Fixed conflicts after merge with master

This commit is contained in:
enricoturri1966 2021-08-26 12:39:28 +02:00
commit 39ec1a6318
192 changed files with 7204 additions and 2296 deletions

View file

@ -167,9 +167,6 @@ void AppConfig::set_defaults()
if (get("show_splash_screen").empty())
set("show_splash_screen", "1");
if (get("last_hint").empty())
set("last_hint", "0");
if (get("show_hints").empty())
set("show_hints", "1");

View file

@ -45,14 +45,40 @@ static float max_brim_width(const ConstPrintObjectPtrsAdaptor &objects)
}));
}
static ConstPrintObjectPtrs get_top_level_objects_with_brim(const Print &print)
// Returns ExPolygons of the bottom layer of the print object after elephant foot compensation.
static ExPolygons get_print_object_bottom_layer_expolygons(const PrintObject &print_object)
{
ExPolygons ex_polygons;
for (LayerRegion *region : print_object.layers().front()->regions())
Slic3r::append(ex_polygons, offset_ex(offset_ex(region->slices.surfaces, float(SCALED_EPSILON)), -float(SCALED_EPSILON)));
return ex_polygons;
}
// Returns ExPolygons of bottom layer for every print object in Print after elephant foot compensation.
static std::vector<ExPolygons> get_print_bottom_layers_expolygons(const Print &print)
{
std::vector<ExPolygons> bottom_layers_expolygons;
bottom_layers_expolygons.reserve(print.objects().size());
for (const PrintObject *object : print.objects())
bottom_layers_expolygons.emplace_back(get_print_object_bottom_layer_expolygons(*object));
return bottom_layers_expolygons;
}
static ConstPrintObjectPtrs get_top_level_objects_with_brim(const Print &print, const std::vector<ExPolygons> &bottom_layers_expolygons)
{
assert(print.objects().size() == bottom_layers_expolygons.size());
Polygons islands;
ConstPrintObjectPtrs island_to_object;
for (const PrintObject *object : print.objects()) {
for(size_t print_object_idx = 0; print_object_idx < print.objects().size(); ++print_object_idx) {
const PrintObject *object = print.objects()[print_object_idx];
if (! object->has_brim())
continue;
Polygons islands_object;
islands_object.reserve(object->layers().front()->lslices.size());
for (const ExPolygon &ex_poly : object->layers().front()->lslices)
islands_object.reserve(bottom_layers_expolygons[print_object_idx].size());
for (const ExPolygon &ex_poly : bottom_layers_expolygons[print_object_idx])
islands_object.emplace_back(ex_poly.contour);
islands.reserve(islands.size() + object->instances().size() * islands_object.size());
@ -110,7 +136,7 @@ static Polygons top_level_outer_brim_islands(const ConstPrintObjectPtrs &top_lev
//FIXME how about the brim type?
auto brim_offset = float(scale_(object->config().brim_offset.value));
Polygons islands_object;
for (const ExPolygon &ex_poly : object->layers().front()->lslices) {
for (const ExPolygon &ex_poly : get_print_object_bottom_layer_expolygons(*object)) {
Polygons contour_offset = offset(ex_poly.contour, brim_offset);
for (Polygon &poly : contour_offset)
poly.douglas_peucker(SCALED_RESOLUTION);
@ -124,8 +150,12 @@ static Polygons top_level_outer_brim_islands(const ConstPrintObjectPtrs &top_lev
return islands;
}
static ExPolygons top_level_outer_brim_area(const Print &print, const ConstPrintObjectPtrs &top_level_objects_with_brim, const float no_brim_offset)
static ExPolygons top_level_outer_brim_area(const Print &print,
const ConstPrintObjectPtrs &top_level_objects_with_brim,
const std::vector<ExPolygons> &bottom_layers_expolygons,
const float no_brim_offset)
{
assert(print.objects().size() == bottom_layers_expolygons.size());
std::unordered_set<size_t> top_level_objects_idx;
top_level_objects_idx.reserve(top_level_objects_with_brim.size());
for (const PrintObject *object : top_level_objects_with_brim)
@ -133,15 +163,16 @@ static ExPolygons top_level_outer_brim_area(const Print &print, const ConstPrint
ExPolygons brim_area;
ExPolygons no_brim_area;
for (const PrintObject *object : print.objects()) {
const BrimType brim_type = object->config().brim_type.value;
const float brim_offset = scale_(object->config().brim_offset.value);
const float brim_width = scale_(object->config().brim_width.value);
const bool is_top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
for(size_t print_object_idx = 0; print_object_idx < print.objects().size(); ++print_object_idx) {
const PrintObject *object = print.objects()[print_object_idx];
const BrimType brim_type = object->config().brim_type.value;
const float brim_offset = scale_(object->config().brim_offset.value);
const float brim_width = scale_(object->config().brim_width.value);
const bool is_top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
ExPolygons brim_area_object;
ExPolygons no_brim_area_object;
for (const ExPolygon &ex_poly : object->layers().front()->lslices) {
for (const ExPolygon &ex_poly : bottom_layers_expolygons[print_object_idx]) {
if ((brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner) && is_top_outer_brim)
append(brim_area_object, diff_ex(offset(ex_poly.contour, brim_width + brim_offset), offset(ex_poly.contour, brim_offset)));
@ -166,8 +197,12 @@ static ExPolygons top_level_outer_brim_area(const Print &print, const ConstPrint
return diff_ex(brim_area, no_brim_area);
}
static ExPolygons inner_brim_area(const Print &print, const ConstPrintObjectPtrs &top_level_objects_with_brim, const float no_brim_offset)
static ExPolygons inner_brim_area(const Print &print,
const ConstPrintObjectPtrs &top_level_objects_with_brim,
const std::vector<ExPolygons> &bottom_layers_expolygons,
const float no_brim_offset)
{
assert(print.objects().size() == bottom_layers_expolygons.size());
std::unordered_set<size_t> top_level_objects_idx;
top_level_objects_idx.reserve(top_level_objects_with_brim.size());
for (const PrintObject *object : top_level_objects_with_brim)
@ -176,16 +211,17 @@ static ExPolygons inner_brim_area(const Print &print, const ConstPrintObjectPtrs
ExPolygons brim_area;
ExPolygons no_brim_area;
Polygons holes;
for (const PrintObject *object : print.objects()) {
const BrimType brim_type = object->config().brim_type.value;
const float brim_offset = scale_(object->config().brim_offset.value);
const float brim_width = scale_(object->config().brim_width.value);
const bool top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
for(size_t print_object_idx = 0; print_object_idx < print.objects().size(); ++print_object_idx) {
const PrintObject *object = print.objects()[print_object_idx];
const BrimType brim_type = object->config().brim_type.value;
const float brim_offset = scale_(object->config().brim_offset.value);
const float brim_width = scale_(object->config().brim_width.value);
const bool top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
ExPolygons brim_area_object;
ExPolygons no_brim_area_object;
Polygons holes_object;
for (const ExPolygon &ex_poly : object->layers().front()->lslices) {
for (const ExPolygon &ex_poly : bottom_layers_expolygons[print_object_idx]) {
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner) {
if (top_outer_brim)
no_brim_area_object.emplace_back(ex_poly);
@ -204,7 +240,7 @@ static ExPolygons inner_brim_area(const Print &print, const ConstPrintObjectPtrs
append(holes_object, ex_poly.holes);
}
append(no_brim_area_object, offset_ex(object->layers().front()->lslices, brim_offset));
append(no_brim_area_object, offset_ex(bottom_layers_expolygons[print_object_idx], brim_offset));
for (const PrintInstance &instance : object->instances()) {
append_and_translate(brim_area, brim_area_object, instance);
@ -236,7 +272,7 @@ static void optimize_polylines_by_reversing(Polylines *polylines)
static Polylines connect_brim_lines(Polylines &&polylines, const Polygons &brim_area, float max_connection_length)
{
if (polylines.empty())
return Polylines();
return {};
BoundingBox bbox = get_extents(polylines);
bbox.merge(get_extents(brim_area));
@ -305,16 +341,20 @@ static Polylines connect_brim_lines(Polylines &&polylines, const Polygons &brim_
}
}
if (end < polylines.size())
polylines.erase(polylines.begin() + end, polylines.end());
polylines.erase(polylines.begin() + int(end), polylines.end());
}
return std::move(polylines);
}
static void make_inner_brim(const Print &print, const ConstPrintObjectPtrs &top_level_objects_with_brim, ExtrusionEntityCollection &brim)
static void make_inner_brim(const Print &print,
const ConstPrintObjectPtrs &top_level_objects_with_brim,
const std::vector<ExPolygons> &bottom_layers_expolygons,
ExtrusionEntityCollection &brim)
{
assert(print.objects().size() == bottom_layers_expolygons.size());
Flow flow = print.brim_flow();
ExPolygons islands_ex = inner_brim_area(print, top_level_objects_with_brim, float(flow.scaled_spacing()));
ExPolygons islands_ex = inner_brim_area(print, top_level_objects_with_brim, bottom_layers_expolygons, float(flow.scaled_spacing()));
Polygons loops;
islands_ex = offset_ex(islands_ex, -0.5f * float(flow.scaled_spacing()), jtSquare);
for (size_t i = 0; !islands_ex.empty(); ++i) {
@ -334,11 +374,12 @@ static void make_inner_brim(const Print &print, const ConstPrintObjectPtrs &top_
// Collect islands_area to be merged into the final 1st layer convex hull.
ExtrusionEntityCollection make_brim(const Print &print, PrintTryCancel try_cancel, Polygons &islands_area)
{
Flow flow = print.brim_flow();
ConstPrintObjectPtrs top_level_objects_with_brim = get_top_level_objects_with_brim(print);
Polygons islands = top_level_outer_brim_islands(top_level_objects_with_brim);
ExPolygons islands_area_ex = top_level_outer_brim_area(print, top_level_objects_with_brim, float(flow.scaled_spacing()));
islands_area = to_polygons(islands_area_ex);
Flow flow = print.brim_flow();
std::vector<ExPolygons> bottom_layers_expolygons = get_print_bottom_layers_expolygons(print);
ConstPrintObjectPtrs top_level_objects_with_brim = get_top_level_objects_with_brim(print, bottom_layers_expolygons);
Polygons islands = top_level_outer_brim_islands(top_level_objects_with_brim);
ExPolygons islands_area_ex = top_level_outer_brim_area(print, top_level_objects_with_brim, bottom_layers_expolygons, float(flow.scaled_spacing()));
islands_area = to_polygons(islands_area_ex);
Polygons loops;
size_t num_loops = size_t(floor(max_brim_width(print.objects()) / flow.spacing()));
@ -536,7 +577,7 @@ ExtrusionEntityCollection make_brim(const Print &print, PrintTryCancel try_cance
extrusion_entities_append_loops_and_paths(brim.entities, std::move(all_loops), erSkirt, float(flow.mm3_per_mm()), float(flow.width()), float(print.skirt_first_layer_height()));
}
make_inner_brim(print, top_level_objects_with_brim, brim);
make_inner_brim(print, top_level_objects_with_brim, bottom_layers_expolygons, brim);
return brim;
}

View file

@ -178,6 +178,8 @@ add_library(libslic3r STATIC
PrintRegion.cpp
PNGReadWrite.hpp
PNGReadWrite.cpp
QuadricEdgeCollapse.cpp
QuadricEdgeCollapse.hpp
Semver.cpp
ShortestPath.cpp
ShortestPath.hpp

View file

@ -223,10 +223,13 @@ std::vector<std::string> ConfigOptionDef::cli_args(const std::string &key) const
{
std::vector<std::string> args;
if (this->cli != ConfigOptionDef::nocli) {
std::string cli = this->cli.substr(0, this->cli.find("="));
boost::trim_right_if(cli, boost::is_any_of("!"));
const std::string &cli = this->cli;
//FIXME What was that for? Check the "readline" documentation.
// Neither '=' nor '!' is used in any of the cli parameters currently defined by PrusaSlicer.
// std::string cli = this->cli.substr(0, this->cli.find("="));
// boost::trim_right_if(cli, boost::is_any_of("!"));
if (cli.empty()) {
// Add the key
// Convert an option key to CLI argument by replacing underscores with dashes.
std::string opt = key;
boost::replace_all(opt, "_", "-");
args.emplace_back(std::move(opt));
@ -245,7 +248,7 @@ ConfigOption* ConfigOptionDef::create_empty_option() const
case coPercents: return new ConfigOptionPercentsNullable();
case coFloatsOrPercents: return new ConfigOptionFloatsOrPercentsNullable();
case coBools: return new ConfigOptionBoolsNullable();
default: throw Slic3r::RuntimeError(std::string("Unknown option type for nullable option ") + this->label);
default: throw ConfigurationError(std::string("Unknown option type for nullable option ") + this->label);
}
} else {
switch (this->type) {
@ -266,7 +269,7 @@ ConfigOption* ConfigOptionDef::create_empty_option() const
case coBool: return new ConfigOptionBool();
case coBools: return new ConfigOptionBools();
case coEnum: return new ConfigOptionEnumGeneric(this->enum_keys_map);
default: throw Slic3r::RuntimeError(std::string("Unknown option type for option ") + this->label);
default: throw ConfigurationError(std::string("Unknown option type for option ") + this->label);
}
}
}
@ -423,7 +426,19 @@ void ConfigBase::apply_only(const ConfigBase &other, const t_config_option_keys
}
}
// this will *ignore* options not present in both configs
// Are the two configs equal? Ignoring options not present in both configs.
bool ConfigBase::equals(const ConfigBase &other) const
{
for (const t_config_option_key &opt_key : this->keys()) {
const ConfigOption *this_opt = this->option(opt_key);
const ConfigOption *other_opt = other.option(opt_key);
if (this_opt != nullptr && other_opt != nullptr && *this_opt != *other_opt)
return false;
}
return true;
}
// Returns options differing in the two configs, ignoring options not present in both configs.
t_config_option_keys ConfigBase::diff(const ConfigBase &other) const
{
t_config_option_keys diff;
@ -436,6 +451,7 @@ t_config_option_keys ConfigBase::diff(const ConfigBase &other) const
return diff;
}
// Returns options being equal in the two configs, ignoring options not present in both configs.
t_config_option_keys ConfigBase::equal(const ConfigBase &other) const
{
t_config_option_keys equal;
@ -494,7 +510,7 @@ bool ConfigBase::set_deserialize_nothrow(const t_config_option_key &opt_key_src,
void ConfigBase::set_deserialize(const t_config_option_key &opt_key_src, const std::string &value_src, ConfigSubstitutionContext& substitutions_ctxt, bool append)
{
if (! this->set_deserialize_nothrow(opt_key_src, value_src, substitutions_ctxt, append))
throw BadOptionTypeException(format("ConfigBase::set_deserialize() failed for parameter \"%1%\", value \"%2%\"", opt_key_src, value_src));
throw BadOptionValueException(format("Invalid value provided for parameter %1%: %2%", opt_key_src, value_src));
}
void ConfigBase::set_deserialize(std::initializer_list<SetDeserializeItem> items, ConfigSubstitutionContext& substitutions_ctxt)
@ -539,26 +555,50 @@ bool ConfigBase::set_deserialize_raw(const t_config_option_key &opt_key_src, con
ConfigOption *opt = this->option(opt_key, true);
assert(opt != nullptr);
bool success = opt->deserialize(value, append);
if (! success && substitutions_ctxt.rule != ForwardCompatibilitySubstitutionRule::Disable &&
// Only allow substitutions of an enum value by another enum value or a boolean value with an enum value.
// That means, we expect enum values being added in the future and possibly booleans being converted to enums.
(optdef->type == coEnum || optdef->type == coBool))
{
// Deserialize failed, try to substitute with a default value.
assert(substitutions_ctxt.rule == ForwardCompatibilitySubstitutionRule::Enable || substitutions_ctxt.rule == ForwardCompatibilitySubstitutionRule::EnableSilent);
bool success = false;
bool substituted = false;
if (optdef->type == coBools && substitutions_ctxt.rule != ForwardCompatibilitySubstitutionRule::Disable) {
//FIXME Special handling of vectors of bools, quick and not so dirty solution before PrusaSlicer 2.3.2 release.
bool nullable = opt->nullable();
ConfigHelpers::DeserializationSubstitution default_value = ConfigHelpers::DeserializationSubstitution::DefaultsToFalse;
if (optdef->default_value) {
// Default value for vectors of booleans used in a "per extruder" context, thus the default contains just a single value.
assert(dynamic_cast<const ConfigOptionVector<unsigned char>*>(optdef->default_value.get()));
auto &values = static_cast<const ConfigOptionVector<unsigned char>*>(optdef->default_value.get())->values;
if (values.size() == 1 && values.front() == 1)
default_value = ConfigHelpers::DeserializationSubstitution::DefaultsToTrue;
}
auto result = nullable ?
static_cast<ConfigOptionBoolsNullable*>(opt)->deserialize_with_substitutions(value, append, default_value) :
static_cast<ConfigOptionBools*>(opt)->deserialize_with_substitutions(value, append, default_value);
success = result != ConfigHelpers::DeserializationResult::Failed;
substituted = result == ConfigHelpers::DeserializationResult::Substituted;
} else {
success = opt->deserialize(value, append);
if (! success && substitutions_ctxt.rule != ForwardCompatibilitySubstitutionRule::Disable &&
// Only allow substitutions of an enum value by another enum value or a boolean value with an enum value.
// That means, we expect enum values being added in the future and possibly booleans being converted to enums.
(optdef->type == coEnum || optdef->type == coBool) && ConfigHelpers::looks_like_enum_value(value)) {
// Deserialize failed, try to substitute with a default value.
assert(substitutions_ctxt.rule == ForwardCompatibilitySubstitutionRule::Enable || substitutions_ctxt.rule == ForwardCompatibilitySubstitutionRule::EnableSilent);
if (optdef->type == coBool)
static_cast<ConfigOptionBool*>(opt)->value = ConfigHelpers::enum_looks_like_true_value(value);
else
// Just use the default of the option.
opt->set(optdef->default_value.get());
success = true;
substituted = true;
}
}
opt->set(optdef->default_value.get());
if (substitutions_ctxt.rule == ForwardCompatibilitySubstitutionRule::Enable) {
// Log the substitution.
ConfigSubstitution config_substitution;
config_substitution.opt_def = optdef;
config_substitution.old_value = value;//std::unique_ptr<ConfigOption>(opt);
config_substitution.new_value = ConfigOptionUniquePtr(this->option(opt_key, true)->clone());
substitutions_ctxt.substitutions.emplace_back(std::move(config_substitution));
}
return true;
if (substituted && (substitutions_ctxt.rule == ForwardCompatibilitySubstitutionRule::Enable ||
substitutions_ctxt.rule == ForwardCompatibilitySubstitutionRule::EnableSystemSilent)) {
// Log the substitution.
ConfigSubstitution config_substitution;
config_substitution.opt_def = optdef;
config_substitution.old_value = value;
config_substitution.new_value = ConfigOptionUniquePtr(opt->clone());
substitutions_ctxt.substitutions.emplace_back(std::move(config_substitution));
}
return success;
}
@ -585,7 +625,7 @@ double ConfigBase::get_abs_value(const t_config_option_key &opt_key) const
return opt_def->ratio_over.empty() ? 0. :
static_cast<const ConfigOptionFloatOrPercent*>(raw_opt)->get_abs_value(this->get_abs_value(opt_def->ratio_over));
}
throw Slic3r::RuntimeError("ConfigBase::get_abs_value(): Not a valid option type for get_abs_value()");
throw ConfigurationError("ConfigBase::get_abs_value(): Not a valid option type for get_abs_value()");
}
// Return an absolute value of a possibly relative config variable.
@ -596,7 +636,7 @@ double ConfigBase::get_abs_value(const t_config_option_key &opt_key, double rati
const ConfigOption *raw_opt = this->option(opt_key);
assert(raw_opt != nullptr);
if (raw_opt->type() != coFloatOrPercent)
throw Slic3r::RuntimeError("ConfigBase::get_abs_value(): opt_key is not of coFloatOrPercent");
throw ConfigurationError("ConfigBase::get_abs_value(): opt_key is not of coFloatOrPercent");
// Compute absolute value.
return static_cast<const ConfigOptionFloatOrPercent*>(raw_opt)->get_abs_value(ratio_over);
}
@ -622,18 +662,71 @@ void ConfigBase::setenv_() const
ConfigSubstitutions ConfigBase::load(const std::string &file, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
return is_gcode_file(file) ?
this->load_from_gcode_file(file, true /* check header */, compatibility_rule) :
this->load_from_gcode_file(file, compatibility_rule) :
this->load_from_ini(file, compatibility_rule);
}
ConfigSubstitutions ConfigBase::load_from_ini(const std::string &file, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
try {
boost::property_tree::ptree tree;
boost::nowide::ifstream ifs(file);
boost::property_tree::read_ini(ifs, tree);
return this->load(tree, compatibility_rule);
} catch (const ConfigurationError &e) {
throw ConfigurationError(format("Failed loading configuration file \"%1%\": %2%", file, e.what()));
}
}
ConfigSubstitutions ConfigBase::load_from_ini_string(const std::string &data, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
boost::property_tree::ptree tree;
boost::nowide::ifstream ifs(file);
boost::property_tree::read_ini(ifs, tree);
std::istringstream iss(data);
boost::property_tree::read_ini(iss, tree);
return this->load(tree, compatibility_rule);
}
// Loading a "will be one day a legacy format" of configuration stored into 3MF or AMF.
// Accepts the same data as load_from_ini_string(), only with each configuration line possibly prefixed with a semicolon (G-code comment).
ConfigSubstitutions ConfigBase::load_from_ini_string_commented(std::string &&data, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
// Convert the "data" string into INI format by removing the semi-colons at the start of a line.
// Also the "; generated by PrusaSlicer ..." comment line will be removed.
size_t j = 0;
for (size_t i = 0; i < data.size();)
if (i == 0 || data[i] == '\n') {
// Start of a line.
if (i != 0) {
// Consume LF.
assert(data[i] == '\n');
// Don't keep empty lines.
if (j > 0 && data[j - 1] != '\n')
data[j ++] = data[i];
++ i;
}
// Skip all leading spaces;
for (; i < data.size() && (data[i] == ' ' || data[i] == '\t'); ++ i) ;
// Skip the semicolon (comment indicator).
if (i < data.size() && data[i] == ';')
++ i;
// Skip all leading spaces after semicolon.
for (; i < data.size() && (data[i] == ' ' || data[i] == '\t'); ++ i) ;
if (strncmp(data.data() + i, "generated by ", 13) == 0) {
// Skip the "; generated by ..." line.
for (; i < data.size() && data[i] != '\n'; ++ i);
}
} else if (data[i] == '\r' && i + 1 < data.size() && data[i + 1] == '\n') {
// Skip CR.
++ i;
} else {
// Consume the rest of the data.
data[j ++] = data[i ++];
}
data.erase(data.begin() + j, data.end());
return this->load_from_ini_string(data, compatibility_rule);
}
ConfigSubstitutions ConfigBase::load(const boost::property_tree::ptree &tree, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
ConfigSubstitutionContext substitutions_ctxt(compatibility_rule);
@ -648,37 +741,8 @@ ConfigSubstitutions ConfigBase::load(const boost::property_tree::ptree &tree, Fo
return std::move(substitutions_ctxt.substitutions);
}
// Load the config keys from the tail of a G-code file.
ConfigSubstitutions ConfigBase::load_from_gcode_file(const std::string &file, bool check_header, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
// Read a 64k block from the end of the G-code.
boost::nowide::ifstream ifs(file);
if (check_header) {
const char slic3r_gcode_header[] = "; generated by Slic3r ";
const char prusaslicer_gcode_header[] = "; generated by PrusaSlicer ";
std::string firstline;
std::getline(ifs, firstline);
if (strncmp(slic3r_gcode_header, firstline.c_str(), strlen(slic3r_gcode_header)) != 0 &&
strncmp(prusaslicer_gcode_header, firstline.c_str(), strlen(prusaslicer_gcode_header)) != 0)
throw Slic3r::RuntimeError("Not a PrusaSlicer / Slic3r PE generated g-code.");
}
ifs.seekg(0, ifs.end);
auto file_length = ifs.tellg();
auto data_length = std::min<std::fstream::pos_type>(65535, file_length);
ifs.seekg(file_length - data_length, ifs.beg);
std::vector<char> data(size_t(data_length) + 1, 0);
ifs.read(data.data(), data_length);
ifs.close();
ConfigSubstitutionContext substitutions_ctxt(compatibility_rule);
size_t key_value_pairs = load_from_gcode_string(data.data(), substitutions_ctxt);
if (key_value_pairs < 80)
throw Slic3r::RuntimeError(format("Suspiciously low number of configuration values extracted from %1%: %2%", file, key_value_pairs));
return std::move(substitutions_ctxt.substitutions);
}
// Load the config keys from the given string.
size_t ConfigBase::load_from_gcode_string(const char* str, ConfigSubstitutionContext& substitutions)
static inline size_t load_from_gcode_string_legacy(ConfigBase &config, const char *str, ConfigSubstitutionContext &substitutions)
{
if (str == nullptr)
return 0;
@ -701,7 +765,7 @@ size_t ConfigBase::load_from_gcode_string(const char* str, ConfigSubstitutionCon
if (end - (++ start) < 10 || start[0] != ';' || start[1] != ' ')
break;
const char *key = start + 2;
if (!(*key >= 'a' && *key <= 'z') || (*key >= 'A' && *key <= 'Z'))
if (!((*key >= 'a' && *key <= 'z') || (*key >= 'A' && *key <= 'Z')))
// A key must start with a letter.
break;
const char *sep = key;
@ -723,7 +787,7 @@ size_t ConfigBase::load_from_gcode_string(const char* str, ConfigSubstitutionCon
if (key == nullptr)
break;
try {
this->set_deserialize(std::string(key, key_end), std::string(value, end), substitutions);
config.set_deserialize(std::string(key, key_end), std::string(value, end), substitutions);
++num_key_value_pairs;
}
catch (UnknownOptionException & /* e */) {
@ -732,7 +796,175 @@ size_t ConfigBase::load_from_gcode_string(const char* str, ConfigSubstitutionCon
end = start;
}
return num_key_value_pairs;
return num_key_value_pairs;
}
// Reading a config from G-code back to front for performance reasons: We don't want to scan
// hundreds of MB file for a short config block, which we expect to find at the end of the G-code.
class ReverseLineReader
{
public:
using pos_type = boost::nowide::ifstream::pos_type;
// Stop at file_start
ReverseLineReader(boost::nowide::ifstream &ifs, pos_type file_start) : m_ifs(ifs), m_file_start(file_start)
{
m_ifs.seekg(0, m_ifs.end);
m_file_pos = m_ifs.tellg();
m_block.assign(m_block_size, 0);
}
bool getline(std::string &out) {
out.clear();
for (;;) {
if (m_block_len == 0) {
// Read the next block.
m_block_len = size_t(std::min<std::fstream::pos_type>(m_block_size, m_file_pos - m_file_start));
if (m_block_len == 0)
return false;
m_file_pos -= m_block_len;
m_ifs.seekg(m_file_pos, m_ifs.beg);
if (! m_ifs.read(m_block.data(), m_block_len))
return false;
}
assert(m_block_len > 0);
// Non-empty buffer. Find another LF.
int i = int(m_block_len) - 1;
for (; i >= 0; -- i)
if (m_block[i] == '\n')
break;
// i is position of LF or -1 if not found.
if (i == -1) {
// LF not found. Just make a backup of the buffer and continue.
out.insert(out.begin(), m_block.begin(), m_block.begin() + m_block_len);
m_block_len = 0;
} else {
assert(i >= 0);
// Copy new line to the output. It may be empty.
out.insert(out.begin(), m_block.begin() + i + 1, m_block.begin() + m_block_len);
// Block length without the newline.
m_block_len = i;
// Remove CRLF from the end of the block.
if (m_block_len > 0 && m_block[m_block_len - 1] == '\r')
-- m_block_len;
return true;
}
}
assert(false);
return false;
}
private:
boost::nowide::ifstream &m_ifs;
std::vector<char> m_block;
size_t m_block_size = 65536;
size_t m_block_len = 0;
pos_type m_file_start;
pos_type m_file_pos = 0;
};
// Load the config keys from the tail of a G-code file.
ConfigSubstitutions ConfigBase::load_from_gcode_file(const std::string &file, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
// Read a 64k block from the end of the G-code.
boost::nowide::ifstream ifs(file);
// Look for Slic3r or PrusaSlicer header.
// Look for the header across the whole file as the G-code may have been extended at the start by a post-processing script or the user.
bool has_delimiters = false;
{
static constexpr const char slic3r_gcode_header[] = "; generated by Slic3r ";
static constexpr const char prusaslicer_gcode_header[] = "; generated by PrusaSlicer ";
std::string header;
bool header_found = false;
while (std::getline(ifs, header)) {
if (strncmp(slic3r_gcode_header, header.c_str(), strlen(slic3r_gcode_header)) == 0) {
header_found = true;
break;
} else if (strncmp(prusaslicer_gcode_header, header.c_str(), strlen(prusaslicer_gcode_header)) == 0) {
// Parse PrusaSlicer version.
size_t i = strlen(prusaslicer_gcode_header);
for (; i < header.size() && header[i] == ' '; ++ i) ;
size_t j = i;
for (; j < header.size() && header[j] != ' '; ++ j) ;
try {
Semver semver(header.substr(i, j - i));
has_delimiters = semver >= Semver(2, 4, 0, nullptr, "alpha0");
} catch (const RuntimeError &) {
}
header_found = true;
break;
}
}
if (! header_found)
throw Slic3r::RuntimeError("Not a PrusaSlicer / Slic3r PE generated g-code.");
}
auto header_end_pos = ifs.tellg();
ConfigSubstitutionContext substitutions_ctxt(compatibility_rule);
size_t key_value_pairs = 0;
if (has_delimiters)
{
// PrusaSlicer starting with 2.4.0-alpha0 delimits the config section stored into G-code with
// ; prusaslicer_config = begin
// ...
// ; prusaslicer_config = end
// The begin / end tags look like any other key / value pairs on purpose to be compatible with older G-code viewer.
// Read the file in reverse line by line.
ReverseLineReader reader(ifs, header_end_pos);
// Read the G-code file by 64k blocks back to front.
bool begin_found = false;
bool end_found = false;
std::string line;
while (reader.getline(line))
if (line == "; prusaslicer_config = end") {
end_found = true;
break;
}
if (! end_found)
throw Slic3r::RuntimeError(format("Configuration block closing tag \"; prusaslicer_config = end\" not found when reading %1%", file));
std::string key, value;
while (reader.getline(line)) {
if (line == "; prusaslicer_config = begin") {
begin_found = true;
break;
}
// line should be a valid key = value pair.
auto pos = line.find('=');
if (pos != std::string::npos && pos > 1 && line.front() == ';') {
key = line.substr(1, pos - 1);
value = line.substr(pos + 1);
boost::trim(key);
boost::trim(value);
try {
this->set_deserialize(key, value, substitutions_ctxt);
++ key_value_pairs;
} catch (UnknownOptionException & /* e */) {
// ignore
}
}
}
if (! begin_found)
throw Slic3r::RuntimeError(format("Configuration block opening tag \"; prusaslicer_config = begin\" not found when reading %1%", file));
}
else
{
// Slic3r or PrusaSlicer older than 2.4.0-alpha0 do not emit any delimiter.
// Try a heuristics reading the G-code from back.
ifs.seekg(0, ifs.end);
auto file_length = ifs.tellg();
auto data_length = std::min<std::fstream::pos_type>(65535, file_length - header_end_pos);
ifs.seekg(file_length - data_length, ifs.beg);
std::vector<char> data(size_t(data_length) + 1, 0);
ifs.read(data.data(), data_length);
ifs.close();
key_value_pairs = load_from_gcode_string_legacy(*this, data.data(), substitutions_ctxt);
}
if (key_value_pairs < 80)
throw Slic3r::RuntimeError(format("Suspiciously low number of configuration values extracted from %1%: %2%", file, key_value_pairs));
return std::move(substitutions_ctxt.substitutions);
}
void ConfigBase::save(const std::string &file) const
@ -803,7 +1035,7 @@ ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key, bool cre
throw NoDefinitionException(opt_key);
const ConfigOptionDef *optdef = def->get(opt_key);
if (optdef == nullptr)
// throw Slic3r::RuntimeError(std::string("Invalid option name: ") + opt_key);
// throw ConfigurationError(std::string("Invalid option name: ") + opt_key);
// Let the parent decide what to do if the opt_key is not defined by this->def().
return nullptr;
ConfigOption *opt = optdef->create_default_option();
@ -817,22 +1049,12 @@ const ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key) co
return (it == options.end()) ? nullptr : it->second.get();
}
void DynamicConfig::read_cli(const std::vector<std::string> &tokens, t_config_option_keys* extra, t_config_option_keys* keys)
{
std::vector<const char*> args;
// push a bogus executable name (argv[0])
args.emplace_back("");
for (size_t i = 0; i < tokens.size(); ++ i)
args.emplace_back(tokens[i].c_str());
this->read_cli(int(args.size()), args.data(), extra, keys);
}
bool DynamicConfig::read_cli(int argc, const char* const argv[], t_config_option_keys* extra, t_config_option_keys* keys)
{
// cache the CLI option => opt_key mapping
std::map<std::string,std::string> opts;
for (const auto &oit : this->def()->options)
for (auto t : oit.second.cli_args(oit.first))
for (const std::string &t : oit.second.cli_args(oit.first))
opts[t] = oit.first;
bool parse_options = true;
@ -854,14 +1076,8 @@ bool DynamicConfig::read_cli(int argc, const char* const argv[], t_config_option
parse_options = false;
continue;
}
// Remove leading dashes
boost::trim_left_if(token, boost::is_any_of("-"));
// Remove the "no-" prefix used to negate boolean options.
bool no = false;
if (boost::starts_with(token, "no-")) {
no = true;
boost::replace_first(token, "no-", "");
}
// Remove leading dashes (one or two).
token.erase(token.begin(), token.begin() + (boost::starts_with(token, "--") ? 2 : 1));
// Read value when supplied in the --key=value form.
std::string value;
{
@ -872,22 +1088,45 @@ bool DynamicConfig::read_cli(int argc, const char* const argv[], t_config_option
}
}
// Look for the cli -> option mapping.
const auto it = opts.find(token);
auto it = opts.find(token);
bool no = false;
if (it == opts.end()) {
boost::nowide::cerr << "Unknown option --" << token.c_str() << std::endl;
return false;
// Remove the "no-" prefix used to negate boolean options.
std::string yes_token;
if (boost::starts_with(token, "no-")) {
yes_token = token.substr(3);
it = opts.find(yes_token);
no = true;
}
if (it == opts.end()) {
boost::nowide::cerr << "Unknown option --" << token.c_str() << std::endl;
return false;
}
if (no)
token = yes_token;
}
const t_config_option_key opt_key = it->second;
const ConfigOptionDef &optdef = this->def()->options.at(opt_key);
const t_config_option_key &opt_key = it->second;
const ConfigOptionDef &optdef = this->def()->options.at(opt_key);
// If the option type expects a value and it was not already provided,
// look for it in the next token.
if (optdef.type != coBool && optdef.type != coBools && value.empty()) {
if (i == (argc-1)) {
boost::nowide::cerr << "No value supplied for --" << token.c_str() << std::endl;
if (value.empty() && optdef.type != coBool && optdef.type != coBools) {
if (i == argc-1) {
boost::nowide::cerr << "No value supplied for --" << token.c_str() << std::endl;
return false;
}
value = argv[++ i];
}
if (no) {
assert(optdef.type == coBool || optdef.type == coBools);
if (! value.empty()) {
boost::nowide::cerr << "Boolean options negated by the --no- prefix cannot have a value." << std::endl;
return false;
}
}
// Store the option value.
const bool existing = this->has(opt_key);
if (keys != nullptr && ! existing) {
@ -902,7 +1141,7 @@ bool DynamicConfig::read_cli(int argc, const char* const argv[], t_config_option
opt_vector->clear();
// Vector values will be chained. Repeated use of a parameter will append the parameter or parameters
// to the end of the value.
if (opt_base->type() == coBools)
if (opt_base->type() == coBools && value.empty())
static_cast<ConfigOptionBools*>(opt_base)->values.push_back(!no);
else
// Deserialize any other vector value (ConfigOptionInts, Floats, Percents, Points) the same way
@ -911,7 +1150,10 @@ bool DynamicConfig::read_cli(int argc, const char* const argv[], t_config_option
// unescaped by the calling shell.
opt_vector->deserialize(value, true);
} else if (opt_base->type() == coBool) {
static_cast<ConfigOptionBool*>(opt_base)->value = !no;
if (value.empty())
static_cast<ConfigOptionBool*>(opt_base)->value = !no;
else
opt_base->deserialize(value);
} else if (opt_base->type() == coString) {
// Do not unescape single string values, the unescaping is left to the calling shell.
static_cast<ConfigOptionString*>(opt_base)->value = value;
@ -961,6 +1203,65 @@ t_config_option_keys StaticConfig::keys() const
return keys;
}
// Iterate over the pairs of options with equal keys, call the fn.
// Returns true on early exit by fn().
template<typename Fn>
static inline bool dynamic_config_iterate(const DynamicConfig &lhs, const DynamicConfig &rhs, Fn fn)
{
std::map<t_config_option_key, std::unique_ptr<ConfigOption>>::const_iterator i = lhs.cbegin();
std::map<t_config_option_key, std::unique_ptr<ConfigOption>>::const_iterator j = rhs.cbegin();
while (i != lhs.cend() && j != rhs.cend())
if (i->first < j->first)
++ i;
else if (i->first > j->first)
++ j;
else {
assert(i->first == j->first);
if (fn(i->first, i->second.get(), j->second.get()))
// Early exit by fn.
return true;
++ i;
++ j;
}
// Finished to the end.
return false;
}
// Are the two configs equal? Ignoring options not present in both configs.
bool DynamicConfig::equals(const DynamicConfig &other) const
{
return ! dynamic_config_iterate(*this, other,
[](const t_config_option_key & /* key */, const ConfigOption *l, const ConfigOption *r) { return *l != *r; });
}
// Returns options differing in the two configs, ignoring options not present in both configs.
t_config_option_keys DynamicConfig::diff(const DynamicConfig &other) const
{
t_config_option_keys diff;
dynamic_config_iterate(*this, other,
[&diff](const t_config_option_key &key, const ConfigOption *l, const ConfigOption *r) {
if (*l != *r)
diff.emplace_back(key);
// Continue iterating.
return false;
});
return diff;
}
// Returns options being equal in the two configs, ignoring options not present in both configs.
t_config_option_keys DynamicConfig::equal(const DynamicConfig &other) const
{
t_config_option_keys equal;
dynamic_config_iterate(*this, other,
[&equal](const t_config_option_key &key, const ConfigOption *l, const ConfigOption *r) {
if (*l == *r)
equal.emplace_back(key);
// Continue iterating.
return false;
});
return equal;
}
}
#include <cereal/types/polymorphic.hpp>

