Promising approach to medial axis pruning

This commit is contained in:
Alessandro Ranellucci 2014-03-04 23:33:13 +01:00
parent 8644440070
commit 3c77b301a7
13 changed files with 126 additions and 326 deletions

View file

@ -3,10 +3,10 @@
#include "PolylineCollection.hpp"
#include "clipper.hpp"
#include <algorithm>
#include <list>
#include <map>
#include <set>
#include <vector>
//#include "voronoi_visual_utils.hpp"
#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
@ -92,6 +92,16 @@ chained_path_items(Points &points, T &items, T &retval)
}
template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);
Line
MedialAxis::edge_to_line(const VD::edge_type &edge) {
Line line;
line.a.x = edge.vertex0()->x();
line.a.y = edge.vertex0()->y();
line.b.x = edge.vertex1()->x();
line.b.y = edge.vertex1()->y();
return line;
}
void
MedialAxis::build(Polylines* polylines)
{
@ -104,11 +114,73 @@ MedialAxis::build(Polylines* polylines)
construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
// collect valid edges (i.e. prune those not belonging to MAT)
// note: this keeps twins, so it contains twice the number of the valid edges
this->edges.clear();
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
if (this->is_valid_edge(*edge)) this->edges.insert(&*edge);
}
// count valid segments for each vertex
std::map< const VD::vertex_type*,std::list<const VD::edge_type*> > vertex_edges;
std::list<const VD::vertex_type*> entry_nodes;
for (VD::const_vertex_iterator vertex = this->vd.vertices().begin(); vertex != this->vd.vertices().end(); ++vertex) {
// get a reference to the list of valid edges originating from this vertex
std::list<const VD::edge_type*>& edges = vertex_edges[&*vertex];
// get one random edge originating from this vertex
const VD::edge_type* edge = vertex->incident_edge();
do {
if (this->edges.count(edge) > 0) // only count valid edges
edges.push_back(edge);
edge = edge->rot_next(); // next edge originating from this vertex
} while (edge != vertex->incident_edge());
// if there's only one edge starting at this vertex then it's a leaf
if (edges.size() == 1) entry_nodes.push_back(&*vertex);
}
// iterate through the leafs to prune short branches
for (std::list<const VD::vertex_type*>::const_iterator vertex = entry_nodes.begin(); vertex != entry_nodes.end(); ++vertex) {
const VD::vertex_type* v = *vertex;
// start a polyline from this vertex
Polyline polyline;
polyline.points.push_back(Point(v->x(), v->y()));
// keep track of visited edges to prevent infinite loops
std::set<const VD::edge_type*> visited_edges;
do {
// get edge starting from v
const VD::edge_type* edge = vertex_edges[v].front();
// if we picked the edge going backwards (thus the twin of the previous edge)
if (visited_edges.count(edge->twin()) > 0) {
edge = vertex_edges[v].back();
}
// avoid getting twice on the same edge
if (visited_edges.count(edge) > 0) break;
visited_edges.insert(edge);
// get ending vertex for this edge and append it to the polyline
v = edge->vertex1();
polyline.points.push_back(Point( v->x(), v->y() ));
// if two edges start at this vertex (one forward one backwards) then
// it's not branching and we can go on
} while (vertex_edges[v].size() == 2);
// if this branch is too short, invalidate all of its edges so that
// they will be ignored when building actual polylines in the loop below
if (polyline.length() < this->width) {
for (std::set<const VD::edge_type*>::const_iterator edge = visited_edges.begin(); edge != visited_edges.end(); ++edge) {
(void)this->edges.erase(*edge);
(void)this->edges.erase((*edge)->twin());
}
}
}
// iterate through the valid edges to build polylines
while (!this->edges.empty()) {
const VD::edge_type& edge = **this->edges.begin();
