Introduction of a greedy Traveling Salesman Problem algorithm,

producing better shortest path estimate than the "closest next neighbor"
heuristics. The new greedy algorithm utilizes KD tree for closest
end point search, and builds a graph to detect loops.

PerimeterGenerator newly uses the optimized TSP algorithm.

ExtrusionEntity has been refactored / simplified.
This commit is contained in:
bubnikv 2019-09-26 09:44:38 +02:00
parent 110d5b9d56
commit 41495a932a
8 changed files with 797 additions and 61 deletions

View file

@ -13,21 +13,28 @@ public:
{}
~MutablePriorityQueue() { clear(); }
inline void clear() { m_heap.clear(); }
inline void reserve(size_t cnt) { m_heap.reserve(cnt); }
inline void push(const T &item);
inline void push(T &&item);
inline void pop();
inline T& top() { return m_heap.front(); }
inline void remove(size_t idx);
inline void update(size_t idx) { T item = m_heap[idx]; remove(idx); push(item); }
void clear() { m_heap.clear(); }
void reserve(size_t cnt) { m_heap.reserve(cnt); }
void push(const T &item);
void push(T &&item);
void pop();
T& top() { return m_heap.front(); }
void remove(size_t idx);
void update(size_t idx) { T item = m_heap[idx]; remove(idx); push(item); }
inline size_t size() const { return m_heap.size(); }
inline bool empty() const { return m_heap.empty(); }
size_t size() const { return m_heap.size(); }
bool empty() const { return m_heap.empty(); }
using iterator = typename std::vector<T>::iterator;
using const_iterator = typename std::vector<T>::const_iterator;
iterator begin() { return m_heap.begin(); }
iterator end() { return m_heap.end(); }
const_iterator cbegin() const { return m_heap.cbegin(); }
const_iterator cend() const { return m_heap.cend(); }
protected:
inline void update_heap_up(size_t top, size_t bottom);
inline void update_heap_down(size_t top, size_t bottom);
void update_heap_up(size_t top, size_t bottom);
void update_heap_down(size_t top, size_t bottom);
private:
std::vector<T> m_heap;