View file

@ -80,32 +80,77 @@ extern bool unescape_strings_cstyle(const std::string &str, std::vector<
extern std::string escape_ampersand(const std::string& str);
/// Specialization of std::exception to indicate that an unknown config option has been encountered.
class UnknownOptionException : public Slic3r::RuntimeError {
public:
UnknownOptionException() :
Slic3r::RuntimeError("Unknown option exception") {}
UnknownOptionException(const std::string &opt_key) :
Slic3r::RuntimeError(std::string("Unknown option exception: ") + opt_key) {}
namespace ConfigHelpers {
inline bool looks_like_enum_value(std::string value)
{
boost::trim(value);
if (value.empty() || value.size() > 64 || ! isalpha(value.front()))
return false;
for (const char c : value)
if (! (isalnum(c) || c == '_' || c == '-'))
return false;
return true;
}
inline bool enum_looks_like_true_value(std::string value) {
boost::trim(value);
return boost::iequals(value, "enabled") || boost::iequals(value, "on");
}
enum class DeserializationSubstitution {
Disabled,
DefaultsToFalse,
DefaultsToTrue
};
enum class DeserializationResult {
Loaded,
Substituted,
Failed,
};
};
/// Indicate that the ConfigBase derived class does not provide config definition (the method def() returns null).
class NoDefinitionException : public Slic3r::RuntimeError
// Base for all exceptions thrown by the configuration layer.
class ConfigurationError : public Slic3r::RuntimeError {
public:
using RuntimeError::RuntimeError;
};
// Specialization of std::exception to indicate that an unknown config option has been encountered.
class UnknownOptionException : public ConfigurationError {
public:
UnknownOptionException() :
ConfigurationError("Unknown option exception") {}
UnknownOptionException(const std::string &opt_key) :
ConfigurationError(std::string("Unknown option exception: ") + opt_key) {}
};
// Indicate that the ConfigBase derived class does not provide config definition (the method def() returns null).
class NoDefinitionException : public ConfigurationError
{
public:
NoDefinitionException() :
Slic3r::RuntimeError("No definition exception") {}
ConfigurationError("No definition exception") {}
NoDefinitionException(const std::string &opt_key) :
Slic3r::RuntimeError(std::string("No definition exception: ") + opt_key) {}
ConfigurationError(std::string("No definition exception: ") + opt_key) {}
};
/// Indicate that an unsupported accessor was called on a config option.
class BadOptionTypeException : public Slic3r::RuntimeError
// Indicate that an unsupported accessor was called on a config option.
class BadOptionTypeException : public ConfigurationError
{
public:
BadOptionTypeException() : Slic3r::RuntimeError("Bad option type exception") {}
BadOptionTypeException(const std::string &message) : Slic3r::RuntimeError(message) {}
BadOptionTypeException(const char* message) : Slic3r::RuntimeError(message) {}
BadOptionTypeException() : ConfigurationError("Bad option type exception") {}
BadOptionTypeException(const std::string &message) : ConfigurationError(message) {}
BadOptionTypeException(const char* message) : ConfigurationError(message) {}
};
// Indicate that an option has been deserialized from an invalid value.
class BadOptionValueException : public ConfigurationError
{
public:
BadOptionValueException() : ConfigurationError("Bad option value exception") {}
BadOptionValueException(const std::string &message) : ConfigurationError(message) {}
BadOptionValueException(const char* message) : ConfigurationError(message) {}
};
// Type of a configuration value.
@ -166,9 +211,16 @@ enum PrinterTechnology : unsigned char
enum ForwardCompatibilitySubstitutionRule
{
// Disable susbtitution, throw exception if an option value is not recognized.
Disable,
// Enable substitution of an unknown option value with default. Log the substitution.
Enable,
// Enable substitution of an unknown option value with default. Don't log the substitution.
EnableSilent,
// Enable substitution of an unknown option value with default. Log substitutions in user profiles, don't log substitutions in system profiles.
EnableSystemSilent,
// Enable silent substitution of an unknown option value with default when loading user profiles. Throw on an unknown option value in a system profile.
EnableSilentDisableSystem,
};
class ConfigOption;
@ -252,7 +304,7 @@ public:
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionSingle: Assigning an incompatible type");
throw ConfigurationError("ConfigOptionSingle: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(rhs));
this->value = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
}
@ -260,7 +312,7 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionSingle: Comparing incompatible types");
throw ConfigurationError("ConfigOptionSingle: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(&rhs));
return this->value == static_cast<const ConfigOptionSingle<T>*>(&rhs)->value;
}
@ -327,7 +379,7 @@ public:
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionVector: Assigning an incompatible type");
throw ConfigurationError("ConfigOptionVector: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionVector<T>*>(rhs));
this->values = static_cast<const ConfigOptionVector<T>*>(rhs)->values;
}
@ -344,12 +396,12 @@ public:
if (opt->type() == this->type()) {
auto other = static_cast<const ConfigOptionVector<T>*>(opt);
if (other->values.empty())
throw Slic3r::RuntimeError("ConfigOptionVector::set(): Assigning from an empty vector");
throw ConfigurationError("ConfigOptionVector::set(): Assigning from an empty vector");
this->values.emplace_back(other->values.front());
} else if (opt->type() == this->scalar_type())
this->values.emplace_back(static_cast<const ConfigOptionSingle<T>*>(opt)->value);
else
throw Slic3r::RuntimeError("ConfigOptionVector::set():: Assigning an incompatible type");
throw ConfigurationError("ConfigOptionVector::set():: Assigning an incompatible type");
}
}
@ -368,12 +420,12 @@ public:
// Assign the first value of the rhs vector.
auto other = static_cast<const ConfigOptionVector<T>*>(rhs);
if (other->values.empty())
throw Slic3r::RuntimeError("ConfigOptionVector::set_at(): Assigning from an empty vector");
throw ConfigurationError("ConfigOptionVector::set_at(): Assigning from an empty vector");
this->values[i] = other->get_at(j);
} else if (rhs->type() == this->scalar_type())
this->values[i] = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
else
throw Slic3r::RuntimeError("ConfigOptionVector::set_at(): Assigning an incompatible type");
throw ConfigurationError("ConfigOptionVector::set_at(): Assigning an incompatible type");
}
const T& get_at(size_t i) const
@ -398,9 +450,9 @@ public:
else if (n > this->values.size()) {
if (this->values.empty()) {
if (opt_default == nullptr)
throw Slic3r::RuntimeError("ConfigOptionVector::resize(): No default value provided.");
throw ConfigurationError("ConfigOptionVector::resize(): No default value provided.");
if (opt_default->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionVector::resize(): Extending with an incompatible type.");
throw ConfigurationError("ConfigOptionVector::resize(): Extending with an incompatible type.");
this->values.resize(n, static_cast<const ConfigOptionVector<T>*>(opt_default)->values.front());
} else {
// Resize by duplicating the last value.
@ -417,7 +469,7 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionVector: Comparing incompatible types");
throw ConfigurationError("ConfigOptionVector: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<T>*>(&rhs));
return this->values == static_cast<const ConfigOptionVector<T>*>(&rhs)->values;
}
@ -437,9 +489,9 @@ public:
// An option overrides another option if it is not nil and not equal.
bool overriden_by(const ConfigOption *rhs) const override {
if (this->nullable())
throw Slic3r::RuntimeError("Cannot override a nullable ConfigOption.");
throw ConfigurationError("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionVector.overriden_by() applied to different types.");
throw ConfigurationError("ConfigOptionVector.overriden_by() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable())
// Overridding a non-nullable object with another non-nullable object.
@ -457,9 +509,9 @@ public:
// Apply an override option, possibly a nullable one.
bool apply_override(const ConfigOption *rhs) override {
if (this->nullable())
throw Slic3r::RuntimeError("Cannot override a nullable ConfigOption.");
throw ConfigurationError("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionVector.apply_override() applied to different types.");
throw ConfigurationError("ConfigOptionVector.apply_override() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable()) {
// Overridding a non-nullable object with another non-nullable object.
@ -550,7 +602,7 @@ public:
bool operator< (const ConfigOptionFloatsTempl &rhs) const throw() { return vectors_lower(this->values, rhs.values); }
bool operator==(const ConfigOption &rhs) const override {
if (rhs.type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionFloatsTempl: Comparing incompatible types");
throw ConfigurationError("ConfigOptionFloatsTempl: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<double>*>(&rhs));
return vectors_equal(this->values, static_cast<const ConfigOptionVector<double>*>(&rhs)->values);
}
@ -597,7 +649,7 @@ public:
if (NULLABLE)
this->values.push_back(nil_value());
else
throw Slic3r::RuntimeError("Deserializing nil into a non-nullable object");
throw ConfigurationError("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
double value;
@ -622,9 +674,9 @@ protected:
if (NULLABLE)
ss << "nil";
else
throw Slic3r::RuntimeError("Serializing NaN");
throw ConfigurationError("Serializing NaN");
} else
throw Slic3r::RuntimeError("Serializing invalid number");
throw ConfigurationError("Serializing invalid number");
}
static bool vectors_equal(const std::vector<double> &v1, const std::vector<double> &v2) {
if (NULLABLE) {
@ -756,7 +808,7 @@ public:
if (NULLABLE)
this->values.push_back(nil_value());
else
throw Slic3r::RuntimeError("Deserializing nil into a non-nullable object");
throw ConfigurationError("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
int value;
@ -773,7 +825,7 @@ private:
if (NULLABLE)
ss << "nil";
else
throw Slic3r::RuntimeError("Serializing NaN");
throw ConfigurationError("Serializing NaN");
} else
ss << v;
}
@ -963,7 +1015,7 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionFloatOrPercent: Comparing incompatible types");
throw ConfigurationError("ConfigOptionFloatOrPercent: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(&rhs));
return *this == *static_cast<const ConfigOptionFloatOrPercent*>(&rhs);
}
@ -979,7 +1031,7 @@ public:
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionFloatOrPercent: Assigning an incompatible type");
throw ConfigurationError("ConfigOptionFloatOrPercent: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(rhs));
*this = *static_cast<const ConfigOptionFloatOrPercent*>(rhs);
}
@ -1023,7 +1075,7 @@ public:
bool operator==(const ConfigOptionFloatsOrPercentsTempl &rhs) const throw() { return vectors_equal(this->values, rhs.values); }
bool operator==(const ConfigOption &rhs) const override {
if (rhs.type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionFloatsOrPercentsTempl: Comparing incompatible types");
throw ConfigurationError("ConfigOptionFloatsOrPercentsTempl: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<FloatOrPercent>*>(&rhs));
return vectors_equal(this->values, static_cast<const ConfigOptionVector<FloatOrPercent>*>(&rhs)->values);
}
@ -1072,7 +1124,7 @@ public:
if (NULLABLE)
this->values.push_back(nil_value());
else
throw Slic3r::RuntimeError("Deserializing nil into a non-nullable object");
throw ConfigurationError("Deserializing nil into a non-nullable object");
} else {
bool percent = item_str.find_first_of("%") != std::string::npos;
std::istringstream iss(item_str);
@ -1100,9 +1152,9 @@ protected:
if (NULLABLE)
ss << "nil";
else
throw Slic3r::RuntimeError("Serializing NaN");
throw ConfigurationError("Serializing NaN");
} else
throw Slic3r::RuntimeError("Serializing invalid number");
throw ConfigurationError("Serializing invalid number");
}
static bool vectors_equal(const std::vector<FloatOrPercent> &v1, const std::vector<FloatOrPercent> &v2) {
if (NULLABLE) {
@ -1308,11 +1360,11 @@ public:
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
if (str == "1" || boost::iequals(str, "enabled") || boost::iequals(str, "on")) {
if (str == "1") {
this->value = true;
return true;
}
if (str == "0" || boost::iequals(str, "disabled") || boost::iequals(str, "off")) {
if (str == "0") {
this->value = false;
return true;
}
@ -1378,24 +1430,39 @@ public:
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
ConfigHelpers::DeserializationResult deserialize_with_substitutions(const std::string &str, bool append, ConfigHelpers::DeserializationSubstitution substitution)
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string item_str;
bool substituted = false;
while (std::getline(is, item_str, ',')) {
boost::trim(item_str);
unsigned char new_value = 0;
if (item_str == "nil") {
if (NULLABLE)
this->values.push_back(nil_value());
new_value = nil_value();
else
throw Slic3r::RuntimeError("Deserializing nil into a non-nullable object");
throw ConfigurationError("Deserializing nil into a non-nullable object");
} else if (item_str == "1") {
new_value = true;
} else if (item_str == "0") {
new_value = false;
} else if (substitution != ConfigHelpers::DeserializationSubstitution::Disabled && ConfigHelpers::looks_like_enum_value(item_str)) {
new_value = ConfigHelpers::enum_looks_like_true_value(item_str) || substitution == ConfigHelpers::DeserializationSubstitution::DefaultsToTrue;
substituted = true;
} else
this->values.push_back(item_str.compare("1") == 0);
return ConfigHelpers::DeserializationResult::Failed;
this->values.push_back(new_value);
}
return true;
return substituted ? ConfigHelpers::DeserializationResult::Substituted : ConfigHelpers::DeserializationResult::Loaded;
}
bool deserialize(const std::string &str, bool append = false) override
{
return this->deserialize_with_substitutions(str, append, ConfigHelpers::DeserializationSubstitution::Disabled) == ConfigHelpers::DeserializationResult::Loaded;
}
protected:
@ -1404,7 +1471,7 @@ protected:
if (NULLABLE)
ss << "nil";
else
throw Slic3r::RuntimeError("Serializing NaN");
throw ConfigurationError("Serializing NaN");
} else
ss << (v ? "1" : "0");
}
@ -1442,14 +1509,14 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionEnum<T>: Comparing incompatible types");
throw ConfigurationError("ConfigOptionEnum<T>: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == (T)rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionEnum<T>: Assigning an incompatible type");
throw ConfigurationError("ConfigOptionEnum<T>: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = (T)rhs->getInt();
}
@ -1512,14 +1579,14 @@ public:
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionEnumGeneric: Comparing incompatible types");
throw ConfigurationError("ConfigOptionEnumGeneric: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw Slic3r::RuntimeError("ConfigOptionEnumGeneric: Assigning an incompatible type");
throw ConfigurationError("ConfigOptionEnumGeneric: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = rhs->getInt();
}
@ -1592,7 +1659,7 @@ public:
case coInts: { auto opt = new ConfigOptionIntsNullable(); archive(*opt); return opt; }
case coPercents: { auto opt = new ConfigOptionPercentsNullable();archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBoolsNullable(); archive(*opt); return opt; }
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::load_option_from_archive(): Unknown nullable option type for option ") + this->opt_key);
default: throw ConfigurationError(std::string("ConfigOptionDef::load_option_from_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
@ -1611,7 +1678,7 @@ public:
case coBool: { auto opt = new ConfigOptionBool(); archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBools(); archive(*opt); return opt; }
case coEnum: { auto opt = new ConfigOptionEnumGeneric(this->enum_keys_map); archive(*opt); return opt; }
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::load_option_from_archive(): Unknown option type for option ") + this->opt_key);
default: throw ConfigurationError(std::string("ConfigOptionDef::load_option_from_archive(): Unknown option type for option ") + this->opt_key);
}
}
}
@ -1623,7 +1690,7 @@ public:
case coInts: archive(*static_cast<const ConfigOptionIntsNullable*>(opt)); break;
case coPercents: archive(*static_cast<const ConfigOptionPercentsNullable*>(opt));break;
case coBools: archive(*static_cast<const ConfigOptionBoolsNullable*>(opt)); break;
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::save_option_to_archive(): Unknown nullable option type for option ") + this->opt_key);
default: throw ConfigurationError(std::string("ConfigOptionDef::save_option_to_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
@ -1642,7 +1709,7 @@ public:
case coBool: archive(*static_cast<const ConfigOptionBool*>(opt)); break;
case coBools: archive(*static_cast<const ConfigOptionBools*>(opt)); break;
case coEnum: archive(*static_cast<const ConfigOptionEnumGeneric*>(opt)); break;
default: throw Slic3r::RuntimeError(std::string("ConfigOptionDef::save_option_to_archive(): Unknown option type for option ") + this->opt_key);
default: throw ConfigurationError(std::string("ConfigOptionDef::save_option_to_archive(): Unknown option type for option ") + this->opt_key);
}
}
// Make the compiler happy, shut up the warnings.
@ -1765,7 +1832,7 @@ public:
return out;
}
/// Iterate through all of the CLI options and write them to a stream.
// Iterate through all of the CLI options and write them to a stream.
std::ostream& print_cli_help(
std::ostream& out, bool show_defaults,
std::function<bool(const ConfigOptionDef &)> filter = [](const ConfigOptionDef &){ return true; }) const;
@ -1826,8 +1893,8 @@ public:
// The configuration definition is static: It does not carry the actual configuration values,
// but it carries the defaults of the configuration values.
ConfigBase() {}
~ConfigBase() override {}
ConfigBase() = default;
~ConfigBase() override = default;
// Virtual overridables:
public:
@ -1886,8 +1953,11 @@ public:
// An UnknownOptionException is thrown in case some option keys are not defined by this->def(),
// or this ConfigBase is of a StaticConfig type and it does not support some of the keys, and ignore_nonexistent is not set.
void apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false);
bool equals(const ConfigBase &other) const { return this->diff(other).empty(); }
// Are the two configs equal? Ignoring options not present in both configs.
bool equals(const ConfigBase &other) const;
// Returns options differing in the two configs, ignoring options not present in both configs.
t_config_option_keys diff(const ConfigBase &other) const;
// Returns options being equal in the two configs, ignoring options not present in both configs.
t_config_option_keys equal(const ConfigBase &other) const;
std::string opt_serialize(const t_config_option_key &opt_key) const;
@ -1934,9 +2004,11 @@ public:
void setenv_() const;
ConfigSubstitutions load(const std::string &file, ForwardCompatibilitySubstitutionRule compatibility_rule);
ConfigSubstitutions load_from_ini(const std::string &file, ForwardCompatibilitySubstitutionRule compatibility_rule);
ConfigSubstitutions load_from_gcode_file(const std::string &file, bool check_header /* = true */, ForwardCompatibilitySubstitutionRule compatibility_rule);
// Returns number of key/value pairs extracted.
size_t load_from_gcode_string(const char* str, ConfigSubstitutionContext& substitutions);
ConfigSubstitutions load_from_ini_string(const std::string &data, ForwardCompatibilitySubstitutionRule compatibility_rule);
// Loading a "will be one day a legacy format" of configuration stored into 3MF or AMF.
// Accepts the same data as load_from_ini_string(), only with each configuration line possibly prefixed with a semicolon (G-code comment).
ConfigSubstitutions load_from_ini_string_commented(std::string &&data, ForwardCompatibilitySubstitutionRule compatibility_rule);
ConfigSubstitutions load_from_gcode_file(const std::string &file, ForwardCompatibilitySubstitutionRule compatibility_rule);
ConfigSubstitutions load(const boost::property_tree::ptree &tree, ForwardCompatibilitySubstitutionRule compatibility_rule);
void save(const std::string &file) const;
@ -1953,12 +2025,12 @@ private:
class DynamicConfig : public virtual ConfigBase
{
public:
DynamicConfig() {}
DynamicConfig() = default;
DynamicConfig(const DynamicConfig &rhs) { *this = rhs; }
DynamicConfig(DynamicConfig &&rhs) noexcept : options(std::move(rhs.options)) { rhs.options.clear(); }
explicit DynamicConfig(const ConfigBase &rhs, const t_config_option_keys &keys);
explicit DynamicConfig(const ConfigBase& rhs) : DynamicConfig(rhs, rhs.keys()) {}
virtual ~DynamicConfig() override { clear(); }
virtual ~DynamicConfig() override = default;
// Copy a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
@ -2075,6 +2147,13 @@ public:
}
}
// Are the two configs equal? Ignoring options not present in both configs.
bool equals(const DynamicConfig &other) const;
// Returns options differing in the two configs, ignoring options not present in both configs.
t_config_option_keys diff(const DynamicConfig &other) const;
// Returns options being equal in the two configs, ignoring options not present in both configs.
t_config_option_keys equal(const DynamicConfig &other) const;
std::string& opt_string(const t_config_option_key &opt_key, bool create = false) { return this->option<ConfigOptionString>(opt_key, create)->value; }
const std::string& opt_string(const t_config_option_key &opt_key) const { return const_cast<DynamicConfig*>(this)->opt_string(opt_key); }
std::string& opt_string(const t_config_option_key &opt_key, unsigned int idx) { return this->option<ConfigOptionStrings>(opt_key)->get_at(idx); }
@ -2099,7 +2178,6 @@ public:
bool opt_bool(const t_config_option_key &opt_key, unsigned int idx) const { return this->option<ConfigOptionBools>(opt_key)->get_at(idx) != 0; }
// Command line processing
void read_cli(const std::vector<std::string> &tokens, t_config_option_keys* extra, t_config_option_keys* keys = nullptr);
bool read_cli(int argc, const char* const argv[], t_config_option_keys* extra, t_config_option_keys* keys = nullptr);
std::map<t_config_option_key, std::unique_ptr<ConfigOption>>::const_iterator cbegin() const { return options.cbegin(); }
@ -2113,9 +2191,9 @@ private:
template<class Archive> void serialize(Archive &ar) { ar(options); }
};
/// Configuration store with a static definition of configuration values.
/// In Slic3r, the static configuration stores are during the slicing / g-code generation for efficiency reasons,
/// because the configuration values could be accessed directly.
// Configuration store with a static definition of configuration values.
// In Slic3r, the static configuration stores are during the slicing / g-code generation for efficiency reasons,
// because the configuration values could be accessed directly.
class StaticConfig : public virtual ConfigBase
{
public:

