mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-23 00:31:11 -06:00
Merge branch 'dev' of https://github.com/prusa3d/Slic3r into dev
This commit is contained in:
commit
41c093a258
361 changed files with 132181 additions and 19 deletions
|
@ -592,7 +592,7 @@ void StaticConfig::set_defaults()
|
|||
t_config_option_keys StaticConfig::keys() const
|
||||
{
|
||||
t_config_option_keys keys;
|
||||
assert(this->def != nullptr);
|
||||
assert(this->def() != nullptr);
|
||||
for (const auto &opt_def : this->def()->options)
|
||||
if (this->option(opt_def.first) != nullptr)
|
||||
keys.push_back(opt_def.first);
|
||||
|
|
|
@ -1035,7 +1035,7 @@ public:
|
|||
TYPE* option(const t_config_option_key &opt_key, bool create = false)
|
||||
{
|
||||
ConfigOption *opt = this->optptr(opt_key, create);
|
||||
assert(opt == nullptr || opt->type() == TYPE::static_type());
|
||||
// assert(opt == nullptr || opt->type() == TYPE::static_type());
|
||||
return (opt == nullptr || opt->type() != TYPE::static_type()) ? nullptr : static_cast<TYPE*>(opt);
|
||||
}
|
||||
template<typename TYPE>
|
||||
|
|
|
@ -11,6 +11,10 @@
|
|||
#include <unordered_set>
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
#include "slic3r/IProgressIndicator.hpp"
|
||||
#include "PrintExport.hpp"
|
||||
|
||||
//! macro used to mark string used at localization,
|
||||
//! return same string
|
||||
|
@ -1230,7 +1234,22 @@ std::string Print::output_filepath(const std::string &path)
|
|||
|
||||
void Print::set_status(int percent, const std::string &message)
|
||||
{
|
||||
printf("Print::status %d => %s\n", percent, message.c_str());
|
||||
if(progressindicator) progressindicator->update(unsigned(percent), message);
|
||||
else {
|
||||
printf("Print::status %d => %s\n", percent, message.c_str());
|
||||
std::cout.flush();
|
||||
}
|
||||
}
|
||||
|
||||
void Print::print_to_png(std::string dirpath) {
|
||||
print_to<FilePrinterFormat::PNG>(*this,
|
||||
dirpath,
|
||||
float(this->config.bed_size_x.value),
|
||||
float(this->config.bed_size_y.value),
|
||||
int(this->config.pixel_width.value),
|
||||
int(this->config.pixel_height.value),
|
||||
float(this->config.exp_time.value),
|
||||
float(this->config.exp_time_first.value));
|
||||
}
|
||||
|
||||
// Returns extruder this eec should be printed with, according to PrintRegion config
|
||||
|
|
|
@ -227,6 +227,9 @@ private:
|
|||
typedef std::vector<PrintObject*> PrintObjectPtrs;
|
||||
typedef std::vector<PrintRegion*> PrintRegionPtrs;
|
||||
|
||||
class IProgressIndicator;
|
||||
using ProgressIndicatorPtr = std::shared_ptr<IProgressIndicator>;
|
||||
|
||||
// The complete print tray with possibly multiple objects.
|
||||
class Print
|
||||
{
|
||||
|
@ -237,7 +240,10 @@ public:
|
|||
PrintObjectPtrs objects;
|
||||
PrintRegionPtrs regions;
|
||||
PlaceholderParser placeholder_parser;
|
||||
|
||||
// TODO: status_cb
|
||||
ProgressIndicatorPtr progressindicator;
|
||||
|
||||
std::string estimated_normal_print_time;
|
||||
std::string estimated_silent_print_time;
|
||||
double total_used_filament, total_extruded_volume, total_cost, total_weight;
|
||||
|
@ -322,8 +328,10 @@ public:
|
|||
// Has the calculation been canceled?
|
||||
bool canceled() { return m_canceled; }
|
||||
|
||||
void print_to_png(std::string dirpath);
|
||||
|
||||
private:
|
||||
|
||||
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
|
||||
PrintRegionConfig _region_config_from_model_volume(const ModelVolume &volume);
|
||||
|
||||
|
|
|
@ -2122,6 +2122,52 @@ void PrintConfigDef::init_fff_params()
|
|||
def->sidetext = L("mm");
|
||||
def->cli = "z-offset=f";
|
||||
def->default_value = new ConfigOptionFloat(0);
|
||||
|
||||
def = this->add("bed_size_x", coFloat);
|
||||
def->label = L("Bed size X");
|
||||
def->category = L("Dwarf");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "bed-size-x=f";
|
||||
def->default_value = new ConfigOptionFloat(68.);
|
||||
|
||||
def = this->add("bed_size_y", coFloat);
|
||||
def->label = L("Bed size Y");
|
||||
def->category = L("Dwarf");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "bed-size-y=f";
|
||||
def->default_value = new ConfigOptionFloat(120.);
|
||||
|
||||
def = this->add("pixel_width", coInt);
|
||||
def->label = L("Picture resolution X");
|
||||
def->category = L("Dwarf");
|
||||
def->sidetext = L("px");
|
||||
def->cli = "pixel-width=i";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionInt(1440);
|
||||
|
||||
def = this->add("pixel_height", coInt);
|
||||
def->label = L("Picture resolution Y");
|
||||
def->category = L("Dwarf");
|
||||
def->sidetext = L("px");
|
||||
def->cli = "pixel-height=i";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionInt(2560);
|
||||
|
||||
def = this->add("exp_time", coFloat);
|
||||
def->label = L("Exposure time");
|
||||
def->category = L("Dwarf");
|
||||
def->sidetext = L("s");
|
||||
def->cli = "exp-time=f";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionFloat(8.);
|
||||
|
||||
def = this->add("exp_time_first", coFloat);
|
||||
def->label = L("Exposure time first layers");
|
||||
def->category = L("Dwarf");
|
||||
def->sidetext = L("s");
|
||||
def->cli = "exp-time-first=f";
|
||||
def->min = 1;
|
||||
def->default_value = new ConfigOptionFloat(35.);
|
||||
}
|
||||
|
||||
void PrintConfigDef::init_sla_params()
|
||||
|
|
|
@ -750,6 +750,12 @@ public:
|
|||
ConfigOptionFloats wiping_volumes_matrix;
|
||||
ConfigOptionFloats wiping_volumes_extruders;
|
||||
ConfigOptionFloat z_offset;
|
||||
ConfigOptionFloat bed_size_x;
|
||||
ConfigOptionFloat bed_size_y;
|
||||
ConfigOptionInt pixel_width;
|
||||
ConfigOptionInt pixel_height;
|
||||
ConfigOptionFloat exp_time;
|
||||
ConfigOptionFloat exp_time_first;
|
||||
|
||||
protected:
|
||||
PrintConfig(int) : GCodeConfig(1) {}
|
||||
|
@ -821,6 +827,12 @@ protected:
|
|||
OPT_PTR(wiping_volumes_matrix);
|
||||
OPT_PTR(wiping_volumes_extruders);
|
||||
OPT_PTR(z_offset);
|
||||
OPT_PTR(bed_size_x);
|
||||
OPT_PTR(bed_size_y);
|
||||
OPT_PTR(pixel_width);
|
||||
OPT_PTR(pixel_height);
|
||||
OPT_PTR(exp_time);
|
||||
OPT_PTR(exp_time_first);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
389
xs/src/libslic3r/PrintExport.hpp
Normal file
389
xs/src/libslic3r/PrintExport.hpp
Normal file
|
@ -0,0 +1,389 @@
|
|||
#ifndef PRINTEXPORT_HPP
|
||||
#define PRINTEXPORT_HPP
|
||||
|
||||
#include "Print.hpp"
|
||||
|
||||
// For png export of the sliced model
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include <wx/stdstream.h>
|
||||
#include <wx/wfstream.h>
|
||||
#include <wx/zipstrm.h>
|
||||
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
#include "Rasterizer/Rasterizer.hpp"
|
||||
#include <tbb/parallel_for.h>
|
||||
#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
enum class FilePrinterFormat {
|
||||
PNG,
|
||||
SVG
|
||||
};
|
||||
|
||||
/*
|
||||
* Interface for a file printer of the slices. Implementation can be an SVG
|
||||
* or PNG printer or any other format.