@ -176,107 +248,26 @@ MedialAxis::is_valid_edge(const VD::edge_type& edge) const
but I don't know how to do it. Maybe we could check the relative angle of
the two segments (we are only interested in facing segments). */
const voronoi_diagram<double>::cell_type &cell1 = *edge.cell();
const voronoi_diagram<double>::cell_type &cell2 = *edge.twin()->cell();
const VD::cell_type &cell1 = *edge.cell();
const VD::cell_type &cell2 = *edge.twin()->cell();
if (cell1.contains_segment() && cell2.contains_segment()) {
Line segment1 = this->retrieve_segment(cell1);
Line segment2 = this->retrieve_segment(cell2);
if (segment1.a == segment2.b || segment1.b == segment2.a) return false;
if (fabs(segment1.atan2_() - segment2.atan2_()) < PI/3) {
//printf("segment1 atan2 = %f, segment2 atan2 = %f\n", segment1.atan2_(), segment2.atan2_());
//printf(" => SAME ATAN2\n");
return false;
}
}
return true;
}
/*
void
MedialAxis::clip_infinite_edge(const voronoi_diagram<double>::edge_type& edge, Points* clipped_edge)
{
const voronoi_diagram<double>::cell_type& cell1 = *edge.cell();
const voronoi_diagram<double>::cell_type& cell2 = *edge.twin()->cell();
Point origin, direction;
// Infinite edges could not be created by two segment sites.
if (cell1.contains_point() && cell2.contains_point()) {
Point p1 = retrieve_point(cell1);
Point p2 = retrieve_point(cell2);
origin.x = (p1.x + p2.x) * 0.5;
origin.y = (p1.y + p2.y) * 0.5;
direction.x = p1.y - p2.y;
direction.y = p2.x - p1.x;
} else {
origin = cell1.contains_segment()
? retrieve_point(cell2)
: retrieve_point(cell1);
Line segment = cell1.contains_segment()
? retrieve_segment(cell1)
: retrieve_segment(cell2);
coord_t dx = high(segment).x - low(segment).x;
coord_t dy = high(segment).y - low(segment).y;
if ((low(segment) == origin) ^ cell1.contains_point()) {
direction.x = dy;
direction.y = -dx;
} else {
direction.x = -dy;
direction.y = dx;
}
}
coord_t side = this->bb.size().x;
coord_t koef = side / (std::max)(fabs(direction.x), fabs(direction.y));
if (edge.vertex0() == NULL) {
clipped_edge->push_back(Point(
origin.x - direction.x * koef,
origin.y - direction.y * koef
));
} else {
clipped_edge->push_back(
Point(edge.vertex0()->x(), edge.vertex0()->y()));
}
if (edge.vertex1() == NULL) {
clipped_edge->push_back(Point(
origin.x + direction.x * koef,
origin.y + direction.y * koef
));
} else {
clipped_edge->push_back(
Point(edge.vertex1()->x(), edge.vertex1()->y()));
}
}
void
MedialAxis::sample_curved_edge(const voronoi_diagram<double>::edge_type& edge, Points* sampled_edge)
{
Point point = edge.cell()->contains_point()
? retrieve_point(*edge.cell())
: retrieve_point(*edge.twin()->cell());
Line segment = edge.cell()->contains_point()
? retrieve_segment(*edge.twin()->cell())
: retrieve_segment(*edge.cell());
double max_dist = 1E-3 * this->bb.size().x;
voronoi_visual_utils<double>::discretize<coord_t,coord_t,Point,Line>(point, segment, max_dist, sampled_edge);
}
*/
Point
MedialAxis::retrieve_point(const voronoi_diagram<double>::cell_type& cell)
{
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index();
voronoi_diagram<double>::cell_type::source_category_type category = cell.source_category();
if (category == SOURCE_CATEGORY_SINGLE_POINT) {
return this->points[index];
}
index -= this->points.size();
if (category == SOURCE_CATEGORY_SEGMENT_START_POINT) {
return low(this->lines[index]);
} else {
return high(this->lines[index]);
}
}
Line
MedialAxis::retrieve_segment(const voronoi_diagram<double>::cell_type& cell) const
MedialAxis::retrieve_segment(const VD::cell_type& cell) const
{
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index() - this->points.size();
VD::cell_type::source_index_type index = cell.source_index() - this->points.size();
return this->lines[index];
}