View file

@ -595,7 +595,7 @@ namespace Slic3r {
mz_zip_archive_file_stat stat;
m_name = boost::filesystem::path(filename).filename().stem().string();
m_name = boost::filesystem::path(filename).stem().string();
// we first loop the entries to read from the archive the .model file only, in order to extract the version from it
for (mz_uint i = 0; i < num_entries; ++i) {
@ -875,7 +875,9 @@ namespace Slic3r {
add_error("Error while reading config data to buffer");
return;
}
config.load_from_gcode_string(buffer.data(), config_substitutions);
//FIXME Loading a "will be one day a legacy format" of configuration in a form of a G-code comment.
// Each config line is prefixed with a semicolon (G-code comment), that is ugly.
config_substitutions.substitutions = config.load_from_ini_string_commented(std::move(buffer), config_substitutions.rule);
}
}
@ -1406,6 +1408,13 @@ namespace Slic3r {
m_model->delete_object(model_object);
}
if (m_version == 0) {
// if the 3mf was not produced by PrusaSlicer and there is only one object,
// set the object name to match the filename
if (m_model->objects.size() == 1)
m_model->objects.front()->name = m_name;
}
// applies instances' matrices
for (Instance& instance : m_instances) {
if (instance.instance != nullptr && instance.instance->get_object() != nullptr)
@ -2860,9 +2869,10 @@ namespace Slic3r {
stream << prefix << SOURCE_OFFSET_Y_KEY << "\" " << VALUE_ATTR << "=\"" << volume->source.mesh_offset(1) << "\"/>\n";
stream << prefix << SOURCE_OFFSET_Z_KEY << "\" " << VALUE_ATTR << "=\"" << volume->source.mesh_offset(2) << "\"/>\n";
}
assert(! volume->source.is_converted_from_inches || ! volume->source.is_converted_from_meters);
if (volume->source.is_converted_from_inches)
stream << prefix << SOURCE_IN_INCHES << "\" " << VALUE_ATTR << "=\"1\"/>\n";
if (volume->source.is_converted_from_meters)
else if (volume->source.is_converted_from_meters)
stream << prefix << SOURCE_IN_METERS << "\" " << VALUE_ATTR << "=\"1\"/>\n";
}

View file

@ -706,7 +706,9 @@ void AMFParserContext::endElement(const char * /* name */)
case NODE_TYPE_METADATA:
if ((m_config != nullptr) && strncmp(m_value[0].c_str(), SLIC3R_CONFIG_TYPE, strlen(SLIC3R_CONFIG_TYPE)) == 0) {
m_config->load_from_gcode_string(m_value[1].c_str(), *m_config_substitutions);
//FIXME Loading a "will be one day a legacy format" of configuration in a form of a G-code comment.
// Each config line is prefixed with a semicolon (G-code comment), that is ugly.
m_config_substitutions->substitutions = m_config->load_from_ini_string_commented(std::move(m_value[1].c_str()), m_config_substitutions->rule);
}
else if (strncmp(m_value[0].c_str(), "slic3r.", 7) == 0) {
const char *opt_key = m_value[0].c_str() + 7;
@ -1241,9 +1243,10 @@ bool store_amf(const char* path, Model* model, const DynamicPrintConfig* config,
stream << " <metadata type=\"slic3r.source_offset_y\">" << volume->source.mesh_offset(1) << "</metadata>\n";
stream << " <metadata type=\"slic3r.source_offset_z\">" << volume->source.mesh_offset(2) << "</metadata>\n";
}
assert(! volume->source.is_converted_from_inches || ! volume->source.is_converted_from_meters);
if (volume->source.is_converted_from_inches)
stream << " <metadata type=\"slic3r.source_in_inches\">1</metadata>\n";
if (volume->source.is_converted_from_meters)
else if (volume->source.is_converted_from_meters)
stream << " <metadata type=\"slic3r.source_in_meters\">1</metadata>\n";
stream << std::setprecision(std::numeric_limits<float>::max_digits10);
const indexed_triangle_set &its = volume->mesh().its;

View file

@ -203,7 +203,7 @@ RasterParams get_raster_params(const DynamicPrintConfig &cfg)
if (!opt_disp_cols || !opt_disp_rows || !opt_disp_w || !opt_disp_h ||
!opt_mirror_x || !opt_mirror_y || !opt_orient)
throw Slic3r::FileIOError("Invalid SL1 file");
throw Slic3r::FileIOError("Invalid SL1 / SL1S file");
RasterParams rstp;
@ -229,7 +229,7 @@ SliceParams get_slice_params(const DynamicPrintConfig &cfg)
auto *opt_init_layerh = cfg.option<ConfigOptionFloat>("initial_layer_height");
if (!opt_layerh || !opt_init_layerh)
throw Slic3r::FileIOError("Invalid SL1 file");
throw Slic3r::FileIOError("Invalid SL1 / SL1S file");
return SliceParams{opt_layerh->getFloat(), opt_init_layerh->getFloat()};
}

View file

@ -1464,13 +1464,15 @@ void GCode::_do_export(Print& print, FILE* file, ThumbnailsGeneratorCallback thu
_write_format(file, "; total toolchanges = %i\n", print.m_print_statistics.total_toolchanges);
_write_format(file, ";%s\n", GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Estimated_Printing_Time_Placeholder).c_str());
// Append full config.
_write(file, "\n");
// Append full config, delimited by two 'phony' configuration keys prusaslicer_config = begin and prusaslicer_config = end.
// The delimiters are structured as configuration key / value pairs to be parsable by older versions of PrusaSlicer G-code viewer.
{
_write(file, "\n; prusaslicer_config = begin\n");
std::string full_config;
append_full_config(print, full_config);
if (!full_config.empty())
_write(file, full_config);
_write(file, "; prusaslicer_config = end\n");
}
print.throw_if_canceled();
}
@ -2714,7 +2716,9 @@ std::string GCode::_extrude(const ExtrusionPath &path, std::string description,
// calculate extrusion length per distance unit
double e_per_mm = m_writer.extruder()->e_per_mm3() * path.mm3_per_mm;
if (m_writer.extrusion_axis().empty()) e_per_mm = 0;
if (m_writer.extrusion_axis().empty())
// gcfNoExtrusion
e_per_mm = 0;
// set speed
if (speed == -1) {

View file

@ -24,6 +24,9 @@
static const float INCHES_TO_MM = 25.4f;
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
#if ENABLE_RETRACT_ACCELERATION
static const float DEFAULT_RETRACT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
#endif // ENABLE_RETRACT_ACCELERATION
static const float DEFAULT_TRAVEL_ACCELERATION = 1250.0f;
static const size_t MIN_EXTRUDERS_COUNT = 5;
@ -178,6 +181,10 @@ void GCodeProcessor::TimeMachine::reset()
enabled = false;
acceleration = 0.0f;
max_acceleration = 0.0f;
#if ENABLE_RETRACT_ACCELERATION
retract_acceleration = 0.0f;
max_retract_acceleration = 0.0f;
#endif // ENABLE_RETRACT_ACCELERATION
travel_acceleration = 0.0f;
max_travel_acceleration = 0.0f;
extrude_factor_override_percentage = 1.0f;
@ -834,6 +841,11 @@ void GCodeProcessor::apply_config(const PrintConfig& config)
float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, i);
m_time_processor.machines[i].max_acceleration = max_acceleration;
m_time_processor.machines[i].acceleration = (max_acceleration > 0.0f) ? max_acceleration : DEFAULT_ACCELERATION;
#if ENABLE_RETRACT_ACCELERATION
float max_retract_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i);
m_time_processor.machines[i].max_retract_acceleration = max_retract_acceleration;
m_time_processor.machines[i].retract_acceleration = (max_retract_acceleration > 0.0f) ? max_retract_acceleration : DEFAULT_RETRACT_ACCELERATION;
#endif // ENABLE_RETRACT_ACCELERATION
float max_travel_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_travel, i);
m_time_processor.machines[i].max_travel_acceleration = max_travel_acceleration;
m_time_processor.machines[i].travel_acceleration = (max_travel_acceleration > 0.0f) ? max_travel_acceleration : DEFAULT_TRAVEL_ACCELERATION;
@ -1052,6 +1064,11 @@ void GCodeProcessor::apply_config(const DynamicPrintConfig& config)
float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, i);
m_time_processor.machines[i].max_acceleration = max_acceleration;
m_time_processor.machines[i].acceleration = (max_acceleration > 0.0f) ? max_acceleration : DEFAULT_ACCELERATION;
#if ENABLE_RETRACT_ACCELERATION
float max_retract_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i);
m_time_processor.machines[i].max_retract_acceleration = max_retract_acceleration;
m_time_processor.machines[i].retract_acceleration = (max_retract_acceleration > 0.0f) ? max_retract_acceleration : DEFAULT_RETRACT_ACCELERATION;
#endif // ENABLE_RETRACT_ACCELERATION
float max_travel_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_travel, i);
m_time_processor.machines[i].max_travel_acceleration = max_travel_acceleration;
m_time_processor.machines[i].travel_acceleration = (max_travel_acceleration > 0.0f) ? max_travel_acceleration : DEFAULT_TRAVEL_ACCELERATION;
@ -1172,7 +1189,7 @@ void GCodeProcessor::process_file(const std::string& filename, bool apply_postpr
// Silently substitute unknown values by new ones for loading configurations from PrusaSlicer's own G-code.
// Showing substitution log or errors may make sense, but we are not really reading many values from the G-code config,
// thus a probability of incorrect substitution is low and the G-code viewer is a consumer-only anyways.
config.load_from_gcode_file(filename, false, ForwardCompatibilitySubstitutionRule::EnableSilent);
config.load_from_gcode_file(filename, ForwardCompatibilitySubstitutionRule::EnableSilent);
apply_config(config);
}
else if (m_producer == EProducer::Simplify3D)
@ -2713,14 +2730,22 @@ void GCodeProcessor::process_M204(const GCodeReader::GCodeLine& line)
set_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
set_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
if (line.has_value('T', value))
#if ENABLE_RETRACT_ACCELERATION
set_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
#else
set_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i, value);
#endif // ENABLE_RETRACT_ACCELERATION
}
else {
// New acceleration format, compatible with the upstream Marlin.
if (line.has_value('P', value))
set_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
if (line.has_value('R', value))
#if ENABLE_RETRACT_ACCELERATION
set_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
#else
set_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i, value);
#endif // ENABLE_RETRACT_ACCELERATION
if (line.has_value('T', value))
// Interpret the T value as the travel acceleration in the new Marlin format.
set_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value);
@ -2979,10 +3004,30 @@ float GCodeProcessor::get_axis_max_jerk(PrintEstimatedStatistics::ETimeMode mode
}
}
#if ENABLE_RETRACT_ACCELERATION
float GCodeProcessor::get_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode) const
{
size_t id = static_cast<size_t>(mode);
return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].retract_acceleration : DEFAULT_RETRACT_ACCELERATION;
}
#else
float GCodeProcessor::get_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode) const
{
return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, static_cast<size_t>(mode));
}
#endif // ENABLE_RETRACT_ACCELERATION
#if ENABLE_RETRACT_ACCELERATION
void GCodeProcessor::set_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value)
{
size_t id = static_cast<size_t>(mode);
if (id < m_time_processor.machines.size()) {
m_time_processor.machines[id].retract_acceleration = (m_time_processor.machines[id].max_retract_acceleration == 0.0f) ? value :
// Clamp the acceleration with the maximum.
std::min(value, m_time_processor.machines[id].max_retract_acceleration);
}
}
#endif // ENABLE_RETRACT_ACCELERATION
float GCodeProcessor::get_acceleration(PrintEstimatedStatistics::ETimeMode mode) const
{

View file

@ -242,6 +242,11 @@ namespace Slic3r {
float acceleration; // mm/s^2
// hard limit for the acceleration, to which the firmware will clamp.
float max_acceleration; // mm/s^2
#if ENABLE_RETRACT_ACCELERATION
float retract_acceleration; // mm/s^2
// hard limit for the acceleration, to which the firmware will clamp.
float max_retract_acceleration; // mm/s^2
#endif // ENABLE_RETRACT_ACCELERATION
float travel_acceleration; // mm/s^2
// hard limit for the travel acceleration, to which the firmware will clamp.
float max_travel_acceleration; // mm/s^2
@ -337,9 +342,9 @@ namespace Slic3r {
std::string printer;
void reset() {
print = "";
filament = std::vector<std::string>();
printer = "";
print.clear();
filament.clear();
printer.clear();
}
};
std::string filename;
@ -669,6 +674,9 @@ namespace Slic3r {
float get_axis_max_acceleration(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const;
float get_axis_max_jerk(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const;
float get_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode) const;
#if ENABLE_RETRACT_ACCELERATION
void set_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value);
#endif // ENABLE_RETRACT_ACCELERATION
float get_acceleration(PrintEstimatedStatistics::ETimeMode mode) const;
void set_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value);
float get_travel_acceleration(PrintEstimatedStatistics::ETimeMode mode) const;

View file

@ -1,10 +1,15 @@
#include "PostProcessor.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/format.hpp"
#include <boost/algorithm/string.hpp>
#include <boost/log/trivial.hpp>
#include <boost/format.hpp>
#include <boost/filesystem.hpp>
#include <boost/nowide/convert.hpp>
#include <boost/nowide/cenv.hpp>
#include <boost/nowide/fstream.hpp>
#ifdef WIN32
@ -179,41 +184,146 @@ static int run_script(const std::string &script, const std::string &gcode, std::
namespace Slic3r {
void run_post_process_scripts(const std::string &path, const DynamicPrintConfig &config)
// Run post processing script / scripts if defined.
// Returns true if a post-processing script was executed.
// Returns false if no post-processing script was defined.
// Throws an exception on error.
// host is one of "File", "PrusaLink", "Repetier", "SL1Host", "OctoPrint", "FlashAir", "Duet", "AstroBox" ...
// For a "File" target, a temp file will be created for src_path by adding a ".pp" suffix and src_path will be updated.
// In that case the caller is responsible to delete the temp file created.
// output_name is the final name of the G-code on SD card or when uploaded to PrusaLink or OctoPrint.
// If uploading to PrusaLink or OctoPrint, then the file will be renamed to output_name first on the target host.
// The post-processing script may change the output_name.
bool run_post_process_scripts(std::string &src_path, bool make_copy, const std::string &host, std::string &output_name, const DynamicPrintConfig &config)
{
const auto* post_process = config.opt<ConfigOptionStrings>("post_process");
const auto *post_process = config.opt<ConfigOptionStrings>("post_process");
if (// likely running in SLA mode
post_process == nullptr ||
// no post-processing script
post_process->values.empty())
return;
return false;
std::string path;
if (make_copy) {
// Don't run the post-processing script on the input file, it will be memory mapped by the G-code viewer.
// Make a copy.
path = src_path + ".pp";
// First delete an old file if it exists.
try {
if (boost::filesystem::exists(path))
boost::filesystem::remove(path);
} catch (const std::exception &err) {
BOOST_LOG_TRIVIAL(error) << Slic3r::format("Failed deleting an old temporary file %1% before running a post-processing script: %2%", path, err.what());
}
// Second make a copy.
std::string error_message;
if (copy_file(src_path, path, error_message, false) != SUCCESS)
throw Slic3r::RuntimeError(Slic3r::format("Failed making a temporary copy of G-code file %1% before running a post-processing script: %2%", src_path, error_message));
} else {
// Don't make a copy of the G-code before running the post-processing script.
path = src_path;
}
auto delete_copy = [&path, &src_path, make_copy]() {
if (make_copy)
try {
if (boost::filesystem::exists(path))
boost::filesystem::remove(path);
} catch (const std::exception &err) {
BOOST_LOG_TRIVIAL(error) << Slic3r::format("Failed deleting a temporary copy %1% of a G-code file %2% : %3%", path, src_path, err.what());
}
};
// Store print configuration into environment variables.
config.setenv_();
auto gcode_file = boost::filesystem::path(path);
if (! boost::filesystem::exists(gcode_file))
throw Slic3r::RuntimeError(std::string("Post-processor can't find exported gcode file"));
for (const std::string &scripts : post_process->values) {
std::vector<std::string> lines;
boost::split(lines, scripts, boost::is_any_of("\r\n"));
for (std::string script : lines) {
// Ignore empty post processing script lines.
boost::trim(script);
if (script.empty())
continue;
BOOST_LOG_TRIVIAL(info) << "Executing script " << script << " on file " << path;
// Store print configuration into environment variables.
config.setenv_();
// Let the post-processing script know the target host ("File", "PrusaLink", "Repetier", "SL1Host", "OctoPrint", "FlashAir", "Duet", "AstroBox" ...)
boost::nowide::setenv("SLIC3R_PP_HOST", host.c_str(), 1);
// Let the post-processing script know the final file name. For "File" host, it is a full path of the target file name and its location, for example pointing to an SD card.
// For "PrusaLink" or "OctoPrint", it is a file name optionally with a directory on the target host.
boost::nowide::setenv("SLIC3R_PP_OUTPUT_NAME", output_name.c_str(), 1);
std::string std_err;
const int result = run_script(script, gcode_file.string(), std_err);
if (result != 0) {
const std::string msg = std_err.empty() ? (boost::format("Post-processing script %1% on file %2% failed.\nError code: %3%") % script % path % result).str()
: (boost::format("Post-processing script %1% on file %2% failed.\nError code: %3%\nOutput:\n%4%") % script % path % result % std_err).str();
BOOST_LOG_TRIVIAL(error) << msg;
throw Slic3r::RuntimeError(msg);
// Path to an optional file that the post-processing script may create and populate it with a single line containing the output_name replacement.
std::string path_output_name = path + ".output_name";
auto remove_output_name_file = [&path_output_name, &src_path]() {
try {
if (boost::filesystem::exists(path_output_name))
boost::filesystem::remove(path_output_name);
} catch (const std::exception &err) {
BOOST_LOG_TRIVIAL(error) << Slic3r::format("Failed deleting a file %1% carrying the final name / path of a G-code file %2%: %3%", path_output_name, src_path, err.what());
}
};
// Remove possible stalled path_output_name of the previous run.
remove_output_name_file();
try {
for (const std::string &scripts : post_process->values) {
std::vector<std::string> lines;
boost::split(lines, scripts, boost::is_any_of("\r\n"));
for (std::string script : lines) {
// Ignore empty post processing script lines.
boost::trim(script);
if (script.empty())
continue;
BOOST_LOG_TRIVIAL(info) << "Executing script " << script << " on file " << path;
std::string std_err;
const int result = run_script(script, gcode_file.string(), std_err);
if (result != 0) {
const std::string msg = std_err.empty() ? (boost::format("Post-processing script %1% on file %2% failed.\nError code: %3%") % script % path % result).str()
: (boost::format("Post-processing script %1% on file %2% failed.\nError code: %3%\nOutput:\n%4%") % script % path % result % std_err).str();
BOOST_LOG_TRIVIAL(error) << msg;
delete_copy();
throw Slic3r::RuntimeError(msg);
}
}
}
if (boost::filesystem::exists(path_output_name)) {
try {
// Read a single line from path_output_name, which should contain the new output name of the post-processed G-code.
boost::nowide::fstream f;
f.open(path_output_name, std::ios::in);
std::string new_output_name;
std::getline(f, new_output_name);
f.close();
if (host == "File") {
namespace fs = boost::filesystem;
fs::path op(new_output_name);
if (op.is_relative() && op.has_filename() && op.parent_path().empty()) {
// Is this just a filename? Make it an absolute path.
auto outpath = fs::path(output_name).parent_path();
outpath /= op.string();
new_output_name = outpath.string();
}
else {
if (! op.is_absolute() || ! op.has_filename())
throw Slic3r::RuntimeError("Unable to parse desired new path from output name file");
}
if (! fs::exists(fs::path(new_output_name).parent_path()))
throw Slic3r::RuntimeError(Slic3r::format("Output directory does not exist: %1%",
fs::path(new_output_name).parent_path().string()));
}
BOOST_LOG_TRIVIAL(trace) << "Post-processing script changed the file name from " << output_name << " to " << new_output_name;
output_name = new_output_name;
} catch (const std::exception &err) {
throw Slic3r::RuntimeError(Slic3r::format("run_post_process_scripts: Failed reading a file %1% "
"carrying the final name / path of a G-code file: %2%",
path_output_name, err.what()));
}
remove_output_name_file();
}
} catch (...) {
remove_output_name_file();
delete_copy();
throw;
}
src_path = std::move(path);
return true;
}
} // namespace Slic3r

View file

@ -8,7 +8,23 @@
namespace Slic3r {
extern void run_post_process_scripts(const std::string &path, const DynamicPrintConfig &config);
// Run post processing script / scripts if defined.
// Returns true if a post-processing script was executed.
// Returns false if no post-processing script was defined.
// Throws an exception on error.
// host is one of "File", "PrusaLink", "Repetier", "SL1Host", "OctoPrint", "FlashAir", "Duet", "AstroBox" ...
// If make_copy, then a temp file will be created for src_path by adding a ".pp" suffix and src_path will be updated.
// In that case the caller is responsible to delete the temp file created.
// output_name is the final name of the G-code on SD card or when uploaded to PrusaLink or OctoPrint.
// If uploading to PrusaLink or OctoPrint, then the file will be renamed to output_name first on the target host.
// The post-processing script may change the output_name.
extern bool run_post_process_scripts(std::string &src_path, bool make_copy, const std::string &host, std::string &output_name, const DynamicPrintConfig &config);
inline bool run_post_process_scripts(std::string &src_path, const DynamicPrintConfig &config)
{
std::string src_path_name = src_path;
return run_post_process_scripts(src_path, false, "File", src_path_name, config);
}
} // namespace Slic3r

View file

@ -12,16 +12,24 @@
namespace Slic3r {
static inline char get_extrusion_axis_char(const GCodeConfig &config)
{
std::string axis = get_extrusion_axis(config);
assert(axis.size() <= 1);
// Return 0 for gcfNoExtrusion
return axis.empty() ? 0 : axis[0];
}
void GCodeReader::apply_config(const GCodeConfig &config)
{
m_config = config;
m_extrusion_axis = get_extrusion_axis(m_config)[0];
m_extrusion_axis = get_extrusion_axis_char(m_config);
}
void GCodeReader::apply_config(const DynamicPrintConfig &config)
{
m_config.apply(config, true);
m_extrusion_axis = get_extrusion_axis(m_config)[0];
m_extrusion_axis = get_extrusion_axis_char(m_config);
}
const char* GCodeReader::parse_line_internal(const char *ptr, GCodeLine &gline, std::pair<const char*, const char*> &command)
@ -52,9 +60,10 @@ const char* GCodeReader::parse_line_internal(const char *ptr, GCodeLine &gline,
case 'Z': axis = Z; break;
case 'F': axis = F; break;
default:
if (*c == m_extrusion_axis)
axis = E;
else if (*c >= 'A' && *c <= 'Z')
if (*c == m_extrusion_axis) {
if (m_extrusion_axis != 0)
axis = E;
} else if (*c >= 'A' && *c <= 'Z')
// Unknown axis, but we still want to remember that such a axis was seen.
axis = UNKNOWN_AXIS;
break;
@ -190,6 +199,8 @@ void GCodeReader::GCodeLine::set(const GCodeReader &reader, const Axis axis, con
match[1] = 'F';
else {
assert(axis == E);
// Extruder axis is set.
assert(reader.extrusion_axis() != 0);
match[1] = reader.extrusion_axis();
}

View file

@ -122,8 +122,9 @@ public:
float& f() { return m_position[F]; }
float f() const { return m_position[F]; }
// Returns 0 for gcfNoExtrusion.
char extrusion_axis() const { return m_extrusion_axis; }
void set_extrusion_axis(char axis) { m_extrusion_axis = axis; }
// void set_extrusion_axis(char axis) { m_extrusion_axis = axis; }
private:
const char* parse_line_internal(const char *ptr, GCodeLine &gline, std::pair<const char*, const char*> &command);

View file

@ -405,8 +405,10 @@ std::string GCodeWriter::extrude_to_xy(const Vec2d &point, double dE, const std:
std::ostringstream gcode;
gcode << "G1 X" << XYZF_NUM(point(0))
<< " Y" << XYZF_NUM(point(1))
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
<< " Y" << XYZF_NUM(point(1));
if (! m_extrusion_axis.empty())
// not gcfNoExtrusion
gcode << " " << m_extrusion_axis << E_NUM(m_extruder->E());
COMMENT(comment);
gcode << "\n";
return gcode.str();
@ -421,8 +423,10 @@ std::string GCodeWriter::extrude_to_xyz(const Vec3d &point, double dE, const std
std::ostringstream gcode;
gcode << "G1 X" << XYZF_NUM(point(0))
<< " Y" << XYZF_NUM(point(1))
<< " Z" << XYZF_NUM(point(2))
<< " " << m_extrusion_axis << E_NUM(m_extruder->E());
<< " Z" << XYZF_NUM(point(2));
if (! m_extrusion_axis.empty())
// not gcfNoExtrusion
gcode << " " << m_extrusion_axis << E_NUM(m_extruder->E());
COMMENT(comment);
gcode << "\n";
return gcode.str();
@ -474,7 +478,7 @@ std::string GCodeWriter::_retract(double length, double restart_extra, const std
gcode << "G22 ; retract\n";
else
gcode << "G10 ; retract\n";
} else {
} else if (! m_extrusion_axis.empty()) {
gcode << "G1 " << m_extrusion_axis << E_NUM(m_extruder->E())
<< " F" << XYZF_NUM(m_extruder->retract_speed() * 60.);
COMMENT(comment);
@ -503,7 +507,7 @@ std::string GCodeWriter::unretract()
else
gcode << "G11 ; unretract\n";
gcode << this->reset_e();
} else {
} else if (! m_extrusion_axis.empty()) {
// use G1 instead of G0 because G0 will blend the restart with the previous travel move
gcode << "G1 " << m_extrusion_axis << E_NUM(m_extruder->E())
<< " F" << XYZF_NUM(m_extruder->deretract_speed() * 60.);

View file

@ -25,6 +25,7 @@ public:
Extruder* extruder() { return m_extruder; }
const Extruder* extruder() const { return m_extruder; }
// Returns empty string for gcfNoExtrusion.
std::string extrusion_axis() const { return m_extrusion_axis; }
void apply_print_config(const PrintConfig &print_config);
// Extruders are expected to be sorted in an increasing order.