|
||||
*
|
||||
* The format argument specifies the output format of the printer and it enables
|
||||
* different implementations of this class template for each supported format.
|
||||
*
|
||||
*/
|
||||
template<FilePrinterFormat format>
|
||||
class FilePrinter {
|
||||
public:
|
||||
|
||||
void printConfig(const Print&);
|
||||
|
||||
// Draw an ExPolygon which is a polygon inside a slice on the specified layer.
|
||||
void drawPolygon(const ExPolygon& p, unsigned lyr);
|
||||
|
||||
// Tell the printer how many layers should it consider.
|
||||
void layers(unsigned layernum);
|
||||
|
||||
// Get the number of layers in the print.
|
||||
unsigned layers() const;
|
||||
|
||||
/* Switch to a particular layer. If there where less layers then the
|
||||
* specified layer number than an appropriate number of layers will be
|
||||
* allocated in the printer.
|
||||
*/
|
||||
void beginLayer(unsigned layer);
|
||||
|
||||
// Allocate a new layer on top of the last and switch to it.
|
||||
void beginLayer();
|
||||
|
||||
/*
|
||||
* Finish the selected layer. It means that no drawing is allowed on that
|
||||
* layer anymore. This fact can be used to prepare the file system output
|
||||
* data like png comprimation and so on.
|
||||
*/
|
||||
void finishLayer(unsigned layer);
|
||||
|
||||
// Finish the top layer.
|
||||
void finishLayer();
|
||||
|
||||
// Save all the layers into the file (or dir) specified in the path argument
|
||||
void save(const std::string& path);
|
||||
|
||||
// Save only the selected layer to the file specified in path argument.
|
||||
void saveLayer(unsigned lyr, const std::string& path);
|
||||
};
|
||||
|
||||
// Implementation for PNG raster output
|
||||
// Be aware that if a large number of layers are allocated, it can very well
|
||||
// exhaust the available memory especially on 32 bit platform.
|
||||
template<> class FilePrinter<FilePrinterFormat::PNG> {
|
||||
|
||||
struct Layer {
|
||||
Raster first;
|
||||
std::stringstream second;
|
||||
|
||||
Layer() {}
|
||||
|
||||
Layer(const Layer&) = delete;
|
||||
Layer(Layer&& m):
|
||||
first(std::move(m.first))/*, second(std::move(m.second))*/ {}
|
||||
};
|
||||
|
||||
// We will save the compressed PNG data into stringstreams which can be done
|
||||
// in parallel. Later we can write every layer to the disk sequentially.
|
||||
std::vector<Layer> layers_rst_;
|
||||
Raster::Resolution res_;
|
||||
Raster::PixelDim pxdim_;
|
||||
const Print *print_ = nullptr;
|
||||
double exp_time_s_ = .0, exp_time_first_s_ = .0;
|
||||
|
||||
std::string createIniContent(const std::string& projectname) {
|
||||
double layer_height = print_?
|
||||
print_->default_object_config.layer_height.getFloat() :
|
||||
0.05;
|
||||
|
||||
using std::string;
|
||||
using std::to_string;
|
||||
|
||||
auto expt_str = to_string(exp_time_s_);
|
||||
auto expt_first_str = to_string(exp_time_first_s_);
|
||||
auto stepnum_str = to_string(static_cast<unsigned>(800*layer_height));
|
||||
auto layerh_str = to_string(layer_height);
|
||||
|
||||
return string(
|
||||
"action = print\n"
|
||||
"jobDir = ") + projectname + "\n" +
|
||||
"expTime = " + expt_str + "\n"
|
||||
"expTimeFirst = " + expt_first_str + "\n"
|
||||
"stepNum = " + stepnum_str + "\n"
|
||||
"wifiOn = 1\n"
|
||||
"tiltSlow = 60\n"
|
||||
"tiltFast = 15\n"
|
||||
"numFade = 10\n"
|
||||
"startdelay = 0\n"
|
||||
"layerHeight = " + layerh_str + "\n"
|
||||
"noteInfo = "
|
||||
"expTime="+expt_str+"+resinType=generic+layerHeight="
|
||||
+layerh_str+"+printer=DWARF3\n";
|
||||
}
|
||||
|
||||
// Change this to TOP_LEFT if you want correct PNG orientation
|
||||
static const Raster::Origin ORIGIN = Raster::Origin::BOTTOM_LEFT;
|
||||
|
||||
public:
|
||||
inline FilePrinter(double width_mm, double height_mm,
|
||||
unsigned width_px, unsigned height_px,
|
||||
double exp_time, double exp_time_first):
|
||||
res_(width_px, height_px),
|
||||
pxdim_(width_mm/width_px, height_mm/height_px),
|
||||
exp_time_s_(exp_time),
|
||||
exp_time_first_s_(exp_time_first)
|
||||
{
|
||||
}
|
||||
|
||||
FilePrinter(const FilePrinter& ) = delete;
|
||||
FilePrinter(FilePrinter&& m):
|
||||
layers_rst_(std::move(m.layers_rst_)),
|
||||
res_(m.res_),
|
||||
pxdim_(m.pxdim_) {}
|
||||
|
||||
inline void layers(unsigned cnt) { if(cnt > 0) layers_rst_.resize(cnt); }
|
||||
inline unsigned layers() const { return layers_rst_.size(); }
|
||||
|
||||
void printConfig(const Print& printconf) { print_ = &printconf; }
|
||||
|
||||
inline void drawPolygon(const ExPolygon& p, unsigned lyr) {
|
||||
assert(lyr < layers_rst_.size());
|
||||
layers_rst_[lyr].first.draw(p);
|
||||
}
|
||||
|
||||
inline void beginLayer(unsigned lyr) {
|
||||
if(layers_rst_.size() <= lyr) layers_rst_.resize(lyr+1);
|
||||
layers_rst_[lyr].first.reset(res_, pxdim_, ORIGIN);
|
||||
}
|
||||
|
||||
inline void beginLayer() {
|
||||
layers_rst_.emplace_back();
|
||||
layers_rst_.front().first.reset(res_, pxdim_, ORIGIN);
|
||||
}
|
||||
|
||||
inline void finishLayer(unsigned lyr_id) {
|
||||
assert(lyr_id < layers_rst_.size());
|
||||
layers_rst_[lyr_id].first.save(layers_rst_[lyr_id].second,
|
||||
Raster::Compression::PNG);
|
||||
layers_rst_[lyr_id].first.reset();
|
||||
}
|
||||
|
||||
inline void finishLayer() {
|
||||
if(!layers_rst_.empty()) {
|
||||
layers_rst_.back().first.save(layers_rst_.back().second,
|
||||
Raster::Compression::PNG);
|
||||
layers_rst_.back().first.reset();
|
||||
}
|
||||
}
|
||||
|
||||
inline void save(const std::string& path) {
|
||||
|
||||
wxFileName filepath(path);
|
||||
|
||||
wxFFileOutputStream zipfile(path);
|
||||
|
||||
std::string project = filepath.GetName().ToStdString();
