				
			||||||
          class Ratio = TCompute<RawShape>> 
 | 
					          class Ratio = TCompute<RawShape>,
 | 
				
			||||||
RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh) 
 | 
					          class VisitFn>
 | 
				
			||||||
 | 
					void rotcalipers(const RawShape& sh, VisitFn &&visitfn)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
    using Point = TPoint<RawShape>;
 | 
					    using Point = TPoint<RawShape>;
 | 
				
			||||||
    using Iterator = typename TContour<RawShape>::const_iterator;
 | 
					    using Iterator = typename TContour<RawShape>::const_iterator;
 | 
				
			||||||
| 
						 | 
					@ -106,9 +123,9 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
 | 
				
			||||||
    auto last = std::prev(sl::cend(sh));
 | 
					    auto last = std::prev(sl::cend(sh));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Check conditions and return undefined box if input is not sane.
 | 
					    // Check conditions and return undefined box if input is not sane.
 | 
				
			||||||
    if(last == first) return {};
 | 
					    if(last == first) return;
 | 
				
			||||||
    if(getX(*first) == getX(*last) && getY(*first) == getY(*last)) --last;
 | 
					    if(getX(*first) == getX(*last) && getY(*first) == getY(*last)) --last;
 | 
				
			||||||
    if(last - first < 2) return {};
 | 
					    if(last - first < 2) return;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    RawShape shcpy; // empty at this point
 | 
					    RawShape shcpy; // empty at this point
 | 
				
			||||||
    {
 | 
					    {
 | 
				
			||||||
| 
						 | 
					@ -219,12 +236,14 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
 | 
				
			||||||
    };
 | 
					    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Point w(1, 0);
 | 
					    Point w(1, 0);
 | 
				
			||||||
    Point w_min = w;
 | 
					 | 
				
			||||||
    Ratio minarea((Unit(getX(*maxX)) - getX(*minX)) * 
 | 
					 | 
				
			||||||
                  (Unit(getY(*maxY)) - getY(*minY)));
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    std::array<Iterator, 4> rect = {minY, maxX, maxY, minX};
 | 
					    std::array<Iterator, 4> rect = {minY, maxX, maxY, minX};
 | 
				
			||||||
    std::array<Iterator, 4> minrect = rect;
 | 
					
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					        Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]);
 | 
				
			||||||
 | 
					        Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]);
 | 
				
			||||||
 | 
					        if (!visitfn(RotatedBox<Point, Unit>{w, a, b}))
 | 
				
			||||||
 | 
					            return;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // An edge might be examined twice in which case the algorithm terminates.
 | 
					    // An edge might be examined twice in which case the algorithm terminates.
 | 
				
			||||||
    size_t c = 0, count = last - first + 1;
 | 
					    size_t c = 0, count = last - first + 1;
 | 
				
			||||||
| 
						 | 
					@ -243,18 +262,35 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)
 | 
				
			||||||
        // get the unnormalized direction vector
 | 
					        // get the unnormalized direction vector
 | 
				
			||||||
        w = *rect[0] - *prev(rect[0]);
 | 
					        w = *rect[0] - *prev(rect[0]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        // get the area of the rotated rectangle
 | 
					        Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]);
 | 
				
			||||||
        Ratio rarea = rectarea<Point, Unit, Ratio>(w, rect);
 | 
					        Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]);
 | 
				
			||||||
 | 
					        if (!visitfn(RotatedBox<Point, Unit>{w, a, b}))
 | 
				
			||||||
 | 
					            break;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        // Update min area and the direction of the min bounding box;
 | 
					// This function is only applicable to counter-clockwise oriented convex
 | 
				
			||||||
        if(rarea <= minarea) { w_min = w; minarea = rarea; minrect = rect; }
 | 
					// polygons where only two points can be collinear witch each other.
 | 
				