View file

@ -118,6 +118,11 @@ void triangle_mesh_to_cgal(const std::vector<stl_vertex> & V,
{
if (F.empty()) return;
size_t vertices_count = V.size();
size_t edges_count = (F.size()* 3) / 2;
size_t faces_count = F.size();
out.reserve(vertices_count, edges_count, faces_count);
for (auto &v : V)
out.add_vertex(typename _Mesh::Point{v.x(), v.y(), v.z()});

View file

@ -157,6 +157,7 @@ template<class Its> bool its_is_splittable(const Its &m)
const auto& neighbor_index = ItsWithNeighborsIndex_<Its>::get_index(m);
std::vector<char> visited(its.indices.size(), false);
its_find_unvisited_neighbors(its, neighbor_index, visited);
auto faces = its_find_unvisited_neighbors(its, neighbor_index, visited);
return !faces.empty();

View file

@ -424,7 +424,7 @@ void Model::convert_multipart_object(unsigned int max_extruders)
ModelObject* object = new ModelObject(this);
object->input_file = this->objects.front()->input_file;
object->name = this->objects.front()->name;
object->name = boost::filesystem::path(this->objects.front()->input_file).stem().string();
//FIXME copy the config etc?
unsigned int extruder_counter = 0;
@ -439,7 +439,7 @@ void Model::convert_multipart_object(unsigned int max_extruders)
int counter = 1;
auto copy_volume = [o, max_extruders, &counter, &extruder_counter](ModelVolume *new_v) {
assert(new_v != nullptr);
new_v->name = o->name + "_" + std::to_string(counter++);
new_v->name = (counter > 1) ? o->name + "_" + std::to_string(counter++) : o->name;
new_v->config.set("extruder", auto_extruder_id(max_extruders, extruder_counter));
return new_v;
};
@ -460,13 +460,15 @@ void Model::convert_multipart_object(unsigned int max_extruders)
this->objects.push_back(object);
}
static constexpr const double volume_threshold_inches = 9.0; // 9 = 3*3*3;
bool Model::looks_like_imperial_units() const
{
if (this->objects.size() == 0)
return false;
for (ModelObject* obj : this->objects)
if (obj->get_object_stl_stats().volume < 9.0) // 9 = 3*3*3;
if (obj->get_object_stl_stats().volume < volume_threshold_inches)
return true;
return false;
@ -474,22 +476,26 @@ bool Model::looks_like_imperial_units() const
void Model::convert_from_imperial_units(bool only_small_volumes)
{
double in_to_mm = 25.4;
static constexpr const double in_to_mm = 25.4;
for (ModelObject* obj : this->objects)
if (! only_small_volumes || obj->get_object_stl_stats().volume < 9.0) { // 9 = 3*3*3;
if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_inches) {
obj->scale_mesh_after_creation(Vec3d(in_to_mm, in_to_mm, in_to_mm));
for (ModelVolume* v : obj->volumes)
for (ModelVolume* v : obj->volumes) {
assert(! v->source.is_converted_from_meters);
v->source.is_converted_from_inches = true;
}
}
}
static constexpr const double volume_threshold_meters = 0.001; // 0.001 = 0.1*0.1*0.1
bool Model::looks_like_saved_in_meters() const
{
if (this->objects.size() == 0)
return false;
for (ModelObject* obj : this->objects)
if (obj->get_object_stl_stats().volume < 0.001) // 0.001 = 0.1*0.1*0.1;
if (obj->get_object_stl_stats().volume < volume_threshold_meters)
return true;
return false;
@ -497,12 +503,14 @@ bool Model::looks_like_saved_in_meters() const
void Model::convert_from_meters(bool only_small_volumes)
{
double m_to_mm = 1000;
static constexpr const double m_to_mm = 1000;
for (ModelObject* obj : this->objects)
if (! only_small_volumes || obj->get_object_stl_stats().volume < 0.001) { // 0.001 = 0.1*0.1*0.1;
if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_meters) {
obj->scale_mesh_after_creation(Vec3d(m_to_mm, m_to_mm, m_to_mm));
for (ModelVolume* v : obj->volumes)
for (ModelVolume* v : obj->volumes) {
assert(! v->source.is_converted_from_inches);
v->source.is_converted_from_meters = true;
}
}
}
@ -948,9 +956,26 @@ void ModelObject::center_around_origin(bool include_modifiers)
void ModelObject::ensure_on_bed(bool allow_negative_z)
{
const double min_z = get_min_z();
if (!allow_negative_z || min_z > SINKING_Z_THRESHOLD)
translate_instances({ 0.0, 0.0, -min_z });
double z_offset = 0.0;
if (allow_negative_z) {
if (parts_count() == 1) {
const double min_z = get_min_z();
const double max_z = get_max_z();
if (min_z >= SINKING_Z_THRESHOLD || max_z < 0.0)
z_offset = -min_z;
}
else {
const double max_z = get_max_z();
if (max_z < SINKING_MIN_Z_THRESHOLD)
z_offset = SINKING_MIN_Z_THRESHOLD - max_z;
}
}
else
z_offset = -get_min_z();
if (z_offset != 0.0)
translate_instances(z_offset * Vec3d::UnitZ());
}
void ModelObject::translate_instances(const Vec3d& vector)
@ -1075,6 +1100,7 @@ void ModelObject::convert_units(ModelObjectPtrs& new_objects, ConversionType con
vol->source.is_converted_from_inches = conv_type == ConversionType::CONV_FROM_INCH;
if (conv_type == ConversionType::CONV_FROM_METER || conv_type == ConversionType::CONV_TO_METER)
vol->source.is_converted_from_meters = conv_type == ConversionType::CONV_FROM_METER;
assert(! vol->source.is_converted_from_inches || ! vol->source.is_converted_from_meters);
}
else
vol->set_offset(volume->get_offset());
@ -1105,6 +1131,15 @@ size_t ModelObject::facets_count() const
return num;
}
size_t ModelObject::parts_count() const
{
size_t num = 0;
for (const ModelVolume* v : this->volumes)
if (v->is_model_part())
++num;
return num;
}
bool ModelObject::needed_repair() const
{
for (const ModelVolume *v : this->volumes)
@ -1420,6 +1455,19 @@ double ModelObject::get_min_z() const
}
}
double ModelObject::get_max_z() const
{
if (instances.empty())
return 0.0;
else {
double max_z = -DBL_MAX;
for (size_t i = 0; i < instances.size(); ++i) {
max_z = std::max(max_z, get_instance_max_z(i));
}
return max_z;
}
}
double ModelObject::get_instance_min_z(size_t instance_idx) const
{
double min_z = DBL_MAX;
@ -1441,6 +1489,27 @@ double ModelObject::get_instance_min_z(size_t instance_idx) const
return min_z + inst->get_offset(Z);
}
double ModelObject::get_instance_max_z(size_t instance_idx) const
{
double max_z = -DBL_MAX;
const ModelInstance* inst = instances[instance_idx];
const Transform3d& mi = inst->get_matrix(true);
for (const ModelVolume* v : volumes) {
if (!v->is_model_part())
continue;
const Transform3d mv = mi * v->get_matrix();
const TriangleMesh& hull = v->get_convex_hull();
for (const stl_facet& facet : hull.stl.facet_start)
for (int i = 0; i < 3; ++i)
max_z = std::max(max_z, (mv * facet.vertex[i].cast<double>()).z());
}
return max_z + inst->get_offset(Z);
}
unsigned int ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_volume)
{
unsigned int num_printable = 0;
@ -1827,6 +1896,7 @@ void ModelVolume::transform_this_mesh(const Matrix3d &matrix, bool fix_left_hand
void ModelVolume::convert_from_imperial_units()
{
assert(! this->source.is_converted_from_meters);
double in_to_mm = 25.4;
this->scale_geometry_after_creation(Vec3d(in_to_mm, in_to_mm, in_to_mm));
this->set_offset(Vec3d(0, 0, 0));
@ -1835,6 +1905,7 @@ void ModelVolume::convert_from_imperial_units()
void ModelVolume::convert_from_meters()
{
assert(! this->source.is_converted_from_inches);
double m_to_mm = 1000;
this->scale_geometry_after_creation(Vec3d(m_to_mm, m_to_mm, m_to_mm));
this->set_offset(Vec3d(0, 0, 0));

View file

@ -347,6 +347,7 @@ public:
size_t materials_count() const;
size_t facets_count() const;
size_t parts_count() const;
bool needed_repair() const;
ModelObjectPtrs cut(size_t instance, coordf_t z, ModelObjectCutAttributes attributes);
void split(ModelObjectPtrs* new_objects);
@ -358,7 +359,9 @@ public:
void bake_xy_rotation_into_meshes(size_t instance_idx);
double get_min_z() const;
double get_max_z() const;
double get_instance_min_z(size_t instance_idx) const;
double get_instance_max_z(size_t instance_idx) const;
// Called by Print::validate() from the UI thread.
unsigned int check_instances_print_volume_state(const BoundingBoxf3& print_volume);
@ -1177,6 +1180,7 @@ void check_model_ids_equal(const Model &model1, const Model &model2);
#endif /* NDEBUG */
static const float SINKING_Z_THRESHOLD = -0.001f;
static const double SINKING_MIN_Z_THRESHOLD = 0.05;
} // namespace Slic3r

View file

@ -1240,221 +1240,6 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
const size_t num_layers = input_expolygons.size();
const ConstLayerPtrsAdaptor layers = print_object.layers();
#if 0
auto get_extrusion_width = [&layers = std::as_const(layers)](const size_t layer_idx) -> float {
auto extrusion_width_it = std::max_element(layers[layer_idx]->regions().begin(), layers[layer_idx]->regions().end(),
[](const LayerRegion *l1, const LayerRegion *l2) {
return l1->region().config().perimeter_extrusion_width <
l2->region().config().perimeter_extrusion_width;
});
assert(extrusion_width_it != layers[layer_idx]->regions().end());
return float((*extrusion_width_it)->region().config().perimeter_extrusion_width);
};
auto get_top_solid_layers = [&layers = std::as_const(layers)](const size_t layer_idx) -> int {
auto top_solid_layer_it = std::max_element(layers[layer_idx]->regions().begin(), layers[layer_idx]->regions().end(),
[](const LayerRegion *l1, const LayerRegion *l2) {
return l1->region().config().top_solid_layers < l2->region().config().top_solid_layers;
});
assert(top_solid_layer_it != layers[layer_idx]->regions().end());
return (*top_solid_layer_it)->region().config().top_solid_layers;
};
auto get_bottom_solid_layers = [&layers = std::as_const(layers)](const size_t layer_idx) -> int {
auto top_bottom_layer_it = std::max_element(layers[layer_idx]->regions().begin(), layers[layer_idx]->regions().end(),
[](const LayerRegion *l1, const LayerRegion *l2) {
return l1->region().config().bottom_solid_layers < l2->region().config().bottom_solid_layers;
});
assert(top_bottom_layer_it != layers[layer_idx]->regions().end());
return (*top_bottom_layer_it)->region().config().bottom_solid_layers;
};
std::vector<ExPolygons> top_layers(num_layers);
top_layers.back() = input_expolygons.back();
tbb::parallel_for(tbb::blocked_range<size_t>(1, num_layers), [&](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
throw_on_cancel_callback();
float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx)));
top_layers[layer_idx - 1] = diff_ex(input_expolygons[layer_idx - 1], offset_ex(input_expolygons[layer_idx], extrusion_width));
}
}); // end of parallel_for
std::vector<ExPolygons> bottom_layers(num_layers);
bottom_layers.front() = input_expolygons.front();
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers - 1), [&](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
throw_on_cancel_callback();
float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx)));
bottom_layers[layer_idx + 1] = diff_ex(input_expolygons[layer_idx + 1], offset_ex(input_expolygons[layer_idx], extrusion_width));
}
}); // end of parallel_for
std::vector<std::vector<ClipperLib::Paths>> triangles_by_color_raw(num_extruders, std::vector<ClipperLib::Paths>(layers.size()));
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - top and bottom layers - projection of painted triangles - begin";
{
auto delta = float(10 * SCALED_EPSILON);
std::vector<float> deltas { delta, delta, delta };
Points projected_facet;
for (const ModelVolume *mv : print_object.model_object()->volumes)
if (mv->is_model_part()) {
const Transform3f tr = print_object.trafo().cast<float>() * mv->get_matrix().cast<float>();
for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++extruder_idx) {
const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, EnforcerBlockerType(extruder_idx));
if (custom_facets.indices.empty())
continue;
throw_on_cancel_callback();
for (size_t facet_idx = 0; facet_idx < custom_facets.indices.size(); ++facet_idx) {
float min_z = std::numeric_limits<float>::max();
float max_z = std::numeric_limits<float>::lowest();
std::array<Vec3f, 3> facet;
for (int p_idx = 0; p_idx < 3; ++p_idx) {
facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)];
max_z = std::max(max_z, facet[p_idx].z());
min_z = std::min(min_z, facet[p_idx].z());
}
// Sort the vertices by z-axis for simplification of projected_facet on slices
std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); });
projected_facet.clear();
projected_facet.reserve(3);
for (int p_idx = 0; p_idx < 3; ++p_idx)
projected_facet.emplace_back(Point(scale_(facet[p_idx].x()), scale_(facet[p_idx].y())) - print_object.center_offset());
if (cross2((projected_facet[1] - projected_facet[0]).cast<int64_t>(), (projected_facet[2] - projected_facet[1]).cast<int64_t>()) < 0)
// Make CCW.
std::swap(projected_facet[1], projected_facet[2]);
ClipperLib::Path offsetted = mittered_offset_path_scaled(projected_facet, deltas, 3.);
// Find lowest slice not below the triangle.
auto first_layer = std::upper_bound(layers.begin(), layers.end(), float(min_z - EPSILON),
[](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; });
auto last_layer = std::upper_bound(layers.begin(), layers.end(), float(max_z - EPSILON),
[](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; });
if (last_layer == layers.end())
--last_layer;
if (first_layer == layers.end() || (first_layer != layers.begin() && facet[0].z() < (*first_layer)->print_z - EPSILON))
--first_layer;
for (auto layer_it = first_layer; (layer_it != (last_layer + 1) && layer_it != layers.end()); ++layer_it)
if (size_t layer_idx = layer_it - layers.begin(); ! top_layers[layer_idx].empty() || ! bottom_layers[layer_idx].empty())
triangles_by_color_raw[extruder_idx][layer_idx].emplace_back(offsetted);
}
}
}
}
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - top and bottom layers - projection of painted triangles - end";
std::vector<std::vector<ExPolygons>> triangles_by_color(num_extruders, std::vector<ExPolygons>(layers.size()));
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
throw_on_cancel_callback();
float offset_factor = 0.1f * float(scale_(get_extrusion_width(layer_idx)));
for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id)
if (ClipperLib::Paths &src_paths = triangles_by_color_raw[extruder_id][layer_idx]; !src_paths.empty())
triangles_by_color[extruder_id][layer_idx] = offset_ex(offset_ex(ClipperPaths_to_Slic3rExPolygons(src_paths), -offset_factor), offset_factor);
}
}); // end of parallel_for
triangles_by_color_raw.clear();
std::vector<std::vector<ExPolygons>> triangles_by_color_bottom(num_extruders);
std::vector<std::vector<ExPolygons>> triangles_by_color_top(num_extruders);
triangles_by_color_bottom.assign(num_extruders, std::vector<ExPolygons>(num_layers));
triangles_by_color_top.assign(num_extruders, std::vector<ExPolygons>(num_layers));
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of top layer - begin";
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
float extrusion_width = scale_(get_extrusion_width(layer_idx));
int top_solid_layers = get_top_solid_layers(layer_idx);
ExPolygons top_expolygon = top_layers[layer_idx];
if (top_expolygon.empty())
continue;
for (size_t color_idx = 0; color_idx < triangles_by_color.size(); ++color_idx) {
throw_on_cancel_callback();
if (triangles_by_color[color_idx][layer_idx].empty())
continue;
ExPolygons intersection_poly = intersection_ex(triangles_by_color[color_idx][layer_idx], top_expolygon);
if (!intersection_poly.empty()) {
triangles_by_color_top[color_idx][layer_idx].insert(triangles_by_color_top[color_idx][layer_idx].end(), intersection_poly.begin(),
intersection_poly.end());
for (int last_idx = int(layer_idx) - 1; last_idx >= std::max(int(layer_idx - top_solid_layers), int(0)); --last_idx) {
float offset_value = float(layer_idx - last_idx) * (-1.0f) * extrusion_width;
if (offset_ex(top_expolygon, offset_value).empty())
continue;
ExPolygons layer_slices_trimmed = input_expolygons[last_idx];
for (int last_idx_1 = last_idx; last_idx_1 < int(layer_idx); ++last_idx_1) {
layer_slices_trimmed = intersection_ex(layer_slices_trimmed, input_expolygons[last_idx_1 + 1]);
}
ExPolygons offset_e = offset_ex(layer_slices_trimmed, offset_value);
ExPolygons intersection_poly_2 = intersection_ex(triangles_by_color_top[color_idx][layer_idx], offset_e);
triangles_by_color_top[color_idx][last_idx].insert(triangles_by_color_top[color_idx][last_idx].end(), intersection_poly_2.begin(),
intersection_poly_2.end());
}
}
}
}
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of top layer - end";
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of bottom layer - begin";
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
float extrusion_width = scale_(get_extrusion_width(layer_idx));
int bottom_solid_layers = get_bottom_solid_layers(layer_idx);
const ExPolygons &bottom_expolygon = bottom_layers[layer_idx];
if (bottom_expolygon.empty())
continue;
for (size_t color_idx = 0; color_idx < triangles_by_color.size(); ++color_idx) {
throw_on_cancel_callback();
if (triangles_by_color[color_idx][layer_idx].empty())
continue;
ExPolygons intersection_poly = intersection_ex(triangles_by_color[color_idx][layer_idx], bottom_expolygon);
if (!intersection_poly.empty()) {
triangles_by_color_bottom[color_idx][layer_idx].insert(triangles_by_color_bottom[color_idx][layer_idx].end(), intersection_poly.begin(),
intersection_poly.end());
for (size_t last_idx = layer_idx + 1; last_idx < std::min(layer_idx + bottom_solid_layers, num_layers); ++last_idx) {
float offset_value = float(last_idx - layer_idx) * (-1.0f) * extrusion_width;
if (offset_ex(bottom_expolygon, offset_value).empty())
continue;
ExPolygons layer_slices_trimmed = input_expolygons[last_idx];
for (int last_idx_1 = int(last_idx); last_idx_1 > int(layer_idx); --last_idx_1) {
layer_slices_trimmed = intersection_ex(layer_slices_trimmed, offset_ex(input_expolygons[last_idx_1 - 1], offset_value));
}
ExPolygons offset_e = offset_ex(layer_slices_trimmed, offset_value);
ExPolygons intersection_poly_2 = intersection_ex(triangles_by_color_bottom[color_idx][layer_idx], offset_e);
append(triangles_by_color_bottom[color_idx][last_idx], std::move(intersection_poly_2));
}
}
}
}
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of bottom layer - end";
std::vector<std::vector<ExPolygons>> triangles_by_color_merged(num_extruders);
triangles_by_color_merged.assign(num_extruders, std::vector<ExPolygons>(num_layers));
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
throw_on_cancel_callback();
for (size_t color_idx = 0; color_idx < triangles_by_color_merged.size(); ++color_idx) {
auto &self = triangles_by_color_merged[color_idx][layer_idx];
append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx]));
append(self, std::move(triangles_by_color_top[color_idx][layer_idx]));
self = union_ex(self);
}
// Cut all colors for cases when two colors are overlapping
for (size_t color_idx = 1; color_idx < triangles_by_color_merged.size(); ++color_idx) {
triangles_by_color_merged[color_idx][layer_idx] = diff_ex(triangles_by_color_merged[color_idx][layer_idx],
triangles_by_color_merged[color_idx - 1][layer_idx]);
}
}
#else
// Maximum number of top / bottom layers accounts for maximum overlap of one thread group into a neighbor thread group.
int max_top_layers = 0;
int max_bottom_layers = 0;
@ -1470,8 +1255,7 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
// project downards pointing painted triangles over bottom surfaces.
std::vector<std::vector<Polygons>> top_raw(num_extruders), bottom_raw(num_extruders);
std::vector<float> zs = zs_from_layers(print_object.layers());
Transform3d object_trafo = print_object.trafo();
object_trafo.pretranslate(Vec3d(- unscale<double>(print_object.center_offset().x()), - unscale<double>(print_object.center_offset().y()), 0));
Transform3d object_trafo = print_object.trafo_centered();
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
static int iRun = 0;
@ -1650,7 +1434,6 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
triangles_by_color_merged[color_idx - 1][layer_idx]);
}
});
#endif
return triangles_by_color_merged;
}

View file

@ -354,7 +354,7 @@ inline void MutableSkipHeapPriorityQueue<T, LessPredicate, IndexSetter, blocking
#endif /* NDEBUG */
{
// Mark as removed from the queue.
m_index_setter(m_heap.front(), std::numeric_limits<size_t>::max());
m_index_setter(m_heap[1], std::numeric_limits<size_t>::max());
}
// Zero'th element is padding, thus non-empty queue must have at least two elements.
if (m_heap.size() > 2) {

View file

@ -24,6 +24,7 @@ public:
PlaceholderParser(const DynamicConfig *external_config = nullptr);
void clear_config() { m_config.clear(); }
// Return a list of keys, which should be changed in m_config from rhs.
// This contains keys, which are found in rhs, but not in m_config.
std::vector<std::string> config_diff(const DynamicPrintConfig &rhs);

View file

@ -413,212 +413,181 @@ void Preset::set_visible_from_appconfig(const AppConfig &app_config)
}
}
const std::vector<std::string>& Preset::print_options()
{
static std::vector<std::string> s_opts {
"layer_height", "first_layer_height", "perimeters", "spiral_vase", "slice_closing_radius", "slicing_mode",
"top_solid_layers", "top_solid_min_thickness", "bottom_solid_layers", "bottom_solid_min_thickness",
"extra_perimeters", "ensure_vertical_shell_thickness", "avoid_crossing_perimeters", "thin_walls", "overhangs",
"seam_position", "external_perimeters_first", "fill_density", "fill_pattern", "top_fill_pattern", "bottom_fill_pattern",
"infill_every_layers", "infill_only_where_needed", "solid_infill_every_layers", "fill_angle", "bridge_angle",
"solid_infill_below_area", "only_retract_when_crossing_perimeters", "infill_first",
"ironing", "ironing_type", "ironing_flowrate", "ironing_speed", "ironing_spacing",
"max_print_speed", "max_volumetric_speed", "avoid_crossing_perimeters_max_detour",
"fuzzy_skin", "fuzzy_skin_thickness", "fuzzy_skin_point_dist",
static std::vector<std::string> s_Preset_print_options {
"layer_height", "first_layer_height", "perimeters", "spiral_vase", "slice_closing_radius", "slicing_mode",
"top_solid_layers", "top_solid_min_thickness", "bottom_solid_layers", "bottom_solid_min_thickness",
"extra_perimeters", "ensure_vertical_shell_thickness", "avoid_crossing_perimeters", "thin_walls", "overhangs",
"seam_position", "external_perimeters_first", "fill_density", "fill_pattern", "top_fill_pattern", "bottom_fill_pattern",
"infill_every_layers", "infill_only_where_needed", "solid_infill_every_layers", "fill_angle", "bridge_angle",
"solid_infill_below_area", "only_retract_when_crossing_perimeters", "infill_first",
"ironing", "ironing_type", "ironing_flowrate", "ironing_speed", "ironing_spacing",
"max_print_speed", "max_volumetric_speed", "avoid_crossing_perimeters_max_detour",
"fuzzy_skin", "fuzzy_skin_thickness", "fuzzy_skin_point_dist",
#ifdef HAS_PRESSURE_EQUALIZER
"max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_negative",
"max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_negative",
#endif /* HAS_PRESSURE_EQUALIZER */
"perimeter_speed", "small_perimeter_speed", "external_perimeter_speed", "infill_speed", "solid_infill_speed",
"top_solid_infill_speed", "support_material_speed", "support_material_xy_spacing", "support_material_interface_speed",
"bridge_speed", "gap_fill_speed", "gap_fill_enabled", "travel_speed", "travel_speed_z", "first_layer_speed", "perimeter_acceleration", "infill_acceleration",
"bridge_acceleration", "first_layer_acceleration", "default_acceleration", "skirts", "skirt_distance", "skirt_height", "draft_shield",
"min_skirt_length", "brim_width", "brim_offset", "brim_type", "support_material", "support_material_auto", "support_material_threshold", "support_material_enforce_layers",
"raft_layers", "raft_first_layer_density", "raft_first_layer_expansion", "raft_contact_distance", "raft_expansion",
"support_material_pattern", "support_material_with_sheath", "support_material_spacing", "support_material_closing_radius", "support_material_style",
"support_material_synchronize_layers", "support_material_angle", "support_material_interface_layers", "support_material_bottom_interface_layers",
"support_material_interface_pattern", "support_material_interface_spacing", "support_material_interface_contact_loops",
"support_material_contact_distance", "support_material_bottom_contact_distance",
"support_material_buildplate_only", "dont_support_bridges", "thick_bridges", "notes", "complete_objects", "extruder_clearance_radius",
"extruder_clearance_height", "gcode_comments", "gcode_label_objects", "output_filename_format", "post_process", "perimeter_extruder",
"infill_extruder", "solid_infill_extruder", "support_material_extruder", "support_material_interface_extruder",
"ooze_prevention", "standby_temperature_delta", "interface_shells", "extrusion_width", "first_layer_extrusion_width",
"perimeter_extrusion_width", "external_perimeter_extrusion_width", "infill_extrusion_width", "solid_infill_extrusion_width",
"top_infill_extrusion_width", "support_material_extrusion_width", "infill_overlap", "infill_anchor", "infill_anchor_max", "bridge_flow_ratio", "clip_multipart_objects",
"elefant_foot_compensation", "xy_size_compensation", "threads", "resolution", "wipe_tower", "wipe_tower_x", "wipe_tower_y",
"wipe_tower_width", "wipe_tower_rotation_angle", "wipe_tower_brim_width", "wipe_tower_bridging", "single_extruder_multi_material_priming", "mmu_segmented_region_max_width",
"wipe_tower_no_sparse_layers", "compatible_printers", "compatible_printers_condition", "inherits"
};
return s_opts;
}
"perimeter_speed", "small_perimeter_speed", "external_perimeter_speed", "infill_speed", "solid_infill_speed",
"top_solid_infill_speed", "support_material_speed", "support_material_xy_spacing", "support_material_interface_speed",
"bridge_speed", "gap_fill_speed", "gap_fill_enabled", "travel_speed", "travel_speed_z", "first_layer_speed", "perimeter_acceleration", "infill_acceleration",
"bridge_acceleration", "first_layer_acceleration", "default_acceleration", "skirts", "skirt_distance", "skirt_height", "draft_shield",
"min_skirt_length", "brim_width", "brim_offset", "brim_type", "support_material", "support_material_auto", "support_material_threshold", "support_material_enforce_layers",
"raft_layers", "raft_first_layer_density", "raft_first_layer_expansion", "raft_contact_distance", "raft_expansion",
"support_material_pattern", "support_material_with_sheath", "support_material_spacing", "support_material_closing_radius", "support_material_style",
"support_material_synchronize_layers", "support_material_angle", "support_material_interface_layers", "support_material_bottom_interface_layers",
"support_material_interface_pattern", "support_material_interface_spacing", "support_material_interface_contact_loops",
"support_material_contact_distance", "support_material_bottom_contact_distance",
"support_material_buildplate_only", "dont_support_bridges", "thick_bridges", "notes", "complete_objects", "extruder_clearance_radius",
"extruder_clearance_height", "gcode_comments", "gcode_label_objects", "output_filename_format", "post_process", "perimeter_extruder",
"infill_extruder", "solid_infill_extruder", "support_material_extruder", "support_material_interface_extruder",
"ooze_prevention", "standby_temperature_delta", "interface_shells", "extrusion_width", "first_layer_extrusion_width",
"perimeter_extrusion_width", "external_perimeter_extrusion_width", "infill_extrusion_width", "solid_infill_extrusion_width",
"top_infill_extrusion_width", "support_material_extrusion_width", "infill_overlap", "infill_anchor", "infill_anchor_max", "bridge_flow_ratio", "clip_multipart_objects",
"elefant_foot_compensation", "xy_size_compensation", "threads", "resolution", "wipe_tower", "wipe_tower_x", "wipe_tower_y",
"wipe_tower_width", "wipe_tower_rotation_angle", "wipe_tower_brim_width", "wipe_tower_bridging", "single_extruder_multi_material_priming", "mmu_segmented_region_max_width",
"wipe_tower_no_sparse_layers", "compatible_printers", "compatible_printers_condition", "inherits"
};
const std::vector<std::string>& Preset::filament_options()
{
static std::vector<std::string> s_opts {
"filament_colour", "filament_diameter", "filament_type", "filament_soluble", "filament_notes", "filament_max_volumetric_speed",
"extrusion_multiplier", "filament_density", "filament_cost", "filament_spool_weight", "filament_loading_speed", "filament_loading_speed_start", "filament_load_time",
"filament_unloading_speed", "filament_unloading_speed_start", "filament_unload_time", "filament_toolchange_delay", "filament_cooling_moves",
"filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters", "filament_minimal_purge_on_wipe_tower",
"temperature", "first_layer_temperature", "bed_temperature", "first_layer_bed_temperature", "fan_always_on", "cooling", "min_fan_speed",
"max_fan_speed", "bridge_fan_speed", "disable_fan_first_layers", "full_fan_speed_layer", "fan_below_layer_time", "slowdown_below_layer_time", "min_print_speed",
"start_filament_gcode", "end_filament_gcode",
// Retract overrides
"filament_retract_length", "filament_retract_lift", "filament_retract_lift_above", "filament_retract_lift_below", "filament_retract_speed", "filament_deretract_speed", "filament_retract_restart_extra", "filament_retract_before_travel",
"filament_retract_layer_change", "filament_wipe", "filament_retract_before_wipe",
// Profile compatibility
"filament_vendor", "compatible_prints", "compatible_prints_condition", "compatible_printers", "compatible_printers_condition", "inherits"
};
return s_opts;
}
static std::vector<std::string> s_Preset_filament_options {
"filament_colour", "filament_diameter", "filament_type", "filament_soluble", "filament_notes", "filament_max_volumetric_speed",
"extrusion_multiplier", "filament_density", "filament_cost", "filament_spool_weight", "filament_loading_speed", "filament_loading_speed_start", "filament_load_time",
"filament_unloading_speed", "filament_unloading_speed_start", "filament_unload_time", "filament_toolchange_delay", "filament_cooling_moves",
"filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters", "filament_minimal_purge_on_wipe_tower",
"temperature", "first_layer_temperature", "bed_temperature", "first_layer_bed_temperature", "fan_always_on", "cooling", "min_fan_speed",
"max_fan_speed", "bridge_fan_speed", "disable_fan_first_layers", "full_fan_speed_layer", "fan_below_layer_time", "slowdown_below_layer_time", "min_print_speed",
"start_filament_gcode", "end_filament_gcode",
// Retract overrides
"filament_retract_length", "filament_retract_lift", "filament_retract_lift_above", "filament_retract_lift_below", "filament_retract_speed", "filament_deretract_speed", "filament_retract_restart_extra", "filament_retract_before_travel",
"filament_retract_layer_change", "filament_wipe", "filament_retract_before_wipe",
// Profile compatibility
"filament_vendor", "compatible_prints", "compatible_prints_condition", "compatible_printers", "compatible_printers_condition", "inherits"
};
const std::vector<std::string>& Preset::machine_limits_options()
{
static std::vector<std::string> s_opts;
if (s_opts.empty()) {
s_opts = {
"machine_max_acceleration_extruding", "machine_max_acceleration_retracting", "machine_max_acceleration_travel",
"machine_max_acceleration_x", "machine_max_acceleration_y", "machine_max_acceleration_z", "machine_max_acceleration_e",
"machine_max_feedrate_x", "machine_max_feedrate_y", "machine_max_feedrate_z", "machine_max_feedrate_e",
"machine_min_extruding_rate", "machine_min_travel_rate",
"machine_max_jerk_x", "machine_max_jerk_y", "machine_max_jerk_z", "machine_max_jerk_e",
};
}
return s_opts;
}
static std::vector<std::string> s_Preset_machine_limits_options {
"machine_max_acceleration_extruding", "machine_max_acceleration_retracting", "machine_max_acceleration_travel",
"machine_max_acceleration_x", "machine_max_acceleration_y", "machine_max_acceleration_z", "machine_max_acceleration_e",
"machine_max_feedrate_x", "machine_max_feedrate_y", "machine_max_feedrate_z", "machine_max_feedrate_e",
"machine_min_extruding_rate", "machine_min_travel_rate",
"machine_max_jerk_x", "machine_max_jerk_y", "machine_max_jerk_z", "machine_max_jerk_e",
};
static std::vector<std::string> s_Preset_printer_options {
"printer_technology",
"bed_shape", "bed_custom_texture", "bed_custom_model", "z_offset", "gcode_flavor", "use_relative_e_distances",
"use_firmware_retraction", "use_volumetric_e", "variable_layer_height",
//FIXME the print host keys are left here just for conversion from the Printer preset to Physical Printer preset.
"host_type", "print_host", "printhost_apikey", "printhost_cafile",
"single_extruder_multi_material", "start_gcode", "end_gcode", "before_layer_gcode", "layer_gcode", "toolchange_gcode",
"color_change_gcode", "pause_print_gcode", "template_custom_gcode",
"between_objects_gcode", "printer_vendor", "printer_model", "printer_variant", "printer_notes", "cooling_tube_retraction",
"cooling_tube_length", "high_current_on_filament_swap", "parking_pos_retraction", "extra_loading_move", "max_print_height",
"default_print_profile", "inherits",
"remaining_times", "silent_mode",
"machine_limits_usage", "thumbnails"
};
static std::vector<std::string> s_Preset_sla_print_options {
"layer_height",
"faded_layers",
"supports_enable",
"support_head_front_diameter",
"support_head_penetration",
"support_head_width",
"support_pillar_diameter",
"support_small_pillar_diameter_percent",
"support_max_bridges_on_pillar",
"support_pillar_connection_mode",
"support_buildplate_only",
"support_pillar_widening_factor",
"support_base_diameter",
"support_base_height",
"support_base_safety_distance",
"support_critical_angle",
"support_max_bridge_length",
"support_max_pillar_link_distance",
"support_object_elevation",
"support_points_density_relative",
"support_points_minimal_distance",
"slice_closing_radius",
"slicing_mode",
"pad_enable",
"pad_wall_thickness",
"pad_wall_height",
"pad_brim_size",
"pad_max_merge_distance",
// "pad_edge_radius",
"pad_wall_slope",
"pad_object_gap",
"pad_around_object",
"pad_around_object_everywhere",
"pad_object_connector_stride",
"pad_object_connector_width",
"pad_object_connector_penetration",
"hollowing_enable",
"hollowing_min_thickness",
"hollowing_quality",
"hollowing_closing_distance",
"output_filename_format",
"default_sla_print_profile",
"compatible_printers",
"compatible_printers_condition",
"inherits"
};
static std::vector<std::string> s_Preset_sla_material_options {
"material_type",
"initial_layer_height",
"bottle_cost",
"bottle_volume",
"bottle_weight",
"material_density",
"exposure_time",
"initial_exposure_time",
"material_correction",
"material_notes",
"material_vendor",
"default_sla_material_profile",
"compatible_prints", "compatible_prints_condition",
"compatible_printers", "compatible_printers_condition", "inherits"
};
static std::vector<std::string> s_Preset_sla_printer_options {
"printer_technology",
"bed_shape", "bed_custom_texture", "bed_custom_model", "max_print_height",
"display_width", "display_height", "display_pixels_x", "display_pixels_y",
"display_mirror_x", "display_mirror_y",
"display_orientation",
"fast_tilt_time", "slow_tilt_time", "area_fill",
"relative_correction",
"absolute_correction",
"elefant_foot_compensation",
"elefant_foot_min_width",
"gamma_correction",
"min_exposure_time", "max_exposure_time",
"min_initial_exposure_time", "max_initial_exposure_time",
//FIXME the print host keys are left here just for conversion from the Printer preset to Physical Printer preset.
"print_host", "printhost_apikey", "printhost_cafile",
"printer_notes",
"inherits"
};
const std::vector<std::string>& Preset::print_options() { return s_Preset_print_options; }
const std::vector<std::string>& Preset::filament_options() { return s_Preset_filament_options; }
const std::vector<std::string>& Preset::machine_limits_options() { return s_Preset_machine_limits_options; }
// The following nozzle options of a printer profile will be adjusted to match the size
// of the nozzle_diameter vector.
const std::vector<std::string>& Preset::nozzle_options() { return print_config_def.extruder_option_keys(); }
const std::vector<std::string>& Preset::sla_print_options() { return s_Preset_sla_print_options; }
const std::vector<std::string>& Preset::sla_material_options() { return s_Preset_sla_material_options; }
const std::vector<std::string>& Preset::sla_printer_options() { return s_Preset_sla_printer_options; }
const std::vector<std::string>& Preset::printer_options()
{
static std::vector<std::string> s_opts;
if (s_opts.empty()) {
s_opts = {
"printer_technology",
"bed_shape", "bed_custom_texture", "bed_custom_model", "z_offset", "gcode_flavor", "use_relative_e_distances",
"use_firmware_retraction", "use_volumetric_e", "variable_layer_height",
//FIXME the print host keys are left here just for conversion from the Printer preset to Physical Printer preset.
"host_type", "print_host", "printhost_apikey", "printhost_cafile",
"single_extruder_multi_material", "start_gcode", "end_gcode", "before_layer_gcode", "layer_gcode", "toolchange_gcode",
"color_change_gcode", "pause_print_gcode", "template_custom_gcode",
"between_objects_gcode", "printer_vendor", "printer_model", "printer_variant", "printer_notes", "cooling_tube_retraction",
"cooling_tube_length", "high_current_on_filament_swap", "parking_pos_retraction", "extra_loading_move", "max_print_height",
"default_print_profile", "inherits",
"remaining_times", "silent_mode",
"machine_limits_usage", "thumbnails"
};
s_opts.insert(s_opts.end(), Preset::machine_limits_options().begin(), Preset::machine_limits_options().end());
s_opts.insert(s_opts.end(), Preset::nozzle_options().begin(), Preset::nozzle_options().end());
}
return s_opts;
}
// The following nozzle options of a printer profile will be adjusted to match the size
// of the nozzle_diameter vector.
const std::vector<std::string>& Preset::nozzle_options()
{
return print_config_def.extruder_option_keys();
}
const std::vector<std::string>& Preset::sla_print_options()
{
static std::vector<std::string> s_opts;
if (s_opts.empty()) {
s_opts = {
"layer_height",
"faded_layers",
"supports_enable",
"support_head_front_diameter",
"support_head_penetration",
"support_head_width",
"support_pillar_diameter",
"support_small_pillar_diameter_percent",
"support_max_bridges_on_pillar",
"support_pillar_connection_mode",
"support_buildplate_only",
"support_pillar_widening_factor",
"support_base_diameter",
"support_base_height",
"support_base_safety_distance",
"support_critical_angle",
"support_max_bridge_length",
"support_max_pillar_link_distance",
"support_object_elevation",
"support_points_density_relative",
"support_points_minimal_distance",
"slice_closing_radius",
"slicing_mode",
"pad_enable",
"pad_wall_thickness",
"pad_wall_height",
"pad_brim_size",
"pad_max_merge_distance",
// "pad_edge_radius",
"pad_wall_slope",
"pad_object_gap",
"pad_around_object",
"pad_around_object_everywhere",
"pad_object_connector_stride",
"pad_object_connector_width",
"pad_object_connector_penetration",
"hollowing_enable",
"hollowing_min_thickness",
"hollowing_quality",
"hollowing_closing_distance",
"output_filename_format",
"default_sla_print_profile",
"compatible_printers",
"compatible_printers_condition",
"inherits"
};
}
return s_opts;
}
const std::vector<std::string>& Preset::sla_material_options()
{
static std::vector<std::string> s_opts;
if (s_opts.empty()) {
s_opts = {
"material_type",
"initial_layer_height",
"bottle_cost",
"bottle_volume",
"bottle_weight",
"material_density",
"exposure_time",
"initial_exposure_time",
"material_correction",
"material_notes",
"material_vendor",
"default_sla_material_profile",
"compatible_prints", "compatible_prints_condition",
"compatible_printers", "compatible_printers_condition", "inherits"
};
}
return s_opts;
}
const std::vector<std::string>& Preset::sla_printer_options()
{
static std::vector<std::string> s_opts;
if (s_opts.empty()) {
s_opts = {
"printer_technology",
"bed_shape", "bed_custom_texture", "bed_custom_model", "max_print_height",
"display_width", "display_height", "display_pixels_x", "display_pixels_y",
"display_mirror_x", "display_mirror_y",
"display_orientation",
"fast_tilt_time", "slow_tilt_time", "area_fill",
"relative_correction",
"absolute_correction",
"elefant_foot_compensation",
"elefant_foot_min_width",
"gamma_correction",
"min_exposure_time", "max_exposure_time",
"min_initial_exposure_time", "max_initial_exposure_time",
//FIXME the print host keys are left here just for conversion from the Printer preset to Physical Printer preset.
"print_host", "printhost_apikey", "printhost_cafile",
"printer_notes",
"inherits"
};
}
static std::vector<std::string> s_opts = [](){
std::vector<std::string> opts = s_Preset_printer_options;
append(opts, s_Preset_machine_limits_options);
append(opts, Preset::nozzle_options());
return opts;
}();
return s_opts;
}
@ -1194,21 +1163,38 @@ inline t_config_option_keys deep_diff(const ConfigBase &config_this, const Confi
return diff;
}
static constexpr const std::initializer_list<const char*> optional_keys { "compatible_prints", "compatible_printers" };
bool PresetCollection::is_dirty(const Preset *edited, const Preset *reference)
{
if (edited != nullptr && reference != nullptr) {
// Only compares options existing in both configs.
if (! reference->config.equals(edited->config))
return true;
// The "compatible_printers" option key is handled differently from the others:
// It is not mandatory. If the key is missing, it means it is compatible with any printer.
// If the key exists and it is empty, it means it is compatible with no printer.
for (auto &opt_key : optional_keys)
if (reference->config.has(opt_key) != edited->config.has(opt_key))
return true;
}
return false;
}
std::vector<std::string> PresetCollection::dirty_options(const Preset *edited, const Preset *reference, const bool deep_compare /*= false*/)
{
std::vector<std::string> changed;
if (edited != nullptr && reference != nullptr) {
// Only compares options existing in both configs.
changed = deep_compare ?
deep_diff(edited->config, reference->config) :
reference->config.diff(edited->config);
// The "compatible_printers" option key is handled differently from the others:
// It is not mandatory. If the key is missing, it means it is compatible with any printer.
// If the key exists and it is empty, it means it is compatible with no printer.
std::initializer_list<const char*> optional_keys { "compatible_prints", "compatible_printers" };
for (auto &opt_key : optional_keys) {
for (auto &opt_key : optional_keys)
if (reference->config.has(opt_key) != edited->config.has(opt_key))
changed.emplace_back(opt_key);
}
}
return changed;
}
@ -1385,12 +1371,16 @@ const Preset& PrinterPresetCollection::default_preset_for(const DynamicPrintConf
return this->default_preset((opt_printer_technology == nullptr || opt_printer_technology->value == ptFFF) ? 0 : 1);
}
const Preset* PrinterPresetCollection::find_by_model_id(const std::string &model_id) const
const Preset* PrinterPresetCollection::find_system_preset_by_model_and_variant(const std::string &model_id, const std::string& variant) const
{
if (model_id.empty()) { return nullptr; }
const auto it = std::find_if(cbegin(), cend(), [&](const Preset &preset) {
return preset.config.opt_string("printer_model") == model_id;
if (!preset.is_system || preset.config.opt_string("printer_model") != model_id)
return false;
if (variant.empty())
return true;
return preset.config.opt_string("printer_variant") == variant;
});
return it != cend() ? &*it : nullptr;
@ -1405,26 +1395,25 @@ std::string PhysicalPrinter::separator()
return " * ";
}
static std::vector<std::string> s_PhysicalPrinter_opts {
"preset_name", // temporary option to compatibility with older Slicer
"preset_names",
"printer_technology",
"host_type",
"print_host",
"printhost_apikey",
"printhost_cafile",
"printhost_port",
"printhost_authorization_type",
// HTTP digest authentization (RFC 2617)
"printhost_user",
"printhost_password",
"printhost_ssl_ignore_revoke"
};
const std::vector<std::string>& PhysicalPrinter::printer_options()
{
static std::vector<std::string> s_opts;
if (s_opts.empty()) {
s_opts = {
"preset_name", // temporary option to compatibility with older Slicer
"preset_names",
"printer_technology",
"host_type",
"print_host",
"printhost_apikey",
"printhost_cafile",
"printhost_port",
"printhost_authorization_type",
// HTTP digest authentization (RFC 2617)
"printhost_user",
"printhost_password"
};
}
return s_opts;
return s_PhysicalPrinter_opts;
}
static constexpr auto legacy_print_host_options = {

View file

@ -371,7 +371,7 @@ public:
const Preset& get_edited_preset() const { return m_edited_preset; }
// Return the last saved preset.
const Preset& get_saved_preset() const { return m_saved_preset; }
// const Preset& get_saved_preset() const { return m_saved_preset; }
// Return vendor of the first parent profile, for which the vendor is defined, or null if such profile does not exist.
PresetWithVendorProfile get_preset_with_vendor_profile(const Preset &preset) const;
@ -395,7 +395,7 @@ public:
void discard_current_changes() {
m_presets[m_idx_selected].reset_dirty();
m_edited_preset = m_presets[m_idx_selected];
update_saved_preset_from_current_preset();
// update_saved_preset_from_current_preset();
}
// Return a preset by its name. If the preset is active, a temporary copy is returned.
@ -463,7 +463,8 @@ public:
size_t num_visible() const { return std::count_if(m_presets.begin(), m_presets.end(), [](const Preset &preset){return preset.is_visible;}); }
// Compare the content of get_selected_preset() with get_edited_preset() configs, return true if they differ.
bool current_is_dirty() const { return ! this->current_dirty_options().empty(); }
bool current_is_dirty() const
{ return is_dirty(&this->get_edited_preset(), &this->get_selected_preset()); }
// Compare the content of get_selected_preset() with get_edited_preset() configs, return the list of keys where they differ.
std::vector<std::string> current_dirty_options(const bool deep_compare = false) const
{ return dirty_options(&this->get_edited_preset(), &this->get_selected_preset(), deep_compare); }
@ -472,10 +473,11 @@ public:
{ return dirty_options(&this->get_edited_preset(), this->get_selected_preset_parent(), deep_compare); }
// Compare the content of get_saved_preset() with get_edited_preset() configs, return true if they differ.
bool saved_is_dirty() const { return !this->saved_dirty_options().empty(); }
bool saved_is_dirty() const
{ return is_dirty(&this->get_edited_preset(), &m_saved_preset); }
// Compare the content of get_saved_preset() with get_edited_preset() configs, return the list of keys where they differ.
std::vector<std::string> saved_dirty_options(const bool deep_compare = false) const
{ return dirty_options(&this->get_edited_preset(), &this->get_saved_preset(), deep_compare); }
// std::vector<std::string> saved_dirty_options() const
// { return dirty_options(&this->get_edited_preset(), &this->get_saved_preset(), /* deep_compare */ false); }
// Copy edited preset into saved preset.
void update_saved_preset_from_current_preset() { m_saved_preset = m_edited_preset; }
@ -552,7 +554,8 @@ private:
size_t update_compatible_internal(const PresetWithVendorProfile &active_printer, const PresetWithVendorProfile *active_print, PresetSelectCompatibleType unselect_if_incompatible);
public:
static std::vector<std::string> dirty_options(const Preset *edited, const Preset *reference, const bool is_printer_type = false);
static bool is_dirty(const Preset *edited, const Preset *reference);
static std::vector<std::string> dirty_options(const Preset *edited, const Preset *reference, const bool deep_compare = false);
private:
// Type of this PresetCollection: TYPE_PRINT, TYPE_FILAMENT or TYPE_PRINTER.
Preset::Type m_type;
@ -592,7 +595,7 @@ public:
const Preset& default_preset_for(const DynamicPrintConfig &config) const override;
const Preset* find_by_model_id(const std::string &model_id) const;
const Preset* find_system_preset_by_model_and_variant(const std::string &model_id, const std::string &variant) const;
private:
PrinterPresetCollection() = default;

View file

@ -188,10 +188,13 @@ void PresetBundle::setup_directories()
}
}
PresetsConfigSubstitutions PresetBundle::load_presets(AppConfig &config, ForwardCompatibilitySubstitutionRule substitution_rule, const std::string &preferred_model_id)
PresetsConfigSubstitutions PresetBundle::load_presets(AppConfig &config, ForwardCompatibilitySubstitutionRule substitution_rule,
const PresetPreferences& preferred_selection/* = PresetPreferences()*/)
{
// First load the vendor specific system presets.
std::string errors_cummulative = this->load_system_presets();
PresetsConfigSubstitutions substitutions;
std::string errors_cummulative;
std::tie(substitutions, errors_cummulative) = this->load_system_presets(substitution_rule);
const std::string dir_user_presets = data_dir()
#ifdef SLIC3R_PROFILE_USE_PRESETS_SUBDIR
@ -202,7 +205,6 @@ PresetsConfigSubstitutions PresetBundle::load_presets(AppConfig &config, Forward
#endif
;
PresetsConfigSubstitutions substitutions;
try {
this->prints.load_presets(dir_user_presets, "print", substitutions, substitution_rule);
} catch (const std::runtime_error &err) {
@ -238,19 +240,28 @@ PresetsConfigSubstitutions PresetBundle::load_presets(AppConfig &config, Forward
if (! errors_cummulative.empty())
throw Slic3r::RuntimeError(errors_cummulative);
this->load_selections(config, preferred_model_id);
// ysToDo : set prefered filament or sla_material (relates to print technology) and force o use of preffered printer model if it was added
this->load_selections(config, preferred_selection);
return substitutions;
}
// Load system presets into this PresetBundle.
// For each vendor, there will be a single PresetBundle loaded.
std::string PresetBundle::load_system_presets()
std::pair<PresetsConfigSubstitutions, std::string> PresetBundle::load_system_presets(ForwardCompatibilitySubstitutionRule compatibility_rule)
{
if (compatibility_rule == ForwardCompatibilitySubstitutionRule::EnableSystemSilent)
// Loading system presets, don't log substitutions.
compatibility_rule = ForwardCompatibilitySubstitutionRule::EnableSilent;
else if (compatibility_rule == ForwardCompatibilitySubstitutionRule::EnableSilentDisableSystem)
// Loading system presets, throw on unknown option value.
compatibility_rule = ForwardCompatibilitySubstitutionRule::Disable;
// Here the vendor specific read only Config Bundles are stored.
boost::filesystem::path dir = (boost::filesystem::path(data_dir()) / "vendor").make_preferred();
std::string errors_cummulative;
bool first = true;
boost::filesystem::path dir = (boost::filesystem::path(data_dir()) / "vendor").make_preferred();
PresetsConfigSubstitutions substitutions;
std::string errors_cummulative;
bool first = true;
for (auto &dir_entry : boost::filesystem::directory_iterator(dir))
if (Slic3r::is_ini_file(dir_entry)) {
std::string name = dir_entry.path().filename().string();
@ -260,13 +271,13 @@ std::string PresetBundle::load_system_presets()
// Load the config bundle, flatten it.
if (first) {
// Reset this PresetBundle and load the first vendor config.
this->load_configbundle(dir_entry.path().string(), PresetBundle::LoadSystem);
append(substitutions, this->load_configbundle(dir_entry.path().string(), PresetBundle::LoadSystem, compatibility_rule).first);
first = false;
} else {
// Load the other vendor configs, merge them with this PresetBundle.
// Report duplicate profiles.
PresetBundle other;
other.load_configbundle(dir_entry.path().string(), PresetBundle::LoadSystem);
append(substitutions, other.load_configbundle(dir_entry.path().string(), PresetBundle::LoadSystem, compatibility_rule).first);
std::vector<std::string> duplicates = this->merge_presets(std::move(other));
if (! duplicates.empty()) {
errors_cummulative += "Vendor configuration file " + name + " contains the following presets with names used by other vendors: ";
@ -288,7 +299,7 @@ std::string PresetBundle::load_system_presets()
}
this->update_system_maps();
return errors_cummulative;
return std::make_pair(std::move(substitutions), errors_cummulative);
}
// Merge one vendor's presets with the other vendor's presets, report duplicates.
@ -432,7 +443,7 @@ void PresetBundle::load_installed_sla_materials(AppConfig &config)
// Load selections (current print, current filaments, current printer) from config.ini
// This is done on application start up or after updates are applied.
void PresetBundle::load_selections(AppConfig &config, const std::string &preferred_model_id)
void PresetBundle::load_selections(AppConfig &config, const PresetPreferences& preferred_selection/* = PresetPreferences()*/)
{
// Update visibility of presets based on application vendor / model / variant configuration.
this->load_installed_printers(config);
@ -455,13 +466,21 @@ void PresetBundle::load_selections(AppConfig &config, const std::string &preferr
// will be selected by the following call of this->update_compatible(PresetSelectCompatibleType::Always).
const Preset *initial_printer = printers.find_preset(initial_printer_profile_name);
const Preset *preferred_printer = printers.find_by_model_id(preferred_model_id);
const Preset *preferred_printer = printers.find_system_preset_by_model_and_variant(preferred_selection.printer_model_id, preferred_selection.printer_variant);
printers.select_preset_by_name(
(preferred_printer != nullptr && (initial_printer == nullptr || !initial_printer->is_visible)) ?
(preferred_printer != nullptr /*&& (initial_printer == nullptr || !initial_printer->is_visible)*/) ?
preferred_printer->name :
initial_printer_profile_name,
true);
// select preferred filament/sla_material profile if any exists and is visible
if (!preferred_selection.filament.empty())
if (auto it = filaments.find_preset_internal(preferred_selection.filament); it != filaments.end() && it->is_visible)
initial_filament_profile_name = it->name;
if (!preferred_selection.sla_material.empty())
if (auto it = sla_materials.find_preset_internal(preferred_selection.sla_material); it != sla_materials.end() && it->is_visible)
initial_sla_material_profile_name = it->name;
// Selects the profile, leaves it to -1 if the initial profile name is empty or if it was not found.
prints.select_preset_by_name_strict(initial_print_profile_name);
filaments.select_preset_by_name_strict(initial_filament_profile_name);
@ -700,7 +719,7 @@ ConfigSubstitutions PresetBundle::load_config_file(const std::string &path, Forw
if (is_gcode_file(path)) {
DynamicPrintConfig config;
config.apply(FullPrintConfig::defaults());
ConfigSubstitutions config_substitutions = config.load_from_gcode_file(path, true /* check_header */, compatibility_rule);
ConfigSubstitutions config_substitutions = config.load_from_gcode_file(path, compatibility_rule);
Preset::normalize(config);
load_config_file_config(path, true, std::move(config));
return config_substitutions;
@ -714,8 +733,8 @@ ConfigSubstitutions PresetBundle::load_config_file(const std::string &path, Forw
} catch (const std::ifstream::failure &err) {
throw Slic3r::RuntimeError(std::string("The Config Bundle cannot be loaded: ") + path + "\n\tReason: " + err.what());
} catch (const boost::property_tree::file_parser_error &err) {
throw Slic3r::RuntimeError((boost::format("Failed loading the Config Bundle \"%1%\": %2% at line %3%")
% err.filename() % err.message() % err.line()).str());
throw Slic3r::RuntimeError(format("Failed loading the Config Bundle \"%1%\": %2% at line %3%",
err.filename(), err.message(), err.line()));
} catch (const std::runtime_error &err) {
throw Slic3r::RuntimeError(std::string("Failed loading the preset file: ") + path + "\n\tReason: " + err.what());
}
@ -723,23 +742,27 @@ ConfigSubstitutions PresetBundle::load_config_file(const std::string &path, Forw
// 2) Continue based on the type of the configuration file.
ConfigFileType config_file_type = guess_config_file_type(tree);
ConfigSubstitutions config_substitutions;
switch (config_file_type) {
case CONFIG_FILE_TYPE_UNKNOWN:
throw Slic3r::RuntimeError(std::string("Unknown configuration file type: ") + path);
case CONFIG_FILE_TYPE_APP_CONFIG:
throw Slic3r::RuntimeError(std::string("Invalid configuration file: ") + path + ". This is an application config file.");
case CONFIG_FILE_TYPE_CONFIG:
{
// Initialize a config from full defaults.
DynamicPrintConfig config;
config.apply(FullPrintConfig::defaults());
config_substitutions = config.load(tree, compatibility_rule);
Preset::normalize(config);
load_config_file_config(path, true, std::move(config));
return config_substitutions;
}
case CONFIG_FILE_TYPE_CONFIG_BUNDLE:
return load_config_file_config_bundle(path, tree);
try {
switch (config_file_type) {
case CONFIG_FILE_TYPE_UNKNOWN:
throw Slic3r::RuntimeError(std::string("Unknown configuration file type: ") + path);
case CONFIG_FILE_TYPE_APP_CONFIG:
throw Slic3r::RuntimeError(std::string("Invalid configuration file: ") + path + ". This is an application config file.");
case CONFIG_FILE_TYPE_CONFIG:
{
// Initialize a config from full defaults.
DynamicPrintConfig config;
config.apply(FullPrintConfig::defaults());
config_substitutions = config.load(tree, compatibility_rule);
Preset::normalize(config);
load_config_file_config(path, true, std::move(config));
return config_substitutions;
}
case CONFIG_FILE_TYPE_CONFIG_BUNDLE:
return load_config_file_config_bundle(path, tree, compatibility_rule);
}
} catch (const ConfigurationError &e) {
throw Slic3r::RuntimeError(format("Invalid configuration file %1%: %2%", path, e.what()));
}
// This shall never happen. Suppres compiler warnings.
@ -916,13 +939,14 @@ void PresetBundle::load_config_file_config(const std::string &name_or_path, bool
}
// Load the active configuration of a config bundle from a boost property_tree. This is a private method called from load_config_file.
ConfigSubstitutions PresetBundle::load_config_file_config_bundle(const std::string &path, const boost::property_tree::ptree &tree)
ConfigSubstitutions PresetBundle::load_config_file_config_bundle(
const std::string &path, const boost::property_tree::ptree &tree, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
// 1) Load the config bundle into a temp data.
PresetBundle tmp_bundle;
// Load the config bundle, but don't save the loaded presets to user profile directory, as only the presets marked as active in the loaded preset bundle
// will be loaded into the master PresetBundle and activated.
auto [presets_substitutions, presets_imported] = tmp_bundle.load_configbundle(path, {});
auto [presets_substitutions, presets_imported] = tmp_bundle.load_configbundle(path, {}, compatibility_rule);
UNUSED(presets_imported);
std::string bundle_name = std::string(" - ") + boost::filesystem::path(path).filename().string();
@ -1135,15 +1159,11 @@ static void flatten_configbundle_hierarchy(boost::property_tree::ptree &tree, co
// Load a config bundle file, into presets and store the loaded presets into separate files
// of the local configuration directory.
std::pair<PresetsConfigSubstitutions, size_t> PresetBundle::load_configbundle(const std::string &path, LoadConfigBundleAttributes flags)
std::pair<PresetsConfigSubstitutions, size_t> PresetBundle::load_configbundle(
const std::string &path, LoadConfigBundleAttributes flags, ForwardCompatibilitySubstitutionRule compatibility_rule)
{
// Enable substitutions for user config bundle, throw an exception when loading a system profile.
ConfigSubstitutionContext substitution_context {
flags.has(LoadConfigBundleAttribute::LoadSystem) ?
ForwardCompatibilitySubstitutionRule::Disable :
ForwardCompatibilitySubstitutionRule::Enable
};
ConfigSubstitutionContext substitution_context { compatibility_rule };
PresetsConfigSubstitutions substitutions;
if (flags.has(LoadConfigBundleAttribute::ResetUserProfile) || flags.has(LoadConfigBundleAttribute::LoadSystem))
@ -1238,7 +1258,7 @@ std::pair<PresetsConfigSubstitutions, size_t> PresetBundle::load_configbundle(co
active_sla_material = kvp.second.data();
} else if (kvp.first == "printer") {
active_printer = kvp.second.data();
}else if (kvp.first == "physical_printer") {
} else if (kvp.first == "physical_printer") {
active_physical_printer = kvp.second.data();
}
}
@ -1275,32 +1295,36 @@ std::pair<PresetsConfigSubstitutions, size_t> PresetBundle::load_configbundle(co
DynamicPrintConfig config;
std::string alias_name;
std::vector<std::string> renamed_from;
auto parse_config_section = [&section, &alias_name, &renamed_from, &substitution_context, &path](DynamicPrintConfig &config) {
substitution_context.substitutions.clear();
for (auto &kvp : section.second) {
if (kvp.first == "alias")
alias_name = kvp.second.data();
else if (kvp.first == "renamed_from") {
if (! unescape_strings_cstyle(kvp.second.data(), renamed_from)) {
BOOST_LOG_TRIVIAL(error) << "Error in a Vendor Config Bundle \"" << path << "\": The preset \"" <<
section.first << "\" contains invalid \"renamed_from\" key, which is being ignored.";
}
}
// Throws on parsing error. For system presets, no substituion is being done, but an exception is thrown.
config.set_deserialize(kvp.first, kvp.second.data(), substitution_context);
try {
auto parse_config_section = [&section, &alias_name, &renamed_from, &substitution_context, &path](DynamicPrintConfig &config) {
substitution_context.substitutions.clear();
for (auto &kvp : section.second) {
if (kvp.first == "alias")
alias_name = kvp.second.data();
else if (kvp.first == "renamed_from") {
if (! unescape_strings_cstyle(kvp.second.data(), renamed_from)) {
BOOST_LOG_TRIVIAL(error) << "Error in a Vendor Config Bundle \"" << path << "\": The preset \"" <<
section.first << "\" contains invalid \"renamed_from\" key, which is being ignored.";
}
}
// Throws on parsing error. For system presets, no substituion is being done, but an exception is thrown.
config.set_deserialize(kvp.first, kvp.second.data(), substitution_context);
}
};
if (presets == &this->printers) {
// Select the default config based on the printer_technology field extracted from kvp.
DynamicPrintConfig config_src;
parse_config_section(config_src);
default_config = &presets->default_preset_for(config_src).config;
config = *default_config;
config.apply(config_src);
} else {
default_config = &presets->default_preset().config;
config = *default_config;
parse_config_section(config);
}
};
if (presets == &this->printers) {
// Select the default config based on the printer_technology field extracted from kvp.
DynamicPrintConfig config_src;
parse_config_section(config_src);
default_config = &presets->default_preset_for(config_src).config;
config = *default_config;
config.apply(config_src);
} else {
default_config = &presets->default_preset().config;
config = *default_config;
parse_config_section(config);
} catch (const ConfigurationError &e) {
throw ConfigurationError(format("Invalid configuration bundle \"%1%\", section [%2%]: ", path, section.first) + e.what());
}
Preset::normalize(config);
// Report configuration fields, which are misplaced into a wrong group.
@ -1408,8 +1432,12 @@ std::pair<PresetsConfigSubstitutions, size_t> PresetBundle::load_configbundle(co
DynamicPrintConfig config = default_config;
substitution_context.substitutions.clear();
for (auto& kvp : section.second)
config.set_deserialize(kvp.first, kvp.second.data(), substitution_context);
try {
for (auto& kvp : section.second)
config.set_deserialize(kvp.first, kvp.second.data(), substitution_context);
} catch (const ConfigurationError &e) {
throw ConfigurationError(format("Invalid configuration bundle \"%1%\", section [%2%]: ", path, section.first) + e.what());
}
// Report configuration fields, which are misplaced into a wrong group.
std::string incorrect_keys = Preset::remove_invalid_keys(config, default_config);
@ -1449,7 +1477,7 @@ std::pair<PresetsConfigSubstitutions, size_t> PresetBundle::load_configbundle(co
if (! active_print.empty())
prints.select_preset_by_name(active_print, true);
if (! active_sla_print.empty())
sla_materials.select_preset_by_name(active_sla_print, true);
sla_prints.select_preset_by_name(active_sla_print, true);
if (! active_sla_material.empty())
sla_materials.select_preset_by_name(active_sla_material, true);
if (! active_printer.empty())