|
||||
|
||||
if(!zipfile.IsOk()) {
|
||||
BOOST_LOG_TRIVIAL(error) << "Can't create zip file for layers! "
|
||||
<< path;
|
||||
return;
|
||||
}
|
||||
|
||||
wxZipOutputStream zipstream(zipfile);
|
||||
wxStdOutputStream pngstream(zipstream);
|
||||
|
||||
zipstream.PutNextEntry("config.ini");
|
||||
pngstream << createIniContent(project);
|
||||
|
||||
for(unsigned i = 0; i < layers_rst_.size(); i++) {
|
||||
if(layers_rst_[i].second.rdbuf()->in_avail() > 0) {
|
||||
char lyrnum[6];
|
||||
std::sprintf(lyrnum, "%.5d", i);
|
||||
auto zfilename = project + lyrnum + ".png";
|
||||
zipstream.PutNextEntry(zfilename);
|
||||
pngstream << layers_rst_[i].second.rdbuf();
|
||||
layers_rst_[i].second.str("");
|
||||
}
|
||||
}
|
||||
|
||||
zipstream.Close();
|
||||
zipfile.Close();
|
||||
}
|
||||
|
||||
void saveLayer(unsigned lyr, const std::string& path) {
|
||||
unsigned i = lyr;
|
||||
assert(i < layers_rst_.size());
|
||||
|
||||
char lyrnum[6];
|
||||
std::sprintf(lyrnum, "%.5d", lyr);
|
||||
std::string loc = path + "layer" + lyrnum + ".png";
|
||||
|
||||
std::fstream out(loc, std::fstream::out | std::fstream::binary);
|
||||
if(out.good()) {
|
||||
layers_rst_[i].first.save(out, Raster::Compression::PNG);
|
||||
} else {
|
||||
BOOST_LOG_TRIVIAL(error) << "Can't create file for layer";
|
||||
}
|
||||
|
||||
out.close();
|
||||
layers_rst_[i].first.reset();
|
||||
}
|
||||
};
|
||||
|
||||
// Let's shadow this eigen interface
|
||||
inline coord_t px(const Point& p) { return p(0); }
|
||||
inline coord_t py(const Point& p) { return p(1); }
|
||||
inline coordf_t px(const Vec2d& p) { return p(0); }
|
||||
inline coordf_t py(const Vec2d& p) { return p(1); }
|
||||
|
||||
template<FilePrinterFormat format, class...Args>
|
||||
void print_to(Print& print,
|
||||
std::string dirpath,
|
||||
double width_mm,
|
||||
double height_mm,
|
||||
Args&&...args)
|
||||
{
|
||||
|
||||
std::string& dir = dirpath;
|
||||
|
||||
// This map will hold the layers sorted by z coordinate. Layers on the
|
||||
// same height (from different objects) will be mapped to the same key and
|
||||
// rasterized to the same image.
|
||||
std::map<long long, LayerPtrs> layers;
|
||||
|
||||
auto& objects = print.objects;
|
||||
|
||||
// Merge the sliced layers with the support layers
|
||||
std::for_each(objects.begin(), objects.end(), [&layers](PrintObject *o) {
|
||||
for(auto l : o->layers) {
|
||||
auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
|
||||
lyrs.push_back(l);
|
||||
}
|
||||
|
||||
for(auto l : o->support_layers) {
|
||||
auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
|
||||
lyrs.push_back(l);
|
||||
}
|
||||
});
|
||||
|
||||
auto print_bb = print.bounding_box();
|
||||
Vec2d punsc = unscale(print_bb.size());
|
||||
|
||||
// If the print does not fit into the print area we should cry about it.
|
||||
if(px(punsc) > width_mm || py(punsc) > height_mm) {
|
||||
BOOST_LOG_TRIVIAL(warning) << "Warning: Print will not fit!" << "\n"
|
||||
<< "Width needed: " << px(punsc) << "\n"
|
||||
<< "Height needed: " << py(punsc) << "\n";
|
||||
}
|
||||
|
||||
// Offset for centering the print onto the print area
|
||||
auto cx = scale_(width_mm)/2 - (px(print_bb.center()) - px(print_bb.min));
|
||||
auto cy = scale_(height_mm)/2 - (py(print_bb.center()) - py(print_bb.min));
|
||||
|
||||
// Create the actual printer, forward any additional arguments to it.
|
||||
FilePrinter<format> printer(width_mm, height_mm,
|
||||
std::forward<Args>(args)...);
|
||||
|
||||
printer.printConfig(print);
|
||||
|
||||
printer.layers(layers.size()); // Allocate space for all the layers
|
||||
|
||||
int st_prev = 0;
|
||||
const std::string jobdesc = "Rasterizing and compressing sliced layers";
|
||||
tbb::spin_mutex m;
|
||||
|
||||
std::vector<long long> keys;
|
||||
keys.reserve(layers.size());
|
||||
for(auto& e : layers) keys.push_back(e.first);
|
||||
|
||||
int initstatus = print.progressindicator? print.progressindicator->state()
|
||||
: 0;
|
||||
print.set_status(initstatus, jobdesc);
|
||||
|
||||
// Method that prints one layer
|
||||
auto process_layer = [&layers, &keys, &printer, &st_prev, &m,
|
||||
&jobdesc, print_bb, dir, cx, cy, &print, initstatus]
|
||||
(unsigned layer_id)
|
||||
{
|
||||
LayerPtrs lrange = layers[keys[layer_id]];
|
||||
|
||||
printer.beginLayer(layer_id); // Switch to the appropriate layer
|
||||
|
||||
for(Layer *lp : lrange) {
|
||||
Layer& l = *lp;
|
||||
|
||||
ExPolygonCollection slices = l.slices; // Copy the layer slices
|
||||
|
||||
// Sort the polygons in the layer
|
||||
std::stable_sort(slices.expolygons.begin(), slices.expolygons.end(),
|
||||
[](const ExPolygon& a, const ExPolygon& b) {
|
||||
return a.contour.contains(b.contour.first_point()) ? false :
|
||||
true;
|
||||
});
|
||||
|
||||
// Draw all the polygons in the slice to the actual layer.
|
||||
std::for_each(l.object()->_shifted_copies.begin(),
|
||||
l.object()->_shifted_copies.end(),
|
||||
[&] (Point d)
|
||||
{
|
||||
std::for_each(slices.expolygons.begin(),
|
||||
slices.expolygons.end(),
|
||||
[&] (ExPolygon slice)
|
||||
{
|
||||
slice.translate(px(d), py(d));
|
||||
slice.translate(-px(print_bb.min) + cx,
|
||||
-py(print_bb.min) + cy);
|
||||
|
||||
printer.drawPolygon(slice, layer_id);
|
||||
});
|
||||
});
|
||||
|
||||
/*if(print.has_support_material() && layer_id > 0) {
|
||||
BOOST_LOG_TRIVIAL(warning) << "support material for layer "
|
||||
<< layer_id
|
||||
<< " defined but export is "
|
||||
"not yet implemented.";
|
||||
|
||||
}*/
|
||||
|
||||
}
|
||||
|
||||
printer.finishLayer(layer_id); // Finish the layer for later saving it.