			||||||
 | 
					template <class S,
 | 
				
			||||||
 | 
					          class Unit = TCompute<S>,
 | 
				
			||||||
 | 
					          class Ratio = TCompute<S>>
 | 
				
			||||||
 | 
					RotatedBox<TPoint<S>, Unit> minAreaBoundingBox(const S& sh)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    RotatedBox<TPoint<S>, Unit> minbox;
 | 
				
			||||||
 | 
					    Ratio minarea = std::numeric_limits<Unit>::max();
 | 
				
			||||||
 | 
					    auto minfn = [&minarea, &minbox](const RotatedBox<TPoint<S>, Unit> &rbox){
 | 
				
			||||||
 | 
					        Ratio area = rectarea<Ratio>(rbox);
 | 
				
			||||||
 | 
					        if (area <= minarea)  {
 | 
				
			||||||
 | 
					            minarea = area;
 | 
				
			||||||
 | 
					            minbox = rbox;
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Unit a = dot<Point, Unit>(w_min, *minrect[1] - *minrect[3]);
 | 
					        return true; // continue search
 | 
				
			||||||
    Unit b = dot<Point, Unit>(-perp(w_min), *minrect[2] - *minrect[0]);
 | 
					    };
 | 
				
			||||||
    RotatedBox<Point, Unit> bb(w_min, a, b);
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return bb;
 | 
					    rotcalipers<S, Unit, Ratio>(sh, minfn);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return minbox;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
 | 
					template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
 | 
				
			||||||
| 
						 | 
					@ -262,7 +298,75 @@ template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh)
 | 
				
			||||||
    return minAreaBoundingBox(sh).angleToX();
 | 
					    return minAreaBoundingBox(sh).angleToX();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// Function to find a rotation for a shape that makes it fit into a box.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// The method is based on finding a pair of rotations from the rotating calipers
 | 
				
			||||||
 | 
					// algorithm such that the aspect ratio is changing from being smaller than
 | 
				
			||||||
 | 
					// that of the target to being bigger or vice versa. So that the correct
 | 
				
			||||||
 | 
					// AR is somewhere between the obtained pair of angles. Then bisecting that
 | 
				
			||||||
 | 
					// interval is sufficient to find the correct angle.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// The argument eps is the absolute error limit for the searched angle interval.
 | 
				
			||||||
 | 
					template<class S, class Unit = TCompute<S>, class Ratio = TCompute<S>>
 | 
				
			||||||
 | 
					Radians fitIntoBoxRotation(const S &shape, const _Box<TPoint<S>> &box, Radians eps = 1e-4)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    constexpr auto get_aspect_r = [](const auto &b) -> double {
 | 
				
			||||||
 | 
					        return double(b.width()) / b.height();
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    auto aspect_r = get_aspect_r(box);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    RotatedBox<TPoint<S>, Unit> prev_rbox;
 | 
				
			||||||
 | 
					    Radians a_from = 0., a_to = 0.;
 | 
				
			||||||
 | 
					    auto visitfn = [&](const RotatedBox<TPoint<S>, Unit> &rbox) {
 | 
				
			||||||
 | 
					        bool lower_prev    = get_aspect_r(prev_rbox) < aspect_r;
 | 
				
			||||||
 | 
					        bool lower_current = get_aspect_r(rbox) < aspect_r;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if (lower_prev != lower_current) {
 | 
				
			||||||
 | 
					            a_from = prev_rbox.angleToX();
 | 
				
			||||||
 | 
					            a_to   = rbox.angleToX();
 | 
				
			||||||
 | 
					            return false;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return true;
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    rotcalipers<S, Unit, Ratio>(shape, visitfn);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    auto rot_shape_bb = [&shape](Radians r) {
 | 
				
			||||||
 | 
					        auto s = shape;
 | 
				
			||||||
 | 
					        sl::rotate(s, r);
 | 
				
			||||||
 | 
					        return sl::boundingBox(s);
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    auto rot_aspect_r = [&rot_shape_bb, &get_aspect_r](Radians r) {
 | 
				