View file

@ -25,9 +25,18 @@ public:
void setup_directories();
struct PresetPreferences {
std::string printer_model_id;// name of a preferred printer model
std::string printer_variant; // name of a preferred printer variant
std::string filament; // name of a preferred filament preset
std::string sla_material; // name of a preferred sla_material preset
};
// Load ini files of all types (print, filament, printer) from Slic3r::data_dir() / presets.
// Load selections (current print, current filaments, current printer) from config.ini
PresetsConfigSubstitutions load_presets(AppConfig &config, ForwardCompatibilitySubstitutionRule rule, const std::string &preferred_model_id = std::string());
// select preferred presets, if any exist
PresetsConfigSubstitutions load_presets(AppConfig &config, ForwardCompatibilitySubstitutionRule rule,
const PresetPreferences& preferred_selection = PresetPreferences());
// Export selections (current print, current filaments, current printer) into config.ini
void export_selections(AppConfig &config);
@ -102,7 +111,8 @@ public:
using LoadConfigBundleAttributes = enum_bitmask<LoadConfigBundleAttribute>;
// Load the config bundle based on the flags.
// Don't do any config substitutions when loading a system profile, perform and report substitutions otherwise.
std::pair<PresetsConfigSubstitutions, size_t> load_configbundle(const std::string &path, LoadConfigBundleAttributes flags);
std::pair<PresetsConfigSubstitutions, size_t> load_configbundle(
const std::string &path, LoadConfigBundleAttributes flags, ForwardCompatibilitySubstitutionRule compatibility_rule);
// Export a config bundle file containing all the presets and the names of the active presets.
void export_configbundle(const std::string &path, bool export_system_settings = false, bool export_physical_printers = false);
@ -139,7 +149,7 @@ public:
static const char *PRUSA_BUNDLE;
private:
std::string load_system_presets();
std::pair<PresetsConfigSubstitutions, std::string> load_system_presets(ForwardCompatibilitySubstitutionRule compatibility_rule);
// Merge one vendor's presets with the other vendor's presets, report duplicates.
std::vector<std::string> merge_presets(PresetBundle &&other);
// Update renamed_from and alias maps of system profiles.
@ -152,13 +162,14 @@ private:
// Load selections (current print, current filaments, current printer) from config.ini
// This is done just once on application start up.
void load_selections(AppConfig &config, const std::string &preferred_model_id = "");
void load_selections(AppConfig &config, const PresetPreferences& preferred_selection = PresetPreferences());
// Load print, filament & printer presets from a config. If it is an external config, then the name is extracted from the external path.
// and the external config is just referenced, not stored into user profile directory.
// If it is not an external config, then the config will be stored into the user profile directory.
void load_config_file_config(const std::string &name_or_path, bool is_external, DynamicPrintConfig &&config);
ConfigSubstitutions load_config_file_config_bundle(const std::string &path, const boost::property_tree::ptree &tree);
ConfigSubstitutions load_config_file_config_bundle(
const std::string &path, const boost::property_tree::ptree &tree, ForwardCompatibilitySubstitutionRule compatibility_rule);
DynamicPrintConfig full_fff_config() const;
DynamicPrintConfig full_sla_config() const;

View file

@ -159,7 +159,8 @@ bool Print::invalidate_state_by_config_options(const ConfigOptionResolver & /* n
|| opt_key == "wipe_tower_rotation_angle") {
steps.emplace_back(psSkirtBrim);
} else if (
opt_key == "nozzle_diameter"
opt_key == "first_layer_height"
|| opt_key == "nozzle_diameter"
|| opt_key == "resolution"
// Spiral Vase forces different kind of slicing than the normal model:
// In Spiral Vase mode, holes are closed and only the largest area contour is kept at each layer.

View file

@ -253,6 +253,9 @@ public:
ConstLayerPtrsAdaptor layers() const { return ConstLayerPtrsAdaptor(&m_layers); }
ConstSupportLayerPtrsAdaptor support_layers() const { return ConstSupportLayerPtrsAdaptor(&m_support_layers); }
const Transform3d& trafo() const { return m_trafo; }
// Trafo with the center_offset() applied after the transformation, to center the object in XY before slicing.
Transform3d trafo_centered() const
{ Transform3d t = this->trafo(); t.pretranslate(Vec3d(- unscale<double>(m_center_offset.x()), - unscale<double>(m_center_offset.y()), 0)); return t; }
const PrintInstances& instances() const { return m_instances; }
// Whoever will get a non-const pointer to PrintObject will be able to modify its layers.
@ -268,7 +271,11 @@ public:
// Centering offset of the sliced mesh from the scaled and rotated mesh of the model.
const Point& center_offset() const { return m_center_offset; }
bool has_brim() const { return this->config().brim_type != btNoBrim && this->config().brim_width.value > 0.; }
bool has_brim() const {
return this->config().brim_type != btNoBrim
&& this->config().brim_width.value > 0.
&& ! this->has_raft();
}
// This is the *total* layer count (including support layers)
// this value is not supposed to be compared with Layer::id
@ -318,7 +325,7 @@ public:
bool has_raft() const { return m_config.raft_layers > 0; }
bool has_support_material() const { return this->has_support() || this->has_raft(); }
// Checks if the model object is painted using the multi-material painting gizmo.
bool is_mm_painted() const { return this->model_object()->is_mm_painted(); };
bool is_mm_painted() const { return this->model_object()->is_mm_painted(); }
// returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
std::vector<unsigned int> object_extruders() const;

View file

@ -216,22 +216,25 @@ static t_config_option_keys print_config_diffs(
const ConfigOption *opt_new_filament = std::binary_search(extruder_retract_keys.begin(), extruder_retract_keys.end(), opt_key) ? new_full_config.option(filament_prefix + opt_key) : nullptr;
if (opt_new_filament != nullptr && ! opt_new_filament->is_nil()) {
// An extruder retract override is available at some of the filament presets.
if (*opt_old != *opt_new || opt_new->overriden_by(opt_new_filament)) {
bool overriden = opt_new->overriden_by(opt_new_filament);
if (overriden || *opt_old != *opt_new) {
auto opt_copy = opt_new->clone();
opt_copy->apply_override(opt_new_filament);
if (*opt_old == *opt_copy)
delete opt_copy;
else {
filament_overrides.set_key_value(opt_key, opt_copy);
bool changed = *opt_old != *opt_copy;
if (changed)
print_diff.emplace_back(opt_key);
}
if (changed || overriden) {
// filament_overrides will be applied to the placeholder parser, which layers these parameters over full_print_config.
filament_overrides.set_key_value(opt_key, opt_copy);
} else
delete opt_copy;
}
} else if (*opt_new != *opt_old)
print_diff.emplace_back(opt_key);
}
return print_diff;
}
}
// Prepare for storing of the full print config into new_full_config to be exported into the G-code and to be used by the PlaceholderParser.
static t_config_option_keys full_print_config_diffs(const DynamicPrintConfig &current_full_config, const DynamicPrintConfig &new_full_config)
@ -812,7 +815,7 @@ static PrintObjectRegions* generate_print_object_regions(
layer_ranges_regions.push_back({ range.layer_height_range, range.config });
}
const bool is_mm_painted = std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
const bool is_mm_painted = num_extruders > 1 && std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
update_volume_bboxes(layer_ranges_regions, out->cached_volume_ids, model_volumes, out->trafo_bboxes, is_mm_painted ? 0.f : std::max(0.f, xy_size_compensation));
std::vector<PrintRegion*> region_set;
@ -928,6 +931,7 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
bool num_extruders_changed = false;
if (! full_config_diff.empty()) {
update_apply_status(this->invalidate_step(psGCodeExport));
m_placeholder_parser.clear_config();
// Set the profile aliases for the PrintBase::output_filename()
m_placeholder_parser.set("print_preset", new_full_config.option("print_settings_id")->clone());
m_placeholder_parser.set("filament_preset", new_full_config.option("filament_settings_id")->clone());
@ -939,6 +943,8 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_config.apply_only(new_full_config, print_diff, true);
//FIXME use move semantics once ConfigBase supports it.
// Some filament_overrides may contain values different from new_full_config, but equal to m_config.
// As long as these config options don't reallocate memory when copying, we are safe overriding a value, which is in use by a worker thread.
m_config.apply(filament_overrides);
// Handle changes to object config defaults
m_default_object_config.apply_only(new_full_config, object_diff, true);
@ -946,8 +952,8 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
m_default_region_config.apply_only(new_full_config, region_diff, true);
m_full_print_config = std::move(new_full_config);
if (num_extruders != m_config.nozzle_diameter.size()) {
num_extruders = m_config.nozzle_diameter.size();
num_extruders_changed = true;
num_extruders = m_config.nozzle_diameter.size();
num_extruders_changed = true;
}
}
@ -1065,7 +1071,8 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
// Check whether a model part volume was added or removed, their transformations or order changed.
// Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked.
bool solid_or_modifier_differ = model_volume_list_changed(model_object, model_object_new, solid_or_modifier_types) ||
model_mmu_segmentation_data_changed(model_object, model_object_new);
model_mmu_segmentation_data_changed(model_object, model_object_new) ||
(model_object_new.is_mm_painted() && num_extruders_changed);
bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) ||
model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER);
bool layer_height_ranges_differ = ! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty());
@ -1267,7 +1274,8 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
print_object_regions->ref_cnt_inc();
}
std::vector<unsigned int> painting_extruders;
if (const auto &volumes = print_object.model_object()->volumes;
if (const auto &volumes = print_object.model_object()->volumes;
num_extruders > 1 &&
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume *v) { return ! v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
//FIXME be more specific! Don't enumerate extruders that are not used for painting!
painting_extruders.assign(num_extruders, 0);

View file

@ -232,9 +232,19 @@ void PrintConfigDef::init_common_params()
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionString(""));
def = this->add("elefant_foot_compensation", coFloat);
def->label = L("Elephant foot compensation");
def->category = L("Advanced");
def->tooltip = L("The first layer will be shrunk in the XY plane by the configured value "
"to compensate for the 1st layer squish aka an Elephant Foot effect.");
def->sidetext = L("mm");
def->min = 0;
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloat(0.));
def = this->add("thumbnails", coPoints);
def->label = L("G-code thumbnails");
def->tooltip = L("Picture sizes to be stored into a .gcode and .sl1 files, in the following format: \"XxY, XxY, ...\"");
def->tooltip = L("Picture sizes to be stored into a .gcode and .sl1 / .sl1s files, in the following format: \"XxY, XxY, ...\"");
def->mode = comExpert;
def->gui_type = ConfigOptionDef::GUIType::one_string;
def->set_default_value(new ConfigOptionPoints());
@ -264,6 +274,7 @@ void PrintConfigDef::init_common_params()
"Print host behind HAProxy with basic auth enabled can be accessed by putting the user name and password into the URL "
"in the following format: https://username:password@your-octopi-address/");
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionString(""));
def = this->add("printhost_apikey", coString);
@ -271,6 +282,7 @@ void PrintConfigDef::init_common_params()
def->tooltip = L("Slic3r can upload G-code files to a printer host. This field should contain "
"the API Key or the password required for authentication.");
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionString(""));
def = this->add("printhost_port", coString);
@ -278,6 +290,7 @@ void PrintConfigDef::init_common_params()
def->tooltip = L("Name of the printer");
def->gui_type = ConfigOptionDef::GUIType::select_open;
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionString(""));
def = this->add("printhost_cafile", coString);
@ -285,31 +298,33 @@ void PrintConfigDef::init_common_params()
def->tooltip = L("Custom CA certificate file can be specified for HTTPS OctoPrint connections, in crt/pem format. "
"If left blank, the default OS CA certificate repository is used.");
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionString(""));
def = this->add("elefant_foot_compensation", coFloat);
def->label = L("Elephant foot compensation");
def->category = L("Advanced");
def->tooltip = L("The first layer will be shrunk in the XY plane by the configured value "
"to compensate for the 1st layer squish aka an Elephant Foot effect.");
def->sidetext = L("mm");
def->min = 0;
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloat(0.2));
// Options used by physical printers
def = this->add("printhost_user", coString);
def->label = L("User");
// def->tooltip = L("");
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionString(""));
def = this->add("printhost_password", coString);
def->label = L("Password");
// def->tooltip = L("");
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionString(""));
// Only available on Windows.
def = this->add("printhost_ssl_ignore_revoke", coBool);
def->label = L("Ignore HTTPS certificate revocation checks");
def->tooltip = L("Ignore HTTPS certificate revocation checks in case of missing or offline distribution points. "
"One may want to enable this option for self signed certificates if connection fails.");
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionBool(false));
def = this->add("preset_names", coStrings);
def->label = L("Printer preset names");
@ -317,12 +332,6 @@ void PrintConfigDef::init_common_params()
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionStrings());
// temporary workaround for compatibility with older Slicer
{
def = this->add("preset_name", coString);
def->set_default_value(new ConfigOptionString());
}
def = this->add("printhost_authorization_type", coEnum);
def->label = L("Authorization Type");
// def->tooltip = L("");
@ -332,7 +341,14 @@ void PrintConfigDef::init_common_params()
def->enum_labels.push_back(L("API key"));
def->enum_labels.push_back(L("HTTP digest"));
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionEnum<AuthorizationType>(atKeyPassword));
// temporary workaround for compatibility with older Slicer
{
def = this->add("preset_name", coString);
def->set_default_value(new ConfigOptionString());
}
}
void PrintConfigDef::init_fff_params()
@ -465,7 +481,8 @@ void PrintConfigDef::init_fff_params()
def = this->add("brim_width", coFloat);
def->label = L("Brim width");
def->category = L("Skirt and brim");
def->tooltip = L("Horizontal width of the brim that will be printed around each object on the first layer.");
def->tooltip = L("Horizontal width of the brim that will be printed around each object on the first layer."
"When raft is used, no brim is generated (use raft_first_layer_expansion).");
def->sidetext = L("mm");
def->min = 0;
def->max = 200;
@ -491,10 +508,11 @@ void PrintConfigDef::init_fff_params()
def = this->add("brim_offset", coFloat);
def->label = L("Brim offset");
def->category = L("Skirt and brim");
def->tooltip = L("The offset of the brim from the printed object.");
def->tooltip = L("The offset of the brim from the printed object. The offset is applied after the elephant foot compensation.");
def->sidetext = L("mm");
def->mode = comSimple;
def->set_default_value(new ConfigOptionFloat(0));
def->min = 0;
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloat(0.f));
def = this->add("clip_multipart_objects", coBool);
def->label = L("Clip multi-part objects");
@ -1808,6 +1826,7 @@ void PrintConfigDef::init_fff_params()
def->enum_labels.push_back("AstroBox");
def->enum_labels.push_back("Repetier");
def->mode = comAdvanced;
def->cli = ConfigOptionDef::nocli;
def->set_default_value(new ConfigOptionEnum<PrintHostType>(htOctoPrint));
def = this->add("only_retract_when_crossing_perimeters", coBool);
@ -4154,9 +4173,10 @@ CLITransformConfigDef::CLITransformConfigDef()
def->label = L("Don't arrange");
def->tooltip = L("Do not rearrange the given models before merging and keep their original XY coordinates.");
def = this->add("dont_ensure_on_bed", coBool);
def->label = L("Don't ensure on bed");
def->tooltip = L("Do not lift the object above the bed when it is partially below.");
def = this->add("ensure_on_bed", coBool);
def->label = L("Ensure on bed");
def->tooltip = L("Lift the object above the bed when it is partially below. Enabled by default, use --no-ensure-on-bed to disable.");
def->set_default_value(new ConfigOptionBool(true));
def = this->add("duplicate", coInt);
def->label = L("Duplicate");

View file

@ -428,10 +428,8 @@ std::pair<FillAdaptive::OctreePtr, FillAdaptive::OctreePtr> PrintObject::prepare
indexed_triangle_set mesh = this->model_object()->raw_indexed_triangle_set();
// Rotate mesh and build octree on it with axis-aligned (standart base) cubes.
Transform3d m = m_trafo;
m.pretranslate(Vec3d(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0));
auto to_octree = transform_to_octree().toRotationMatrix();
its_transform(mesh, to_octree * m, true);
its_transform(mesh, to_octree * this->trafo_centered(), true);
// Triangulate internal bridging surfaces.
std::vector<std::vector<Vec3d>> overhangs(this->layers().size());
@ -537,7 +535,6 @@ bool PrintObject::invalidate_state_by_config_options(
steps.emplace_back(posPerimeters);
} else if (
opt_key == "layer_height"
|| opt_key == "first_layer_height"
|| opt_key == "mmu_segmented_region_max_width"
|| opt_key == "raft_layers"
|| opt_key == "raft_contact_distance"
@ -2298,7 +2295,7 @@ void PrintObject::project_and_append_custom_facets(
: mv->supported_facets.get_facets_strict(*mv, type);
if (! custom_facets.indices.empty())
project_triangles_to_slabs(this->layers(), custom_facets,
(Eigen::Translation3d(to_3d(unscaled<double>(this->center_offset()), 0.)) * this->trafo() * mv->get_matrix()).cast<float>(),
(this->trafo_centered() * mv->get_matrix()).cast<float>(),
seam, out);
}
}

View file

@ -167,8 +167,9 @@ static std::vector<VolumeSlices> slice_volumes_inner(
params_base.mode_below = params_base.mode;
const bool is_mm_painted = std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
const auto extra_offset = is_mm_painted ? 0.f : std::max(0.f, float(print_object_config.xy_size_compensation.value));
const size_t num_extruders = print_config.nozzle_diameter.size();
const bool is_mm_painted = num_extruders > 1 && std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
const auto extra_offset = is_mm_painted ? 0.f : std::max(0.f, float(print_object_config.xy_size_compensation.value));
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_needs_slicing(*model_volume)) {
@ -695,11 +696,9 @@ void PrintObject::slice_volumes()
}
std::vector<float> slice_zs = zs_from_layers(m_layers);
Transform3d trafo = this->trafo();
trafo.pretranslate(Vec3d(- unscale<double>(m_center_offset.x()), - unscale<double>(m_center_offset.y()), 0));
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, *m_shared_regions, slice_zs,
slice_volumes_inner(
print->config(), this->config(), trafo,
print->config(), this->config(), this->trafo_centered(),
this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback),
m_config.clip_multipart_objects,
throw_on_cancel_callback);
@ -725,6 +724,7 @@ void PrintObject::slice_volumes()
// Is any ModelVolume MMU painted?
if (const auto& volumes = this->model_object()->volumes;
m_print->config().nozzle_diameter.size() > 1 &&
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume* v) { return !v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
// If XY Size compensation is also enabled, notify the user that XY Size compensation
@ -745,8 +745,9 @@ void PrintObject::slice_volumes()
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
{
// Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.
const auto xy_compensation_scaled = this->is_mm_painted() ? scaled<float>(0.f) : scaled<float>(std::min(m_config.xy_size_compensation.value, 0.));
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
const size_t num_extruders = print->config().nozzle_diameter.size();
const auto xy_compensation_scaled = (num_extruders > 1 && this->is_mm_painted()) ? scaled<float>(0.f) : scaled<float>(std::min(m_config.xy_size_compensation.value, 0.));
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
// Only enable Elephant foot compensation if printing directly on the print bed.
float(scale_(m_config.elefant_foot_compensation.value)) :
0.f;
@ -832,8 +833,7 @@ std::vector<Polygons> PrintObject::slice_support_volumes(const ModelVolumeType m
const Print *print = this->print();
auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
MeshSlicingParamsEx params;
params.trafo = this->trafo();
params.trafo.pretranslate(Vec3d(-unscale<float>(m_center_offset.x()), -unscale<float>(m_center_offset.y()), 0));
params.trafo = this->trafo_centered();
for (; it_volume != it_volume_end; ++ it_volume)
if ((*it_volume)->type() == model_volume_type) {
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, params, throw_on_cancel_callback);

View file

@ -0,0 +1,845 @@
#include "QuadricEdgeCollapse.hpp"
#include <tuple>
#include <optional>
#include "MutablePriorityQueue.hpp"
#include "SimplifyMeshImpl.hpp"
#include <tbb/parallel_for.h>
using namespace Slic3r;
// only private namespace not neccessary be in .hpp
namespace QuadricEdgeCollapse {
using Vertices = std::vector<stl_vertex>;
using Triangle = stl_triangle_vertex_indices;
using Indices = std::vector<stl_triangle_vertex_indices>;
using SymMat = SimplifyMesh::implementation::SymetricMatrix<double>;
using ThrowOnCancel = std::function<void(void)>;
using StatusFn = std::function<void(int)>;
// smallest error caused by edges, identify smallest edge in triangle
struct Error
{
float value = -1.; // identifying of smallest edge is stored inside of TriangleInfo
uint32_t triangle_index = 0;
Error(float value, uint32_t triangle_index)
: value(value)
, triangle_index(triangle_index)
{}
Error() = default;
};
using Errors = std::vector<Error>;
// merge information together - faster access during processing
struct TriangleInfo {
Vec3f n; // normalized normal - used for check when fliped
// range(0 .. 2),
unsigned char min_index = 0; // identify edge for minimal Error -> lightweight Error structure
TriangleInfo() = default;
bool is_deleted() const { return n.x() > 2.f; }
void set_deleted() { n.x() = 3.f; }
};
using TriangleInfos = std::vector<TriangleInfo>;
struct VertexInfo {
SymMat q; // sum quadric of surround triangles
uint32_t start = 0, count = 0; // vertex neighbor triangles
VertexInfo() = default;
bool is_deleted() const { return count == 0; }
};
using VertexInfos = std::vector<VertexInfo>;
struct EdgeInfo {
uint32_t t_index=0; // triangle index
unsigned char edge = 0; // 0 or 1 or 2
EdgeInfo() = default;
};
using EdgeInfos = std::vector<EdgeInfo>;
// DTO for change neighbors
struct CopyEdgeInfo {
uint32_t start;
uint32_t count;
uint32_t move;
CopyEdgeInfo(uint32_t start, uint32_t count, uint32_t move)
: start(start), count(count), move(move)
{}
};
using CopyEdgeInfos = std::vector<CopyEdgeInfo>;
Vec3d create_normal(const Triangle &triangle, const Vertices &vertices);
std::array<Vec3d,3> create_vertices(uint32_t id_v1, uint32_t id_v2, const Vertices &vertices);
std::array<double, 3> vertices_error(const SymMat &q, const std::array<Vec3d, 3> &vertices);
double calculate_determinant(const SymMat &q);
double calculate_error(uint32_t id_v1, uint32_t id_v2, const SymMat & q, const Vertices &vertices);
Vec3f calculate_vertex(uint32_t id_v1, uint32_t id_v2, const SymMat & q, const Vertices &vertices);
Vec3d calculate_vertex(double det, const SymMat &q);
// calculate error for vertex and quadrics, triangle quadrics and triangle vertex give zero, only pozitive number
double vertex_error(const SymMat &q, const Vec3d &vertex);
SymMat create_quadric(const Triangle &t, const Vec3d& n, const Vertices &vertices);
std::tuple<TriangleInfos, VertexInfos, EdgeInfos, Errors>
init(const indexed_triangle_set &its, ThrowOnCancel& throw_on_cancel, StatusFn& status_fn);
std::optional<uint32_t> find_triangle_index1(uint32_t vi, const VertexInfo& v_info,
uint32_t ti, const EdgeInfos& e_infos, const Indices& indices);
bool is_flipped(const Vec3f &new_vertex, uint32_t ti0, uint32_t ti1, const VertexInfo& v_info,
const TriangleInfos &t_infos, const EdgeInfos &e_infos, const indexed_triangle_set &its);
bool degenerate(uint32_t vi, uint32_t ti0, uint32_t ti1, const VertexInfo &v_info,
const EdgeInfos &e_infos, const Indices &indices);
// find edge with smallest error in triangle
Vec3d calculate_3errors(const Triangle &t, const Vertices &vertices, const VertexInfos &v_infos);
Error calculate_error(uint32_t ti, const Triangle& t,const Vertices &vertices, const VertexInfos& v_infos, unsigned char& min_index);
void remove_triangle(EdgeInfos &e_infos, VertexInfo &v_info, uint32_t ti);
void change_neighbors(EdgeInfos &e_infos, VertexInfos &v_infos, uint32_t ti0, uint32_t ti1,
uint32_t vi0, uint32_t vi1, uint32_t vi_top0,
const Triangle &t1, CopyEdgeInfos& infos, EdgeInfos &e_infos1);
void compact(const VertexInfos &v_infos, const TriangleInfos &t_infos, const EdgeInfos &e_infos, indexed_triangle_set &its);
#ifndef NDEBUG
void store_surround(const char *obj_filename, size_t triangle_index, int depth, const indexed_triangle_set &its,
const VertexInfos &v_infos, const EdgeInfos &e_infos);
bool check_neighbors(const indexed_triangle_set &its, const TriangleInfos &t_infos,
const VertexInfos &v_infos, const EdgeInfos &e_infos);
#endif /* NDEBUG */
} // namespace QuadricEdgeCollapse
using namespace QuadricEdgeCollapse;
void Slic3r::its_quadric_edge_collapse(
indexed_triangle_set & its,
uint32_t triangle_count,
float * max_error,
std::function<void(void)> throw_on_cancel,
std::function<void(int)> status_fn)
{
// constants --> may be move to config
const int status_init_size = 10; // in percents
const int check_cancel_period = 16; // how many edge to reduce before call throw_on_cancel
// check input
if (triangle_count >= its.indices.size()) return;
float maximal_error = (max_error == nullptr)? std::numeric_limits<float>::max() : *max_error;
if (maximal_error <= 0.f) return;
if (throw_on_cancel == nullptr) throw_on_cancel = []() {};
if (status_fn == nullptr) status_fn = [](int) {};
StatusFn init_status_fn = [&](int percent) {
status_fn(std::round((percent * status_init_size) / 100.));
};
TriangleInfos t_infos; // only normals with information about deleted triangle
VertexInfos v_infos;
EdgeInfos e_infos;
Errors errors;
std::tie(t_infos, v_infos, e_infos, errors) = init(its, throw_on_cancel, init_status_fn);
throw_on_cancel();
status_fn(status_init_size);
//its_store_triangle(its, "triangle.obj", 1182);
//store_surround("triangle_surround1.obj", 1182, 1, its, v_infos, e_infos);
// convert from triangle index to mutable priority queue index
std::vector<size_t> ti_2_mpqi(its.indices.size(), {0});
auto setter = [&ti_2_mpqi](const Error &e, size_t index) { ti_2_mpqi[e.triangle_index] = index; };
auto less = [](const Error &e1, const Error &e2) -> bool { return e1.value < e2.value; };
auto mpq = make_miniheap_mutable_priority_queue<Error, 32, false>(std::move(setter), std::move(less));
//MutablePriorityQueue<Error, decltype(setter), decltype(less)> mpq(std::move(setter), std::move(less));
mpq.reserve(its.indices.size());
for (Error &error :errors) mpq.push(error);
const size_t max_triangle_count_for_one_vertex = 50;
CopyEdgeInfos ceis;
ceis.reserve(max_triangle_count_for_one_vertex);
EdgeInfos e_infos_swap;
e_infos_swap.reserve(max_triangle_count_for_one_vertex);
std::vector<uint32_t> changed_triangle_indices;
changed_triangle_indices.reserve(2 * max_triangle_count_for_one_vertex);
uint32_t actual_triangle_count = its.indices.size();
uint32_t count_triangle_to_reduce = actual_triangle_count - triangle_count;
auto increase_status = [&]() {
double reduced = (actual_triangle_count - triangle_count) /
(double) count_triangle_to_reduce;
double status = status_init_size + (100 - status_init_size) *
(1. - reduced);
status_fn(static_cast<int>(std::round(status)));
};
// modulo for update status
uint32_t status_mod = std::max(uint32_t(16), count_triangle_to_reduce / 100);
uint32_t iteration_number = 0;
float last_collapsed_error = 0.f;
while (actual_triangle_count > triangle_count && !mpq.empty()) {
++iteration_number;
if (iteration_number % status_mod == 0) increase_status();
if (iteration_number % check_cancel_period == 0) throw_on_cancel();
// triangle index 0
Error e = mpq.top(); // copy
if (e.value >= maximal_error) break; // Too big error
mpq.pop();
uint32_t ti0 = e.triangle_index;
TriangleInfo &t_info0 = t_infos[ti0];
if (t_info0.is_deleted()) continue;
assert(t_info0.min_index < 3);
const Triangle &t0 = its.indices[ti0];
uint32_t vi0 = t0[t_info0.min_index];
uint32_t vi1 = t0[(t_info0.min_index+1) %3];
// Need by move of neighbor edge infos in function: change_neighbors
if (vi0 > vi1) std::swap(vi0, vi1);
VertexInfo &v_info0 = v_infos[vi0];
VertexInfo &v_info1 = v_infos[vi1];
assert(!v_info0.is_deleted() && !v_info1.is_deleted());
// new vertex position
SymMat q(v_info0.q);
q += v_info1.q;
Vec3f new_vertex0 = calculate_vertex(vi0, vi1, q, its.vertices);
// set of triangle indices that change quadric
auto ti1_opt = (v_info0.count < v_info1.count)?
find_triangle_index1(vi1, v_info0, ti0, e_infos, its.indices) :
find_triangle_index1(vi0, v_info1, ti0, e_infos, its.indices) ;
if (!ti1_opt.has_value() || // edge has only one triangle
degenerate(vi0, ti0, *ti1_opt, v_info1, e_infos, its.indices) ||
degenerate(vi1, ti0, *ti1_opt, v_info0, e_infos, its.indices) ||
is_flipped(new_vertex0, ti0, *ti1_opt, v_info0, t_infos, e_infos, its) ||
is_flipped(new_vertex0, ti0, *ti1_opt, v_info1, t_infos, e_infos, its)) {
// try other triangle's edge
Vec3d errors = calculate_3errors(t0, its.vertices, v_infos);
Vec3i ord = (errors[0] < errors[1]) ?
((errors[0] < errors[2])?
((errors[1] < errors[2]) ? Vec3i(0, 1, 2) : Vec3i(0, 2, 1)) :
Vec3i(2, 0, 1)):
((errors[1] < errors[2])?
((errors[0] < errors[2]) ? Vec3i(1, 0, 2) : Vec3i(1, 2, 0)) :
Vec3i(2, 1, 0));
if (t_info0.min_index == ord[0]) {
t_info0.min_index = ord[1];
e.value = errors[t_info0.min_index];
} else if (t_info0.min_index == ord[1]) {
t_info0.min_index = ord[2];
e.value = errors[t_info0.min_index];
} else {
// error is changed when surround edge is reduced
t_info0.min_index = 3; // bad index -> invalidate
e.value = maximal_error;
}
// IMPROVE: check mpq top if it is ti1 with same edge
mpq.push(e);
continue;
}
uint32_t ti1 = *ti1_opt;
last_collapsed_error = e.value;
changed_triangle_indices.clear();
changed_triangle_indices.reserve(v_info0.count + v_info1.count - 4);
// for each vertex0 triangles
uint32_t v_info0_end = v_info0.start + v_info0.count;
for (uint32_t di = v_info0.start; di < v_info0_end; ++di) {
assert(di < e_infos.size());
uint32_t ti = e_infos[di].t_index;
if (ti == ti0) continue; // ti0 will be deleted
if (ti == ti1) continue; // ti1 will be deleted
changed_triangle_indices.emplace_back(ti);
}
// for each vertex1 triangles
uint32_t v_info1_end = v_info1.start + v_info1.count;
for (uint32_t di = v_info1.start; di < v_info1_end; ++di) {
assert(di < e_infos.size());
EdgeInfo &e_info = e_infos[di];
uint32_t ti = e_info.t_index;
if (ti == ti0) continue; // ti0 will be deleted
if (ti == ti1) continue; // ti1 will be deleted
Triangle &t = its.indices[ti];
t[e_info.edge] = vi0; // change index
changed_triangle_indices.emplace_back(ti);
}
v_info0.q = q;
// fix neighbors
// vertex index of triangle 0 which is not vi0 nor vi1
uint32_t vi_top0 = t0[(t_info0.min_index + 2) % 3];
const Triangle &t1 = its.indices[ti1];
change_neighbors(e_infos, v_infos, ti0, ti1, vi0, vi1,
vi_top0, t1, ceis, e_infos_swap);
// Change vertex
its.vertices[vi0] = new_vertex0;
// fix errors - must be after set neighbors - v_infos
mpq.remove(ti_2_mpqi[ti1]);
for (uint32_t ti : changed_triangle_indices) {
size_t priority_queue_index = ti_2_mpqi[ti];
TriangleInfo& t_info = t_infos[ti];
t_info.n = create_normal(its.indices[ti], its.vertices).cast<float>(); // recalc normals
mpq[priority_queue_index] = calculate_error(ti, its.indices[ti], its.vertices, v_infos, t_info.min_index);
mpq.update(priority_queue_index);
}
// set triangle(0 + 1) indices as deleted
TriangleInfo &t_info1 = t_infos[ti1];
t_info0.set_deleted();
t_info1.set_deleted();
// triangle counter decrementation
actual_triangle_count-=2;
assert(check_neighbors(its, t_infos, v_infos, e_infos));
}
// compact triangle
compact(v_infos, t_infos, e_infos, its);
if (max_error != nullptr) *max_error = last_collapsed_error;
}
Vec3d QuadricEdgeCollapse::create_normal(const Triangle &triangle,
const Vertices &vertices)
{
Vec3d v0 = vertices[triangle[0]].cast<double>();
Vec3d v1 = vertices[triangle[1]].cast<double>();
Vec3d v2 = vertices[triangle[2]].cast<double>();
// n = triangle normal
Vec3d n = (v1 - v0).cross(v2 - v0);
n.normalize();
return n;
}
double QuadricEdgeCollapse::calculate_determinant(const SymMat &q)
{
return q.det(0, 1, 2, 1, 4, 5, 2, 5, 7);
}
Vec3d QuadricEdgeCollapse::calculate_vertex(double det, const SymMat &q) {
double det_1 = -1 / det;
double det_x = q.det(1, 2, 3, 4, 5, 6, 5, 7, 8); // vx = A41/det(q_delta)
double det_y = q.det(0, 2, 3, 1, 5, 6, 2, 7, 8); // vy = A42/det(q_delta)
double det_z = q.det(0, 1, 3, 1, 4, 6, 2, 5, 8); // vz = A43/det(q_delta)
return Vec3d(det_1 * det_x, -det_1 * det_y, det_1 * det_z);
}
std::array<Vec3d,3> QuadricEdgeCollapse::create_vertices(uint32_t id_v1, uint32_t id_v2, const Vertices &vertices)
{
Vec3d v0 = vertices[id_v1].cast<double>();
Vec3d v1 = vertices[id_v2].cast<double>();
Vec3d vm = (v0 + v1) / 2.;
return {v0, v1, vm};
}
std::array<double, 3> QuadricEdgeCollapse::vertices_error(
const SymMat &q, const std::array<Vec3d, 3> &vertices)
{
return {
vertex_error(q, vertices[0]),
vertex_error(q, vertices[1]),
vertex_error(q, vertices[2])};
}
double QuadricEdgeCollapse::calculate_error(uint32_t id_v1,
uint32_t id_v2,
const SymMat & q,
const Vertices &vertices)
{
double det = calculate_determinant(q);
if (std::abs(det) < std::numeric_limits<double>::epsilon()) {
// can't divide by zero
auto verts = create_vertices(id_v1, id_v2, vertices);
auto errors = vertices_error(q, verts);
return *std::min_element(std::begin(errors), std::end(errors));
}
Vec3d vertex = calculate_vertex(det, q);
return vertex_error(q, vertex);
}
// similar as calculate error but focus on new vertex without calculation of error
Vec3f QuadricEdgeCollapse::calculate_vertex(uint32_t id_v1,
uint32_t id_v2,
const SymMat & q,
const Vertices &vertices)
{
double det = calculate_determinant(q);
if (std::abs(det) < std::numeric_limits<double>::epsilon()) {
// can't divide by zero
auto verts = create_vertices(id_v1, id_v2, vertices);
auto errors = vertices_error(q, verts);
auto mit = std::min_element(std::begin(errors), std::end(errors));
return verts[mit - std::begin(errors)].cast<float>();
}
return calculate_vertex(det, q).cast<float>();
}
double QuadricEdgeCollapse::vertex_error(const SymMat &q, const Vec3d &vertex)
{
const double &x = vertex.x(), &y = vertex.y(), &z = vertex.z();
return q[0] * x * x + 2 * q[1] * x * y + 2 * q[2] * x * z +
2 * q[3] * x + q[4] * y * y + 2 * q[5] * y * z +
2 * q[6] * y + q[7] * z * z + 2 * q[8] * z + q[9];
}
SymMat QuadricEdgeCollapse::create_quadric(const Triangle &t,
const Vec3d & n,
const Vertices &vertices)
{
Vec3d v0 = vertices[t[0]].cast<double>();
return SymMat(n.x(), n.y(), n.z(), -n.dot(v0));
}
std::tuple<TriangleInfos, VertexInfos, EdgeInfos, Errors>
QuadricEdgeCollapse::init(const indexed_triangle_set &its, ThrowOnCancel& throw_on_cancel, StatusFn& status_fn)
{
// change speed of progress bargraph
const int status_normal_size = 25;
const int status_sum_quadric = 25;
const int status_set_offsets = 10;
const int status_calc_errors = 30;
const int status_create_refs = 10;
int status_offset = 0;
TriangleInfos t_infos(its.indices.size());
VertexInfos v_infos(its.vertices.size());
{
std::vector<SymMat> triangle_quadrics(its.indices.size());
// calculate normals
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.indices.size()),
[&](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
const Triangle &t = its.indices[i];
TriangleInfo & t_info = t_infos[i];
Vec3d normal = create_normal(t, its.vertices);
t_info.n = normal.cast<float>();
triangle_quadrics[i] = create_quadric(t, normal, its.vertices);
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_normal_size) / its.indices.size());
}
}
}); // END parallel for
status_offset += status_normal_size;
// sum quadrics
for (size_t i = 0; i < its.indices.size(); i++) {
const Triangle &t = its.indices[i];
const SymMat & q = triangle_quadrics[i];
for (size_t e = 0; e < 3; e++) {
VertexInfo &v_info = v_infos[t[e]];
v_info.q += q;
++v_info.count; // triangle count
}
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_sum_quadric) / its.indices.size());
}
}
status_offset += status_sum_quadric;
} // remove triangle quadrics
// set offseted starts
uint32_t triangle_start = 0;
for (VertexInfo &v_info : v_infos) {
v_info.start = triangle_start;
triangle_start += v_info.count;
// set filled vertex to zero
v_info.count = 0;
}
assert(its.indices.size() * 3 == triangle_start);
status_offset += status_set_offsets;
throw_on_cancel();
status_fn(status_offset);
// calc error
Errors errors(its.indices.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.indices.size()),
[&](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
const Triangle &t = its.indices[i];
TriangleInfo & t_info = t_infos[i];
errors[i] = calculate_error(i, t, its.vertices, v_infos, t_info.min_index);
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_calc_errors) / its.indices.size());
}
if (i % 1000000 == 0) throw_on_cancel();
}
}); // END parallel for
status_offset += status_calc_errors;
// create reference
EdgeInfos e_infos(its.indices.size() * 3);
for (size_t i = 0; i < its.indices.size(); i++) {
const Triangle &t = its.indices[i];
for (size_t j = 0; j < 3; ++j) {
VertexInfo &v_info = v_infos[t[j]];
size_t ei = v_info.start + v_info.count;
assert(ei < e_infos.size());
EdgeInfo &e_info = e_infos[ei];
e_info.t_index = i;
e_info.edge = j;
++v_info.count;
}
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_create_refs) / its.indices.size());
}
}
throw_on_cancel();
status_fn(100);
return {t_infos, v_infos, e_infos, errors};
}
std::optional<uint32_t> QuadricEdgeCollapse::find_triangle_index1(uint32_t vi,
const VertexInfo &v_info,
uint32_t ti0,
const EdgeInfos & e_infos,
const Indices & indices)
{
coord_t vi_coord = static_cast<coord_t>(vi);
uint32_t end = v_info.start + v_info.count;
for (uint32_t ei = v_info.start; ei < end; ++ei) {
const EdgeInfo &e_info = e_infos[ei];
if (e_info.t_index == ti0) continue;
const Triangle& t = indices[e_info.t_index];
if (t[(e_info.edge + 1) % 3] == vi_coord ||
t[(e_info.edge + 2) % 3] == vi_coord)
return e_info.t_index;
}
// triangle0 is on border and do NOT have twin edge
return {};
}
bool QuadricEdgeCollapse::is_flipped(const Vec3f & new_vertex,
uint32_t ti0,
uint32_t ti1,
const VertexInfo & v_info,
const TriangleInfos & t_infos,
const EdgeInfos & e_infos,
const indexed_triangle_set &its)
{
static const float thr_pos = 1.0f - std::numeric_limits<float>::epsilon();
static const float thr_neg = -thr_pos;
static const float dot_thr = 0.2f; // Value from simplify mesh cca 80 DEG
// for each vertex triangles
size_t v_info_end = v_info.start + v_info.count;
for (size_t ei = v_info.start; ei < v_info_end; ++ei) {
assert(ei < e_infos.size());
const EdgeInfo &e_info = e_infos[ei];
if (e_info.t_index == ti0) continue; // ti0 will be deleted
if (e_info.t_index == ti1) continue; // ti1 will be deleted
const Triangle &t = its.indices[e_info.t_index];
const Vec3f &normal = t_infos[e_info.t_index].n;
const Vec3f &vf = its.vertices[t[(e_info.edge + 1) % 3]];
const Vec3f &vs = its.vertices[t[(e_info.edge + 2) % 3]];
Vec3f d1 = vf - new_vertex;
d1.normalize();
Vec3f d2 = vs - new_vertex;
d2.normalize();
float dot = d1.dot(d2);
if (dot > thr_pos || dot < thr_neg) return true;
// IMPROVE: propagate new normal
Vec3f n = d1.cross(d2);
n.normalize();
if(n.dot(normal) < dot_thr) return true;
}
return false;
}
bool QuadricEdgeCollapse::degenerate(uint32_t vi,
uint32_t ti0,
uint32_t ti1,
const VertexInfo &v_info,
const EdgeInfos & e_infos,
const Indices & indices)
{
// check surround triangle do not contain vertex index
// protect from creation of triangle with two same vertices inside
size_t v_info_end = v_info.start + v_info.count;
for (size_t ei = v_info.start; ei < v_info_end; ++ei) {
assert(ei < e_infos.size());
const EdgeInfo &e_info = e_infos[ei];
if (e_info.t_index == ti0) continue; // ti0 will be deleted
if (e_info.t_index == ti1) continue; // ti1 will be deleted
const Triangle &t = indices[e_info.t_index];
for (size_t i = 0; i < 3; ++i)
if (static_cast<uint32_t>(t[i]) == vi) return true;
}
return false;
}
Vec3d QuadricEdgeCollapse::calculate_3errors(const Triangle & t,
const Vertices & vertices,
const VertexInfos &v_infos)
{
Vec3d error;
for (size_t j = 0; j < 3; ++j) {
size_t j2 = (j == 2) ? 0 : (j + 1);
uint32_t vi0 = t[j];
uint32_t vi1 = t[j2];
SymMat q(v_infos[vi0].q); // copy
q += v_infos[vi1].q;
error[j] = calculate_error(vi0, vi1, q, vertices);
}
return error;
}
Error QuadricEdgeCollapse::calculate_error(uint32_t ti,
const Triangle & t,
const Vertices & vertices,
const VertexInfos &v_infos,
unsigned char & min_index)
{
Vec3d error = calculate_3errors(t, vertices, v_infos);
// select min error
min_index = (error[0] < error[1]) ? ((error[0] < error[2]) ? 0 : 2) :
((error[1] < error[2]) ? 1 : 2);
return Error(static_cast<float>(error[min_index]), ti);
}
void QuadricEdgeCollapse::remove_triangle(EdgeInfos & e_infos,
VertexInfo &v_info,
uint32_t ti)
{
auto e_info = e_infos.begin() + v_info.start;
auto e_info_end = e_info + v_info.count - 1;
for (; e_info != e_info_end; ++e_info) {
if (e_info->t_index == ti) {
*e_info = *e_info_end;
--v_info.count;
return;
}
}
assert(e_info_end->t_index == ti);
// last triangle is ti
--v_info.count;
}
void QuadricEdgeCollapse::change_neighbors(EdgeInfos & e_infos,
VertexInfos & v_infos,
uint32_t ti0,
uint32_t ti1,
uint32_t vi0,
uint32_t vi1,
uint32_t vi_top0,
const Triangle &t1,
CopyEdgeInfos& infos,
EdgeInfos & e_infos1)
{
// have to copy Edge info from higher vertex index into smaller
assert(vi0 < vi1);
// vertex index of triangle 1 which is not vi0 nor vi1
uint32_t vi_top1 = t1[0];
if (vi_top1 == vi0 || vi_top1 == vi1) {
vi_top1 = t1[1];
if (vi_top1 == vi0 || vi_top1 == vi1) vi_top1 = t1[2];
}
remove_triangle(e_infos, v_infos[vi_top0], ti0);
remove_triangle(e_infos, v_infos[vi_top1], ti1);
VertexInfo &v_info0 = v_infos[vi0];
VertexInfo &v_info1 = v_infos[vi1];
uint32_t new_triangle_count = v_info0.count + v_info1.count - 4;
remove_triangle(e_infos, v_info0, ti0);
remove_triangle(e_infos, v_info0, ti1);
// copy second's edge infos out of e_infos, to free size
e_infos1.clear();
e_infos1.reserve(v_info1.count - 2);
uint32_t v_info_s_end = v_info1.start + v_info1.count;
for (uint32_t ei = v_info1.start; ei < v_info_s_end; ++ei) {
const EdgeInfo &e_info = e_infos[ei];
if (e_info.t_index == ti0) continue;
if (e_info.t_index == ti1) continue;
e_infos1.emplace_back(e_info);
}
v_info1.count = 0;
uint32_t need = (new_triangle_count < v_info0.count)? 0:
(new_triangle_count - v_info0.count);
uint32_t act_vi = vi0 + 1;
VertexInfo *act_v_info = &v_infos[act_vi];
uint32_t act_start = act_v_info->start;
uint32_t last_end = v_info0.start + v_info0.count;
infos.clear();
infos.reserve(need);
while (true) {
uint32_t save = act_start - last_end;
if (save > 0) {
if (save >= need) break;
need -= save;
infos.emplace_back(act_v_info->start, act_v_info->count, need);
} else {
infos.back().count += act_v_info->count;
}
last_end = act_v_info->start + act_v_info->count;
act_v_info->start += need;
++act_vi;
if (act_vi < v_infos.size()) {
act_v_info = &v_infos[act_vi];
act_start = act_v_info->start;
} else
act_start = e_infos.size(); // fix for edge between last two triangles
}
// copy by c_infos
for (uint32_t i = infos.size(); i > 0; --i) {
const CopyEdgeInfo &c_info = infos[i - 1];
for (uint32_t ei = c_info.start + c_info.count - 1; ei >= c_info.start; --ei)
e_infos[ei + c_info.move] = e_infos[ei]; // copy
}
// copy triangle from first info into second
for (uint32_t ei_s = 0; ei_s < e_infos1.size(); ++ei_s) {
uint32_t ei_f = v_info0.start + v_info0.count;
e_infos[ei_f] = e_infos1[ei_s]; // copy
++v_info0.count;
}
}
void QuadricEdgeCollapse::compact(const VertexInfos & v_infos,
const TriangleInfos & t_infos,
const EdgeInfos & e_infos,
indexed_triangle_set &its)
{
uint32_t vi_new = 0;
for (uint32_t vi = 0; vi < v_infos.size(); ++vi) {
const VertexInfo &v_info = v_infos[vi];
if (v_info.is_deleted()) continue; // deleted
uint32_t e_info_end = v_info.start + v_info.count;
for (uint32_t ei = v_info.start; ei < e_info_end; ++ei) {
const EdgeInfo &e_info = e_infos[ei];
// change vertex index
its.indices[e_info.t_index][e_info.edge] = vi_new;
}
// compact vertices
its.vertices[vi_new++] = its.vertices[vi];
}
// remove vertices tail
its.vertices.erase(its.vertices.begin() + vi_new, its.vertices.end());
uint32_t ti_new = 0;
for (uint32_t ti = 0; ti < t_infos.size(); ti++) {
const TriangleInfo &t_info = t_infos[ti];
if (t_info.is_deleted()) continue;
its.indices[ti_new++] = its.indices[ti];
}
its.indices.erase(its.indices.begin() + ti_new, its.indices.end());
}
#ifndef NDEBUG
// store triangle surrounding to file
void QuadricEdgeCollapse::store_surround(const char *obj_filename,
size_t triangle_index,
int depth,
const indexed_triangle_set &its,
const VertexInfos & v_infos,
const EdgeInfos & e_infos)
{
std::set<size_t> triangles;
// triangle index, depth
using Item = std::pair<size_t, int>;
std::queue<Item> process;
process.push({triangle_index, depth});
while (!process.empty()) {
Item item = process.front();
process.pop();
size_t ti = item.first;
auto it = triangles.find(ti);
if (it != triangles.end()) continue;
triangles.insert(ti);
if (item.second == 0) continue;
const Vec3i &t = its.indices[ti];
for (size_t i = 0; i < 3; ++i) {
const auto &v_info = v_infos[t[i]];
for (size_t d = 0; d < v_info.count; ++d) {
size_t ei = v_info.start + d;
const auto &e_info = e_infos[ei];
auto it = triangles.find(e_info.t_index);
if (it != triangles.end()) continue;
process.push({e_info.t_index, item.second - 1});
}
}
}
std::vector<size_t> trs;
trs.reserve(triangles.size());
for (size_t ti : triangles) trs.push_back(ti);
its_store_triangles(its, obj_filename, trs);
// its_write_obj(its,"original.obj");
}
bool QuadricEdgeCollapse::check_neighbors(const indexed_triangle_set &its,
const TriangleInfos & t_infos,
const VertexInfos & v_infos,
const EdgeInfos & e_infos)
{
VertexInfos v_infos2(v_infos.size());
size_t count_indices = 0;
for (size_t ti = 0; ti < its.indices.size(); ti++) {
if (t_infos[ti].is_deleted()) continue;
++count_indices;
const Triangle &t = its.indices[ti];
for (size_t e = 0; e < 3; e++) {
VertexInfo &v_info = v_infos2[t[e]];
++v_info.count; // triangle count
}
}
uint32_t triangle_start = 0;
for (VertexInfo &v_info : v_infos2) {
v_info.start = triangle_start;
triangle_start += v_info.count;
// set filled vertex to zero
v_info.count = 0;
}
// create reference
EdgeInfos e_infos2(count_indices * 3);
for (size_t ti = 0; ti < its.indices.size(); ti++) {
if (t_infos[ti].is_deleted()) continue;
const Triangle &t = its.indices[ti];
for (size_t j = 0; j < 3; ++j) {
VertexInfo &v_info = v_infos2[t[j]];
size_t ei = v_info.start + v_info.count;
assert(ei < e_infos2.size());
EdgeInfo &e_info = e_infos2[ei];
e_info.t_index = ti;
e_info.edge = j;
++v_info.count;
}
}
for (size_t vi = 0; vi < its.vertices.size(); vi++) {
const VertexInfo &v_info = v_infos[vi];
if (v_info.is_deleted()) continue;
const VertexInfo &v_info2 = v_infos2[vi];
if (v_info.count != v_info2.count) { return false; }
EdgeInfos eis;
eis.reserve(v_info.count);
std::copy(e_infos.begin() + v_info.start,
e_infos.begin() + v_info.start + v_info.count,
std::back_inserter(eis));
auto compare = [](const EdgeInfo &ei1, const EdgeInfo &ei2) {
return ei1.t_index < ei2.t_index;
};
std::sort(eis.begin(), eis.end(), compare);
std::sort(e_infos2.begin() + v_info2.start,
e_infos2.begin() + v_info2.start + v_info2.count, compare);
for (size_t ei = 0; ei < v_info.count; ++ei) {
if (eis[ei].t_index != e_infos2[ei + v_info2.start].t_index) {
return false;
}
}
}
return true;
}
#endif /* NDEBUG */

View file

@ -0,0 +1,28 @@
// paper: https://people.eecs.berkeley.edu/~jrs/meshpapers/GarlandHeckbert2.pdf
// sum up: https://users.csc.calpoly.edu/~zwood/teaching/csc570/final06/jseeba/
// inspiration: https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
#include <cstdint>
#include <functional>
#include "TriangleMesh.hpp"
namespace Slic3r {
/// <summary>
/// Simplify mesh by Quadric metric
/// </summary>
/// <param name="its">IN/OUT triangle mesh to be simplified.</param>
/// <param name="triangle_count">Wanted triangle count.</param>
/// <param name="max_error">Maximal Quadric for reduce.
/// When nullptr then max float is used
/// Output: Last used ErrorValue to collapse edge</param>
/// <param name="throw_on_cancel">Could stop process of calculation.</param>
/// <param name="statusfn">Give a feed back to user about progress. Values 1 - 100</param>
void its_quadric_edge_collapse(
indexed_triangle_set & its,
uint32_t triangle_count = 0,
float * max_error = nullptr,
std::function<void(void)> throw_on_cancel = nullptr,
std::function<void(int)> statusfn = nullptr);
} // namespace Slic3r

View file

@ -58,29 +58,6 @@ T sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
return execution::reduce(ex_tbb, from, to, initv, mergefn, accessfn, grainsize);
}
// Try to guess the number of support points needed to support a mesh
double get_misalginment_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
auto triangle = get_transformed_triangle(mesh, tr, fi);
Vec3f U = triangle[1] - triangle[0];
Vec3f V = triangle[2] - triangle[0];
Vec3f C = U.cross(V);
// We should score against the alignment with the reference planes
return scaled<int_fast64_t>(std::abs(C.dot(Vec3f::UnitX())) +
std::abs(C.dot(Vec3f::UnitY())));
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
// Get area and normal of a triangle
struct Facestats {
Vec3f normal;
@ -96,21 +73,45 @@ struct Facestats {
}
};
// Try to guess the number of support points needed to support a mesh
double get_misalginment_score(const TriangleMesh &mesh, const Transform3f &tr)
{
if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
float score = fc.area
* (std::abs(fc.normal.dot(Vec3f::UnitX()))
+ std::abs(fc.normal.dot(Vec3f::UnitY()))
+ std::abs(fc.normal.dot(Vec3f::UnitZ())));
// We should score against the alignment with the reference planes
return scaled<int_fast64_t>(score);
};
size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency();
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount;
}
// The score function for a particular face
inline double get_supportedness_score(const Facestats &fc)
{
// Simply get the angle (acos of dot product) between the face normal and
// the DOWN vector.
float phi = 1. - std::acos(fc.normal.dot(DOWN)) / float(PI);
// Only consider faces that have slopes below 90 deg:
phi = phi * (phi >= 0.5f);
float cosphi = fc.normal.dot(DOWN);
float phi = 1.f - std::acos(cosphi) / float(PI);
// Make the huge slopes more significant than the smaller slopes
phi = phi * phi * phi;
// Multiply with the area of the current face
return fc.area * POINTS_PER_UNIT_AREA * phi;
// Multiply with the square root of face area of the current face,
// the area is less important as it grows.
// This makes many smaller overhangs a bigger impact.
return std::sqrt(fc.area) * POINTS_PER_UNIT_AREA * phi;
}
// Try to guess the number of support points needed to support a mesh
@ -120,8 +121,7 @@ double get_supportedness_score(const TriangleMesh &mesh, const Transform3f &tr)
auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
return get_supportedness_score(fc);
return scaled<int_fast64_t>(get_supportedness_score(fc));
};
size_t facecount = mesh.its.indices.size();
@ -164,7 +164,7 @@ float get_supportedness_onfloor_score(const TriangleMesh &mesh,
Facestats fc{tri};
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
return -fc.area * POINTS_PER_UNIT_AREA;
return -2 * fc.area * POINTS_PER_UNIT_AREA;
return get_supportedness_score(fc);
};
@ -283,95 +283,81 @@ std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
} // namespace
template<unsigned MAX_ITER>
struct RotfinderBoilerplate {
static constexpr unsigned MAX_TRIES = MAX_ITER;
int status = 0;
TriangleMesh mesh;
unsigned max_tries;
const RotOptimizeParams &params;
// Assemble the mesh with the correct transformation to be used in rotation
// optimization.
static TriangleMesh get_mesh_to_rotate(const ModelObject &mo)
{
TriangleMesh mesh = mo.raw_mesh();
mesh.require_shared_vertices();
ModelInstance *mi = mo.instances[0];
auto rotation = Vec3d::Zero();
auto offset = Vec3d::Zero();
Transform3d trafo_instance =
Geometry::assemble_transform(offset, rotation,
mi->get_scaling_factor(),
mi->get_mirror());
mesh.transform(trafo_instance);
return mesh;
}
RotfinderBoilerplate(const ModelObject &mo, const RotOptimizeParams &p)
: mesh{get_mesh_to_rotate(mo)}
, params{p}
, max_tries(p.accuracy() * MAX_TRIES)
{
}
void statusfn() { params.statuscb()(++status * 100.0 / max_tries); }
bool stopcond() { return ! params.statuscb()(-1); }
};
Vec2d find_best_misalignment_rotation(const ModelObject & mo,
const RotOptimizeParams &params)
{
static constexpr unsigned MAX_TRIES = 1000;
// return value
XYRotation rot;
// We will use only one instance of this converted mesh to examine different
// rotations
TriangleMesh mesh = mo.raw_mesh();
mesh.require_shared_vertices();
// To keep track of the number of iterations
int status = 0;
// The maximum number of iterations
auto max_tries = unsigned(params.accuracy() * MAX_TRIES);
auto &statuscb = params.statuscb();
// call status callback with zero, because we are at the start
statuscb(status);
auto statusfn = [&statuscb, &status, &max_tries] {
// report status
statuscb(++status * 100.0/max_tries);
};
auto stopcond = [&statuscb] {
return ! statuscb(-1);
};
RotfinderBoilerplate<1000> bp{mo, params};
// Preparing the optimizer.
size_t gridsize = std::sqrt(max_tries);
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
.max_iterations(max_tries)
.stop_condition(stopcond),
gridsize);
size_t gridsize = std::sqrt(bp.max_tries);
opt::Optimizer<opt::AlgBruteForce> solver(
opt::StopCriteria{}.max_iterations(bp.max_tries)
.stop_condition([&bp] { return bp.stopcond(); }),
gridsize
);
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
// We can specify the bounds for a dimension in the following way:
auto bounds = opt::bounds({ {-PI/2, PI/2}, {-PI/2, PI/2} });
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
auto result = solver.to_max().optimize(
[&mesh, &statusfn] (const XYRotation &rot)
[&bp] (const XYRotation &rot)
{
statusfn();
return get_misalginment_score(mesh, to_transform3f(rot));
bp.statusfn();
return get_misalginment_score(bp.mesh, to_transform3f(rot));
}, opt::initvals({0., 0.}), bounds);
rot = result.optimum;
return {rot[0], rot[1]};
return {result.optimum[0], result.optimum[1]};
}
Vec2d find_least_supports_rotation(const ModelObject & mo,
const RotOptimizeParams &params)
{
static const unsigned MAX_TRIES = 1000;
// return value
XYRotation rot;
// We will use only one instance of this converted mesh to examine different
// rotations
TriangleMesh mesh = mo.raw_mesh();
mesh.require_shared_vertices();
// To keep track of the number of iterations
unsigned status = 0;
// The maximum number of iterations
auto max_tries = unsigned(params.accuracy() * MAX_TRIES);
auto &statuscb = params.statuscb();
// call status callback with zero, because we are at the start
statuscb(status);
auto statusfn = [&statuscb, &status, &max_tries] {
// report status
statuscb(unsigned(++status * 100.0/max_tries) );
};
auto stopcond = [&statuscb] {
return ! statuscb(-1);
};
RotfinderBoilerplate<1000> bp{mo, params};
SLAPrintObjectConfig pocfg;
if (params.print_config())
@ -379,31 +365,35 @@ Vec2d find_least_supports_rotation(const ModelObject & mo,
pocfg.apply(mo.config.get());
XYRotation rot;
// Different search methods have to be used depending on the model elevation
if (is_on_floor(pocfg)) {
std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
max_tries = inputs.size();
std::vector<XYRotation> inputs = get_chull_rotations(bp.mesh, bp.max_tries);
bp.max_tries = inputs.size();
// If the model can be placed on the bed directly, we only need to
// check the 3D convex hull face rotations.
auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
statusfn();
auto objfn = [&bp](const XYRotation &rot) {
bp.statusfn();
Transform3f tr = to_transform3f(rot);
return get_supportedness_onfloor_score(mesh, tr);
return get_supportedness_onfloor_score(bp.mesh, tr);
};
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), [&bp] {
return bp.stopcond();
});
} else {
// Preparing the optimizer.
size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
.max_iterations(max_tries)
.stop_condition(stopcond),
gridsize);
size_t gridsize = std::sqrt(bp.max_tries); // 2D grid has gridsize^2 calls
opt::Optimizer<opt::AlgBruteForce> solver(
opt::StopCriteria{}.max_iterations(bp.max_tries)
.stop_condition([&bp] { return bp.stopcond(); }),
gridsize
);
// We are searching rotations around only two axes x, y. Thus the
// problem becomes a 2 dimensional optimization task.
@ -411,10 +401,10 @@ Vec2d find_least_supports_rotation(const ModelObject & mo,
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
auto result = solver.to_min().optimize(
[&mesh, &statusfn] (const XYRotation &rot)
[&bp] (const XYRotation &rot)
{
statusfn();
return get_supportedness_score(mesh, to_transform3f(rot));
bp.statusfn();
return get_supportedness_score(bp.mesh, to_transform3f(rot));
}, opt::initvals({0., 0.}), bounds);
// Save the result
@ -424,4 +414,66 @@ Vec2d find_least_supports_rotation(const ModelObject & mo,
return {rot[0], rot[1]};
}
inline BoundingBoxf3 bounding_box_with_tr(const indexed_triangle_set &its,
const Transform3f &tr)
{
if (its.vertices.empty())
return {};
Vec3f bmin = tr * its.vertices.front(), bmax = tr * its.vertices.front();
for (const Vec3f &p : its.vertices) {
Vec3f pp = tr * p;
bmin = pp.cwiseMin(bmin);
bmax = pp.cwiseMax(bmax);
}
return {bmin.cast<double>(), bmax.cast<double>()};
}
Vec2d find_min_z_height_rotation(const ModelObject &mo,
const RotOptimizeParams &params)
{
RotfinderBoilerplate<1000> bp{mo, params};
TriangleMesh chull = bp.mesh.convex_hull_3d();
chull.require_shared_vertices();
auto inputs = reserve_vector<XYRotation>(chull.its.indices.size());
auto rotcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
};
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
};
for (size_t fi = 0; fi < chull.its.indices.size(); ++fi) {
Facestats fc{get_triangle_vertices(chull, fi)};
auto q = Eigen::Quaternionf{}.FromTwoVectors(fc.normal, DOWN);
XYRotation rot = from_transform3f(Transform3f::Identity() * q);
auto it = std::lower_bound(inputs.begin(), inputs.end(), rot, rotcmp);
if (it == inputs.end() || !eqcmp(*it, rot))
inputs.insert(it, rot);
}
inputs.shrink_to_fit();
bp.max_tries = inputs.size();
auto objfn = [&bp, &chull](const XYRotation &rot) {
bp.statusfn();
Transform3f tr = to_transform3f(rot);
return bounding_box_with_tr(chull.its, tr).size().z();
};
XYRotation rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), [&bp] {
return bp.stopcond();
});
return {rot[0], rot[1]};
}
}} // namespace Slic3r::sla

View file

@ -63,7 +63,8 @@ Vec2d find_best_misalignment_rotation(const ModelObject &modelobj,
Vec2d find_least_supports_rotation(const ModelObject &modelobj,
const RotOptimizeParams & = {});
double find_Z_fit_to_bed_rotation(const ModelObject &mo, const BoundingBox &bed);
Vec2d find_min_z_height_rotation(const ModelObject &mo,
const RotOptimizeParams &params = {});
} // namespace sla
} // namespace Slic3r

View file

@ -519,7 +519,7 @@ bool SupportTreeBuildsteps::create_ground_pillar(const Vec3d &hjp,
auto [polar, azimuth] = dir_to_spheric(dir);
polar = PI - m_cfg.bridge_slope;
Vec3d d = spheric_to_dir(polar, azimuth).normalized();
double t = bridge_mesh_distance(endp, dir, radius);
double t = bridge_mesh_distance(endp, d, radius);
double tmax = std::min(m_cfg.max_bridge_length_mm, t);
t = 0.;

View file

@ -25,8 +25,17 @@ public:
Semver() : ver(semver_zero()) {}
Semver(int major, int minor, int patch,
boost::optional<const std::string&> metadata = boost::none,
boost::optional<const std::string&> prerelease = boost::none)
boost::optional<const std::string&> metadata, boost::optional<const std::string&> prerelease)
: ver(semver_zero())
{
ver.major = major;
ver.minor = minor;
ver.patch = patch;
set_metadata(metadata);
set_prerelease(prerelease);
}
Semver(int major, int minor, int patch, const char *metadata = nullptr, const char *prerelease = nullptr)
: ver(semver_zero())
{
ver.major = major;
@ -102,7 +111,9 @@ public:
void set_min(int min) { ver.minor = min; }
void set_patch(int patch) { ver.patch = patch; }
void set_metadata(boost::optional<const std::string&> meta) { ver.metadata = meta ? strdup(*meta) : nullptr; }
void set_metadata(const char *meta) { ver.metadata = meta ? strdup(meta) : nullptr; }
void set_prerelease(boost::optional<const std::string&> pre) { ver.prerelease = pre ? strdup(*pre) : nullptr; }
void set_prerelease(const char *pre) { ver.prerelease = pre ? strdup(pre) : nullptr; }
// Comparison
bool operator<(const Semver &b) const { return ::semver_compare(ver, b.ver) == -1; }

View file

@ -107,7 +107,7 @@ public:
// Determinant
T det(int a11, int a12, int a13,
int a21, int a22, int a23,
int a31, int a32, int a33)
int a31, int a32, int a33) const
{
T det = m[a11] * m[a22] * m[a33] + m[a13] * m[a21] * m[a32] +
m[a12] * m[a23] * m[a31] - m[a13] * m[a22] * m[a31] -
@ -121,7 +121,7 @@ public:
for (size_t i = 0; i < N; ++i) m[i] += n[i];
return *this;
}
SymetricMatrix operator+(const SymetricMatrix& n)
{
SymetricMatrix self = *this;

View file

@ -47,6 +47,8 @@
#define ENABLE_FIX_IMPORTING_COLOR_PRINT_VIEW_INTO_GCODEVIEWER (1 && ENABLE_2_4_0_ALPHA0)
// Enable drawing contours, at cut level, for sinking volumes
#define ENABLE_SINKING_CONTOURS (1 && ENABLE_2_4_0_ALPHA0)
// Enable implementation of retract acceleration in gcode processor
#define ENABLE_RETRACT_ACCELERATION (1 && ENABLE_2_4_0_ALPHA0)
// Enable rendering seams (and other options) in preview using models
#define ENABLE_SEAMS_USING_MODELS (1 && ENABLE_2_4_0_ALPHA0)
// Enable rendering seams (and other options) in preview using instanced models

View file

@ -957,6 +957,48 @@ int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit)
return removed;
}
bool its_store_triangle(const indexed_triangle_set &its,
const char * obj_filename,
size_t triangle_index)
{
if (its.indices.size() <= triangle_index) return false;
Vec3i t = its.indices[triangle_index];
indexed_triangle_set its2;
its2.indices = {{0, 1, 2}};
its2.vertices = {its.vertices[t[0]], its.vertices[t[1]],
its.vertices[t[2]]};
return its_write_obj(its2, obj_filename);
}
bool its_store_triangles(const indexed_triangle_set &its,
const char * obj_filename,
const std::vector<size_t> & triangles)
{
indexed_triangle_set its2;
its2.vertices.reserve(triangles.size() * 3);
its2.indices.reserve(triangles.size());
std::map<size_t, size_t> vertex_map;
for (auto ti : triangles) {
if (its.indices.size() <= ti) return false;
Vec3i t = its.indices[ti];
Vec3i new_t;
for (size_t i = 0; i < 3; ++i) {
size_t vi = t[i];
auto it = vertex_map.find(vi);
if (it != vertex_map.end()) {
new_t[i] = it->second;
continue;
}
size_t new_vi = its2.vertices.size();
its2.vertices.push_back(its.vertices[vi]);
vertex_map[vi] = new_vi;
new_t[i] = new_vi;
}
its2.indices.push_back(new_t);
}
return its_write_obj(its2, obj_filename);
}
void its_shrink_to_fit(indexed_triangle_set &its)
{
its.indices.shrink_to_fit();

View file

@ -140,6 +140,10 @@ int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit =
// Remove vertices, which none of the faces references. Return number of freed vertices.
int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit = true);
// store part of index triangle set
bool its_store_triangle(const indexed_triangle_set &its, const char *obj_filename, size_t triangle_index);
bool its_store_triangles(const indexed_triangle_set &its, const char *obj_filename, const std::vector<size_t>& triangles);
std::vector<indexed_triangle_set> its_split(const indexed_triangle_set &its);
bool its_is_splittable(const indexed_triangle_set &its);

View file

@ -4,7 +4,7 @@
#include <boost/container/small_vector.hpp>
#ifndef NDEBUG
#define EXPENSIVE_DEBUG_CHECKS
// #define EXPENSIVE_DEBUG_CHECKS
#endif // NDEBUG
namespace Slic3r {
@ -178,12 +178,12 @@ void TriangleSelector::select_patch(const Vec3f& hit, int facet_start,
}
}
void TriangleSelector::seed_fill_select_triangles(const Vec3f &hit, int facet_start, float seed_fill_angle)
void TriangleSelector::seed_fill_select_triangles(const Vec3f &hit, int facet_start, float seed_fill_angle, bool force_reselection)
{
assert(facet_start < m_orig_size_indices);
// Recompute seed fill only if the cursor is pointing on facet unselected by seed fill.
if (int start_facet_idx = select_unsplit_triangle(hit, facet_start); start_facet_idx >= 0 && m_triangles[start_facet_idx].is_selected_by_seed_fill())
if (int start_facet_idx = select_unsplit_triangle(hit, facet_start); start_facet_idx >= 0 && m_triangles[start_facet_idx].is_selected_by_seed_fill() && !force_reselection)
return;
this->seed_fill_unselect_all_triangles();
@ -278,7 +278,7 @@ void TriangleSelector::append_touching_subtriangles(int itriangle, int vertexi,
return;
auto process_subtriangle = [this, &itriangle, &vertexi, &vertexj, &touching_subtriangles_out](const int subtriangle_idx, Partition partition) -> void {
assert(subtriangle_idx == -1);
assert(subtriangle_idx != -1);
if (!m_triangles[subtriangle_idx].is_split())
touching_subtriangles_out.emplace_back(subtriangle_idx);
else if (int midpoint = this->triangle_midpoint(itriangle, vertexi, vertexj); midpoint != -1)
@ -295,11 +295,48 @@ void TriangleSelector::append_touching_subtriangles(int itriangle, int vertexi,
process_subtriangle(touching.second, Partition::Second);
}
void TriangleSelector::bucket_fill_select_triangles(const Vec3f& hit, int facet_start, bool propagate)
// It appends all edges that are touching the edge (vertexi, vertexj) of the triangle and are not selected by seed fill
// It doesn't append the edges that are touching the triangle only by part of the edge that means the triangles are from lower depth.
void TriangleSelector::append_touching_edges(int itriangle, int vertexi, int vertexj, std::vector<Vec2i> &touching_edges_out) const
{
if (itriangle == -1)
return;
auto process_subtriangle = [this, &itriangle, &vertexi, &vertexj, &touching_edges_out](const int subtriangle_idx, Partition partition) -> void {
assert(subtriangle_idx != -1);
if (!m_triangles[subtriangle_idx].is_split()) {
if (!m_triangles[subtriangle_idx].is_selected_by_seed_fill()) {
int midpoint = this->triangle_midpoint(itriangle, vertexi, vertexj);
if (partition == Partition::First && midpoint != -1) {
touching_edges_out.emplace_back(vertexi, midpoint);
} else if (partition == Partition::First && midpoint == -1) {
touching_edges_out.emplace_back(vertexi, vertexj);
} else {
assert(midpoint != -1 && partition == Partition::Second);
touching_edges_out.emplace_back(midpoint, vertexj);
}
}
} else if (int midpoint = this->triangle_midpoint(itriangle, vertexi, vertexj); midpoint != -1)
append_touching_edges(subtriangle_idx, partition == Partition::First ? vertexi : midpoint, partition == Partition::First ? midpoint : vertexj,
touching_edges_out);
else
append_touching_edges(subtriangle_idx, vertexi, vertexj, touching_edges_out);
};
std::pair<int, int> touching = this->triangle_subtriangles(itriangle, vertexi, vertexj);
if (touching.first != -1)
process_subtriangle(touching.first, Partition::First);
if (touching.second != -1)
process_subtriangle(touching.second, Partition::Second);
}
void TriangleSelector::bucket_fill_select_triangles(const Vec3f& hit, int facet_start, bool propagate, bool force_reselection)
{
int start_facet_idx = select_unsplit_triangle(hit, facet_start);
assert(start_facet_idx != -1);
// Recompute bucket fill only if the cursor is pointing on facet unselected by bucket fill.
if (start_facet_idx == -1 || m_triangles[start_facet_idx].is_selected_by_seed_fill())
if (start_facet_idx == -1 || (m_triangles[start_facet_idx].is_selected_by_seed_fill() && !force_reselection))
return;
assert(!m_triangles[start_facet_idx].is_split());
@ -312,7 +349,7 @@ void TriangleSelector::bucket_fill_select_triangles(const Vec3f& hit, int facet_
}
auto get_all_touching_triangles = [this](int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated) -> std::vector<int> {
assert(facet_idx != -1 && facet_idx < m_triangles.size());
assert(facet_idx != -1 && facet_idx < int(m_triangles.size()));
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
std::vector<int> touching_triangles;
Vec3i vertices = {m_triangles[facet_idx].verts_idxs[0], m_triangles[facet_idx].verts_idxs[1], m_triangles[facet_idx].verts_idxs[2]};
@ -1358,6 +1395,48 @@ void TriangleSelector::get_facets_split_by_tjoints(const Vec3i &vertices, const
}
}
std::vector<Vec2i> TriangleSelector::get_seed_fill_contour() const {
std::vector<Vec2i> edges_out;
for (int facet_idx = 0; facet_idx < this->m_orig_size_indices; ++facet_idx) {
const Vec3i neighbors = root_neighbors(*m_mesh, facet_idx);
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
this->get_seed_fill_contour_recursive(facet_idx, neighbors, neighbors, edges_out);
}
return edges_out;
}
void TriangleSelector::get_seed_fill_contour_recursive(const int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector<Vec2i> &edges_out) const {
assert(facet_idx != -1 && facet_idx < int(m_triangles.size()));
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
const Triangle *tr = &m_triangles[facet_idx];
if (!tr->valid())
return;
if (tr->is_split()) {
int num_of_children = tr->number_of_split_sides() + 1;
if (num_of_children != 1) {
for (int i = 0; i < num_of_children; ++i) {
assert(i < int(tr->children.size()));
assert(tr->children[i] < int(m_triangles.size()));
// Recursion, deep first search over the children of this triangle.
// All children of this triangle were created by splitting a single source triangle of the original mesh.
this->get_seed_fill_contour_recursive(tr->children[i], this->child_neighbors(*tr, neighbors, i), this->child_neighbors_propagated(*tr, neighbors_propagated, i), edges_out);
}
}
} else if (tr->is_selected_by_seed_fill()) {
Vec3i vertices = {m_triangles[facet_idx].verts_idxs[0], m_triangles[facet_idx].verts_idxs[1], m_triangles[facet_idx].verts_idxs[2]};
append_touching_edges(neighbors(0), vertices(1), vertices(0), edges_out);
append_touching_edges(neighbors(1), vertices(2), vertices(1), edges_out);
append_touching_edges(neighbors(2), vertices(0), vertices(2), edges_out);
// It appends the edges that are touching the triangle only by part of the edge that means the triangles are from lower depth.
for (int idx = 0; idx < 3; ++idx)
if (int neighbor_tr_idx = neighbors_propagated(idx); neighbor_tr_idx != -1 && !m_triangles[neighbor_tr_idx].is_split() && !m_triangles[neighbor_tr_idx].is_selected_by_seed_fill())
edges_out.emplace_back(vertices(idx), vertices(next_idx_modulo(idx, 3)));
}
}
std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> TriangleSelector::serialize() const
{
// Each original triangle of the mesh is assigned a number encoding its state

View file

@ -49,11 +49,13 @@ public:
void seed_fill_select_triangles(const Vec3f &hit, // point where to start
int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to
float seed_fill_angle); // the maximal angle between two facets to be painted by the same color
float seed_fill_angle, // the maximal angle between two facets to be painted by the same color
bool force_reselection = false); // force reselection of the triangle mesh even in cases that mouse is pointing on the selected triangle
void bucket_fill_select_triangles(const Vec3f &hit, // point where to start
int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to
bool propagate); // if bucket fill is propagated to neighbor faces or if it fills the only facet of the modified mesh that the hit point belongs to.
int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to
bool propagate, // if bucket fill is propagated to neighbor faces or if it fills the only facet of the modified mesh that the hit point belongs to.
bool force_reselection = false); // force reselection of the triangle mesh even in cases that mouse is pointing on the selected triangle
bool has_facets(EnforcerBlockerType state) const;
static bool has_facets(const std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> &data, EnforcerBlockerType test_state);
@ -62,6 +64,8 @@ public:
indexed_triangle_set get_facets(EnforcerBlockerType state) const;
// Get facets at a given state. Triangulate T-joints.
indexed_triangle_set get_facets_strict(EnforcerBlockerType state) const;
// Get edges around the selected area by seed fill.
std::vector<Vec2i> get_seed_fill_contour() const;
// Set facet of the mesh to a given state. Only works for original triangles.
void set_facet(int facet_idx, EnforcerBlockerType state);
@ -221,6 +225,7 @@ private:
std::pair<int, int> triangle_subtriangles(int itriangle, int vertexi, int vertexj) const;
void append_touching_subtriangles(int itriangle, int vertexi, int vertexj, std::vector<int> &touching_subtriangles_out) const;
void append_touching_edges(int itriangle, int vertexi, int vertexj, std::vector<Vec2i> &touching_edges_out) const;
#ifndef NDEBUG
bool verify_triangle_neighbors(const Triangle& tr, const Vec3i& neighbors) const;
@ -234,6 +239,8 @@ private:
std::vector<stl_triangle_vertex_indices> &out_triangles) const;
void get_facets_split_by_tjoints(const Vec3i &vertices, const Vec3i &neighbors, std::vector<stl_triangle_vertex_indices> &out_triangles) const;
void get_seed_fill_contour_recursive(int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector<Vec2i> &edges_out) const;
int m_free_triangles_head { -1 };
int m_free_vertices_head { -1 };
};

View file

@ -238,7 +238,7 @@ inline typename CONTAINER_TYPE::value_type& next_value_modulo(typename CONTAINER
return container[next_idx_modulo(idx, container.size())];
}
extern std::string xml_escape(std::string text);
extern std::string xml_escape(std::string text, bool is_marked = false);
#if defined __GNUC__ && __GNUC__ < 5 && !defined __clang__

View file

@ -888,7 +888,7 @@ unsigned get_current_pid()
#endif
}
std::string xml_escape(std::string text)
std::string xml_escape(std::string text, bool is_marked/* = false*/)
{
std::string::size_type pos = 0;
for (;;)
@ -903,8 +903,8 @@ std::string xml_escape(std::string text)
case '\"': replacement = "&quot;"; break;
case '\'': replacement = "&apos;"; break;
case '&': replacement = "&amp;"; break;
case '<': replacement = "&lt;"; break;
case '>': replacement = "&gt;"; break;
case '<': replacement = is_marked ? "<" :"&lt;"; break;
case '>': replacement = is_marked ? ">" :"&gt;"; break;
default: break;
}