|
||||
|
||||
auto st = static_cast<int>(layer_id*80.0/layers.size());
|
||||
m.lock();
|
||||
if( st - st_prev > 10) {
|
||||
print.set_status(initstatus + st, jobdesc);
|
||||
st_prev = st;
|
||||
}
|
||||
m.unlock();
|
||||
|
||||
// printer.saveLayer(layer_id, dir); We could save the layer immediately
|
||||
};
|
||||
|
||||
// Print all the layers in parallel
|
||||
tbb::parallel_for<size_t, decltype(process_layer)>(0,
|
||||
layers.size(),
|
||||
process_layer);
|
||||
|
||||
// Sequential version (for testing)
|
||||
// for(unsigned l = 0; l < layers.size(); ++l) process_layer(l);
|
||||
|
||||
// print.set_status(100, jobdesc);
|
||||
|
||||
// Save the print into the file system.
|
||||
print.set_status(initstatus + 90, "Writing layers to disk");
|
||||
printer.save(dir);
|
||||
print.set_status(initstatus + 100, "Writing layers completed");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // PRINTEXPORT_HPP
|
214
xs/src/libslic3r/Rasterizer/Rasterizer.cpp
Normal file
214
xs/src/libslic3r/Rasterizer/Rasterizer.cpp
Normal file
|
@ -0,0 +1,214 @@
|
|||
#include "Rasterizer.hpp"
|
||||
#include <ExPolygon.hpp>
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
// For rasterizing
|
||||
#include <agg/agg_basics.h>
|
||||
#include <agg/agg_rendering_buffer.h>
|
||||
#include <agg/agg_pixfmt_gray.h>
|
||||
#include <agg/agg_pixfmt_rgb.h>
|
||||
#include <agg/agg_renderer_base.h>
|
||||
#include <agg/agg_renderer_scanline.h>
|
||||
|
||||
#include <agg/agg_scanline_p.h>
|
||||
#include <agg/agg_rasterizer_scanline_aa.h>
|
||||
#include <agg/agg_path_storage.h>
|
||||
|
||||
// For png compression
|
||||
#include <png/writer.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class Raster::Impl {
|
||||
public:
|
||||
using TPixelRenderer = agg::pixfmt_gray8; // agg::pixfmt_rgb24;
|
||||
using TRawRenderer = agg::renderer_base<TPixelRenderer>;
|
||||
using TPixel = TPixelRenderer::color_type;
|
||||
using TRawBuffer = agg::rendering_buffer;
|
||||
|
||||
using TBuffer = std::vector<TPixelRenderer::pixel_type>;
|
||||
|
||||
using TRendererAA = agg::renderer_scanline_aa_solid<TRawRenderer>;
|
||||
|
||||
static const TPixel ColorWhite;
|
||||
static const TPixel ColorBlack;
|
||||
|
||||
using Origin = Raster::Origin;
|
||||
|
||||
private:
|
||||
Raster::Resolution resolution_;
|
||||
Raster::PixelDim pxdim_;
|
||||
TBuffer buf_;
|
||||
TRawBuffer rbuf_;
|
||||
TPixelRenderer pixfmt_;
|
||||
TRawRenderer raw_renderer_;
|
||||
TRendererAA renderer_;
|
||||
Origin o_;
|
||||
std::function<void(agg::path_storage&)> flipy_ = [](agg::path_storage&) {};
|
||||
public:
|
||||
inline Impl(const Raster::Resolution& res, const Raster::PixelDim &pd,
|
||||
Origin o):
|
||||
resolution_(res), pxdim_(pd),
|
||||
buf_(res.pixels()),
|
||||
rbuf_(reinterpret_cast<TPixelRenderer::value_type*>(buf_.data()),
|
||||
res.width_px, res.height_px,
|
||||
res.width_px*TPixelRenderer::num_components),
|
||||
pixfmt_(rbuf_),
|
||||
raw_renderer_(pixfmt_),
|
||||
renderer_(raw_renderer_),
|
||||
o_(o)
|
||||
{
|
||||
renderer_.color(ColorWhite);
|
||||
|
||||
// If we would like to play around with gamma
|
||||
// ras.gamma(agg::gamma_power(1.0));
|
||||
|
||||
clear();
|
||||
|
||||
if(o_ == Origin::TOP_LEFT) flipy_ = [this](agg::path_storage& path) {
|
||||
path.flip_y(0, resolution_.height_px);
|
||||
};
|
||||
}
|
||||
|
||||
void draw(const ExPolygon &poly) {
|
||||
agg::rasterizer_scanline_aa<> ras;
|
||||
agg::scanline_p8 scanlines;
|
||||
|
||||
auto&& path = to_path(poly.contour);
|
||||
flipy_(path);
|
||||
ras.add_path(path);
|
||||
|
||||
for(auto h : poly.holes) {
|
||||
auto&& holepath = to_path(h);
|
||||
flipy_(holepath);
|
||||
ras.add_path(holepath);
|
||||
}
|
||||
|
||||
agg::render_scanlines(ras, scanlines, renderer_);
|
||||
}
|
||||
|
||||
inline void clear() {
|
||||
raw_renderer_.clear(ColorBlack);
|
||||
}
|
||||
|
||||
inline TBuffer& buffer() { return buf_; }
|
||||
|
||||
inline const Raster::Resolution resolution() { return resolution_; }
|
||||
|
||||
inline Origin origin() const /*noexcept*/ { return o_; }
|
||||
|
||||
private:
|
||||
double getPx(const Point& p) {
|
||||
return p(0) * SCALING_FACTOR/pxdim_.w_mm;
|
||||
}
|
||||
|
||||
double getPy(const Point& p) {
|
||||
return p(1) * SCALING_FACTOR/pxdim_.h_mm;
|
||||
}
|
||||
|
||||
agg::path_storage to_path(const Polygon& poly) {
|
||||
agg::path_storage path;
|
||||
auto it = poly.points.begin();
|
||||
path.move_to(getPx(*it), getPy(*it));
|
||||
while(++it != poly.points.end())
|
||||
path.line_to(getPx(*it), getPy(*it));
|
||||
|
||||
path.line_to(getPx(poly.points.front()), getPy(poly.points.front()));
|
||||
return path;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
const Raster::Impl::TPixel Raster::Impl::ColorWhite = Raster::Impl::TPixel(255);
|
||||
const Raster::Impl::TPixel Raster::Impl::ColorBlack = Raster::Impl::TPixel(0);
|
||||
|
||||
Raster::Raster(const Resolution &r, const PixelDim &pd, Origin o):
|
||||
impl_(new Impl(r, pd, o)) {}
|
||||
|
||||
Raster::Raster() {}
|
||||
|
||||
Raster::~Raster() {}
|
||||
|
||||
Raster::Raster(Raster &&m):
|
||||
impl_(std::move(m.impl_)) {}
|
||||
|
||||
void Raster::reset(const Raster::Resolution &r, const Raster::PixelDim &pd)
|
||||
{
|
||||
// Free up the unnecessary memory and make sure it stays clear after
|
||||
// an exception
|
||||
auto o = impl_? impl_->origin() : Origin::TOP_LEFT;
|
||||
reset(r, pd, o);
|
||||
}
|
||||
|
||||
void Raster::reset(const Raster::Resolution &r, const Raster::PixelDim &pd,
|
||||
Raster::Origin o)
|
||||
{
|
||||
impl_.reset();
|
||||
impl_.reset(new Impl(r, pd, o));
|
||||
}
|
||||
|
||||
void Raster::reset()
|
||||
{
|
||||
impl_.reset();
|
||||
}
|
||||
|
||||
Raster::Resolution Raster::resolution() const
|
||||
{
|
||||
if(impl_) return impl_->resolution();
|
||||
|
||||
return Resolution(0, 0);
|
||||
}
|
||||
|
||||
void Raster::clear()
|
||||
{
|
||||
assert(impl_);
|
||||
impl_->clear();
|
||||
}
|
||||
|
||||
void Raster::draw(const ExPolygon &poly)
|
||||
{
|
||||
assert(impl_);
|
||||
impl_->draw(poly);
|
||||
}
|
||||
|
||||
void Raster::save(std::ostream& stream, Compression comp)
|
||||
{
|
||||
assert(impl_);
|
||||
switch(comp) {
|
||||
case Compression::PNG: {
|
||||
|
||||
png::writer<std::ostream> wr(stream);
|
||||
|
||||
wr.set_bit_depth(8);
|
||||
wr.set_color_type(png::color_type_gray);
|
||||
wr.set_width(resolution().width_px);
|
||||
wr.set_height(resolution().height_px);
|
||||
wr.set_compression_type(png::compression_type_default);
|
||||
|
||||
wr.write_info();
|
||||
|
||||
auto& b = impl_->buffer();
|
||||
auto ptr = reinterpret_cast<png::byte*>( b.data() );
|
||||
unsigned stride =
|
||||
sizeof(Impl::TBuffer::value_type) * resolution().width_px;
|
||||
|
||||
for(unsigned r = 0; r < resolution().height_px; r++, ptr+=stride) {
|
||||
wr.write_row(ptr);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
case Compression::RAW: {
|
||||
stream << "P5 "
|
||||
<< impl_->resolution().width_px << " "
|
||||
<< impl_->resolution().height_px << " "
|
||||
<< "255 ";
|
||||
|
||||
stream.write(reinterpret_cast<const char*>(impl_->buffer().data()),
|
||||
impl_->buffer().size()*sizeof(Impl::TBuffer::value_type));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
86
xs/src/libslic3r/Rasterizer/Rasterizer.hpp
Normal file
86
xs/src/libslic3r/Rasterizer/Rasterizer.hpp
Normal file
|
@ -0,0 +1,86 @@
|
|||
#ifndef RASTERIZER_HPP
|
||||
#define RASTERIZER_HPP
|
||||
|
||||
#include <ostream>
|
||||
#include <memory>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ExPolygon;
|
||||
|
||||
/**
|
||||
* @brief Raster captures an anti-aliased monochrome canvas where vectorial
|
||||
* polygons can be rasterized. Fill color is always white and the background is
|
||||
* black. Contours are anti-aliased.
|
||||
*
|
||||
* It also supports saving the raster data into a standard output stream in raw
|
||||
* or PNG format.
|
||||
*/
|
||||
class Raster {
|
||||
class Impl;
|
||||
std::unique_ptr<Impl> impl_;
|
||||
public:
|
||||
|
||||
/// Supported compression types
|
||||
enum class Compression {
|
||||
RAW, //!> Uncompressed pixel data
|
||||
PNG //!> PNG compression
|
||||
};
|
||||
|
||||
enum class Origin {
|
||||
TOP_LEFT,
|
||||
BOTTOM_LEFT
|
||||
};
|
||||
|
||||
/// Type that represents a resolution in pixels.
|
||||
struct Resolution {
|
||||
unsigned width_px;
|
||||
unsigned height_px;
|
||||
inline Resolution(unsigned w, unsigned h): width_px(w), height_px(h) {}
|
||||
inline unsigned pixels() const /*noexcept*/ {
|
||||
return width_px * height_px;
|
||||
}
|
||||
};
|
||||
|
||||
/// Types that represents the dimension of a pixel in millimeters.
|
||||
struct PixelDim {
|
||||
double w_mm;
|
||||
double h_mm;
|
||||
inline PixelDim(double px_width_mm, double px_height_mm ):
|
||||
w_mm(px_width_mm), h_mm(px_height_mm) {}
|
||||
};
|
||||
|
||||
/// Constructor taking the resolution and the pixel dimension.
|
||||
explicit Raster(const Resolution& r, const PixelDim& pd,
|
||||
Origin o = Origin::BOTTOM_LEFT );
|
||||
Raster();
|
||||
Raster(const Raster& cpy) = delete;
|
||||
Raster& operator=(const Raster& cpy) = delete;
|
||||
Raster(Raster&& m);
|
||||
~Raster();
|
||||
|
||||
/// Reallocated everything for the given resolution and pixel dimension.
|
||||
void reset(const Resolution& r, const PixelDim& pd);
|
||||
void reset(const Resolution& r, const PixelDim& pd, Origin o);
|
||||
|
||||
/**
|
||||
* Release the allocated resources. Drawing in this state ends in
|
||||
* unspecified behaviour.
|
||||
*/
|
||||
void reset();
|
||||
|
||||
/// Get the resolution of the raster.
|
||||
Resolution resolution() const;
|
||||
|
||||
/// Clear the raster with black color.
|
||||
void clear();
|
||||
|
||||
/// Draw a polygon with holes.
|
||||
void draw(const ExPolygon& poly);
|
||||
|
||||
/// Save the raster on the specified stream.
|
||||
void save(std::ostream& stream, Compression comp = Compression::RAW);
|
||||
};
|
||||
|
||||
}
|
||||
#endif // RASTERIZER_HPP
|
526
xs/src/libslic3r/SLABasePool.cpp
Normal file
526
xs/src/libslic3r/SLABasePool.cpp
Normal file
|
@ -0,0 +1,526 @@
|
|||
#include <functional>
|
||||
#include <numeric>
|
||||
|
||||
#include "SLABasePool.hpp"
|
||||
#include "ExPolygon.hpp"
|
||||
#include "TriangleMesh.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "boost/log/trivial.hpp"
|
||||
|
||||
//#include "SVG.hpp"
|
||||
|
||||
namespace Slic3r { namespace sla {
|
||||
|
||||
namespace {
|
||||
|
||||
using coord_t = Point::coord_type;
|
||||
|
||||
/// get the scaled clipper units for a millimeter value
|
||||
inline coord_t mm(double v) { return coord_t(v/SCALING_FACTOR); }
|
||||
|
||||
/// Get x and y coordinates (because we are eigenizing...)
|
||||
inline coord_t x(const Point& p) { return p(0); }
|
||||
inline coord_t y(const Point& p) { return p(1); }
|
||||
inline coord_t& x(Point& p) { return p(0); }
|
||||
inline coord_t& y(Point& p) { return p(1); }
|
||||
|
||||
inline coordf_t x(const Vec3d& p) { return p(0); }
|
||||
inline coordf_t y(const Vec3d& p) { return p(1); }
|
||||
inline coordf_t z(const Vec3d& p) { return p(2); }
|
||||
inline coordf_t& x(Vec3d& p) { return p(0); }
|
||||
inline coordf_t& y(Vec3d& p) { return p(1); }
|
||||
inline coordf_t& z(Vec3d& p) { return p(2); }
|
||||
|
||||
inline coord_t& x(Vec3crd& p) { return p(0); }
|
||||
inline coord_t& y(Vec3crd& p) { return p(1); }
|
||||
inline coord_t& z(Vec3crd& p) { return p(2); }
|
||||
inline coord_t x(const Vec3crd& p) { return p(0); }
|
||||
inline coord_t y(const Vec3crd& p) { return p(1); }
|
||||
inline coord_t z(const Vec3crd& p) { return p(2); }
|
||||
|
||||
inline void triangulate(const ExPolygon& expoly, Polygons& triangles) {
|
||||
expoly.triangulate_p2t(&triangles);
|
||||
}
|
||||
|
||||
inline Polygons triangulate(const ExPolygon& expoly) {
|
||||
Polygons tri; triangulate(expoly, tri); return tri;
|
||||
}
|
||||
|
||||
using Indices = std::vector<Vec3crd>;
|
||||
|
||||
/// Intermediate struct for a 3D mesh
|
||||
struct Contour3D {
|
||||
Pointf3s points;
|
||||
Indices indices;
|
||||
|
||||
void merge(const Contour3D& ctr) {
|
||||
auto s3 = coord_t(points.size());
|
||||
auto s = coord_t(indices.size());
|
||||
|
||||
points.insert(points.end(), ctr.points.begin(), ctr.points.end());
|
||||
indices.insert(indices.end(), ctr.indices.begin(), ctr.indices.end());
|
||||
|
||||
for(auto n = s; n < indices.size(); n++) {
|
||||
auto& idx = indices[n]; x(idx) += s3; y(idx) += s3; z(idx) += s3;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/// Convert the triangulation output to an intermediate mesh.
|
||||
inline Contour3D convert(const Polygons& triangles, coord_t z, bool dir) {
|
||||
|
||||
Pointf3s points;
|
||||
points.reserve(3*triangles.size());
|
||||
Indices indices;
|
||||
indices.reserve(points.size());
|
||||
|
||||
for(auto& tr : triangles) {
|
||||
auto c = coord_t(points.size()), b = c++, a = c++;
|
||||
if(dir) indices.emplace_back(a, b, c);
|
||||
else indices.emplace_back(c, b, a);
|
||||
for(auto& p : tr.points) {
|
||||
points.emplace_back(unscale(x(p), y(p), z));
|
||||
}
|
||||
}
|
||||
|
||||
return {points, indices};
|
||||
}
|
||||
|
||||
/// Only a debug function to generate top and bottom plates from a 2D shape.
|
||||
/// It is not used in the algorithm directly.
|
||||
inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) {
|
||||
Polygons triangles = triangulate(poly);
|
||||
|
||||
auto lower = convert(triangles, 0, false);
|
||||
auto upper = convert(triangles, z_distance, true);
|
||||
lower.merge(upper);
|
||||
return lower;
|
||||
}
|
||||
|
||||
inline Contour3D walls(const ExPolygon& floor_plate, const ExPolygon& ceiling,
|
||||
double floor_z_mm, double ceiling_z_mm) {
|
||||
using std::transform; using std::back_inserter;
|
||||
|
||||
ExPolygon poly;
|
||||
poly.contour.points = floor_plate.contour.points;
|
||||
poly.holes.emplace_back(ceiling.contour);
|
||||
auto& h = poly.holes.front();
|
||||
std::reverse(h.points.begin(), h.points.end());
|
||||
Polygons tri = triangulate(poly);
|
||||
|
||||
Contour3D ret;
|
||||
ret.points.reserve(tri.size() * 3);
|
||||
|
||||
double fz = floor_z_mm;
|
||||
double cz = ceiling_z_mm;
|
||||
auto& rp = ret.points;
|
||||
auto& rpi = ret.indices;
|
||||
ret.indices.reserve(tri.size() * 3);
|
||||
|
||||
coord_t idx = 0;
|
||||
|
||||
auto hlines = h.lines();
|
||||
auto is_upper = [&hlines](const Point& p) {
|
||||
return std::any_of(hlines.begin(), hlines.end(),
|
||||
[&p](const Line& l) {
|
||||
return l.distance_to(p) < mm(0.01);
|
||||
});
|
||||
};
|
||||
|
||||
std::for_each(tri.begin(), tri.end(),
|
||||
[&rp, &rpi, &poly, &idx, is_upper, fz, cz](const Polygon& pp)
|
||||
{
|
||||
for(auto& p : pp.points)
|
||||
if(is_upper(p))
|
||||
rp.emplace_back(unscale(x(p), y(p), mm(cz)));
|
||||
else rp.emplace_back(unscale(x(p), y(p), mm(fz)));
|
||||
|
||||
coord_t a = idx++, b = idx++, c = idx++;
|
||||
if(fz > cz) rpi.emplace_back(c, b, a);
|
||||
else rpi.emplace_back(a, b, c);
|
||||
});
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/// Mesh from an existing contour.
|
||||
inline TriangleMesh mesh(const Contour3D& ctour) {
|
||||
return {ctour.points, ctour.indices};
|
||||
}
|
||||
|
||||
/// Mesh from an evaporating 3D contour
|
||||
inline TriangleMesh mesh(Contour3D&& ctour) {
|
||||
return {std::move(ctour.points), std::move(ctour.indices)};
|
||||
}
|
||||
|
||||
/// Offsetting with clipper and smoothing the edges into a curvature.
|
||||
inline void offset(ExPolygon& sh, coord_t distance) {
|
||||
using ClipperLib::ClipperOffset;
|
||||
using ClipperLib::jtRound;
|
||||
using ClipperLib::etClosedPolygon;
|
||||
using ClipperLib::Paths;
|
||||
using ClipperLib::Path;
|
||||
|
||||
auto&& ctour = Slic3rMultiPoint_to_ClipperPath(sh.contour);
|
||||
auto&& holes = Slic3rMultiPoints_to_ClipperPaths(sh.holes);
|
||||
|
||||
// If the input is not at least a triangle, we can not do this algorithm
|
||||
if(ctour.size() < 3 ||
|
||||
std::any_of(holes.begin(), holes.end(),
|
||||
[](const Path& p) { return p.size() < 3; })
|
||||
) {
|
||||
BOOST_LOG_TRIVIAL(error) << "Invalid geometry for offsetting!";
|
||||
return;
|
||||
}
|
||||
|
||||
ClipperOffset offs;
|
||||
offs.ArcTolerance = 0.01*mm(1);
|
||||
Paths result;
|
||||
offs.AddPath(ctour, jtRound, etClosedPolygon);
|
||||
offs.AddPaths(holes, jtRound, etClosedPolygon);
|
||||
offs.Execute(result, static_cast<double>(distance));
|
||||
|
||||
// Offsetting reverts the orientation and also removes the last vertex
|
||||
// so boost will not have a closed polygon.
|
||||
|
||||
bool found_the_contour = false;
|
||||
sh.holes.clear();
|
||||
for(auto& r : result) {
|
||||
if(ClipperLib::Orientation(r)) {
|
||||
// We don't like if the offsetting generates more than one contour
|
||||
// but throwing would be an overkill. Instead, we should warn the
|
||||
// caller about the inability to create correct geometries
|
||||
if(!found_the_contour) {
|
||||
auto rr = ClipperPath_to_Slic3rPolygon(r);
|
||||
sh.contour.points.swap(rr.points);
|
||||
found_the_contour = true;
|
||||
} else {
|
||||
BOOST_LOG_TRIVIAL(warning)
|
||||
<< "Warning: offsetting result is invalid!";
|
||||
}
|
||||
} else {
|
||||
// TODO If there are multiple contours we can't be sure which hole
|
||||
// belongs to the first contour. (But in this case the situation is
|
||||
// bad enough to let it go...)
|
||||
sh.holes.emplace_back(ClipperPath_to_Slic3rPolygon(r));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class ExP, class D>
|
||||
inline Contour3D round_edges(const ExPolygon& base_plate,
|
||||
double radius_mm,
|
||||
double degrees,
|
||||
double ceilheight_mm,
|
||||
bool dir,
|
||||
ExP&& last_offset = ExP(), D&& last_height = D())
|
||||
{
|
||||
auto ob = base_plate;
|
||||
auto ob_prev = ob;
|
||||
double wh = ceilheight_mm, wh_prev = wh;
|
||||
Contour3D curvedwalls;
|
||||
|
||||
const size_t steps = 6; // steps for 180 degrees
|
||||
degrees = std::fmod(degrees, 180);
|
||||
const int portion = int(steps*degrees / 90);
|
||||
const double ystep_mm = radius_mm/steps;
|
||||
coord_t s = dir? 1 : -1;
|
||||
double xxprev = 0;
|
||||
for(int i = 0; i < portion; i++) {
|
||||
ob = base_plate;
|
||||
|
||||
// The offset is given by the equation: x = sqrt(r^2 - y^2)
|
||||
// which can be derived from the circle equation. y is the current
|
||||
// height for which the offset is calculated and x is the offset itself
|
||||
// r is the radius of the circle that is used to smooth the edges
|
||||
|
||||
double r2 = radius_mm * radius_mm;
|
||||
double y2 = steps*ystep_mm - i*ystep_mm;
|
||||
y2 *= y2;
|
||||
|
||||
double xx = sqrt(r2 - y2);
|
||||
|
||||
offset(ob, s*mm(xx));
|
||||
wh = ceilheight_mm - i*ystep_mm;
|
||||
|
||||
Contour3D pwalls;
|
||||
if(xxprev < xx) pwalls = walls(ob, ob_prev, wh, wh_prev);
|
||||
else pwalls = walls(ob_prev, ob, wh_prev, wh);
|
||||
|
||||
curvedwalls.merge(pwalls);
|
||||
ob_prev = ob;
|
||||
wh_prev = wh;
|
||||
xxprev = xx;
|
||||
}
|
||||
|
||||
last_offset = std::move(ob);
|
||||
last_height = wh;
|
||||
|
||||
return curvedwalls;
|
||||
}
|
||||
|
||||
/// Generating the concave part of the 3D pool with the bottom plate and the
|
||||
/// side walls.
|
||||
inline Contour3D inner_bed(const ExPolygon& poly, double depth_mm,
|
||||
double begin_h_mm = 0) {
|
||||
|
||||
Polygons triangles = triangulate(poly);
|
||||
|
||||
coord_t depth = mm(depth_mm);
|
||||
coord_t begin_h = mm(begin_h_mm);
|
||||
|
||||
auto bottom = convert(triangles, -depth + begin_h, false);
|
||||
auto lines = poly.lines();
|
||||
|
||||
// Generate outer walls
|
||||
auto fp = [](const Point& p, Point::coord_type z) {
|
||||
return unscale(x(p), y(p), z);
|
||||
};
|
||||
|
||||
for(auto& l : lines) {
|
||||
auto s = coord_t(bottom.points.size());
|
||||
|
||||
bottom.points.emplace_back(fp(l.a, -depth + begin_h));
|
||||
bottom.points.emplace_back(fp(l.b, -depth + begin_h));
|
||||
bottom.points.emplace_back(fp(l.a, begin_h));
|
||||
bottom.points.emplace_back(fp(l.b, begin_h));
|
||||
|
||||
bottom.indices.emplace_back(s + 3, s + 1, s);
|
||||
bottom.indices.emplace_back(s + 2, s + 3, s);
|
||||
}
|
||||
|
||||
return bottom;
|
||||
}
|
||||
|
||||
/// Unification of polygons (with clipper) preserving holes as well.
|
||||
inline ExPolygons unify(const ExPolygons& shapes) {
|
||||
ExPolygons retv;
|
||||
|
||||
bool closed = true;
|
||||
bool valid = true;
|
||||
|
||||
ClipperLib::Clipper clipper;
|
||||
|
||||
for(auto& path : shapes) {
|
||||
auto clipperpath = Slic3rMultiPoint_to_ClipperPath(path.contour);
|
||||
valid &= clipper.AddPath(clipperpath, ClipperLib::ptSubject, closed);
|
||||
|
||||
auto clipperholes = Slic3rMultiPoints_to_ClipperPaths(path.holes);
|
||||
for(auto& hole : clipperholes) {
|
||||
valid &= clipper.AddPath(hole, ClipperLib::ptSubject, closed);
|
||||
}
|
||||
}
|
||||
|
||||
if(!valid) BOOST_LOG_TRIVIAL(warning) << "Unification of invalid shapes!";
|
||||
|
||||
ClipperLib::PolyTree result;
|
||||
clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero);
|
||||
|
||||
retv.reserve(static_cast<size_t>(result.Total()));
|
||||
|
||||
// Now we will recursively traverse the polygon tree and serialize it
|
||||
// into an ExPolygon with holes. The polygon tree has the clipper-ish
|
||||
// PolyTree structure which alternates its nodes as contours and holes
|
||||
|
||||
// A "declaration" of function for traversing leafs which are holes
|
||||
std::function<void(ClipperLib::PolyNode*, ExPolygon&)> processHole;
|
||||
|
||||
// Process polygon which calls processHoles which than calls processPoly
|
||||
// again until no leafs are left.
|
||||
auto processPoly = [&retv, &processHole](ClipperLib::PolyNode *pptr) {
|
||||
ExPolygon poly;
|
||||
poly.contour.points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
|
||||
for(auto h : pptr->Childs) { processHole(h, poly); }
|
||||
retv.push_back(poly);
|
||||
};
|
||||
|
||||
// Body of the processHole function
|
||||
processHole = [&processPoly](ClipperLib::PolyNode *pptr, ExPolygon& poly)
|
||||
{
|
||||
poly.holes.emplace_back();
|
||||
poly.holes.back().points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
|
||||
for(auto c : pptr->Childs) processPoly(c);
|
||||
};
|
||||
|
||||
// Wrapper for traversing.
|
||||
auto traverse = [&processPoly] (ClipperLib::PolyNode *node)
|
||||
{
|
||||
for(auto ch : node->Childs) {
|
||||
processPoly(ch);
|
||||
}
|
||||
};
|
||||
|
||||
// Here is the actual traverse
|
||||
traverse(&result);
|
||||
|
||||
return retv;
|
||||
}
|
||||
|
||||
inline Point centroid(Points& pp) {
|
||||
Point c;
|
||||
switch(pp.size()) {
|
||||
case 0: break;
|
||||
case 1: c = pp.front(); break;
|
||||
case 2: c = (pp[0] + pp[1]) / 2; break;
|
||||
default: {
|
||||
Polygon p;
|
||||
p.points.swap(pp);
|
||||
c = p.centroid();
|
||||
pp.swap(p.points);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
inline Point centroid(const ExPolygon& poly) {
|
||||
return poly.contour.centroid();
|
||||
}
|
||||
|
||||
/// A fake concave hull that is constructed by connecting separate shapes
|
||||
/// with explicit bridges. Bridges are generated from each shape's centroid
|
||||
/// to the center of the "scene" which is the centroid calculated from the shape
|
||||
/// centroids (a star is created...)
|
||||
inline ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 0)
|
||||
{
|
||||
if(polys.empty()) return ExPolygons();
|
||||
|
||||
ExPolygons punion = unify(polys); // could be redundant
|
||||
|
||||
if(punion.size() == 1) return punion;
|
||||
|
||||
// We get the centroids of all the islands in the 2D slice
|
||||
Points centroids; centroids.reserve(punion.size());
|
||||
std::transform(punion.begin(), punion.end(), std::back_inserter(centroids),
|
||||
[](const ExPolygon& poly) { return centroid(poly); });
|
||||
|
||||
// Centroid of the centroids of islands. This is where the additional
|
||||
// connector sticks are routed.