			||||||
 | 
					        return get_aspect_r(rot_shape_bb(r));
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    // Lets bisect the retrieved interval where the correct aspect ratio is.
 | 
				
			||||||
 | 
					    double ar_from = rot_aspect_r(a_from);
 | 
				
			||||||
 | 
					    auto would_fit = [&box](const _Box<TPoint<S>> &b) {
 | 
				
			||||||
 | 
					        return b.width() < box.width() && b.height() < box.height();
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    Radians middle = (a_from + a_to) / 2.;
 | 
				
			||||||
 | 
					    _Box<TPoint<S>> box_middle = rot_shape_bb(middle);
 | 
				
			||||||
 | 
					    while (!would_fit(box_middle) && std::abs(a_to - a_from) > eps)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					        double ar_middle = get_aspect_r(box_middle);
 | 
				
			||||||
 | 
					        if ((ar_from < aspect_r) != (ar_middle < aspect_r))
 | 
				
			||||||
 | 
					            a_to = middle;
 | 
				
			||||||
 | 
					        else
 | 
				
			||||||
 | 
					            a_from = middle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        ar_from = rot_aspect_r(a_from);
 | 
				
			||||||
 | 
					        middle = (a_from + a_to) / 2.;
 | 
				
			||||||
 | 
					        box_middle = rot_shape_bb(middle);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return middle;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					} // namespace libnest2d
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif // ROTCALIPERS_HPP
 | 
					#endif // ROTCALIPERS_HPP
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -472,6 +472,12 @@ template<class S> Radians min_area_boundingbox_rotation(const S &sh)
 | 
				
			||||||
        .angleToX();
 | 
					        .angleToX();
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<class S>
 | 
				
			||||||
 | 
					Radians fit_into_box_rotation(const S &sh, const _Box<TPoint<S>> &box)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    return fitIntoBoxRotation<S, TCompute<S>, boost::rational<LargeInt>>(sh, box);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<class BinT> // Arrange for arbitrary bin type
 | 
					template<class BinT> // Arrange for arbitrary bin type
 | 
				
			||||||
void _arrange(
 | 
					void _arrange(
 | 
				
			||||||
        std::vector<Item> &           shapes,
 | 
					        std::vector<Item> &           shapes,
 | 
				
			||||||
| 
						 | 
					@ -509,10 +515,19 @@ void _arrange(
 | 
				
			||||||
    // Use the minimum bounding box rotation as a starting point.
 | 
					    // Use the minimum bounding box rotation as a starting point.
 | 
				
			||||||
    // TODO: This only works for convex hull. If we ever switch to concave
 | 
					    // TODO: This only works for convex hull. If we ever switch to concave
 | 
				
			||||||
    // polygon nesting, a convex hull needs to be calculated.
 | 
					    // polygon nesting, a convex hull needs to be calculated.
 | 
				
			||||||
    if (params.allow_rotations)
 | 
					    if (params.allow_rotations) {
 | 
				
			||||||
        for (auto &itm : shapes)
 | 
					        for (auto &itm : shapes) {
 | 
				
			||||||
            itm.rotation(min_area_boundingbox_rotation(itm.rawShape()));
 | 
					            itm.rotation(min_area_boundingbox_rotation(itm.rawShape()));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            // If the item is too big, try to find a rotation that makes it fit
 | 
				
			||||||
 | 
					            if constexpr (std::is_same_v<BinT, Box>) {
 | 
				
			||||||
 | 
					                auto bb = itm.boundingBox();
 | 
				
			||||||
 | 
					                if (bb.width() >= bin.width() || bb.height() >= bin.height())
 | 
				
			||||||
 | 
					                    itm.rotate(fit_into_box_rotation(itm.transformedShape(), bin));
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    arranger(inp.begin(), inp.end());
 | 
					    arranger(inp.begin(), inp.end());
 | 
				
			||||||
    for (Item &itm : inp) itm.inflate(-infl);
 | 
					    for (Item &itm : inp) itm.inflate(-infl);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue