re-wrote PrintObject::detect_surfaces_type() to C++,

Fixed some cracks in the fill surfaces created by rounding all surfaces inside detect_surface_type().

Fixed https://github.com/prusa3d/Slic3r/issues/12
Bridging-Angle not optimal

Extended the "Ensure veritcal wall thickness" mode (merged with the original discover_horizontal_shells function), but this a work in progress. Already Slic3r with "ensure vertical wall thickness" produces less spurious infills inside solids.
This commit is contained in:
bubnikv 2016-11-10 19:23:01 +01:00
parent 317e9131e8
commit 4460b5ce50
8 changed files with 345 additions and 293 deletions

View file

@ -669,167 +669,6 @@ sub _support_material {
}
}
# This function analyzes slices of a region (SurfaceCollection slices).
# Each slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
# Initially all slices are of type S_TYPE_INTERNAL.
# Slices are compared against the top / bottom slices and regions and classified to the following groups:
# S_TYPE_TOP - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
# S_TYPE_BOTTOMBRIDGE - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
# S_TYPE_BOTTOM - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
# S_TYPE_INTERNAL - Part of a region, which is supported by the same region type.
# If a part of a region is of S_TYPE_BOTTOM and S_TYPE_TOP, the S_TYPE_BOTTOM wins.
sub detect_surfaces_type {
my $self = shift;
Slic3r::debugf "Detecting solid surfaces...\n";
for my $region_id (0 .. ($self->print->region_count-1)) {
for my $i (0 .. ($self->layer_count - 1)) {
my $layerm = $self->get_layer($i)->regions->[$region_id];
# prepare a reusable subroutine to make surface differences
my $difference = sub {
my ($subject, $clip, $result_type) = @_;
my $diff = diff(
[ map @$_, @$subject ],
[ map @$_, @$clip ],
1,
);
# collapse very narrow parts (using the safety offset in the diff is not enough)
my $offset = $layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER)->scaled_width / 10;
return map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type),
@{ offset2_ex($diff, -$offset, +$offset) };
};
# comparison happens against the *full* slices (considering all regions)
# unless internal shells are requested
my $upper_layer = $i < $self->layer_count - 1 ? $self->get_layer($i+1) : undef;
my $lower_layer = $i > 0 ? $self->get_layer($i-1) : undef;
# find top surfaces (difference between current surfaces
# of current layer and upper one)
my @top = ();
if ($upper_layer) {
# Config value $self->config->interface_shells is true, if a support is separated from the object
# by a soluble material (for example a PVA plastic).
my $upper_slices = $self->config->interface_shells
? [ map $_->expolygon, @{$upper_layer->regions->[$region_id]->slices} ]
: $upper_layer->slices;
@top = $difference->(
[ map $_->expolygon, @{$layerm->slices} ],
$upper_slices,
S_TYPE_TOP,
);
} else {
# if no upper layer, all surfaces of this one are solid
# we clone surfaces because we're going to clear the slices collection
@top = map $_->clone, @{$layerm->slices};
$_->surface_type(S_TYPE_TOP) for @top;
}
# find bottom surfaces (difference between current surfaces
# of current layer and lower one)
my @bottom = ();
if ($lower_layer) {
# Any surface lying on the void is a true bottom bridge (an overhang)
push @bottom, $difference->(
[ map $_->expolygon, @{$layerm->slices} ],
$lower_layer->slices,
S_TYPE_BOTTOMBRIDGE,
);
# If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
# the support from the print.
if ($self->config->support_material && $self->config->support_material_contact_distance == 0) {
$_->surface_type(S_TYPE_BOTTOM) for @bottom;
}
# if user requested internal shells, we need to identify surfaces
# lying on other slices not belonging to this region
if ($self->config->interface_shells) {
# non-bridging bottom surfaces: any part of this layer lying
# on something else, excluding those lying on our own region
my $supported = intersection_ex(
[ map @{$_->expolygon}, @{$layerm->slices} ],
[ map @$_, @{$lower_layer->slices} ],
);
push @bottom, $difference->(
$supported,
[ map $_->expolygon, @{$lower_layer->regions->[$region_id]->slices} ],
S_TYPE_BOTTOM,
);
}
} else {
# if no lower layer, all surfaces of this one are solid
# we clone surfaces because we're going to clear the slices collection
@bottom = map $_->clone, @{$layerm->slices};
# if we have raft layers, consider bottom layer as a bridge
# just like any other bottom surface lying on the void
if ($self->config->raft_layers > 0 && $self->config->support_material_contact_distance > 0) {
$_->surface_type(S_TYPE_BOTTOMBRIDGE) for @bottom;
} else {
$_->surface_type(S_TYPE_BOTTOM) for @bottom;
}
}
# now, if the object contained a thin membrane, we could have overlapping bottom
# and top surfaces; let's do an intersection to discover them and consider them
# as bottom surfaces (to allow for bridge detection)
if (@top && @bottom) {
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
if $Slic3r::debug;
@top = $difference->([map $_->expolygon, @top], $overlapping, S_TYPE_TOP);
}
# find internal surfaces (difference between top/bottom surfaces and others)
my @internal = $difference->(
[ map $_->expolygon, @{$layerm->slices} ],
[ map $_->expolygon, @top, @bottom ],
S_TYPE_INTERNAL,
);
# save surfaces to layer
$layerm->slices->clear;
$layerm->slices->append($_) for (@bottom, @top, @internal);
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
$layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
$layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
}
} # for each layer of a region
# clip surfaces to the fill boundaries
foreach my $layer (@{$self->layers}) {
my $layerm = $layer->regions->[$region_id];
# Note: this method should be idempotent, but fill_surfaces gets modified
# in place. However we're now only using its boundaries (which are invariant)
# so we're safe. This guarantees idempotence of prepare_infill() also in case
# that combine_infill() turns some fill_surface into VOID surfaces.
my $fill_boundaries = [ map $_->clone->p, @{$layerm->fill_surfaces} ];
$layerm->fill_surfaces->clear;
foreach my $surface (@{$layerm->slices}) {
my $intersection = intersection_ex(
[ $surface->p ],
$fill_boundaries,
);
$layerm->fill_surfaces->append($_)
for map Slic3r::Surface->new(expolygon => $_, surface_type => $surface->surface_type),
@$intersection;
}
if ($SLIC3R_DEBUG_SLICE_PROCESSING) {
$layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
}
} # for each layer of a region
} # for each $self->print->region_count
}
# Idempotence of this method is guaranteed by the fact that we don't remove things from
# fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
sub clip_fill_surfaces {
@ -953,6 +792,9 @@ sub discover_horizontal_shells {
my $type = $layerm->region->config->fill_density == 100 ? S_TYPE_INTERNALSOLID : S_TYPE_INTERNALBRIDGE;
$_->surface_type($type) for @{$layerm->fill_surfaces->filter_by_type(S_TYPE_INTERNAL)};
}
# If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
next if ($layerm->region->config->ensure_vertical_shell_thickness);
EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM, S_TYPE_BOTTOMBRIDGE) {
# find slices of current type for current layer