|
||||
Point cc = centroid(centroids);
|
||||
|
||||
punion.reserve(punion.size() + centroids.size());
|
||||
|
||||
std::transform(centroids.begin(), centroids.end(),
|
||||
std::back_inserter(punion),
|
||||
[cc, max_dist_mm](const Point& c) {
|
||||
|
||||
double dx = x(c) - x(cc), dy = y(c) - y(cc);
|
||||
double l = std::sqrt(dx * dx + dy * dy);
|
||||
double nx = dx / l, ny = dy / l;
|
||||
|
||||
if(l < max_dist_mm) return ExPolygon();
|
||||
|
||||
ExPolygon r;
|
||||
auto& ctour = r.contour.points;
|
||||
|
||||
ctour.reserve(3);
|
||||
ctour.emplace_back(cc);
|
||||
|
||||
Point d(coord_t(mm(1)*nx), coord_t(mm(1)*ny));
|
||||
ctour.emplace_back(c + Point( -y(d), x(d) ));
|
||||
ctour.emplace_back(c + Point( y(d), -x(d) ));
|
||||
offset(r, mm(1));
|
||||
|
||||
return r;
|
||||
});
|
||||
|
||||
punion = unify(punion);
|
||||
|
||||
if(punion.size() != 1)
|
||||
BOOST_LOG_TRIVIAL(error) << "Cannot generate correct SLA base pool!";
|
||||
|
||||
return punion;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void ground_layer(const TriangleMesh &mesh, ExPolygons &output, float h)
|
||||
{
|
||||
TriangleMesh m = mesh;
|
||||
TriangleMeshSlicer slicer(&m);
|
||||
|
||||
std::vector<ExPolygons> tmp;
|
||||
|
||||
slicer.slice({h}, &tmp);
|
||||
|
||||
output = tmp.front();
|
||||
}
|
||||
|
||||
void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out,
|
||||
double min_wall_thickness_mm,
|
||||
double min_wall_height_mm)
|
||||
{
|
||||
auto concavehs = concave_hull(ground_layer);
|
||||
for(ExPolygon& concaveh : concavehs) {
|
||||
if(concaveh.contour.points.empty()) return;
|
||||
concaveh.holes.clear();
|
||||
|
||||
BoundingBox bb(concaveh);
|
||||
coord_t w = x(bb.max) - x(bb.min);
|
||||
coord_t h = y(bb.max) - y(bb.min);
|
||||
|
||||
auto wall_thickness = coord_t(std::pow((w+h)*0.1, 0.8));
|
||||
|
||||
const coord_t WALL_THICKNESS = mm(min_wall_thickness_mm) +
|
||||
wall_thickness;
|
||||
|
||||
const coord_t WALL_DISTANCE = coord_t(0.3*WALL_THICKNESS);
|
||||
const coord_t HEIGHT = mm(min_wall_height_mm);
|
||||
|
||||
auto outer_base = concaveh;
|
||||
offset(outer_base, WALL_THICKNESS+WALL_DISTANCE);
|
||||
auto inner_base = outer_base;
|
||||
offset(inner_base, -WALL_THICKNESS);
|
||||
inner_base.holes.clear(); outer_base.holes.clear();
|
||||
|
||||
ExPolygon top_poly;
|
||||
top_poly.contour = outer_base.contour;
|
||||
top_poly.holes.emplace_back(inner_base.contour);
|
||||
auto& tph = top_poly.holes.back().points;
|
||||
std::reverse(tph.begin(), tph.end());
|
||||
|
||||
Contour3D pool;
|
||||
|
||||
ExPolygon ob = outer_base; double wh = 0;
|
||||
auto curvedwalls = round_edges(ob,
|
||||
1, // radius 1 mm
|
||||
170, // 170 degrees
|
||||
0, // z position of the input plane
|
||||
true,
|
||||
ob, wh);
|
||||
pool.merge(curvedwalls);
|
||||
|
||||
ExPolygon ob_contr = ob;
|
||||
ob_contr.holes.clear();
|
||||
|
||||
auto pwalls = walls(ob_contr, inner_base, wh, -min_wall_height_mm);
|
||||
pool.merge(pwalls);
|
||||
|
||||
Polygons top_triangles, bottom_triangles;
|
||||
triangulate(top_poly, top_triangles);
|
||||
triangulate(inner_base, bottom_triangles);
|
||||
auto top_plate = convert(top_triangles, 0, false);
|
||||
auto bottom_plate = convert(bottom_triangles, -HEIGHT, true);
|
||||
|
||||
ob = inner_base; wh = 0;
|
||||
curvedwalls = round_edges(ob,
|
||||
1, // radius 1 mm
|
||||
90, // 170 degrees
|
||||
0, // z position of the input plane
|
||||
false,
|
||||
ob, wh);
|
||||
pool.merge(curvedwalls);
|
||||
|
||||
auto innerbed = inner_bed(ob, min_wall_height_mm/2 + wh, wh);
|
||||
|
||||
pool.merge(top_plate);
|
||||
pool.merge(bottom_plate);
|
||||
pool.merge(innerbed);
|
||||
|
||||
out.merge(mesh(pool));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
31
xs/src/libslic3r/SLABasePool.hpp
Normal file
31
xs/src/libslic3r/SLABasePool.hpp
Normal file
|
@ -0,0 +1,31 @@
|
|||
#ifndef SLASUPPORTPOOL_HPP
|
||||
#define SLASUPPORTPOOL_HPP
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
class ExPolygon;
|
||||
class TriangleMesh;
|
||||
|
||||
namespace sla {
|
||||
|
||||
using ExPolygons = std::vector<ExPolygon>;
|
||||
|
||||
/// Calculate the polygon representing the slice of the lowest layer of mesh
|
||||
void ground_layer(const TriangleMesh& mesh,
|
||||
ExPolygons& output,
|
||||
float height = 0.1f);
|
||||
|
||||
/// Calculate the pool for the mesh for SLA printing
|
||||
void create_base_pool(const ExPolygons& ground_layer,
|
||||
TriangleMesh& output_mesh,
|
||||
double min_wall_thickness_mm = 4,
|
||||
double min_wall_height_mm = 5
|
||||
);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // SLASUPPORTPOOL_HPP
|
|
@ -858,7 +858,7 @@ TriangleMeshSlicer::slice(const std::vector<float> &z, std::vector<ExPolygons>*
|
|||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
printf("Layer " PRINTF_ZU " (slice_z = %.2f):\n", layer_id, z[layer_id]);
|
||||
#endif
|
||||
this->make_expolygons(layers_p[layer_id], &(*layers)[layer_id]);
|
||||
this->make_expolygons(layers_p[layer_id], &(*layers)[layer_id]);
|
||||
}
|
||||
});
|
||||
BOOST_LOG_TRIVIAL(debug) << "TriangleMeshSlicer::make_expolygons in parallel - end";
|
||||
|
@ -1205,8 +1205,8 @@ void TriangleMeshSlicer::make_loops(std::vector<IntersectionLine> &lines, Polygo
|
|||
if ((ip1.edge_id != -1 && ip1.edge_id == ip2.edge_id) ||
|
||||
(ip1.point_id != -1 && ip1.point_id == ip2.point_id)) {
|
||||
// The current loop is complete. Add it to the output.
|
||||
assert(opl.points.front().point_id == opl.points.back().point_id);
|
||||
assert(opl.points.front().edge_id == opl.points.back().edge_id);
|
||||
/*assert(opl.points.front().point_id == opl.points.back().point_id);
|
||||
assert(opl.points.front().edge_id == opl.points.back().edge_id);*/
|
||||
// Remove the duplicate last point.
|
||||
opl.points.pop_back();
|
||||
if (opl.points.size() >= 3) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue